Problema resuelto sobre distancia crítica de transporte

En un artículo anterior definimos la distancia crítica de transporte en un movimiento de tierras como aquella distancia en la que el equipo de cargadoras y camiones está equilibrado. Es decir, ni sobran ni faltan camiones o cargadoras. O dicho de otra forma, es la distancia de transporte en la que no existen esperas en las máquinas. Esta es una distancia teórica, puesto que para calcularla debemos conocer todos los datos de antemano, y estos no son deterministas. Por otra parte, en obra ocurre lo contrario: tenemos una distancia de transporte como dato, pero en este caso se trataría de saber cuántos camiones y cargadoras serían necesarios para que no existiesen demoras. Afortunadamente en obra se puede corregir rápidamente cualquier desfase. En dicho artículo proporcionamos, incluso, una calculadora en línea para que se pudiesen visualizar los cambios.

Aquí lo que presento es un problema resuelto que, espero, os sea de interés. Este problema lo puse en su momento en un examen de Procedimientos de Construcción, en la ETS de Ingeniería de Caminos, Canales y Puertos de Valencia.

Descargar (PDF, 203KB)

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Entrevista en El Confidencial sobre la importancia de invertir en el mantenimiento de infraestructuras

Uno de los dos tramos del viaducto desplomado en el A-6. (EFE/Ana Maria Fernández Barredo))

Con motivo del VIII Congreso de la Asociación Española de Ingeniería Estructural celebrado en Santander, me solicitaron una entrevista para El Confidencial sobre el problema del viaducto de la A-6 en el municipio leonés de Vega de Valcarce. Los que ya me conocéis, sabéis que nunca comento este tipo de problemas concretos, a no ser que tenga todos los datos disponibles. Pero aproveché para insistir en la importancia del mantenimiento de nuestras infraestructuras. Os paso en pdf el contenido de la entrevista que me realizó el periodista José Pichel, por si os resulta de interés.

También la podéis ver completa aquí: https://www.elconfidencial.com/tecnologia/ciencia/2022-06-23/ingeniero-avisa-derrumbe-invertir_3448284/

Descargar (PDF, 436KB)

Impacto del desarrollo sostenible regional a través de la optimización de puentes

Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. Se trata de establecer un modelo para evaluar el impacto del desarrollo sostenible regional a través de la optimización de puentes. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València y de la dirección de la tesis doctoral de Zhi Wu Zhou.

Este artículo describe un modelo óptimo para medir y calcular los datos de impacto de la evaluación del desarrollo sostenible relacionados con la construcción de infraestructuras en cualquier lugar. El artículo utiliza una revisión bibliográfica y un estudio de caso como métodos de investigación: la revisión bibliográfica analiza la importancia, el significado práctico y el estado actual de la investigación en este campo. La aplicación del estudio de caso establece un programa de algoritmos y un modelo del entorno interactivo de optimización de la topología estructural tridimensional. Se analiza la optimización de la curva de influencia del desarrollo sostenible de los puentes atirantados de gran escala de China y de las infraestructuras regionales. Esta investigación llena un vacío al resolver el tedioso y complejo trabajo de las empresas del sector y la evaluación del desarrollo sostenible. Al mismo tiempo, proporciona una base teórica y métodos de cálculo científicos para que los gobiernos y países puedan formular leyes y reglamentos y estudien los efectos climáticos regionales.

El artículo completo lo puedes descargar aquí: https://authors.elsevier.com/sd/article/S2352-0124(22)00409-X

Abstract:

This paper describes a regional optimal model curve equation to measure and calculate sustainable development assessment impact data related to infrastructure construction in any world region. The article uses a literature review and a case study as research methods—the literature review analyses the importance, practical significance, and current research status of this field. The case study application establishes a scientific algorithm program and a three-dimensional structural topology optimization interactive environment research model. The optimality of the influence equation curve and the sustainable development influence curve of China’s large-scale cable-stayed bridges and regional infrastructure is analysed. This research will fill a gap by solving construction industries’ tedious and complicated work and sustainable development assessment. Simultaneously, it will provide a theoretical basis and scientific calculation methods for governments and countries to formulate relevant laws and regulations and study regional climate effects.

Keywords:

Construction; algorithm program; structure; topology; LCA; SIA

Reference:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimization. Structures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

 

Curso en línea de “Gestión de costes y producción de la maquinaria empleada en la construcción”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Gestión de costes y producción de la maquinaria empleada en la construcción”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico sobre la gestión de los costes y la producción de los equipos y maquinaria empleada en la construcción, tanto en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos sobre la gestión de la producción, la selección económica de los bienes de equipo, los costes de propiedad y operación de la maquinaria, su amortización, la disponibilidad y fiabilidad de los equipos, el mantenimiento y reparación, los parques de maquinaria y la gestión de instalaciones, almacenes e inventarios, el estudio del trabajo y la productividad, las políticas de incentivos, métodos de medición del trabajo y la producción de equipos de máquinas. El curso se centra especialmente en la comprensión de los fundamentos básicos que gobiernan la gestión de los costes y la producción de los equipos, mostrando especial atención a la maquinaria pesada de movimientos de tierras y compactación. Es un curso de espectro amplio que incide en el conocimiento de los fundamentos de la ingeniería de la producción. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de los métodos y técnicas empleadas en la gestión de los costes y el rendimiento de la maquinaria en casos concretos. El curso trata llenar el hueco que deja la bibliografía habitual, donde no se profundiza en el coste y la producción de conjuntos de equipos. Además, el curso está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 30 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. Además, se entregan 75 problemas resueltos que complementan la teoría estudiada en cada lección. La dedicación aproximada para cada lección se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y su capacidad para resolver problemas reales. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las técnicas actuales para la gestión de costes y producción de los equipos de máquinas empleados para la construcción
  2. Evaluar y seleccionar la maquinaria atendiendo a criterios económicos y técnicos
  3. Conocer la gestión de los sistemas de almacenamiento de materiales en obra y los parques de maquinaria
  4. Aplicar las técnicas de estudios de métodos y medición del trabajo para mejorar la eficiencia de los equipos
  5. Aplicar técnicas de aprendizaje e incentivos a la producción para mejorar la productividad

Programa

  • – Lección 1. Mecanización de las obras
  • – Lección 2. Adquisición y renovación de la maquinaria
  • – Lección 3. La depreciación de los equipos y su vida económica
  • – Lección 4. Selección de máquinas y equipos
  • – Lección 5. La estructura del coste
  • – Lección 6. Costes de propiedad de las máquinas
  • – Lección 7. Costes de operación de las máquinas
  • – Lección 8. Fondo horario y disponibilidad de los equipos
  • – Lección 9. Fiabilidad de los equipos
  • – Lección 10. Mantenimiento y reparación de los equipos
  • – Lección 11. Instalación y organización interna de la obra
  • – Lección 12. Parques de maquinaria y gestión de inventarios
  • – Lección 13. Constructividad y constructibilidad
  • – Lección 14. Estudio del trabajo y productividad
  • – Lección 15. Los incentivos a la productividad en la construcción
  • – Lección 16. Estudio de métodos
  • – Lección 17. Medición del trabajo
  • – Lección 18. La curva de aprendizaje en la construcción
  • – Lección 19. Ciclo de trabajo y factor de acoplamiento
  • – Lección 20. Producción de los equipos
  • – Lección 21. Composición y clasificación de suelos
  • – Lección 22. Movimiento de tierras y factor de esponjamiento
  • – Lección 23. Producción de los buldóceres
  • – Lección 24. Producción de las cargadoras
  • – Lección 25. Producción de las motoniveladoras
  • – Lección 26. Producción de las mototraíllas
  • – Lección 27. Producción de las retroexcavadoras
  • – Lección 28. Producción de las dragalinas
  • – Lección 29. Producción de los equipos de acarreo
  • – Lección 30. Producción de los compactadores
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 160 artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.

Lorena Yepes Bellver

Ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Universitat Politècnica de València.

Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.

Referencias:

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

 

Método de la Dirección General de Carreteras para la determinación del tiempo disponible para el trabajo

Figura 1. Isolíneas de coeficientes de reducción de los días de trabajo (MOP, 1964).

En todo proyecto constructivo suele aparecer un anejo que trata del Plan de Obra donde se planifica la duración de cada una de las actividades que se van a desarrollar en una obra. Para ello, además de conocer las mediciones y los rendimientos de los equipos, es necesario establecer el número de días que son útiles para el trabajo, considerando tanto los datos climáticos como el calendario laboral del lugar.

La previsión de los días trabajables en función de la climatología, se puede estimar de acuerdo con las recomendaciones de la publicación “Isolíneas de coeficientes de reducción de los días de trabajo”, editada por la División de Construcción de la Dirección General de Carreteras del M.O.P.T., actual Ministerio de Fomento. Los datos climáticos necesarios para su redacción se pueden obtener de la publicación “Datos climáticos para Carreteras”, editado asimismo por la División de Construcción de la Dirección general de M.O.P.T. (1964). Según este método, para calcular el tiempo disponible en las distintas clases de obra, se establecen unos coeficientes de reducción aplicables al número de días laborables de cada mes.

Figura 2. Portada de la publicación “Datos climáticos para Carreteras” (MOP, 1964)

No obstante, si se dispone de datos recientes de los regímenes de precipitaciones y temperaturas de estaciones meteorológicas suficientemente próximas a las obras, deben utilizarse dichos datos. Se trata de dar un orden de magnitud, pues en la práctica, durante la ejecución de las obras, la evolución del tiempo atmosférico en cada momento es impredecible. Sin embargo, con los resultados de este cálculo se podrá elaborar un plan de obra lo más ajustado posible, de forma que se reduzcan las desviaciones de plazo.

En la Figura 3 se muestra cómo los condicionantes climatológicos y los imprevistos influyen en el plazo de obra. También es necesario conocer el desglose de las actividades, sus mediciones y el rendimiento de los equipos elegidos.

Figura 3. Condicionantes para determinar el plazo de una obra.

Días aprovechables en la ejecución de las obras

Para estimar el número de días hábiles en la jornada laboral, se analizan los datos climáticos históricos registrados por estaciones meteorológicas cercanas al área de trabajo.

Condiciones límite

Para cada clase de obra, se entiende por día útil de trabajo, en cuanto a la climatología se refiere, el día en que la precipitación y la temperatura del ambiente sean inferior y superior, respectivamente, a los límites que se definen a continuación.

No se consideran las altas del ambiente que impidan la puesta en obra del hormigón, tanto por el número inapreciable de días que se dan como por caer dentro del microclima de una zona reducida.

Los límites que se dan a continuación son los correspondientes al método del MOP (1964). No obstante, se deberían adaptar a los condicionantes de las distintas disposiciones técnicas vigentes, así como lo que el propio proyecto pudiese considerar.

Temperatura límite para la ejecución de unidades bituminosas: Es aquella por debajo de la cual no se pueden ejecutar riegos, tratamientos superficiales o por penetración, y mezclas bituminosas. Normalmente, se considera 10 °C para tratamientos superficiales o por penetración y 5 ºC para mezclas bituminosas.

Temperatura límite para la manipulación de materiales húmedos: Se determina en 0 °C la temperatura límite del ambiente para la manipulación de materiales naturales húmedos.

Precipitación límite diaria: Se definen dos valores: 1 mm/día, que limita el trabajo en ciertas unidades sensibles a la lluvia ligera; y 10 mm/día para el resto de los trabajos. Se considera que, con 10 mm de precipitación al día, es necesaria una protección especial para realizar cualquier trabajo.

Coeficientes de reducción por condiciones climáticas durante los trabajos

El número total de días hábiles disponibles para cada tipo de trabajo se calcula multiplicando el número de días laborables del mes por sus respectivos coeficientes reductores. A continuación, se enumeran dichos coeficientes:

Cálculo de los días utilizables para cada clase de obra en la fase constructiva

Para obtener los coeficientes de reducción promedio para cada tipo de trabajo y su ubicación, se asocia un factor meteorológico que afecta a la obra, tal y como se representa en la Tabla 1.

Tabla 1. Factores climáticos

Suponiendo que estos sucesos son independientes entre sí, como el trabajo debe cancelarse cuando ocurra una de las condiciones adversas, los coeficientes de reducción se aplican de forma reiterada. La Tabla 2 indica el coeficiente de reducción de los días laborables que afecta a cada clase de obra.

Tabla 2. Coeficientes reductores

Tras aplicar las fórmulas anteriores, se obtienen los valores correspondientes a cada mes y a cada coeficiente para un determinado lugar y año.

Para determinar los días utilizables netos de cada mes se contemplan dos factores de reducción; uno, el de los días de climatología adversa, cuyo coeficiente de reducción coincide con cm, para cada clase de obra y, otro, el de los días no laborables cf y que dependen de los días festivos que varían según el año, la localidad y los convenios laborales. El coeficiente cf es el cociente entre los días laborables y los totales del mes correspondiente.

Dado que los días festivos también pueden ser de climatología adversa, se puede adoptar el criterio propuesto en la publicación de la Dirección General de Carreteras. En ese caso (1-cm) representa la probabilidad de que un día cualquiera del mes presente climatología adversa para dicha clase de obra; y (1-cmcf, la probabilidad de que un día laborable presente una climatología adversa.

El coeficiente de reducción total será, por tanto:Para obtener una mayor precisión que la obtenida en el coeficiente de reducción arriba indicado, se podría emplear la fórmula siguiente:que representa la probabilidad de que un día del mes presente climatología favorable (cm) y que sea laborable (cf).

En la Figura 4 se recoge el número de días aprovechables del 2015 para la ejecución de las principales de obra para Ourense, tal y como figura en el “Proyecto de Trazado. Autovía A-76 Ponferrada-Ourense. Tramo: A Veiga de Cascallá-O Barco de Valdeorras”, elaborado por INECO.

Figura 4. Días aprovechables del 2015 para la ejecución de las principales de obra para Ourense. “Proyecto de Trazado. Autovía A-76 Ponferrada-Ourense. Tramo: A Veiga de Cascallá-O Barco de Valdeorras”, elaborado por INECO

Referencias:

MINISTERIO DE OBRAS PÚBLICAS (1964). Datos Climáticos para Carreteras. Dirección General de Carreteras.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estudio del layout o de la distribución en planta de los almacenes en obra

Figura 1. Aspecto de una instalación de obra y acopios de material al aire libre. https://es.dreamstime.com/foto-de-archivo-editorial-kaliningrado-rusia-almac%C3%A9n-temporal-del-almacenamiento-de-los-productos-y-de-los-materiales-de-la-construcci%C3%B3n-image58934568

Los almacenes de materiales y maquinaria, tanto en una obra como en los parques de maquinaria, deben considerar una gran variedad de problemas interrelacionados relacionados con la sistematización física y contable. Es por ello que un almacén debería diseñarse para reducir costes y retrasos, así como interferir lo menos posible en el proceso productivo. Para ello, un sistema de almacenamiento debería cumplir los siguientes requisitos:

  • Posibilidad de una recepción cómoda de los materiales.
  • Instalaciones adecuadas al tipo de material almacenado y a sus exigencias de manipulación.
  • Posibilidad de una fácil distribución.
  • Minimizar los registros contables correspondientes a los movimientos físicos.

Para proyectar correctamente un almacén, deberíamos realizar un estudio del layout o de la distribución en planta, siendo los elementos de inventario y el espacio disponible los factores más importantes a tener en cuenta.

En la asignación del espacio de almacenamiento se deben considerar una serie de criterios relacionados con el tipo de existencias y el movimiento de materiales o maquinaria:

  1. Separar las áreas destinadas a los materiales que, por su naturaleza, vayan a ser manipulados en grandes lotes o con gran frecuencia, de los que se mueven con poca frecuencia o en pequeños lotes, aunque de forma reiterada.
  2. Reservar las zonas más accesibles o más próximas a los puntos de carga y descarga para el almacenamiento de los elementos de desplazamiento más frecuente.
  3. Considerar qué elementos pueden almacenarse al aire libre, con o sin cobertura protectora.
Figura 2. Almacenamiento mediante estantes, con pasillos para transporte. https://www.ohra.es/sectores/materiales-de-construccion

Un buen estudio planimétrico debe considerar, entre otros, los siguientes objetivos:

  • Las instalaciones deben proyectarse para asegurar su máxima utilización.
  • Debe minimizarse los tiempos muertos y reducir la congensión del flujo de trabajo.
  • Debe preverse un mantenimiento eficiente de las áreas e instalaciones del almacén, que no obstaculice el desarrollo de los trabajos.
  • Debe garantizarse la mayor velocidad del flujo de materiales y la reducción de los tiempos de trabajo.
  • Se deben considerar las condiciones del trabajo del personal, respetando las exigencias de seguridad e higiene, así como la ergonomía.

Los almacenes de materiales en obra o en el parque de maquinaria normalmente utilizan sistemas con silos y cisternas, sistemas de estanterías de diversas clases (Figura 2) o sistemas paletizados (Figura 3). Sin embargo, también son habituales los almacenes al aire libre o en áreas no provistas de edificios. En este último caso, en las obras encontramos depósitos desordenados o a granel de materiales tales como los áridos.

Figura 3. Almacenamiento paletizados de sacos de cemento. https://www.cuevadelcivil.com/2013/03/almacenamiento-de-materiales.html

Para realizar un almacenamiento adecuado se debe planificar la distribución o layout incluyendo las actividades que se indican en la Figura 4 (Serpell, 2002). De esta forma, se conseguirá una distribución eficiente de los sistemas de almacenaje que contribuirá a la mejora de la productividad en la ejecución de la obra.

Figura 4. Diseño de la distribución en obra de los materiales (Serpell, 2002).

Analicemos brevemente cada uno de los elementos indicados en la Figura 3 (Serpell, 2002):

  1. Materiales necesarios para la ejecución de la obra: la naturaleza de los materiales influye en el espacio requerido en el almacén.
  2. Formas de almacenamiento y otras exigencias: el material que entra en un almacén pasa por varios movimientos que van desde el envío y descarga en la obra hasta el despacho y carga para llevarlo al tajo correspondiente. Por tanto se pueden usar tres tipos de almacenes en obra: un área temporal que minimice la distancia al tajo, un área de acopio de materiales, de mayores dimensiones y para materiales a granel no afectados por las condiciones ambientales, y almacenes cerrados o bodegas. A parte también se encuentran en obra otras instalaciones como talleres de fabricación (ferralla, encofrados, prefabricados, etc.).
  3. Cantidad a almacenar y tamaño de la instalación: la cantidad de materiales a almacenar determinará el tamaño del almacén. Sin embargo, la planificación de la obra lamina el volumen necesario. En el layout, deberá minimizarse las áreas dedicadas a acceso, manipulación y otras actividades complementarias al propio almacenaje.
  4. Calidad de las instalaciones: las características, y por tanto, el coste del almacén será función, entre otros factores, del tipo y duración de la obra, de las condiciones ambientales, de la protección contra el fuego, disponibilidad de material, reutilización de la instalación, la protección de los materiales o las exigencias de la propiedad.
  5. Cercanía relativa: Se refiere a la proximidad de la instalación a los tajos y a la facilidad para recibir los materiales que llegan a obra.
  6. Relaciones entre áreas de almacenamiento: Se trata de reducir al máximo el movimiento de operarios, materiales y equipos entre las distintas instalaciones.
  7. Consideraciones varias: la flexibilidad de las instalaciones y la seguridad ante el robo como las correspondientes a los operarios, deberá considerarse en la planificación de los almacenes.

Os dejo un vídeo donde se explica el diseño de layout orientado al proceso.

Referencias:

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 754 pp.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, Ediciones Universidad Católica de Chile, Colombia.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control eficiente de almacenes en obras: El método ABC

Figura 1. Método ABC para gestionar los inventarios

Ya hemos hablado de los almacenes de obra y su gestión en un artículo anterior. Ahora vamos a explicar brevemente cómo se pueden gestionar de forma eficiente a través del conocido método ABC.

Todos los sistemas de inventarios presentan un sistema de control cuya función es mantener un registro actualizado de los elementos almacenados, informar sobre el nivel de existencias, notificar las situaciones anormales y elaborar informes (Pérez Gorostegui, 2021). Sin embargo, un control minucioso solo sería necesario en unos pocos artículos, atendiendo al Principio de Pareto, según el cual, unos pocos artículos tienen mucha importancia, y muchos de ellos, poca. Este principio también suele llamarse como regla 80/20, que aplicado a un inventario significa que el 20 % de los elementos supone el 80 % de la inversión total, mientras que el 80 % de todos ellos, apenas supone el 20% de toda la inversión en stocks.

Se puede aplicar el Método ABC para controlar los elementos almacenados. Para ello se clasifican según su valor de uso anual (podría ser cualquier otro periodo), agrupándolos de acuerdo con el coste de su gasto anual: cantidad utilizada (consumida, vendida, empleada, etc.) coste unitario (o precio unitario). Para ello se dividen los elementos en tres grupos:

  • Grupo A: Suponen un porcentaje alto de la inversión total, de forma que, controlando este grupo, se tiene controlado casi todo el almacén. Representa generalmente el 10 % de los artículos, estando su valor de uso entre el 60 % y el 80 % del total.
  • Grupo C: Son aquellos cuyo control es poco interesante, pues siendo muy numeroso, su valor es pequeño. Suele ser el 50-70 % del total de artículos, significando solo entre el 5-10 % del valor total de uso
  • Grupo B: Tienen una importancia en relación al número de unidades del almacén parecida a la que tienen con referencia al valor total de la inversión del inventario. Abarca generalmente al 25 % de los artículos, y representa entre el 15-30 % del valor total de uso.

Lo sorprendente en este tipo de análisis es la similitud de la forma de las curvas ABC. En efecto, si el número de variedades es lo suficientemente grande, es similar con independencia del tipo de elementos almacenados.

Os dejo un vídeo explicativo al respecto.

Referencias:

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 754 pp.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La medida de la productividad en las empresas constructoras

La productividad constituye uno de los elementos determinantes en la competitividad de cualquier empresa, y sobre todo de aquellas dedicadas a la construcción. Ello se debe al elevado margen de mejora que tiene esta actividad económica. De ello ya hemos hablado en varios artículos en este blog.

Recordemos que este concepto se define como la relación entre la producción y la cantidad de recursos consumidos en un periodo. Al tratarse de un concepto técnico, y no financiero, tanto la producción como los recursos se deben medir en unidades físicas.

Si existe un solo tipo de producto y de recurso, es sencillo calcular este ratio. Pero en una empresa nos interesa la productividad global, que es la relación entre su producción total, de todos sus productos, y el conjunto de factores empleados para conseguirla. Se hace notar que las unidades son heterogéneas, tanto en los productos como en los recursos. Para solucionar el problema, se deben valorar en unidades monetarias.

Al ser la productividad una medida técnica, ésta no se ve influenciada por la variación de precios en un periodo. Por eso es necesario que la productividad se pueda comparar de un periodo a otro, sin que las variaciones de los precios de productos y recursos interfieran en los resultados.

Para medir la productividad, por tanto, vamos a definir la terminología empleada (Pérez Gorostegui, 2021).

Pj: número de unidades físicas del producto j en el periodo 0, y pj su precio unitario en ese periodo;

Fi: cantidad del factor i en el periodo 0, en unidades físicas, y fi su coste unitario en dicho periodo;

Δ: variación experimentada por la variable en el periodo 1 respecto al periodo 0.

De esta forma se puede calcular la productividad de una empresa que utiliza m factores para realizar n productos valorando con los precios del año 0 (pi y fi):

siendo la del periodo 1:

Con estos cálculos, ya se puede definir el índice de productividad global (IPG) como:

La tasa de productividad global (TPG) medirá la proporción de variación de la productividad entre los dos periodos:

Asimismo, también puede interesar en qué proporción ha variado la producción de un periodo a otro. Mantenemos para ello los precios constantes. Con ello se define el índice de evolución de la cantidad de producción de Laspeyres:

Análogamente se podría establecer el índice de evolución de la cantidad de factores empleados:

Comparando las expresiones, es fácil deducir que:

Para el lector curioso, le dejo comprobar que si una empresa constructora elevó su producción un 15% el año pasado y tuvo que emplear un 5% menos de recursos, su productividad global subió un 21,05%.

Os dejo un vídeo donde se explica cómo se calcula la productividad global de una empresa.

En este otro vídeo se explica cómo se calcula el índice de productividad global.

Referencias:

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 754 pp.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Plan de calidad de obra del constructor en el Código Estructural

Figura 1. Entendiendo lo que es el plan de calidad de una obra

En el ámbito de la gestión de la calidad siempre se ha llamado “Plan de Calidad” a la aplicación del sistema de calidad de una empresa a un producto determinado. En efecto, según la norma ISO 9000:2015 “Fundamentos y vocabulario”, un plan de calidad es una especificación de los procedimientos y recursos asociados a aplicar, cuándo deben aplicarse y quién tiene que aplicarlos a un objeto específico. Por tanto, una empresa constructora que disponga de un sistema de calidad, desarrollará un plan de calidad que se adapte a cada obra. Si subcontratara una parte, debería el subcontratista tener su propio plan de calidad o bien asumir el de la empresa principal.

Lo habitual es que la empresa certifique su sistema de gestión de la calidad según la norma UNE-EN ISO 9001, pero podría hacerlo bajo cualquier otro modelo. Sin embargo, esta certificación es voluntaria, salvo que el cliente la exija para un contrato determinado. En efecto, la gestión del sistema de calidad se materializa y documenta en un Manual de Calidad, en un Manual de Procedimientos (obligatorios y específicos de la actividad) y en el Plan de Calidad. Es la llamada pirámide documental del sistema de calidad.

De hecho, el Código Estructural exige al constructor en determinados casos la posesión de un sistema certificado conforme a la UNE-EN ISO 9001. Por ejemplo, en el Artículo 22.4 esta exigencia se aplica al caso de un control de ejecución a nivel intenso. También aparece en el Anejo 2 referido al índice de contribución de la estructura a la sostenibilidad. Sin embargo, se deslizan erratas en la redacción como en el Anejo 18 de bases de cálculo, donde se refiere a la norma en la versión del año 2000, cuando la versión vigente es la del 2015.

Pues bien, el Código Estructural, en vez de simplificar los términos y acogerse al vocabulario internacionalmente aceptado, utiliza conceptos similares que resultan confusos. Estamos hablando del plan de obra (cronograma) y el programa (procedimiento) de autocontrol del constructor. He tenido que utilizar los paréntesis para señalar que el plan de obra también se puede llamar cronograma, y que el programa de autocontrol también se llama procedimiento de autocontrol (véase el Artículo 19 Plan y programa de control). De estos términos confusos ya hemos hablado anteriormente en otros artículos. De hecho, no es posible diferenciar si el plan de obra y el programa de autocontrol son dos documentos diferentes o es uno solo. Parece que cada administración pública o gremio en la construcción ha querido redefinir los conceptos sobre la calidad de forma particular. Curioso es el nombre de Plan de Aseguramiento de la Calidad (P.A.C.) de la Dirección General de Carreteras (1995).

El Artículo 17 sobre criterios generales de la calidad de las estructuras indica que el “sistema de aseguramiento de la calidad aplicado al proyecto en sí, se describirá en el denominado procedimiento de autocontrol del constructor“. El Artículo 22.1 sobre control de la ejecución mediante comprobación del control de producción del constructor determina que “el programa de autocontrol contemplará las particularidades concretas de la obra, relativas a medios, procesos y actividades y se desarrollará el seguimiento de la ejecución de manera que permita a la dirección facultativa comprobar la conformidad con las especificaciones del proyecto y lo establecido en el Código. Para ello, los resultados de todas las comprobaciones realizadas serán documentados por el constructor, en los registros de autocontrol“. También añade lo siguiente: “en función del nivel de control de la ejecución, el constructor definirá un sistema de gestión de los acopios suficiente para conseguir la trazabilidad requerida de los productos y elementos que se colocan en la obra“. Además, dicho programa de autocontrol del constructor deberá ser aprobado por la dirección facultativa antes del inicio de las obras. Es decir, que lo que internacionalmente se conoce como “Plan de Calidad” se llama en el Código Estructural “Procedimiento de autocontrol“.

Por tanto, ya que no es posible diferenciar el plan de obra (cronograma) y el programa (procedimiento) de autocontrol del constructor como dos documentos separados, nos referiremos a ellos como plan de calidad de obra, elaborado por el constructor y aprobado por la dirección facultativa.

Figura 2. El control de la calidad de la obra según el Código Estructural. Elaboración propia.

Para la redacción del plan de calidad de obra se debe tener en cuenta el Plan de Control, que es un documento del proyecto. Aunque resulta implícito, es evidente que este plan de control del proyecto debe ser coherente con el resto de documentos de dicho proyecto, y en particular, con el Pliego de Prescripciones Técnicas Particulares. Es en el proyecto donde se deben recoger las condiciones del control de recepción de los materiales, las de ejecución de las unidades de obra y las condiciones de aceptación y rechazo. De esta forma, el constructor puede desarrollar dentro de su plan de calidad un Programa de Puntos Críticos de Inspección (PPI) donde se determinan los puntos de parada donde la dirección facultativa realiza el control exterior en la fecha prevista para que no se produzcan retrasos. Es por eso que también se llama cronograma al plan de obra del constructor. El Artículo 22.1 deja al constructor de documentar todas las comprobaciones realizadas en los llamados “registros de autocontrol“, que, evidentemente, se asocian de forma implícita a los PPI.

Sin embargo, el Código Estructural, para liar un poco más este tema, asocia el PPI al llamado “Programa de Control“. El objetivo es que el PPI englobe no solo el autocontrol del constructor sino que aparezcan todos los agentes implicados. Y si fuera poca la confusión, en el Artículo 19 nos dice que en el caso de obras de puentes de carretera, el programa de control puede estar incluido en el llamado “esquema director de la calidad“.

La única forma de entender este galimatías es dar una interpretación simple a lo que el Código Estructural dice. Digamos que el plan de calidad de una obra es un documento que redacta el constructor para adaptar su sistema de gestión de la calidad a lo recogido por el proyecto. Dicho documento recoge las condiciones aceptación de materiales y unidades de obra, para lo cual incluye un PPI asociado al cronograma de la obra para evitar interrupciones y el sistema de gestión de los acopios. Cuando la dirección facultativa aprueba dicho documento, entonces cambia de nombre y se llama, a partir de ese momento, Programa de Control que incluye, como hemos visto, el PPI. Como podéis ver he tenido que simplificar bajo el nombre “plan de calidad de una obra” al “plan de obra (cronograma) y el programa (procedimiento) de autocontrol” del constructor. No solo es simple, sino que utiliza la nomenclatura internacional en el ámbito de la calidad. En la Figura 3 figura la pirámide documental de un sistema de gestión de la calidad de una empresa y las definiciones particulares que emplea el Código Estructural.

Figura 3. Equivalencia entre la nomenclatura internacional sobre calidad y la empleada por el Código Estructural. Elaboración propia.

García Valcarce et al. (2004) indican que un plan de calidad de obra debería incluir las formas de trabajar, los recursos y la secuencia de actividades que tienen que realizarse. Por lo tanto, debería recoger lo siguiente:

  • Datos generales de la obra (propiedad, proyectista, dirección facultativa, contrato, etc.)
  • Documentación para la ejecución
  • Documentación del proyecto
  • Organigramas nominales de producción y calidad
  • Partes de obra subcontratadas
  • Procedimientos de ejecución
  • Medios de trabajo necesarios, propios o ajenos
  • Organización y funcionamiento del control interno (PPI y fichas de autocontrol)
  • Registros de todas las inspecciones y controles
  • No conformidades detectadas y acciones correctivas aplicadas

El resultado de aplicar el plan de calidad es una serie de documentos que sirven para demostrar la gestión realizada. A modo de ejemplo, se podrían citar los siguientes (García Valcarce et al., 2004): acta de replanteo, certificado final de obra, informes del control de calidad realizado, certificados de calidad de los materiales, resultados de los ensayos de los materiales, certificados parciales del control sobre la calidad de la ejecución, planos definitivos de lo realmente ejecutado, instrucciones de uso y mantenimiento.

Os he grabado un vídeo explicativo que espero resulte de interés.

Os dejo algún vídeo explicativo genérico sobre el plan de calidad de una obra.

Referencias:

DIRECCIÓN GENERAL DE CARRETERAS (1995). Libro de la calidad. Ministerio de Obras Públicas, Transportes y Medio Ambiente, Madrid, 132 pp.

GARCÍA VALCARCE, A.; SÁNCHEZ-OSTIZ, A.; GONZÁLEZ, P.; CONRADI, E.; LÓPEZ, J.A. (2004). Manual de dirección y organización de obras. Editorial Dossat 2000, Madrid, 362 pp.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El Programa de Puntos de Inspección en el Código Estructural

Figura 1. https://www.tuv.com/spain/es/inspecci%C3%B3n-de-cubiertas-de-naves-industriales-e-integridad-estructural.html

Uno de los documentos clave en el control de la calidad en la ejecución de las obras es el llamado Programa de Puntos de Inspección (PPI). Se trata de un formato de registro que se emplea en proyectos, obras o actividades formadas por varias tareas y donde se impliquen varias personas o empresas. Sirven para registrar que las actividades se han realizado correctamente.

Este concepto, muy empleado en el ámbito de la gestión de la calidad, tiene un tratamiento específico en el Código Estructural. Sin embargo, solo se habla del PPI de forma explícita en el Capítulo 24 dedicado a la gestión de la calidad de la fabricación y ejecución de las estructuras de acero. Ninguna referencia en artículos previos dedicados a estructuras de hormigón. Es un ejemplo más de cómo se ha elaborado este Código como yuxtaposición de las normativas previas de estructuras de hormigón y acero. En particular, el Artículo 102.1 es el que define el programa de puntos de inspección. Fuera del ámbito normativo, los comentarios del Artículo 63.2 sobre unidades de inspección incluyen qué tipo de operaciones son las que se deben recoger en el PPI. Como curiosidad, señalaremos que estos comentarios indican que “en la página web del Ministerio de Transportes, Movilidad y Agenda Urbana se incluye un enlace donde se puede acceder a unas tablas editables para la elaboración de los Programas de Puntos de Inspección”. El enlace a dichas tablas se puede encontrar aquí: https://www.mitma.gob.es/organos-colegiados/comision-permanente-del-hormigon/cph/programas_puntos_de_inspeccion.

García Valcarce et al. (2004) indican que el PPI tiene como objeto controlar la calidad de la ejecución de las obras. Según estos autores, ese control se basa en el autocontrol. Sin embargo, el actual Código Estructural va más allá. En efecto, el Artículo 102.1 indica que el PPI forma parte del programa de control (Figura 2). Por lo tanto, es un documento que se aprueba por la Dirección Facultativa y cuyas fuentes son tres: el plan de control del proyecto, el plan de obra (cronograma) del constructor y el procedimiento (programa) de autocontrol del constructor. Además, indica este artículo que el PPI reflejará el conjunto de controles, inspecciones y ensayos a realizar en la fabricación y ejecución de la estructura (de acero) por los diferentes agentes de control implicados. Es decir, no se trata únicamente de un documento de autocontrol del constructor, sino de todos los agentes implicados.

Figura 2. Relación del Programa de Puntos de Inspección con el resto de documentos de control, según el Código Estructural. Elaboración propia

Resumiendo lo más importante del PPI en relación con el Código Estructural, diremos que:

  1. Atiende a los controles en la fabricación y en la ejecución de la estructura
  2. Forma parte del programa de control aprobado por la dirección facultativa
  3. Registra los controles, inspecciones y ensayos de los diferentes agentes de control implicados

El Artículo 102.1 indica que el contenido mínimo del PPI será el siguiente:

  • las unidades de inspección, tanto en taller como en obra,
  • el tipo de inspección y comprobaciones a realizar,
  • los procedimientos o normas que regularán la verificación de la conformidad de cada inspección, así como las especificaciones de aceptación,
  • la ubicación y frecuencia o intensidad de las inspecciones,
  • la forma de documentación de los resultados,
  • la designación de la persona responsable de la realización y firma de los diferentes controles o inspecciones,
  • los puntos de espera o parada a respetar durante el proceso de control, y
  • cualquier comentario u observación aclaratoria.

Básicamente, un PPI es una tabla o lista de chequeo donde se enumeran las tareas clave del proyecto o actividad que se quiere controlar. Una vez que se ejecuta la tarea, los responsables firman para dejar constancia de que se ha realizado correctamente. Se pueden agrupar las actividades en las siguientes (García Valcarce et al., 2004):

  • Control de recepción de materiales y productos
  • Control de ejecución de las unidades de obra
  • Control de aceptación y rechazo

Existen legislaciones autonómicas donde se recoge en un Libro de Control de Calidad (Gobierno Vasco), o el Libro de Gestión de Calidad de Obra (Generalitat Valenciana), aquellos registros de aceptación y resultados de la calidad de las obras de edificación que debe gestionar la dirección facultativa.

Figura 3. Ejemplo de fichas del Libro de Control de Calidad (Gobierno Vasco)

Referencias:

GARCÍA VALCARCE, A.; SÁNCHEZ-OSTIZ, A.; GONZÁLEZ, P.; CONRADI, E.; LÓPEZ, J.A. (2004). Manual de dirección y organización de obras. Editorial Dossat 2000, Madrid, 362 pp.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.