Un estudio reciente, titulado «The Impacts of Humanitarian Engineering on Sociotechnical Thinking», liderado por Jeffrey P. Walters y su equipo, explora cómo el contexto de la ingeniería humanitaria (HE) afecta al desarrollo del pensamiento social y técnico en estudiantes de ingeniería.
La investigación se centra en comparar las diferencias en la forma en que los estudiantes afrontan un desafío de diseño, en concreto, el de un muro de contención, en dos contextos distintos: Misisipi (Estados Unidos), un entorno no humanitario, y Bangladés, que representa una situación de ingeniería humanitaria.
El contexto del estudio
El estudio parte de la premisa de que la ingeniería no puede entenderse únicamente desde una perspectiva técnica, ya que toda solución de ingeniería implica un impacto social. Este concepto, conocido como «pensamiento sociotécnico», se ha convertido en un aspecto importante en la formación en ingeniería, especialmente debido a las crecientes demandas de la industria de profesionales que no solo dominen la técnica, sino que también comprendan y gestionen las implicaciones sociales y éticas de sus proyectos.
La investigación se basa en un experimento realizado con estudiantes de primer y tercer año de diferentes disciplinas de ingeniería en una universidad de EE. UU. Se les planteó un reto de diseño: construir un muro de contención para prevenir inundaciones, en uno de los dos contextos asignados aleatoriamente. Los estudiantes del grupo de Misisipi (contexto no humanitario) recibieron información centrada en las pérdidas económicas que las inundaciones causaron en la industria y la economía nacional. Por otro lado, los estudiantes asignados al contexto de Bangladés (contexto humanitario) se enfrentaron a un escenario en el que las inundaciones habían desplazado a más de 300 000 personas, la mayoría viviendo por debajo del umbral de pobreza mundial.
Resultados clave y análisis
El estudio reveló diferencias significativas entre ambos grupos en cuanto a la forma en que percibían el problema y las soluciones propuestas. Los estudiantes que trabajaron en el contexto de Bangladés mencionaron un mayor número de factores sociotécnicos que sus compañeros asignados al contexto de Misisipi. Estos factores incluyen consideraciones sobre la capacidad de la comunidad local para construir y mantener la infraestructura, el impacto en la vida cotidiana de las personas afectadas y la importancia de adaptar el proyecto a los recursos limitados disponibles. Además, estos estudiantes mostraron un enfoque más empático, poniendo énfasis en la seguridad y el bienestar de las comunidades.
Por el contrario, los estudiantes que trabajaron en el contexto de Misisipi se centraron principalmente en los aspectos técnicos del diseño, como el coste, los materiales y la estructura física de la pared. Si bien también mencionaron algunos factores sociales y técnicos, su enfoque estuvo más limitado a la funcionalidad técnica y la eficiencia del proyecto.
Implicaciones educativas
Este estudio ofrece una valiosa evidencia de cómo la integración de contextos humanitarios en la enseñanza de la ingeniería puede influir profundamente en la forma en que los estudiantes abordan los problemas de diseño. Los resultados sugieren que el enfoque de ingeniería humanitaria fomenta un pensamiento más holístico y complejo, en el que los futuros ingenieros no solo consideran los aspectos técnicos, sino también las consecuencias sociales de sus decisiones.
Además, el estudio destaca la necesidad de abordar la enseñanza del pensamiento social y técnico con cautela. Si bien los estudiantes que trabajaron en el contexto de Bangladés mostraron mayor empatía, algunos de ellos también presentaron sesgos implícitos al asumir que la comunidad local carecía de las habilidades necesarias para construir o mantener la infraestructura, lo que podría perpetuar estereotipos negativos y enfoques paternalistas en el desarrollo global. El equipo de investigación subraya la necesidad de abordar estos sesgos en la enseñanza para garantizar que los estudiantes no solo aprendan a integrar factores sociales y técnicos, sino que también lo hagan desde una perspectiva ética y culturalmente sensible.
Conclusiones y futuro
Este trabajo subraya la importancia de que los futuros ingenieros desarrollen habilidades sociotécnicas que les permitan pensar más allá de las soluciones técnicas y considerar las complejas interacciones entre la tecnología y la sociedad. En un mundo cada vez más interconectado, con problemas de sostenibilidad y justicia social en aumento, estas competencias serán fundamentales para garantizar que los ingenieros puedan proyectar soluciones que no solo sean eficientes, sino también equitativas y sostenibles.
Los investigadores concluyen que integrar de manera consistente este tipo de desafíos en los programas educativos de ingeniería podría ser una estrategia eficaz para fomentar una mayor conciencia y capacidad de respuesta ante los problemas sociales y éticos en los futuros profesionales. Asimismo, se sugiere que futuras investigaciones profundicen en cómo la exposición a estos contextos, en actividades más prolongadas o en escenarios reales, afecta al desarrollo del pensamiento sociotécnico y la empatía en los estudiantes a lo largo de su formación académica.
Resolver problemas en el ámbito universitario o profesional, en áreas tecnológicas, de ingeniería y ciencias, puede plantear una serie de desafíos que pueden conducir a errores. Estos fallos pueden surgir por diversas razones que van desde no comprender el concepto subyacente hasta confiar demasiado en la tecnología.
En un artículo anterior mencioné algunos ejemplos de problemas teóricamente sencillos, pero que marean a nuestros estudiantes. Ahora vamos a analizar detalladamente algunas de estas razones y cómo se relacionan entre sí. También he incluido enlaces a otros artículos del blog donde reflexiono sobre este tipo de cuestiones.
La falta de comprensión del concepto subyacente a un problema es una preocupación fundamental. Esto puede manifestarse de diversas formas, ya sea a través de errores conceptuales, una aplicación incorrecta del concepto o una interpretación errónea del mismo. Esta falta de entendimiento puede empeorar si se carece de experiencia o conocimientos específicos en el campo correspondiente. Cuando un estudiante o profesional se enfrenta a un problema para el que no tiene experiencia previa, puede tener dificultades para aplicar correctamente los principios necesarios para resolverlo.
Los datos son fundamentales para encontrar soluciones, sin embargo, su calidad y disponibilidad pueden ser problemáticos. La falta de datos adecuados, la presencia de información contradictoria o sesgada pueden conducir a conclusiones incorrectas. Asimismo, centrarse excesivamente en utilizar todos los datos disponibles puede distraer de la información realmente importante, al tiempo que validar datos sesgados o inventados puede conducir a conclusiones incorrectas.
El manejo inadecuado de las bases matemáticas también puede ser una fuente de errores (geometría, trigonometría, cálculo o álgebra). Esto puede incluir errores en el cálculo, así como el uso inapropiado de fórmulas o modelos matemáticos. Los problemas reales rara vez tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Además, el uso excesivo de la memoria en lugar de la comprensión de los principios subyacentes puede conducir a errores conceptuales y de selección de modelos de cálculo.
Los aspectos psicológicos también son importantes. El estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración pueden afectar a la capacidad de resolver problemas de manera efectiva. La falta de atención a los detalles, la fatiga y el agotamiento también pueden provocar errores en la resolución de problemas.
Es crucial comprender que los problemas reales pueden ser complejos y no tener necesariamente una solución única. Esto implica la necesidad de tomar decisiones informadas y comprender las limitaciones de los modelos o fórmulas utilizados. Además, la propagación de errores en las operaciones y el uso incorrecto de datos, fórmulas o software pueden dar lugar a resultados erróneos.
La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos una y otra vez. La falta de comunicación o colaboración entre profesionales en entornos de trabajo también puede provocar errores en la resolución de problemas. Confiar ciegamente en la tecnología o en herramientas automatizadas sin comprender en profundidad los principios subyacentes puede ser un problema.
En resumen, resolver problemas en el ámbito universitario o profesional de la ingeniería y las ciencias puede ser un proceso complejo y propenso a errores debido a una variedad de factores interrelacionados. Desde la comprensión del concepto hasta la calidad y disponibilidad de los datos, así como los aspectos psicológicos y técnicos relacionados con la resolución de problemas, es crucial abordar estos desafíos con atención y comprensión para lograr soluciones precisas y efectivas. Desde las universidades debe hacerse todo lo posible para superar este tipo de dificultades y conseguir que nuestros estudiantes adquieran las competencias necesarias para su posterior desarrollo profesional.
Sin querer ser exhaustivo, y sin que estén ordenadas por importancia, aquí os dejo una lista de 30 posibles causas por las cuales nuestros estudiantes en los exámenes o los técnicos en su ámbito profesional, suelen cometer errores al resolver los problemas. Estoy convencido de que hay más causas, pero esto puede ser un buen punto de partida para el debate y la reflexión. En el vídeo que he grabado, me extiendo y explico algo más lo que aquí recojo como una simple lista.
La falta de comprensión del concepto subyacente en un problema puede conducir a errores conceptuales al aplicarlo incorrectamente o interpretarlo de manera errónea.
La inexperiencia o la falta de conocimientos específicos pueden surgir cuando una persona afronta por primera vez un tipo de problema, ya sea durante un examen o en la práctica profesional.
Los problemas relacionados con la disponibilidad de datos pueden presentarse de varias formas, como datos insuficientes, necesarios, innecesarios o contradictorios. A menudo, existe una obsesión por utilizar todos los datos disponibles en el enunciado del problema.
La calidad de los datos también es un factor importante, con la posibilidad de incertidumbre o error en los datos disponibles. Además, dar por válidos datos sesgados, interesados o inventados puede llevar a conclusiones incorrectas. Es necesario un control de calidad de los datos.
Intentar resolver un problema utilizando el enfoque típico visto en clase puede marear a nuestros estudiantes. Los alumnos prefieren resolver un problema típico explicado en clase, a ser posible, con datos parecidos.
El manejo inadecuado de las bases matemáticas, que incluye errores en el cálculo, el uso incorrecto de fórmulas o modelos matemáticos, y la falta de comprensión de los principios subyacentes, puede ser una fuente común de errores. La falta de conocimientos básicos de geometría, trigonometría, álgebra o cálculo básicos son, en ocasiones, escollos. A veces hay dificultades en saber dibujar un esquema para resolver el problema.
Los problemas reales generalmente no tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Esta distinción, que se da claramente entre los estudios de grado y los de máster, es importante tenerla en cuenta.
Los aspectos psicológicos, como el estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración, pueden afectar negativamente la capacidad para resolver problemas de manera efectiva.
La falta de atención o interés, así como la fatiga o el agotamiento, pueden contribuir a errores en la resolución de problemas, al igual que la prisa por resolver el problema.
La complejidad de los problemas puede aumentar cuando se trata de situaciones poco comunes o rebuscadas, lo que requiere un enfoque cuidadoso y creativo para su resolución.
Es crucial comprender la diferencia entre una ley general y una fórmula particular al aplicar normas técnicas que pueden estar basadas en hipótesis o casos específicos.
Utilizar modelos de cálculo inadecuados, ya sean demasiado refinados o demasiado simples para los datos disponibles, puede conducir a soluciones incorrectas.
Carecer de números estimativos para prever el resultado final puede resultar en una falta de comprensión del orden de magnitud del resultado. En este sentido, el uso de nomogramas en la docencia facilita la adquisición de este tipo de habilidad en los estudiantes. Los estudiantes y los profesionales deberían tener un conocimiento del “número gordo” y saber predimensionar.
Es importante ser consciente de la propagación de errores en las operaciones, ya que incluso pequeños errores pueden magnificarse y llevar a resultados incorrectos.
Utilizar fórmulas, datos o tablas en un contexto diferente al que dieron origen puede llevar a interpretaciones incorrectas o a soluciones erróneas.
La extrapolación de resultados a límites no contemplados puede conducir a conclusiones incorrectas o poco realistas.
Utilizar fórmulas empíricas con datos expresados en unidades diferentes a las que funcionan puede generar resultados inconsistentes o incorrectos.
La dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede conducir a errores en la selección de modelos o fórmulas de cálculo.
Errores conceptuales pueden llevar a la selección incorrecta de modelos o fórmulas de cálculo, lo que resulta en soluciones erróneas.
El uso de software defectuoso o poco contrastado, así como la falta de habilidades para calcular manualmente un problema, pueden resultar en resultados incorrectos. A esto se une un uso inapropiado de la inteligencia artificial.
El mal uso de ecuaciones o fórmulas, como cambiar el nombre de una variable sin entender el concepto subyacente, puede conducir a errores en la resolución de problemas.
La falta de competencia o experiencia en una materia determinada puede resultar en una resolución incorrecta del problema.
Repetir la resolución de problemas de un contexto a otro sin pensar en su validez puede conducir a soluciones inapropiadas.
La falta de comprensión del problema, la pregunta o el tipo de resultado esperado puede resultar en soluciones incorrectas debido a la falta de comprensión lectora, capacidad analítica o de síntesis.
La utilización de unidades defectuosas, notaciones o convenciones específicas puede llevar a interpretaciones erróneas o a soluciones incorrectas.
La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez.
La falta de comunicación o colaboración en entornos de trabajo entre profesionales puede contribuir a errores en la resolución de problemas.
La confianza excesiva en la tecnología o herramientas automatizadas puede llevar a la falta de comprensión de los principios subyacentes y a la comisión de errores.
La falta de revisión o verificación de los cálculos realizados por parte de un tercero independiente puede resultar en soluciones incorrectas.
La falta de conocimiento del contexto del problema, incluyendo las restricciones, puede conducir a soluciones subóptimas o incorrectas.
Os paso un vídeo donde he desarrollado las ideas anteriores, con ejemplos, y he dejado algunas de mis reflexiones al respecto. Espero que os guste.
Durante los días 10-13 de julio de 2023 tuvo lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and EngineeringAEIPRO 2023. Fue una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presentó varias comunicaciones. A continuación os paso una de ellas.
La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.
El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
Palabras clave:
Nomografía; PyNomo; Nomogen; ingeniería de proyectos; docencia
Agradecimientos:
This research was funded by MCIN/AEI/10.13039/501100011033, grant number PID2020-117056RB-I00 and The APC was funded by ERDF A way of making Europe.
Referencia:
YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos.27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 2106-2118. DOI:10.61547/3509
A continuación os dejo un vídeo donde presentamos el trabajo. Espero que os sea de interés.
Os dejo la comunicación completa, pues está publicada en acceso abierto. Espero que os sea de interés.
En el prólogo de obras anteriores, mencioné que la enseñanza de “Procedimientos de Construcción” es complicada, ya que implica instruir a futuros ingenieros civiles sobre la realización de obras. Este proceso abarca no solo las fases constructivas, sino también aspectos de gran relevancia, como el manejo de maquinaria y medios auxiliares, la seguridad y salud, el impacto ambiental de las obras, y sobre todo, conocimientos fundamentales en geotecnia, resistencia de materiales, mecánica, cálculo de estructuras, gestión de empresas, planificación de obras y economía. Todo este conjunto de conocimientos es esencial para tomar decisiones acertadas al seleccionar el mejor proceso constructivo para un proyecto específico. Además, debemos abordar toda esta información, considerando que la mayoría de los alumnos tienen poca o nula experiencia práctica en relación con el entorno físico de las obras.
Una dificultad adicional radica en la creación de un conjunto ordenado y coherente de problemas resueltos que no sean meramente teóricos, sino que se acerquen al mundo real de la profesión. Esta tarea resulta compleja en ocasiones, pues los procedimientos constructivos requieren conocimientos que abarcan casi todas las áreas de la ingeniería. En consecuencia, explicar esta asignatura en los primeros cursos de un grado universitario puede parecer arriesgado, debido a la amplia gama de conocimientos necesarios. Sin embargo, los planes de estudio a veces presentan estas incongruencias y desafíos en la enseñanza de esta materia.
Al final ha salido un volumen extenso, con una amplia variedad de problemas resueltos, que intenta abarcar todo el campo de conocimiento de los procedimientos de construcción, incluyendo la maquinaria y los medios auxiliares utilizados tanto en la ingeniería civil como en la edificación, e incluso en algunos casos, en la minería.
Esta colección forma parte del conjunto de materiales, libros y documentación que he elaborado como autor, complementando así el contenido teórico de la asignatura. Por esta razón, recomiendo al lector que acuda a manuales, libros o apuntes para reforzar la parte teórica de los problemas. No obstante, he incluido una extensa bibliografía que espero sea útil para este propósito. Además, me complace recomendar mi blog, que cuenta con
una trayectoria de casi 12 años y ha recopilado cerca de 2.000 artículos relacionados con aspectos de la ingeniería de la construcción. Puedes encontrarlo en el siguiente enlace: https://victoryepes.blogs.upv.es/.
El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.
Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.
Por último, y a pesar de que he puesto todo el empeño en resolver y revisar cada uno de los problemas, es posible que existan erratas o errores. Por ello, agradezco de antemano cualquier sugerencia o mejora que pueda ser útil para futuras ediciones. Espero sinceramente que este libro que tiene en sus manos contribuya a mejorar la calidad de la enseñanza de este tipo de asignaturas y que se convierta en una herramienta valiosa tanto para estudiantes como para profesionales. Su éxito en el aprendizaje y aplicación de los procedimientos de construcción es mi mayor deseo.
Se trata de un foro donde el personal docente e investigador de universidad pueda compartir experiencias y continuar avanzando en la mejora de la docencia de la mano de la innovación y la tecnología.
Una de las cosas positivas que ha traído la crisis de la pandemia es la aparición de nuevos enfoques metodológicos cuyo éxito nos anima a incorporarlos de forma definitiva en las aulas. Estos enfoques, junto con otros estudios y prácticas innovadoras de interés para la mejora de la calidad de la docencia, son el objetivo de esta nueva edición de las jornadas que estarán organizadas sobre los siguientes ejes:
Metodologías docentes y de evaluación, tutorización y seguimiento.
Trabajos fin de título en ingeniería.
Formación en competencias transversales.
Otros temas de interés relacionados con la innovación y buenas prácticas docentes en las enseñanzas técnicas.
Las Jornadas tendrán lugar en la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de la Universidad de Granada, un centro líder en la formación en Ingeniería Civil y en Ingeniería de Caminos, Canales y Puertos.
Os dejo la presentación que voy a realizar en este conferencia inaugural.
Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero. El artículo presenta una metodología que utiliza el aprendizaje profundo para acelerar los cálculos de las restricciones estructurales en un contexto de optimización, específicamente para un puente mixto de hormigón y acero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El modelo de aprendizaje profundo óptimo está integrado por tres metaheurísticas: el método Obamo (Old Bachelor Acceptance with a Mutation Operator), el Cuckoo Search (CS) y los algoritmos de coseno sinusoidal (SCA). Esta integración da como resultado un posible aumento de 50 veces en la velocidad computacional en ciertos escenarios. El estudio destaca la viabilidad económica, las ramificaciones ambientales y las evaluaciones del ciclo de vida social de las soluciones de diseño optimizadas. Demuestra las ventajas de combinar el aprendizaje profundo con la optimización del diseño de la ingeniería civil, especialmente en lo que respecta al aumento del límite elástico del acero para cumplir objetivos medioambientales y sociales. La metodología propuesta en el documento se puede adaptar a una variedad de otras configuraciones estructurales, por lo que es aplicable más allá del caso específico del puente compuesto
The ability to conduct life cycle analyses of complex structures is vitally important for environmental and social considerations. Incorporating the life cycle into structural design optimization results in extended computational durations, underscoring the need for an innovative solution. This paper introduces a methodology leveraging deep learning to hasten structural constraint computations in an optimization context, considering the structure’s life cycle. Using a composite bridge composed of concrete and steel as a case study, the research delves into hyperparameter fine-tuning to craft a robust model that accelerates calculations. The optimal deep learning model is then integrated with three metaheuristics: the Old Bachelor Acceptance with a Mutation Operator (OBAMO), the Cuckoo Search (CS), and the Sine Cosine Algorithms (SCA). Results indicate a potential 50-fold increase in computational speed using the deep learning model in certain scenarios. A comprehensive comparison reveals economic feasibility, environmental ramifications, and social life cycle assessments, with an augmented steel yield strength observed in optimal design solutions for both environmental and social objective functions, highlighting the benefits of meshing deep learning with civil engineering design optimization.
Keywords:
Deep learning; Sustainability; Optimization; Bridges; Machine learning; Composite structures
Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.
Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.
Sobre el autor:Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.
Recientemente, hemos tenido el honor de que se publique nuestro artículo en el International Journal of Engineering Education, una revista indexada en el JCR. Nuestro estudio se enfoca en la evaluación de la capacidad de pensamiento crítico de los estudiantes universitarios en relación con la sostenibilidad. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal.
El artículo propone una metodología para evaluar objetivamente las habilidades de pensamiento crítico de los estudiantes universitarios en materia de sostenibilidad a través de estudios de casos que utilizan la técnica del Proceso de Jerarquía Analítica (AHP). La herramienta propuesta permite a los profesores identificar las áreas en las que los estudiantes carecen de una visión clara del problema y adaptar sus planes de estudio en consecuencia. El documento tiene como objetivo cerrar las brechas de conocimiento existentes en la evaluación de las competencias transversales que conducen a perfiles impulsores de los Objetivos de Desarrollo Sostenible (ODS).
Las implicaciones prácticas de este trabajo son las siguientes:
Los profesores pueden emplear la metodología propuesta para evaluar las habilidades de pensamiento crítico de sus alumnos en cursos relacionados con la sostenibilidad.
La herramienta puede ayudar a los profesores a identificar las áreas en las que los estudiantes carecen de una visión clara del problema y a adaptar sus planes de estudio en consecuencia.
La metodología propuesta se puede personalizar para cada disciplina universitaria para motivar a los estudiantes a través de estudios de casos reales y fomentar el pensamiento crítico y las habilidades analíticas desde el punto de vista de la sostenibilidad.
La metodología propuesta puede ayudar a cerrar las brechas de conocimiento existentes en la evaluación de las competencias transversales que conducen a perfiles impulsores de los Objetivos de Desarrollo Sostenible (ODS).
El artículo presenta los resultados de una encuesta realizada utilizando la metodología propuesta para evaluar las habilidades de pensamiento crítico de los estudiantes universitarios en materia de sostenibilidad a través de estudios de casos que utilizan la técnica del Proceso de Jerarquía Analítica (AHP). Se muestra la caracterización estadística de las respuestas dadas por los estudiantes, proporcionando el valor medio, la desviación estándar y los percentiles 5 y 95 de los juicios, medidos en términos de la escala fundamental extendida de Saaty. También se muestra la relevancia promedio asignada a cada criterio debido a esta encuesta. Estos valores de relevancia se obtienen de la metodología de toma de decisiones descrita anteriormente.
El artículo propone una metodología novedosa para evaluar la adquisición de habilidades de pensamiento crítico en materia de sostenibilidad por parte de los estudiantes universitarios. La metodología propuesta se basa en estudios de casos prácticos personalizados para cada disciplina universitaria, con el objetivo de motivar a los estudiantes a través de estudios de casos reales, así como fomentar el pensamiento crítico y las habilidades analíticas, todo ello desde el punto de vista de la sostenibilidad. La herramienta propuesta permite saber, a través de la coherencia de las respuestas de los estudiantes, en qué medida el estudiante ha desarrollado su capacidad de pensamiento crítico para enfrentar problemas de diseño sostenible. El artículo concluye que la metodología propuesta es útil para que los profesores adapten eficazmente sus planes de estudio de acuerdo con los conocimientos de sus alumnos.
ABSTRACT:
Construction-related enterprises are acknowledged as one of the key actors responsible for shifting society toward the sustainable future claimed by the recently established Sustainable Development Goals. However, university curricula need to emphasize guaranteeing the acquisition of transversal competencies that are essential for the future management professionals required by this new challenge. Consistent and critical thinking is considered a fundamental skill for education in sustainability. To date, no studies have presented an objective measure of the level of acquisition of such transverse skills in university curricula. This study provides an analytical tool to that end, based on the multi-criteria decision-making technique Analytic Hierarchy Process (AHP). Through sustainability-oriented case studies, students are faced with real managerial decision-making problems. The proposed method allows for the analytic quantification of the consistency of their responses. Such consistency is representative of their critical thinking skills. The proposed tool allows teachers not only to find the consistency of their students’ responses but also to understand in which areas of sustainability students lack a clear vision of the problem. This tool is therefore useful for teachers to effectively adapt their syllabi according to their students’ knowledge.
El nivel de dificultad del examen real será muy similar. Además, este tipo de ejercicios permite a los estudiantes enfrentarse a los problemas, consultar al profesor su resolución y aprender del proceso de evaluación.
De momento solo he tenido la oportunidad de dar tres unidades correspondientes a sondeos y perforaciones, técnicas de mejora del terreno y control del nivel freático. El tipo de examen es del estilo al que dejo a continuación.
Durante mi extensa carrera como profesor universitario en Ingeniería de la Construcción, he recopilado un vocabulario específico de la jerga utilizada por técnicos en el mundo de la construcción, que consiste en una variedad lingüística diferente a la lengua estándar y que a veces es incomprensible para los hablantes no familiarizados con ella. Este lenguaje se emplea con frecuencia por diferentes grupos sociales con la intención de ocultar el significado real de sus palabras a su conveniencia.
Mis estudiantes, acostumbrados a las ciencias y no a las letras, a menudo encuentran este lenguaje oscuro y difícil de aprender. Se quejan de tener que estudiar de memoria estas palabras y su significado, pero es fundamental su conocimiento para desenvolverse con soltura en la profesión. Esto de memorizar no es algo que les guste mucho, pero no hay más remedio. Es como aprender un nuevo idioma. Al principio hay que traducir el significado de las palabras, pero con el uso, se aprenden y no hay que volver a traducirlas. Por eso les aconsejo que mantengan una libreta donde anoten estos términos extraños, como “bentonita”, “sondeo”, “cimbra”, “árido”, “blondín”, “cubilote”, etc. Algunos de estos términos son específicos de determinadas zonas, como “bañera”, que se refiere a un remolque semibasculante, o “maceta”, que significa martillo en el lenguaje de los albañiles. Además, les recomiendo que intenten anotar la palabra equivalente en inglés, pues es muy probable que el día de mañana tengan que desenvolverse en otro idioma.
Un truco que utilizo a veces es emplear crucigramas o palabras cruzadas para ayudar a los estudiantes a asociar las nuevas palabras con su significado. Aquí hay un ejemplo de cuando hablamos de sondeos y perforaciones. Os animo a resolverlo.