¿El futuro de la construcción nació en 1624? 4 revelaciones sobre los edificios del mañana.

Introducción: Más allá de los ladrillos y el cemento.

Cuando pensamos en el sector de la construcción, a menudo lo imaginamos como un sector lento, tradicional y reacio al cambio. Se trata de una imagen de ladrillos, cemento y procesos que parecen haber cambiado poco en las últimas décadas. Sin embargo, bajo la superficie, una revolución silenciosa está cobrando impulso y transformando radicalmente esta percepción.

Esta revolución se conoce como Métodos Modernos de Construcción (MMC). Impulsados por las tecnologías de la Industria 4.0, como la inteligencia artificial y el diseño digital, los MMC están redefiniendo lo que es posible construir, cómo se construye y a qué velocidad. Se trata de un cambio de paradigma que promete edificios más rápidos, económicos y eficientes. Aunque esta revolución pueda parecer novedosa, algunos países ya viven este futuro: en los Países Bajos, el 50 % de las nuevas viviendas se construyen con estos métodos, seguidos de cerca por Suecia y Japón.

Componentes de la Construcción 4.0

Aunque conceptos como «automatización robótica» o «gemelos digitales» suenen a ciencia ficción, las raíces de esta transformación son sorprendentemente antiguas. Sus implicaciones van mucho más allá de la simple eficiencia, ya que apuntan a un futuro en el que los edificios no solo minimizan su impacto ambiental, sino que también lo revierten de forma positiva. A continuación, revelamos los cuatro secretos más impactantes sobre este nuevo paradigma que está transformando nuestro mundo.

Primer secreto: no es una idea nueva, sino una idea antigua que por fin funciona.

Su origen no es del siglo XXI, sino del siglo XVII.

Contrariamente a la creencia popular, la idea de prefabricar edificios no es un concepto moderno. De hecho, sus orígenes se remontan a mucho antes de la era digital. El primer caso registrado de casas prefabricadas data de 1624, cuando se fabricaron en Inglaterra para ser enviadas y ensambladas en Massachusetts.

No se trató de un hecho aislado, sino que la idea reapareció a lo largo de la historia, esperando a que la tecnología se pusiera a su altura. El siglo XX fue testigo de varios intentos clave para descifrar el código.

  • Las populares «Kit Houses» que la empresa Sears vendía por catálogo en 1908 reducían el tiempo de construcción hasta en un 40%.
  • El visionario sistema «Maison Dom-ino» de Le Corbusier, de 1914, es un armazón estructural de losas y pilares que sentó las bases de la arquitectura moderna.
  • Las «American System-Built Houses», diseñadas por Frank Lloyd Wright entre 1911 y 1917, utilizaban un sistema de producción industrializada para los componentes del edificio.

Entonces, ¿por qué esta idea centenaria está despegando ahora con tanta fuerza? La respuesta está en la convergencia tecnológica. El concepto, aunque antiguo, ha encontrado por fin sus catalizadores definitivos. Los avances en inteligencia artificial (IA), la adopción de metodologías colaborativas, como el modelado de información para la construcción (BIM), y un enfoque renovado en la sostenibilidad han creado el ecosistema perfecto para que la prefabricación alcance la precisión, la eficiencia y la sofisticación necesarias para superar a la construcción tradicional.

Segundo secreto: la velocidad es casi increíble (y se demostró en una crisis).

Puede reducir los tiempos de construcción a la mitad.

Uno de los datos más contundentes sobre la eficacia de los MMC es su impacto directo en los plazos y costes de construcción. Las investigaciones han demostrado que los sistemas industrializados y la prefabricación pueden generar ahorros de hasta el 50 % en el tiempo de construcción y del 30 % en los costes.

Esta estadística cobró vida de manera espectacular durante una de las mayores crisis globales recientes. Durante la pandemia de la enfermedad por coronavirus (Covid-19), el mundo fue testigo de la construcción de dos hospitales de emergencia en Wuhan (China) en solo 12 días. Este hito, imposible de alcanzar con métodos tradicionales, demostró el poder de los MMC para responder a las emergencias con una velocidad sin precedentes.

Esta capacidad no solo es crucial en situaciones de crisis. Permite satisfacer la creciente demanda de vivienda de manera más rápida, acelerar el desarrollo de infraestructuras críticas y aumentar drásticamente la eficiencia de un sector que históricamente ha luchado contra los retrasos y los sobrecostes.

Tercer secreto: los edificios más inteligentes no solo son sostenibles, sino «regenerativos».

La sostenibilidad está quedándose obsoleta; el futuro es el diseño regenerativo.

Durante años, la «sostenibilidad» ha sido el objetivo final en la construcción, el santo grial del diseño responsable. Pero ¿y si ya no es suficiente? La vanguardia de la innovación arquitectónica sostiene que la estrategia de «hacer menos daño» está abocada al fracaso. El futuro no solo es sostenible, sino también regenerativo.

Este nuevo paradigma, denominado «diseño regenerativo», no se conforma con minimizar el impacto negativo, un concepto que se resume en el lema «reciclar, reducir y reutilizar». El diseño regenerativo busca generar activamente impactos positivos y adopta un nuevo lema: «restaurar, renovar y reemplazar». Se trata de diseñar edificios que no solo consuman menos, sino que contribuyan a la regeneración de los ecosistemas naturales y humanos que los rodean.

El paradigma actual ya no es suficiente, como señala la investigación:

«Sin embargo, el actual paradigma de la sostenibilidad ya no es suficiente para reducir el impacto medioambiental de la actividad humana».

Los MMC son la herramienta perfecta para hacer realidad este futuro ambicioso. El control preciso de los materiales, la optimización de los procesos desde la fase de diseño y la capacidad de integrar tecnologías innovadoras convierten la construcción industrializada en la plataforma ideal para crear edificios que devuelvan a la naturaleza más de lo que consumen.

Cuarto secreto: su mayor desafío no es construir cosas nuevas, sino arreglar las antiguas.

Su gran potencial oculto radica en la rehabilitación de nuestros edificios existentes.

A pesar de que el enfoque se centra en la nueva construcción, uno de los mayores potenciales de los MMC se encuentra en un área sorprendentemente desatendida: la rehabilitación y modernización (retrofitting) de los edificios existentes. Esta es la diferencia más significativa entre el enfoque científico y la necesidad social identificada por la investigación: la mayoría de los estudios se centran en la obra nueva, pero el mayor impacto climático se consigue mejorando los edificios que ya tenemos.

La importancia de esta tarea es enorme. La industria de la construcción es responsable de aproximadamente el 40 % del consumo final de energía en la Unión Europea. La renovación energética del extenso parque de edificios existentes no es solo una opción, sino una necesidad urgente para cumplir con los objetivos climáticos.

Aquí es donde los MMC pueden cambiar las reglas del juego. Imaginemos la combinación de tecnologías como BIM para crear un mapa digital de un edificio existente, drones para inspeccionar su estado y elementos prefabricados, como paneles de fachada de alto rendimiento, fabricados a medida en una fábrica y ensamblados rápidamente in situ. Este enfoque podría acelerar masivamente la modernización energética de nuestras ciudades, un desafío que hoy parece casi insuperable con los métodos tradicionales.

Conclusión: Rediseñando nuestro mundo.

Los métodos modernos de construcción son mucho más que una simple técnica, ya que suponen un profundo cambio de paradigma. Fusionan una idea con siglos de antigüedad con tecnología de vanguardia para ofrecer soluciones a algunos de los mayores retos de nuestro tiempo: la necesidad de vivienda, la urgencia de la crisis climática y la ineficiencia de las industrias tradicionales.

Hemos visto que sus raíces son más antiguas de lo que imaginamos, que su velocidad puede ser asombrosa, que su objetivo ya no es solo ser sostenible, sino regenerativo y que su próximo gran desafío podría ser la renovación de lo ya construido.

Ahora que sabemos que podemos construir hospitales en 12 días y diseñar edificios que regeneran su entorno, la verdadera pregunta no es qué podemos construir, sino qué queremos construir.

Os dejo a continuación un audio en el que se puede escuchar una conversación sobre este tema, que espero que os resulte interesante y os aporte información valiosa.

Asimismo, en este vídeo podéis ver un resumen de las ideas principales que se tratan en el artículo, el cual os será de utilidad para comprender mejor el contenido.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Journal of Building Engineering, 73:106725. DOI:10.1016/j.jobe.2023.106725

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tendencias futuras y retos de la inteligencia artificial en la ingeniería civil

La ingeniería civil se encuentra inmersa en un proceso de transformación profunda, impulsada por los avances en inteligencia artificial (IA) y tecnologías digitales emergentes. Estas innovaciones están redefiniendo los procesos de diseño y la gestión y operación de las infraestructuras, lo que permite la implementación de soluciones más eficientes, sostenibles y seguras. En este contexto, resulta imperativo explorar las principales tendencias que delinearán el futuro del sector en los próximos años, así como los desafíos que deberán superarse para lograr una adopción exitosa y generalizada.

Este artículo examina el impacto transformador de la IA y las tecnologías digitales en la ingeniería civil. Se destacan tendencias futuras clave como la creación de infraestructuras inteligentes con monitorización en tiempo real, el diseño generativo y la planificación asistida por inteligencia artificial. También se aborda el uso de la IA para la construcción sostenible, la proliferación de máquinas autónomas y robótica, y la mejora de la colaboración entre humanos y máquinas mediante la inteligencia aumentada. El documento también detalla los principales desafíos para la adopción exitosa de la IA, como la calidad de los datos, la integración con sistemas existentes, las consideraciones éticas y la escasez de talento. Por último, se destaca la importancia de abordar estos desafíos para lograr una transformación integral y sostenible del sector.

Tendencias futuras

La primera gran línea de evolución es la de las infraestructuras inteligentes, donde la IA combinada con el Internet de las Cosas (IoT) permitirá monitorizar en tiempo real el estado de puentes, túneles y redes de transporte, y adaptar automáticamente parámetros como la iluminación, el drenaje o la ventilación según la demanda.

El diseño generativo y la planificación asistida por IA tienen el potencial de transformar significativamente las etapas iniciales del proceso de diseño. Mediante algoritmos capaces de explorar un amplio espectro de alternativas, se optimizarán los criterios de costo, consumo de material y rendimiento estructural, reduciendo la subjetividad y acelerando la toma de decisiones.

En el ámbito de la construcción sostenible, la IA aportará análisis avanzados de consumo energético y huella de carbono, facilitando la selección de materiales y métodos constructivos de menor impacto ambiental, así como el dimensionado óptimo de sistemas de climatización y redes de servicios.

El despliegue de las máquinas autónomas y la robótica de obra continuará su curso: excavadoras, camiones y drones operarán con escasa supervisión humana, ejecutando movimientos precisos y recolectando datos topográficos que retroalimentan modelos predictivos de rendimiento y seguridad.

La colaboración entre humanos y máquinas se potenciará a través de la inteligencia aumentada, permitiendo a los profesionales liberarse de tareas repetitivas para enfocarse en la supervisión e interpretación de los resultados generados por sistemas de IA, combinando intuición y rigor analítico.

Las analíticas predictivas alcanzarán nuevas cotas de sofisticación, ofreciendo a los gestores de proyecto visibilidad temprana de desviaciones de costes, plazos y riesgos, y sugiriendo medidas preventivas basadas en patrones históricos.

La tecnología blockchain se explorará como garante de la trazabilidad, la transparencia y la inmutabilidad de los registros de obra, contratos y certificaciones, mitigando fraudes y disputas al proteger la integridad de los datos.

El edge computing permitirá procesar la información localmente en la obra —por ejemplo, en drones o en nodos IoT—, reduciendo la latencia y garantizando una respuesta inmediata en aplicaciones críticas, como la detección de fallos estructurales.

Los gemelos digitales, réplicas virtuales permanentemente actualizadas de activos reales, se consolidarán para simular escenarios de mantenimiento, rehabilitación y operación, optimizando ciclos de vida y costes asociados.

Por último, la personalización de soluciones IA permitirá adaptar herramientas y modelos a las necesidades específicas de cada proyecto, lo que facilitará una adopción más ágil y homogénea.

Retos asociados

No obstante, la plena materialización de estas tendencias se enfrenta a múltiples desafíos. En primer lugar, es preciso señalar que la calidad y la disponibilidad de los datos siguen siendo insuficientes. Los proyectos de gran envergadura generan información dispersa y heterogénea, lo que dificulta el entrenamiento fiable de modelos.

La integración con sistemas existentes, tales como software de gestión, bases de datos heredadas o flujos de trabajo manuales, puede ocasionar interrupciones en la operativa y en los cronogramas establecidos. Por lo tanto, se hace necesario implementar estrategias de migración y adaptación progresiva.

Las consideraciones éticas y el sesgo algorítmico obligan a implementar mecanismos de transparencia y gobernanza que garanticen la rendición de cuentas y la equidad en decisiones críticas.

La escasez de talento experto en IA y construcción limita la creación, el despliegue y el mantenimiento de estas soluciones, apuntando a la necesidad de planes de formación duales en ingeniería y ciencia de datos.

La ausencia de marcos regulatorios y legales claros genera incertidumbre en cuanto a las responsabilidades, licencias y cumplimiento normativo en caso de fallos o litigios.

El coste inicial de adquisición e implementación de tecnologías IA puede resultar prohibitivo para las pequeñas y medianas empresas (PYMES) y proyectos con márgenes ajustados. Por ello, es importante demostrar el retorno de la inversión a medio y largo plazo.

La privacidad y la seguridad de los datos, cada vez más extensos y sensibles, requieren arquitecturas robustas que eviten fugas y ciberataques, especialmente cuando se integran sensores IoT y servicios en la nube.

Los problemas de interoperabilidad entre plataformas, estándares y formatos de datos comprometen la colaboración multidisciplinar y el intercambio fluido de información.

La adaptación al ritmo vertiginoso de la evolución tecnológica exige un aprendizaje continuo y revisiones frecuentes de las infraestructuras de TI para no quedarse obsoletos.

Finalmente, la resistencia al cambio por parte de profesionales y directivos puede frenar la adopción, subrayando la importancia de campañas de sensibilización y casos de éxito tangibles.

Conclusión

El futuro de la IA en ingeniería civil se perfila como un escenario de grandes oportunidades para la creación de infraestructuras más inteligentes, eficientes y sostenibles. No obstante, es imperativo que se aborden con éxito los desafíos técnicos, éticos y organizativos para evitar que la implementación de estas tecnologías se limite a proyectos aislados y, en cambio, promueva una transformación integral y sostenible del sector.

Glosario de términos clave

  • Inteligencia artificial (IA): Sistemas o máquinas que imitan la inteligencia humana para realizar tareas, aprendiendo de la información que procesan.
  • Internet de las cosas (IoT): Red de objetos físicos (“cosas”) integrados con sensores, software y otras tecnologías que les permiten recopilar e intercambiar datos.
  • Infraestructuras inteligentes: Estructuras físicas (puentes, túneles, redes) equipadas con tecnología para monitorear y adaptar su funcionamiento en tiempo real.
  • Diseño generativo: Proceso de diseño que utiliza algoritmos para explorar múltiples soluciones basadas en un conjunto de parámetros y restricciones definidos.
  • Construcción sostenible: Prácticas de construcción que minimizan el impacto ambiental, optimizan el uso de recursos y consideran el ciclo de vida completo de las estructuras.
  • Máquinas autónomas: Equipos o vehículos capaces de operar sin supervisión humana directa, utilizando sensores y software para tomar decisiones.
  • Robótica de obra: Uso de robots para ejecutar tareas en el sitio de construcción, a menudo repetitivas o peligrosas para los humanos.
  • Inteligencia aumentada: Enfoque que combina las capacidades de la inteligencia artificial con la inteligencia humana para mejorar el rendimiento y la toma de decisiones.
  • Analíticas predictivas: Empleo de datos históricos, algoritmos y técnicas de aprendizaje automático para identificar la probabilidad de resultados futuros.
  • Blockchain: Tecnología de registro distribuido que permite transacciones transparentes, seguras e inmutables.
  • Edge Computing: Procesamiento de datos cerca de donde se generan (en el “borde” de la red) en lugar de enviarlos a un centro de datos central.
  • Gemelos digitales: Réplicas virtuales de activos físicos, procesos o sistemas que se actualizan en tiempo real y pueden usarse para simulación y análisis.
  • Sesgo algorítmico: Error sistemático en un algoritmo que produce resultados injustamente discriminatorios o sesgados.
  • Interoperabilidad: Capacidad de diferentes sistemas, plataformas o software para trabajar juntos e intercambiar datos sin problemas.
  • Resistencia al cambio: Falta de disposición de individuos u organizaciones para adoptar nuevas tecnologías, procesos o formas de trabajar.

Referencias:

DONAIRE-MARDONES, S.; BARRAZA ALONSO, R.; MARTÍNEZ-PAGÁN, P.; YEPES-BELLVER, L.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2024). Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería. En libro de actas: X Congreso de Innovación Educativa y Docencia en Red. Valencia, 11 – 12 de julio de 2024. DOI: https://doi.org/10.4995/INRED2024.2024.18365

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Journal of Building Engineering, 53:104318. DOI:10.1016/j.jobe.2022.104318.

YEPES, V.; KRIPKA, M.; YEPES-BELLVER, L.; GARCÍA, J. (2023). La inteligencia artificial en la ingeniería civil: oportunidades y desafíosIC Ingeniería Civil, 642:20-23.

Construcción en América Latina y el Caribe: digitalización e innovación como claves para la sostenibilidad

El sector de la construcción en América Latina y el Caribe (ALC) es uno de los pilares fundamentales de la economía regional, pero también se enfrenta a desafíos significativos en términos de sostenibilidad, productividad y digitalización.

A continuación nos hacemos eco de un informe donde se detallan las claves para transformar el sector basándose en datos, análisis de tendencias y recomendaciones prácticas. El informe lo tenéis al final de este resumen.

 

1. Introducción: importancia del sector y sus retos

El sector de la construcción genera aproximadamente 300 000 millones de dólares en América Latina y el Caribe, lo que representa el 6 % del producto interior bruto (PIB) regional y más de 20 millones de empleos directos. A nivel mundial, contribuye al 13 % del PIB y da empleo a 250 millones de personas. Sin embargo, su productividad ha crecido solo un 1 % anual en las últimas dos décadas, lo que la sitúa muy por debajo de sectores como la manufactura (3,6 %) y la agricultura (2,8 %).

El sector de la construcción es uno de los mayores consumidores de recursos naturales y contribuye significativamente al cambio climático. Según el World Green Building Council (2023):

  • Representa el 50 % del consumo global de recursos extraídos.
  • Utiliza el 15 % del agua potable mundial.
  • Es responsable del 37 % de las emisiones globales de CO₂ relacionadas con la energía.
  • Genera el 35 % de los residuos sólidos producidos anualmente en el planeta.

Además, las proyecciones indican que el sector crecerá considerablemente en los próximos años. Se estima que para 2050 aún no se ha construido el 60 % de los edificios necesarios y que el 20 % de las estructuras existentes requieren renovaciones para cumplir los objetivos de sostenibilidad y cero emisiones netas.

2. Soluciones habilitantes para la construcción sostenible

El documento identifica seis categorías fundamentales de soluciones que pueden transformar el sector hacia la sostenibilidad. Estas soluciones integran tecnologías digitales, diseño innovador, materiales sostenibles y enfoques de gestión eficientes.

  • Tecnologías digitales avanzadas: Las tecnologías digitales son esenciales para mejorar la eficiencia, la transparencia y la sostenibilidad en todas las etapas del ciclo de vida de los proyectos de construcción.
    1. Building Information Modeling (BIM): permite el diseño colaborativo de infraestructuras en un entorno digital. Sus beneficios incluyen:
      • Incremento de la productividad en un 13%.
      • Reducción de costos en un 4% y de los plazos en un 6%.
      • Automatización de procesos como la simulación de consumo energético y la evaluación de impactos climáticos.
      • Caso de éxito: en Uruguay, el uso de BIM y LEAN Construction en el proyecto CAIF Aeroparque resultó en un ahorro del 50% en tiempos de respuesta y un 63% menos en sobrecostos durante la pandemia​.
    2. Inteligencia artificial (IA): mejora la planificación, el diseño y la operación de los activos construidos. Ejemplos:
      • Simulaciones para evaluar el rendimiento energético y el comportamiento estructural ante desastres.
      • Optimización de rutas de transporte y logística en obra, reduciendo costos y emisiones.
    3. Internet de las cosas (IoT):
      • Sensores inteligentes monitorean el uso de energía, agua y recursos en tiempo real, ajustando automáticamente los sistemas para maximizar la eficiencia.
      • Aplicaciones como Building Resilience ayudan a evaluar riesgos climáticos y seleccionar ubicaciones óptimas para proyectos.
    4. Impresión 3D:
      • Permite fabricar componentes en obra o en fábricas cercanas, reduciendo los residuos y las emisiones de transporte.
      • Facilita el uso de materiales reciclados, disminuyendo la dependencia de recursos vírgenes.
    5. Blockchain:
      • Asegura la trazabilidad de materiales, verifica certificaciones ambientales y gestiona residuos con mayor transparencia.
    6. Gestión en la nube:
      • Reduce el empleo de papel, mejora la colaboración en tiempo real y almacena datos clave para optimizar la sostenibilidad.

  • Diseño sostenible: El diseño sostenible aborda el impacto ambiental desde la concepción del proyecto, empleando enfoques como el diseño bioclimático, que optimiza la orientación solar, el aislamiento térmico y la ventilación pasiva para reducir la demanda energética. Un ejemplo de ello son los edificios pasivos, que minimizan el uso de climatización activa; la eficiencia energética y la generación de energía renovable mediante paneles solares, sistemas LED y edificaciones de carbono neutro o positivas que producen más energía de la que consumen; y la flexibilidad en el diseño, con espacios modulares que se adaptan a diferentes usos y disminuyen la necesidad de futuras demoliciones.
  • Materiales sostenibles: El uso de materiales con bajas emisiones de carbono es fundamental para reducir el impacto ambiental. Entre estos materiales destacan la madera certificada, que tiene una huella de carbono negativa, es renovable, reciclable y eficiente energéticamente, y constituye una alternativa clave al hormigón en Chile, que representa el 54 % de las emisiones de carbono de un edificio; el bambú, un material resistente y de rápido crecimiento utilizado en zonas tropicales; y los materiales reciclados, que disminuyen la extracción de recursos naturales y los residuos de construcción.
  • Sistemas de construcción industrializada: La prefabricación, la construcción modular y la impresión 3D contribuyen a reducir los residuos en obra y el tiempo de construcción, y permiten finalizar las obras hasta un 50 % más rápido que con los métodos tradicionales.
  • Medición y verificación del impacto ambiental: Certificaciones como LEED, EDGE y BREEAM permiten evaluar y validar la sostenibilidad de los proyectos.
  • Enfoques de gestión eficientes: Metodologías como LEAN Construction y Advanced Work Packaging optimizan los procesos y reducen retrasos.

3. Experiencias, retos y oportunidades en Latinoamérica y el Caribe

El análisis en Brasil, Chile, Costa Rica y Uruguay revela 44 iniciativas identificadas desde 2015, la mayoría lideradas por el sector público. Entre los retos a los que se enfrentan destacan la falta de integración entre soluciones digitales y sostenibles, la baja percepción del valor económico de la sostenibilidad y los altos niveles de informalidad en el sector. Entre las buenas prácticas destacan el uso de estrategias internacionales de benchmarking, la capacitación técnica en metodologías digitales y la compra pública innovadora y ecológica para estimular la demanda de tecnologías sostenibles.

4. Claves para el futuro

Para transformar el sector, se recomiendan políticas de liderazgo público que promuevan la digitalización y la sostenibilidad, así como incentivos financieros y no financieros, como subsidios, créditos y regulaciones, para fomentar la adopción de prácticas sostenibles. También se recomienda fomentar la colaboración multisectorial mediante alianzas entre los sectores público, privado y académico para compartir conocimientos y recursos, y ofrecer programas de capacitación y educación en habilidades digitales para los trabajadores del sector.

5. Conclusión

La adopción masiva de tecnologías digitales, materiales sostenibles y enfoques innovadores puede situar a Latinoamérica y el Caribe a la vanguardia de la construcción sostenible a escala mundial. Para transformar el sector de la construcción, es necesario adoptar un enfoque holístico que combine innovación tecnológica, gestión eficiente y políticas públicas. La adopción generalizada de soluciones digitales y sostenibles no solo mejorará la productividad, sino que también reducirá el impacto ambiental, lo que hará que el sector sea más resiliente y competitivo en el contexto global.

Os dejo el siguiente documento, donde tenéis toda la información. Espero que os sea de interés.

Descargar (PDF, 4.11MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.