Compatibilidad entre cementos y aditivos: análisis y criterios de evaluación

En este artículo se resumen las ideas básicas de la guía elaborada por la Plataforma Tecnológica Española del Hormigón en relación con la compatibilidad entre cementos y aditivos.

En esta guía se analiza la compatibilidad entre cementos y aditivos superplastificantes, especialmente los basados en policarboxilatos, y se destacan los retos asociados a los cementos con menores emisiones de CO₂.

Se propone un método de ensayo con morteros normalizados para evaluar parámetros como fluidez, consistencia, densidad y tiempos de fraguado, teniendo en cuenta las implicaciones normativas y ambientales.

Además, se explica el impacto de las adiciones en el rendimiento del hormigón y la importancia de elegir aditivos adecuados para garantizar su estabilidad y funcionalidad. También se abordan las implicaciones normativas actuales y futuras en este ámbito.

El texto concluye con recomendaciones sobre la evaluación de nuevas formulaciones cementicias para mantener o mejorar las propiedades del hormigón.

Introducción al análisis de la compatibilidad cemento-aditivo

A lo largo de las últimas décadas, la industria del hormigón ha incorporado nuevas formulaciones de aditivos, en particular superplastificantes basados en polímeros de policarboxilato (PCE), que han permitido alcanzar elevados niveles de fluidez y mantener una consistencia prolongada. Sin embargo, el uso de nuevos tipos de cementos, principalmente aquellos con bajo contenido de clínker y mayor proporción de adiciones, ha planteado desafíos específicos en cuanto a su compatibilidad con estos aditivos. Esta guía se centra en identificar, comprender y evaluar dichos desafíos, y propone un método de contraste basado en ensayos de morteros normalizados que permite anticipar posibles desviaciones en el rendimiento del hormigón debidas a cambios en la química del cemento o del aditivo.

1. Objeto

El objetivo de la guía es evaluar la interacción entre cemento y aditivos superplastificantes mediante un método de ensayo basado en morteros normalizados. Esta metodología permite identificar variaciones en parámetros como fluidez, mantenimiento de la consistencia, aire ocluido, densidad y tiempos de fraguado, tanto frente a modificaciones en la composición del cemento como al empleo de distintos tipos de aditivos, utilizando un protocolo que establece relaciones a/c precisas y reproducibles.

2. Alcance

Este enfoque es especialmente adecuado para cementos con bajo contenido de clínker, elevada finura o presencia de diversas adiciones. Se centra en cementos experimentales cuyo desarrollo tiene como objetivo reducir la huella de carbono y cuya aplicación requiere validar su comportamiento antes de su uso industrial, tanto en hormigón preparado como en prefabricado. En este contexto, la evaluación de compatibilidad se vuelve una herramienta indispensable para prever rendimientos y ajustar formulaciones en función de la tecnología disponible.

3. Mecanismo de actuación de los aditivos superplastificantes y compatibilidad cemento-aditivo

Los aditivos superplastificantes basados en PCE actúan sobre la superficie de las partículas de cemento mediante adsorción, generando una repulsión estérica entre ellas. Esta acción se traduce en una mejora de la fluidez del sistema. La capacidad de mantener el efecto en el tiempo depende del equilibrio dinámico entre la fracción de aditivo adsorbida, la disuelta en solución y la encapsulada en productos de hidratación como la etringita.

La compatibilidad se define como la capacidad del sistema para mantener la consistencia deseada sin pérdidas prematuras de fluidez. Las principales causas de incompatibilidad son una adsorción excesiva o deficiente, la absorción por materiales porosos o las interacciones químicas que inhiben el aditivo. Estos efectos están estrechamente relacionados con las propiedades del cemento, como su finura, el contenido de sulfato soluble, la presencia de adiciones con baja reactividad o carácter absorbente y la relación molar SO₄²⁻/C₃A.

El uso de cementos muy finos puede acelerar la adsorción del aditivo y reducir su reserva disponible, lo que compromete la durabilidad del efecto. Las adiciones absorbentes reducen la proporción de aditivo útil, lo que provoca una pérdida prematura de fluidez. En casos extremos, como defectos de sulfato soluble, puede producirse una inactivación casi total del aditivo. Para ajustar la elección del aditivo más adecuado, es fundamental evaluar detalladamente la compatibilidad y tener en cuenta estos aspectos.

4. Método de ensayo de contraste con morteros normalizados

El procedimiento implica la elaboración de morteros con y sin aditivo superplastificante, manteniendo constante la relación a/c, y la medición de propiedades como la consistencia utilizando una mesa de sacudidas, la densidad, el aire ocluido y los tiempos de fraguado.

Se emplea equipamiento normalizado según la normativa europea (EN 196-1, EN 1015-3, EN 480-1), cuidando las condiciones de amasado y la temperatura de los componentes. El ensayo se realiza en intervalos temporales (T0, T30 y T60) para registrar la evolución de la fluidez.

Los datos obtenidos permiten contrastar el comportamiento del mortero con aditivo respecto al patrón y detectar posibles efectos de incompatibilidad. También se registra la resistencia mecánica a flexión y compresión en diferentes edades para validar el rendimiento final del sistema.

5. Cementos que se recomienda ensayar

El impulso hacia cementos con menor huella de carbono ha llevado al desarrollo de formulaciones con una mayor proporción de adiciones, como cenizas volantes, escorias, puzolanas y calizas. El objetivo de estas estrategias es reducir el contenido de clínker, el componente que más emisiones genera.

Reducir el clínker afecta a la reactividad inicial, la trabajabilidad del hormigón y su estabilidad a largo plazo. La adición de materiales puzolánicos o inertes modifica el comportamiento reológico, por lo que es posible que sea necesario incorporar activadores o ajustar la formulación del aditivo.

La utilización de cementos con adiciones suele implicar la necesidad de aditivos de alta eficiencia, incluidos superplastificantes combinados con retardadores o aceleradores, así como aditivos reductores de retracción. A la hora de elegir, hay que tener en cuenta el tipo de adición y su interacción con el sistema.

Las normativas UNE-EN 197-1, 197-5 y 197-6 han ampliado el espectro de cementos aceptados, incluyendo nuevos tipos como el CEM VI y aquellos con materiales reciclados. Estas actualizaciones ofrecen una mayor flexibilidad en la formulación de cementos sostenibles, pero también exigen métodos de validación más precisos para garantizar la compatibilidad con aditivos y la calidad del producto final.

6. Cementos empleados y sensibilidad del método

El capítulo seis de la guía analiza los resultados obtenidos al aplicar el método de contraste a diversos tipos de cementos disponibles en el mercado, especialmente a aquellos que incorporan adiciones en proporciones significativas. El objetivo de este análisis es comprobar la capacidad del método para detectar diferencias sutiles en la interacción entre el cemento y el aditivo, y así evaluar su sensibilidad ante variaciones compositivas que, en principio, podrían parecer menores.

Se ha comprobado que el método de ensayo propuesto es sensible a las diferencias específicas en los comportamientos según el tipo de adición presente en el cemento. Entre las variables ensayadas, destacan la fluidez inicial, el mantenimiento de la consistencia, la cantidad de aire ocluido, la densidad del mortero fresco y los tiempos de fraguado. Estos parámetros permiten obtener una lectura clara de los efectos derivados del uso de diferentes tipos de adiciones, como escorias, cenizas volantes, calizas o puzolanas naturales.

Asimismo, el procedimiento permite observar los efectos de adiciones con altos grados de vitrificación o bajo nivel de ionización inicial, lo que puede inducir reacciones retardadas en la adsorción del aditivo. En estos casos, el ensayo no solo refleja una merma en la fluidez inicial, sino también un fenómeno de refluidificación tardía, lo que compromete la estabilidad del mortero con el paso del tiempo.

En general, los resultados confirman que el método de contraste no solo es reproducible, sino que su sensibilidad es suficiente para discriminar entre situaciones de compatibilidad aceptable y aquellas en las que existen limitaciones importantes que podrían comprometer el rendimiento del hormigón en aplicaciones reales.

7. Conclusiones

El análisis realizado en esta guía confirma que la compatibilidad entre cemento y aditivos no es un parámetro fijo o inherente al producto, sino que depende de un equilibrio dinámico y ajustado que debe evaluarse en función de cada combinación específica. La evolución de los cementos hacia formulaciones con menor huella de carbono ha introducido nuevas variables que afectan a este equilibrio, desde cambios en la mineralogía hasta variaciones en la reactividad de las adiciones utilizadas.

El método de ensayo de contraste con morteros normalizados propuesto ha demostrado ser eficaz para anticipar el comportamiento del sistema cemento-aditivo, ya que permite identificar de manera temprana posibles desviaciones en propiedades clave como la fluidez, la consistencia, la oclusión de aire, la densidad y los tiempos de fraguado. Su implementación sistemática ofrece una herramienta de diagnóstico útil tanto en las fases de diseño como en el control de calidad de la producción industrial.

En definitiva, comprender las variables que afectan a la compatibilidad entre cementos y aditivos y disponer de herramientas de evaluación sensibles y bien estructuradas es fundamental para garantizar el rendimiento del hormigón en contextos de creciente exigencia ambiental y tecnológica.

Aquí tenéis un mapa mental de lo anteriormente expuesto.

Además, os dejo el documento completo para su consulta.

Descargar (PDF, 6.84MB)

El amasado del hormigón en tiempo caluroso

https://hormigonaldia.ich.cl/recomendaciones-tecnicas/hormigonado-en-tiempo-caluroso/

El proceso de amasado no difiere del realizado en condiciones normales. Es importante amasar durante el tiempo necesario para obtener una mezcla homogénea, pero no más, para evitar el calor generado por el rozamiento del hormigón con la cuba y las palas. Para lograr un mezclado eficaz en poco tiempo, se debe asegurar que la amasadora esté libre de adherencias y que las paletas de los camiones amasadores estén en buen estado. Una vez que se ha conseguido un hormigón homogéneo, la rotación debe mantenerse a la velocidad mínima de agitación de la unidad. No obstante, no es conveniente detener la cuba durante largos periodos, pues existe el riesgo de un falso fraguado del hormigón.

Proteger la amasadora de la luz solar directa ayuda a evitar un aumento innecesario de la temperatura. Pintar la superficie de blanco también reduce el efecto de la radiación solar. Además, cuando se utiliza un aditivo retardante, su efecto será mayor si se añade al final del amasado en lugar de al principio.

Es importante controlar cuidadosamente la fluidez del hormigón a la salida de la amasadora para asegurar que llegue a la obra en las condiciones necesarias para su uso. También es posible enfriar el hormigón en la amasadora mediante la evaporación de un producto inerte, aunque se trata de una instalación compleja.

Si bien no es una práctica habitual, para retrasar el fraguado del hormigón se pueden dosificar los materiales sólidos en la planta y premezclarlos, añadiendo el agua y los aditivos líquidos en la obra, seguido de un mezclado posterior en el camión de suministro. Sin embargo, esto puede causar una pérdida de uniformidad entre las amasadas. Dado que es complicado controlar la dosificación de líquidos y el mezclado en obra, es necesario preparar adecuadamente todo el proceso si se elige este método.

Cuando se utilizan aditivos plastificantes, superplastificantes y retardadores, su efecto es más prolongado si se introducen al final del amasado, mezclados con una pequeña cantidad del agua de amasado. Los superplastificantes pueden añadirse parcialmente en la planta para obtener la fluidez necesaria para la carga y el transporte del hormigón, y el resto en la obra para compensar la pérdida de asiento durante el transporte. Para un control preciso, el aditivo puede dosificarse previamente en recipientes. Es necesario un amasado posterior en el camión antes de verter el hormigón en el encofrado o en el sistema de colocación en obra.

Es esencial fabricar el hormigón según las especificaciones requeridas para evitar rechazos que provoquen la formación de juntas de hormigonado o problemas en el acabado. Por ello, se recomienda realizar una inspección previa al transporte. En la planta, el hormigón puede inspeccionarse visualmente durante la descarga. En el caso de utilizar un camión amasador, se recomienda realizar un amasado inicial en la planta y verificar el asiento antes de proceder al transporte.

Referencias:

AA.VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 305. Guide to Hot Weather Concreting. ACI 305R-10.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.