Más allá de la opinión: en busca de la evidencia científica.

¿Cómo entendemos realmente el comportamiento humano y el funcionamiento de la sociedad? A menudo, nos basamos en la intuición o en ideas preconcebidas sobre lo que es «científico». Asociamos la ciencia con laboratorios, experimentos y datos exactos, mientras que el estudio de lo social nos parece más ambiguo o «blando».

Sin embargo, la investigación social es sorprendentemente rigurosa. Sus métodos y principios nos permiten comprender el mundo y desarrollar un pensamiento crítico y estructurado.

En este artículo, veremos cinco ideas impactantes que surgen de la investigación social. Prepárate, porque algunas de tus certezas podrían cambiar.

1. No es el objeto de estudio, sino el método, lo que define a la ciencia.

Una de las primeras barreras con las que nos encontramos al pensar en las ciencias sociales es el objeto de estudio: el ser humano. A diferencia de las células o los planetas, las personas somos sujetos conscientes, llenos de simbolismo y percepciones. Esto lleva a muchas personas a pensar que no pueden ser objeto de estudio científico.

Sin embargo, aquí radica la primera gran idea: lo que distingue a la ciencia de otras formas de conocimiento no es el tema que investiga, sino el rigor de su método. Da igual si estudias la interacción de partículas o las dinámicas de un grupo social; lo importante es cómo lo haces.

«Si no hay método, no hay ciencia».

Por tanto, la cientificidad de las ciencias sociales se basa en el cumplimiento de reglas metodológicas formalizadas. Principios como el rigor y la parsimonia, la verificación empírica y la búsqueda de formulaciones de tipo general (universales) son los pilares que sustentan cualquier investigación válida, independientemente de lo complejo o subjetivo que pueda parecer su objeto de estudio.

2. Que algo sea cuantitativo no lo convierte automáticamente en objetivo (y viceversa).

Vivimos en un mundo obsesionado con los datos. Tendemos a creer que un porcentaje, una estadística o un número son sinónimos de verdad objetiva, mientras que un discurso o una opinión se considera meramente subjetivo. La idea de que los datos cuantitativos son inherentemente objetivos y más científicos es, según la propia metodología, falsa.

La objetividad no reside en la naturaleza del dato (un número frente a una palabra), sino en el método con el que se ha obtenido y analizado. Un estudio cuantitativo basado en un mal diseño de encuesta o en una muestra no representativa puede ofrecer resultados completamente sesgados y poco objetivos. Del mismo modo, un análisis cualitativo de discursos puede ser extremadamente riguroso y objetivo si se sigue un procedimiento sistemático y controlado.

Esta idea nos invita a ser más críticos con la información que consumimos. La próxima vez que veas una estadística impactante, no te quedes en el número; pregúntate cuál es el método que hay detrás.

«¡Ojo! Que trabajemos con discursos y percepciones no significa que la investigación se base en la subjetividad del investigador ni que la investigación sea subjetiva. Sería lo mismo que decir que, por trabajar con números o porcentajes, los resultados son objetivos, sin tener en cuenta cómo se han obtenido esos datos».

3. En toda ciencia hay un factor humano: el propio investigador.

La imagen popular del científico es la de una figura neutral e imparcial que observa la realidad sin afectarla. Sin embargo, la verdad es que en toda investigación científica se incluyen criterios subjetivos del investigador.

El verdadero rigor científico no consiste en negar esta subjetividad, sino en ser consciente de ella, saber identificarla y limitarla para que no condicione los resultados de la investigación. Esto es especialmente crucial en las ciencias sociales, donde el objeto de estudio es, a su vez, un sujeto consciente. El investigador debe esforzarse por distanciarse y seguir el método de forma disciplinada, empleando mecanismos como el «distanciamiento» y la «extrañeza» al analizar el objeto».

Este principio humaniza la ciencia. Nos recuerda que es una actividad humana, llevada a cabo por personas, y que requiere no solo conocimientos técnicos, sino también autoconciencia, disciplina y honestidad intelectual.

4. Antes de elegir una técnica, debes definir qué quieres saber.

Imagina que un carpintero decide usar un martillo antes de saber si tiene que clavar, atornillar o serrar. Suena absurdo, ¿verdad? Pues bien, en la investigación (y en muchos otros ámbitos de la vida) es un error muy común. A menudo, nos enamoramos de una herramienta —una encuesta, una entrevista, un grupo de discusión— sin haber definido previamente la pregunta fundamental.

Un principio clave de la metodología de investigación es que el objeto de estudio y los objetivos deben definirse antes de decidir qué técnicas se utilizarán. La herramienta debe adaptarse al problema y no al revés. ¿Necesitas datos generalizables de una población grande? Quizás lo más adecuado sea una encuesta. ¿Quieres profundizar en los significados y las experiencias de un grupo concreto? Las entrevistas pueden ser más adecuadas.

¿Cómo resume a la perfección el principio metodológico: «El diseño metodológico se construye a partir del objeto y de los objetivos del estudio»? Esta lección es universal: la estrategia siempre debe preceder a la táctica.

5. La mejor investigación no elige bando, sino que combina métodos.

El antiguo debate entre la investigación cuantitativa (basada en números) y la cualitativa (basada en discursos) está cada vez más superado. La investigación social moderna no los concibe como enfoques opuestos e irreconciliables, sino como herramientas complementarias que, utilizadas conjuntamente, ofrecen una visión mucho más completa de la realidad.

Cada método tiene su propia lógica y propósito. La investigación cuantitativa, heredera del positivismo, sigue una lógica de verificación perfectamente diseñada para su objetivo: la búsqueda de leyes generales mediante un enfoque cuantitativo. Por su parte, la investigación cualitativa, más ligada al humanismo, se basa en una lógica de descubrimiento, indispensable para su objetivo, que consiste en la búsqueda de los significados de la acción humana.

Las estrategias más potentes son las de «articulación metodológica», como la complementación (emplear diferentes técnicas para distintos objetivos) o la triangulación, que consiste en utilizar distintas metodologías para validar datos sobre un mismo objetivo. Este enfoque integrador permite construir un conocimiento más rico, robusto y matizado que cualquier método por sí solo podría ofrecer.

Una nueva forma de entender el conocimiento.

Como hemos visto, la investigación social, lejos de ser una «ciencia blanda», está llena de principios rigurosos y sofisticados que desafían muchas de nuestras suposiciones sobre el conocimiento, la objetividad y la verdad. Nos enseña que el «cómo» es tan importante como el «qué», que los números no siempre dicen la verdad y que la clave para entender la complejidad humana a menudo radica en combinar diferentes perspectivas.

Ahora que sabes que la objetividad es más compleja de lo que parece y que el método es la clave, ¿qué «verdad» aceptada en tu día a día empezarás a cuestionar?

En esta conversación puedes descubrir las claves de las técnicas de investigación social.

Os dejo un vídeo que resume bien las ideas fundamentales de estas técnicas.

Os dejo este documento de síntesis de estas técnicas.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo lograr que tus estudiantes transformen su forma de pensar, según la ciencia

Introducción: ¿Por qué a veces enseñar parece una batalla perdida?

Todo educador conoce esa frustración: preparamos nuestras clases con esmero, organizamos los contenidos de forma lógica, explicamos con la mayor claridad posible y ponemos toda nuestra pasión en ello. Sin embargo, al final del semestre, nos damos cuenta de que muchos estudiantes no han retenido la información, no han conectado las ideas o, simplemente, no han llegado a comprender la esencia de lo que intentábamos transmitir. Es como si nuestras palabras se hubieran desvanecido en el aire.

La reacción instintiva ante este problema es intentar perfeccionar nuestra enseñanza. Buscamos ser más claros, organizar mejor el material o encontrar ejemplos más ilustrativos. Asumimos que, si mejoramos la forma en que transmitimos el conocimiento, el aprendizaje ocurrirá de forma natural. Pero ¿y si esa premisa fuera fundamentalmente incorrecta?

Décadas de investigación rigurosa en educación superior han revelado una serie de principios sobre cómo las personas realmente aprenden. Lo sorprendente es que muchas de estas conclusiones son profundamente contraintuitivas y entran en conflicto con nuestras ideas más arraigadas sobre la enseñanza. En este artículo, sintetizamos cinco de las lecciones más impactantes de esta investigación, organizadas en un proceso de creciente sofisticación pedagógica. Empezaremos por los fundamentos de la comunicación efectiva y llegaremos hasta las formas más avanzadas de diseño curricular, revelando un mapa que transforma la frustración en un aprendizaje real y duradero.

Lección 1: no se trata de lo que enseñas, sino de lo que ellos hacen.

El primer y más importante cambio de paradigma es el siguiente: el factor que determina los resultados del aprendizaje no es la calidad de la exposición del profesor, sino la de la actividad que realiza el estudiante. Se trata de una idea sencilla en apariencia, pero con implicaciones revolucionarias para el diseño de cualquier curso.

Investigadores como John Biggs han demostrado que el enfoque de la planificación docente debe cambiar por completo. Esta es la esencia del cambio de paradigma que Barr y Tagg describieron en su artículo «From Teaching to Learning», un pilar de la pedagogía moderna. En lugar de preguntarnos «¿qué temas voy a cubrir?», la pregunta fundamental debe ser «¿qué actividades voy a diseñar para que mis estudiantes piensen y trabajen?». Este principio nos obliga a cambiar nuestro papel de «presentadores de información» a «arquitectos de experiencias de aprendizaje».

Este cambio es difícil de asimilar porque nos saca del centro del escenario. Lo que realmente importa es el reto intelectual que proponemos y el trabajo cognitivo que los estudiantes realizan para superarlo, no nuestra brillante explicación. La enseñanza más eficaz no es la que transmite mejor, sino la que provoca la mejor actividad.

«Lo que el estudiante hace, y no tanto lo que el profesor hace, es lo que determina los resultados de aprendizaje».

Lección 2: Los sentimientos importan más de lo que crees.

A menudo, concebimos la enseñanza como un proceso puramente cognitivo: si la información es clara y está bien organizada, los estudiantes aprenderán. Sin embargo, la investigación demuestra que los aspectos afectivos y relacionales son, como mínimo, tan importantes. Factores como la cercanía, la expresividad y la credibilidad del docente pueden potenciar el aprendizaje.

Estas cualidades no son meros adornos. Tienen efectos directos y medibles: aumentan la motivación, reducen la ansiedad que sienten los estudiantes ante la información compleja y, lo que es crucial, impactan en el aprendizaje afectivo. Este último se refiere a los valores, actitudes y sentimientos que el estudiante desarrolla hacia la asignatura. De hecho, un hallazgo sorprendente es que la claridad del profesorado puede tener un efecto aun mayor en la actitud positiva del alumnado hacia la asignatura que en su aprendizaje puramente cognitivo.

La comunicación en el aula nunca es solo una transacción de información. Es un acto de construcción de relaciones. Cuando un profesor se muestra cercano y creíble, fomenta un entorno en el que los estudiantes están más dispuestos a implicarse, a confiar y, en definitiva, a valorar el conocimiento que se les ofrece.

«La mayoría de los estudiantes no valora intrínsecamente el aprendizaje que se les prescribe. Hay que enseñarles a valorar ese conocimiento».

Dominar la claridad y la conexión con el estudiante (lo que la investigación denomina nivel 1) es la base. Sin embargo, el verdadero salto en la efectividad se produce cuando cambiamos el enfoque de nosotros hacia ellos y empezamos a diseñar el aprendizaje en función de su actividad.

4. Lección 3: Olvida el «aprendizaje activo». Busca el «aprendizaje constructivo».

«Aprendizaje activo» se ha convertido en un término de moda, una especie de eslogan que todo el mundo apoya, pero pocos lo definen con precisión. La dicotomía simple entre «activo» (hacer cosas) y «pasivo» (escuchar) es engañosa. Escuchar una conferencia brillante puede ser una actividad intelectual increíblemente intensa, mientras que participar en una actividad mal diseñada puede ser una pérdida de tiempo.

La investigadora Michelene Chi propone un concepto mucho más útil y preciso: el aprendizaje constructivo. La clave no está en si los estudiantes «hacen algo» físicamente, sino en el tipo de trabajo mental que realizan. El aprendizaje es constructivo cuando la actividad exige a los estudiantes producir un resultado que va más allá de la información inicialmente proporcionada.

El aprendizaje constructivo se produce cuando el estudiante reorganiza las ideas, sintetiza, critica, diseña, aplica, ofrece soluciones, realiza diagnósticos o aporta análisis. La clave es la transformación, no la mera repetición. El objetivo de una buena actividad no es simplemente mantener a los estudiantes ocupados; es involucrarlos en un trabajo cognitivo de alto nivel que propicie una comprensión nueva y personal.

«…aquellas [actividades] en las que, al realizarlas, los estudiantes producen resultados añadidos, esto es, resultados que contienen ideas relevantes que van más allá de la información de partida que se les ha dado»

Lección 4: el mayor obstáculo es lo que los estudiantes ya «saben».

Uno de los descubrimientos más sólidos y, a la vez, más ignorados de la investigación educativa es que el mayor obstáculo para el aprendizaje no es la falta de conocimientos, sino las ideas preconcebidas, ingenuas o erróneas que los estudiantes traen al aula. Estas ideas, a menudo implícitas y profundamente arraigadas, pueden ser increíblemente resistentes al cambio y bloquear la asimilación de conceptos científicos o de expertos.

La magnitud de este problema es enorme. Un ejemplo famoso proviene de la física: cuando se diseñó el Force Concept Inventory (FCI), una prueba para evaluar la comprensión de los conceptos básicos de la mecánica newtoniana, los profesores universitarios predijeron que sus alumnos la superarían con facilidad. Los resultados reales fueron un shock: las puntuaciones medias se situaban en un desolador 20-25 %. Esto reveló que incluso los estudiantes más brillantes albergaban ideas profundamente erróneas sobre el movimiento. Sus cursos no los habían corregido porque la enseñanza tradicional simplemente añade capas de información nueva sobre estas concepciones resistentes sin llegar nunca a desplazarlas.

Una enseñanza verdaderamente eficaz no puede ignorar este hecho. Debe diseñarse explícitamente para facilitar el cambio conceptual. Para ello, es necesario crear situaciones y problemas que obliguen a los estudiantes a expresar sus ideas previas, a confrontarlas con las pruebas y, en última instancia, a modificar su forma de pensar. Si no se lleva a cabo este proceso deliberado, corremos el riesgo de que los estudiantes memoricen únicamente las respuestas correctas para el examen, mientras sus ideas erróneas originales permanecen intactas.

«¿Con qué frecuencia el profesor invierte un gran esfuerzo en ofrecer una explicación concienzuda de algún fenómeno sin darse cuenta de que los estudiantes están formando interpretaciones significativamente diferentes en sus cabezas?».

Si este «cambio conceptual» es el objetivo, ¿cómo diseñamos un curso entero en torno a él? La respuesta está en identificar los «portales» donde este cambio sea más necesario y transformador.

Lección 5: No enseñes temas; diseña «portales» de conocimiento.

El nivel más avanzado de diseño curricular abandona la idea de un temario como una mera lista de contenidos por cubrir. En su lugar, se centra en identificar y enseñar los conceptos umbral (threshold concepts). Esta idea, desarrollada por Meyer y Land, parte del concepto de «conocimiento problemático» (troublesome knowledge) de David Perkins, que se refiere a aquellas ideas contraintuitivas o complejas que, por tanto, resisten el aprendizaje superficial.

Un concepto umbral funciona como un portal: cuando el estudiante lo atraviesa, su forma de ver la disciplina (e incluso el mundo) cambia por completo. Abrirá una forma de pensar antes inaccesible. Estos conceptos suelen ser precisamente los puntos en los que los estudiantes se atascan, ya que a menudo resultan contraintuitivos, problemáticos o complejos. Son las ideas clave que, una vez comprendidas, conectan todo lo demás y permiten al estudiante empezar a pensar como un experto en la materia.

Pensemos, por ejemplo, en el concepto de «coste de oportunidad» en economía. Cuando un estudiante lo comprende de verdad, ya no ve las decisiones como simples elecciones, sino como un campo de renuncias y de alternativas. Este concepto transforma su manera de analizarlo todo, desde una política gubernamental hasta qué hacer el sábado por la noche. Ese es el poder de un portal conceptual.

La docencia de excelencia consiste, por tanto, en identificar estos portales conceptuales en una disciplina. El curso deja de ser una secuencia de temas para convertirse en un viaje cuidadosamente diseñado que guía a los estudiantes a través de estos umbrales transformadores. El objetivo ya no es «cubrir el temario», sino provocar saltos cualitativos en la comprensión.

«Un concepto umbral puede considerarse como un portal que abre una nueva forma de pensar sobre algo previamente inaccesible. Representa una forma transformada de comprender, interpretar o ver algo, sin la cual el estudiante no puede progresar».

Conclusión: un pequeño cambio, un gran impacto.

Estas cinco lecciones suponen una evolución coherente en nuestra forma de entender la docencia. Nos invitan a evolucionar desde el papel de profesor que presenta información de forma clara y cercana (lecciones 1 y 2), hasta el de arquitecto que diseña desafíos cognitivos (lección 3), diagnosticador que identifica los modelos mentales de sus estudiantes (lección 4) y, por último, guía que acompaña a los estudiantes a través de los portales intelectuales más transformadores de su disciplina (lección 5). El enfoque cambia de la perfección en la transmisión de contenidos a la creación de experiencias que faciliten un aprendizaje auténtico.

De estas cinco lecciones, ¿qué cambio podrías implementar en tu próxima clase para empezar a centrarte en lo que hace el estudiante?

En este audio podemos escuchar una conversación sobre este tema.

En este vídeo se sintetizan las ideas más importantes sobre el aprendizaje activo.

En este documento puedes ver las ideas más importantes.

Pincha aquí para descargar

Referencias:

Barr, R. B., & Tagg, J. (1995). From teaching to learning: A new paradigm for undergraduate education. Change Magazine, Nov/Dec.

Biggs, J. (1999). What the student does: Teaching for enhanced learning. Higher Education Research and Development, 18(1), 57–75.

Biggs, J. B., & Tang, C. (1999). Teaching for quality learning at university: What the student does. Society for Research into Higher Education & Open University Press.

Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14, 161–199.

Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. En S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–82). Routledge.

Chi, M. T. H. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73–105. https://doi.org/10.1111/j.1756-8765.2008.01005.x

Meyer, J. H. F., & Land, R. (2003). Threshold concepts and troublesome knowledge: Linkages to ways of thinking and practising within the disciplines. ETL Project, University of Edinburgh.

Meyer, J. H. F., & Land, R. (2005). Threshold concepts and troublesome knowledge (2): Epistemological considerations and a conceptual framework for teaching and learning. Higher Education, 49, 373–388. https://doi.org/10.1007/s10734-004-6779-5

Meyer, J. H. F., & Land, R. (2006). Threshold concepts and troublesome knowledge: An introduction. En J. H. F. Meyer & R. Land (Eds.), Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge (pp. 3–18). Routledge.

Paricio, J. (2020). La calidad de «lo que el estudiante hace»: aprendizaje activo y constructivo. En J. Paricio, A. Fernández March y J. M. Carot Sierra (Eds.), Cartografía de la buena docencia universitaria (pp. 57-88). Narcea.

Perkins, D. (1999). The many faces of constructivism. Educational Leadership, 57(3), 6–11.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

ABP, método del caso y proyectos: Claves para una enseñanza más significativa.

El aprendizaje activo supone un cambio de paradigma educativo, ya que desplaza el foco del docente al estudiante y concibe el aprendizaje como un proceso constructivo en lugar de receptivo. Se basa en tres pilares: la psicología cognitiva, que sostiene que el conocimiento se estructura en redes semánticas asociativas; el fomento del aprendizaje autodirigido para desarrollar habilidades metacognitivas; y la contextualización del aprendizaje mediante problemas del mundo real para aumentar la motivación y facilitar la transición al entorno profesional.

Los componentes clave de estas metodologías incluyen la presentación de un escenario contextualizado y el trabajo en grupo para fomentar la colaboración y la comprensión. También implican resolver problemas complejos, similares a los de los profesionales, y adquirir nuevos conocimientos, motivados por esa necesidad. Además, incorporan un enfoque basado en el mundo real que prepara a los estudiantes para su futuro profesional.

La adopción de estas metodologías se justifica por su capacidad para generar una comprensión más profunda y duradera que los formatos de conferencia tradicionales, que conllevan una baja retención de conocimientos. Al centrarse en lo que el estudiante aprende, se fomenta una mayor comprensión, motivación y participación. Las principales metodologías activas analizadas son el aprendizaje basado en problemas (ABP), el método del caso (MdC), el aprendizaje basado en proyectos (ABP) y el aprendizaje cooperativo (AC), que puede combinarse con las demás.

Fundamentos teóricos del aprendizaje activo.

Las metodologías activas se sustentan en principios pedagógicos y psicológicos que buscan optimizar el proceso de aprendizaje del estudiante, centrándose en su participación directa y en la construcción activa del conocimiento.

1. El aprendizaje como proceso constructivo.

Estas estrategias rechazan la idea del aprendizaje como una mera recepción y acumulación de información. En su lugar, lo conciben como un proceso constructivo.

La psicología cognitiva ha demostrado de manera consistente que una de las estructuras más importantes de la memoria es la asociativa. El conocimiento está organizado en redes de conceptos relacionados, denominadas redes semánticas. La nueva información se integra a la red ya existente. Según cómo se realice esta conexión, la nueva información podrá utilizarse o no para resolver problemas o reconocer situaciones (Glaser, 1991).

2. Fomento del aprendizaje autodirigido.

Un segundo pilar es el desarrollo de las habilidades metacognitivas, lo que se traduce en un aprendizaje autodirigido más eficaz y profundo.

Se trata de promover habilidades que permitan al estudiante valorar la dificultad de los problemas, detectar si ha comprendido un texto, saber cuándo debe utilizar estrategias alternativas para comprender la documentación y evaluar su progreso en la adquisición de conocimientos (Brunning et al., 1995).

En este contexto, los estudiantes trabajan en equipo, discuten, argumentan y evalúan constantemente lo que aprenden, apoyados por estrategias específicas de las metodologías activas.

3. La contextualización en el mundo real.

El aprendizaje se vuelve más significativo y motivador cuando se enmarca en problemas reales o en la práctica profesional.

La contextualización de la enseñanza fomenta una actitud positiva y la motivación en los estudiantes, aspectos imprescindibles para un aprendizaje comprensible. Además, permite que los estudiantes se enfrenten a problemas reales con un nivel de dificultad y complejidad similares a los que se encontrarán en la práctica profesional.

Componentes clave de las metodologías activas.

Estos principios se materializan mediante una serie de componentes estructurales comunes, según sintetizaron Johnson et al. (2000).

  • El escenario: establece el contexto del problema, caso o proyecto. A menudo, se asigna a los estudiantes un rol profesional específico (investigadores, programadores, etc.). A menudo, incluye un «objeto de información» (una noticia, una imagen, un poema) que actúa como elemento contextualizador y motivador y crea una necesidad de aprendizaje sin ofrecer pistas directas para la solución.
  • Trabajo en grupo: los estudiantes se organizan en pequeños grupos para probar y desarrollar su comprensión. Esta dinámica imita entornos de trabajo reales y permite abordar problemas complejos mediante la división de tareas. Los estudiantes asumen una responsabilidad tanto individual como colectiva para que el grupo funcione de manera eficiente.
  • Solución de problemas: Los problemas que se plantean son, por naturaleza, complejos y requieren razonamiento e indagación. Reflejan los desafíos a los que se enfrentan los profesionales de su campo. La dificultad del problema y las instrucciones para resolverlo deben ajustarse al nivel del curso universitario.
  • Descubrimiento de nuevos conocimientos: Para encontrar una solución significativa, los estudiantes deben buscar activamente nuevos conocimientos.
  • Basado en el mundo real: el objetivo principal es que los estudiantes piensen como profesionales desde el principio de su formación, para facilitar la transición de la universidad al mundo laboral. Los estudiantes se enfrentan a problemas para los que no existe necesariamente una única respuesta correcta, aunque sí se fundamentan en las leyes y en los modelos teóricos de la disciplina.

Justificación para la adopción de metodologías activas.

El cambio hacia un modelo de enseñanza activa se basa en el deseo de superar las limitaciones del formato de conferencia tradicional y promover un aprendizaje más significativo.

  • Comprensión profunda frente a la memorización: La razón principal es que queremos proporcionar a los estudiantes una comprensión más profunda. Las investigaciones demuestran que, con el formato de conferencia tradicional, los estudiantes retienen muy poco de lo enseñado (Duch et al., 2001) y, a menudo, se limitan a memorizar para el examen sin establecer conexiones entre los conceptos.
  • Enfoque en el aprendizaje del estudiante: las metodologías activas cambian el enfoque de lo que enseña el docente a lo que aprende el estudiante.

Tipos de aprendizaje activo y sus características.

Cada una de ellas presenta particularidades que la hacen más adecuada para ciertas áreas de conocimiento o contextos educativos.

Aprendizaje Basado en Problemas (ABP)

  • Punto de partida: se presenta un problema (escenario o gancho) diseñado para cubrir uno o varios resultados de aprendizaje (conocimientos, habilidades, etc.).
  • Proceso y producto: el proceso de resolución conduce a una «salida» o producto del grupo, que puede ser desde un informe o un cartel hasta resultados experimentales.
  • Estructura: los problemas pueden incluir etapas en las que la información se revela progresivamente, así como esquemas de evaluación.
  • Autonomía gradual: en los primeros cursos, la estrategia puede estar más guiada y se va otorgando progresivamente más autonomía al estudiante en cursos posteriores o incluso dentro de una misma asignatura.
  • Adaptación a contenidos abstractos: En asignaturas de alta dificultad conceptual, el profesor puede mantener un papel directivo en la secuencia de actividades, guiando al alumnado mediante discusiones para que deduzca los pasos a seguir.

Método del Caso (MdC)

  • Variante 1 (Aplicación): se plantea el caso tras que el estudiante ha adquirido conocimientos previos. El objetivo es integrar y aplicar dichos conocimientos en una situación real.
  • Variante 2 (Descubrimiento): el caso se presenta como punto de partida para el aprendizaje. La resolución del caso guía a los estudiantes para que adquieran los conocimientos necesarios.
  • Características: Los casos pueden variar en extensión (de dos a cincuenta páginas) y se centran en el desarrollo de capacidades de análisis, toma de decisiones, emisión de juicios y evaluación.

Aprendizaje Basado en Proyectos (ABPy)

  • Envergadura: implica realizar un trabajo a gran escala, que puede consistir en un proyecto cuatrimestral único, un proyecto interdisciplinar entre varias asignaturas o un proyecto de un mes.
  • Competencias desarrolladas: requiere dividir el proyecto en problemas más pequeños, planificar su desarrollo, establecer responsabilidades, aplicar la teoría, diseñar productos, analizar la viabilidad de las alternativas y justificar las decisiones tomadas.
  • Aplicación: se utiliza con frecuencia en cursos avanzados, donde se pueden aplicar más conocimientos. También es común en proyectos interdisciplinares que integran los contenidos de varias asignaturas. A nivel de una sola asignatura, sirve para que el alumnado comprenda la relación entre los diferentes temas al aplicarlos conjuntamente.

Aprendizaje Cooperativo (AC)

  • Definición: Es una estrategia didáctica en la que los estudiantes trabajan en pequeños grupos de manera coordinada para resolver tareas y desarrollar su aprendizaje.
  • Cinco aspectos fundamentales:
    1. Interdependencia positiva: todos los miembros del grupo son necesarios para el éxito de la tarea.
    2. Exigibilidad individual: cada miembro rinde cuentas de su parte y del trabajo global del grupo.
    3. Interacción cara a cara: se promueve la comunicación directa.
    4. Habilidades interpersonales: se desarrollan habilidades de trabajo en equipo.
    5. Reflexión del grupo: el equipo evalúa su propio funcionamiento.
  • Funcionamiento: las decisiones se toman en grupo y todos son responsables del resultado final. La evaluación individual está parcialmente condicionada al logro del grupo, lo que fomenta la ayuda mutua.
  • Versatilidad: puede utilizarse de forma aislada o combinada con ABP, MdC o ABPy.

En este vídeo se resumen las ideas más interesantes sobre este tema.

Os dejo un documento de síntesis, por si os interesa.

Pincha aquí para descargar

Referencias:

Brunning, R. H., Schraw, G. J., & Ronning, R. R. (1995). Cognitive psychology and instruction (2ª ed.). Englewood Cliffs, NJ: Prentice Hall.

Duch, B. J., Groh, S. E., & Allen, D. E. (2001). The power of problem-based learning. Sterling, VA: Stylus.

Glaser, R. (1991). The maturing of the relationship between the science of learning and cognition and educational practice. Learning and Instruction, 1(2), 129–144.

Johnson, D. W., Johnson, R. T., & Smith, K. A. (2000). Active learning: Cooperation in the college classroom. Edina, MN: Interaction Book.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La diversidad cultural en ingeniería: multiplica la creatividad y mejora la resolución de problemas

En el mundo profesional, la diversidad de los equipos a menudo se percibe como un desafío de gestión: un complejo puzle de estilos de comunicación y normas culturales que deben ensamblarse cuidadosamente para evitar fricciones. Esta visión, aunque comprensible, pasa por alto una verdad fundamental.

En lugar de ser un obstáculo que superar, la diversidad cultural es, en realidad, un «superpoder» para la innovación y la resolución de problemas complejos. Esto es especialmente cierto en campos técnicos como la ingeniería, donde la convergencia de múltiples perspectivas puede revelar soluciones que un grupo homogéneo nunca encontraría.

Un estudio reciente con 79 estudiantes de grado y de máster en ingeniería, muchos de ellos internacionales, arroja luz sobre este fenómeno y revela algunas verdades sorprendentes sobre cómo funcionan realmente los equipos multiculturales. Este artículo resume los hallazgos más importantes de dicha investigación.

La diversidad no solo enriquece: mejora activamente la capacidad de resolver problemas

El primer gran hallazgo del estudio es contundente. Lo sorprendente no es que la diversidad sea valorada, sino el consenso casi absoluto que genera en un campo que a menudo se estereotipa como puramente técnico e individualista. Según el estudio, los estudiantes de ingeniería perciben de forma abrumadora que la diversidad cultural no solo enriquece las interacciones y fomenta la creatividad, sino que también mejora directamente la capacidad de decisión y la capacidad del equipo para resolver problemas.

El dato que lo respalda es rotundo: la afirmación «La diversidad cultural y las experiencias previas de los estudiantes mejoran la dinámica de aprendizaje, así como la capacidad para resolver problemas en equipo» obtuvo una puntuación media de 4,19 sobre 5. Desde una perspectiva pedagógica, este dato es crucial, ya que no se trata de una teoría abstracta, sino de la percepción directa de las personas que experimentan sus beneficios en tareas colaborativas complejas.

Las mujeres lo ven aún más claro

Al profundizar en los datos, el estudio halló una diferencia estadísticamente significativa en la percepción entre hombres y mujeres. Las estudiantes encuestadas mostraron un grado de acuerdo «significativamente mayor» que el de sus compañeros varones respecto a la idea de que la diversidad mejora la resolución de problemas en equipo. El análisis de los intervalos de confianza del 95 % para las medias no se solapa, lo que indica que esta diferencia no es casual.

Lo que esto sugiere es fascinante. Este hallazgo podría reflejar una mayor sintonía con la dinámica de grupo o una valoración más acentuada de los beneficios de la colaboración y la comunicación, competencias que la diversidad pone de manifiesto. Este resultado abre una interesante línea de investigación sobre cómo diferentes grupos experimentan y valoran la dinámica colaborativa.

El valor de la diversidad se aprecia más cuando se experimenta de primera mano

El estudio comparó las respuestas de grupos de máster, compuestos casi en su totalidad por estudiantes internacionales, con las de un grupo de grado, en el que el 70 % de los encuestados eran españoles. El resultado fue revelador: el grupo de grado, más homogéneo, valoró en menor medida el impacto positivo de la diversidad. La conclusión del estudio es directa y contundente: queda claro que cuanto mayor es la diversidad, más se valora.

Esto no significa que los grupos homogéneos rechacen la diversidad. Más bien, subraya un principio fundamental del aprendizaje intercultural: la apreciación de la diversidad no es un ejercicio teórico, sino una competencia que se desarrolla mediante la inmersión y la experiencia directa. Para valorar plenamente sus beneficios, primero hay que experimentarlos.

No es un beneficio mágico, sino el resultado de dos factores clave

Quizás la aportación más poderosa del estudio es desmitificar el proceso. Si bien muchas investigaciones confirman que la diversidad es beneficiosa, este estudio indaga en el porqué y traslada la conversación del «qué» al «cómo». Mediante un análisis estadístico, los investigadores identificaron los dos mecanismos principales que explican esta percepción positiva.

Esta habilidad se basa en dos factores específicos y medibles:

  1. Desarrollo de habilidades interpersonales: Trabajar en equipos diversos impulsa a sus miembros a mejorar sus habilidades de comunicación y negociación, lo que facilita directamente la colaboración técnica.
  2. Un entorno de ideación más rico: La diversidad cultural en el aula crea un ambiente más dinámico que fomenta un mayor intercambio de ideas, lo que enriquece la comprensión global de los problemas.

Estos dos factores, por sí solos, explican el 63,3 % de la percepción positiva, lo que demuestra que los beneficios de la diversidad no son abstractos, sino que se traducen en una mejora tangible de la comunicación y de la generación de ideas.

Conclusión: De la convivencia a la estrategia

Los resultados de este estudio reafirman una idea fundamental: la diversidad cultural no es una obligación social, sino un recurso estratégico para la innovación. Hemos pasado de intuir que se trata de un «superpoder» a comprender la mecánica que lo activa: fomenta mejores habilidades de comunicación y genera un ecosistema de ideas más rico.

Aunque puedan existir pequeños desafíos de integración, reflejados en la puntuación más baja en el ítem sobre las dificultades para unificar ideas, los beneficios en la creatividad, la toma de decisiones y el desarrollo de competencias son mucho mayores. No aprovechar este motor de forma deliberada es una enorme oportunidad perdida.

Así pues, nos queda una última pregunta: si la diversidad es un motor tan potente de la innovación y ya sabemos cómo funciona, ¿estamos haciendo lo suficiente para fomentarla estratégicamente en nuestros equipos y organizaciones?

En este audio os dejo una conversación sobre este tema.

Por otra parte, en este vídeo, podéis ver las cuestiones más interesantes planteadas.

Referencia:

Yepes, V.; Yepes-Bellver, L. y Martínez-Pagán, P. (2025). Impacto de la diversidad cultural en la resolución colaborativa de problemas en la docencia universitaria de ingeniería. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 y 18 de julio de 2025. Doi: https://doi.org/10.4995/InRed2025.2025.20606

También les dejo el artículo completo.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 revelaciones sobre el aprendizaje que la educación tradicional ignora.

¿Te has preguntado alguna vez por qué se olvida la información justo después de un examen? No se trata de un fallo personal, sino del resultado previsible de un modelo educativo anticuado que suele priorizar la memorización a corto plazo sobre la comprensión profunda. De hecho, la investigación ha demostrado que los estudiantes retienen muy poco de lo que se les enseña en una clase magistral tradicional.

Frente a este desafío, surge el «aprendizaje activo» como una alternativa poderosa. Su enfoque no se centra en lo que enseña el profesor, sino en lo que el estudiante construye. En lugar de ser receptores pasivos, los estudiantes se convierten en protagonistas de su propio proceso de aprendizaje.

A continuación, revelaremos cinco aspectos fundamentales de este enfoque que están redefiniendo el éxito educativo y transformando tu manera de entender el aprendizaje.

Revelación 1: tu cerebro no es un disco duro; es una red en construcción.

El modelo tradicional considera la mente como un recipiente vacío o un disco duro que hay que llenar de datos. La revelación es que la mente no es un almacén, sino un telar. Cada nueva idea es un hilo que solo tiene valor cuando se entreteje con los demás.

La psicología cognitiva nos enseña que el conocimiento se organiza en «redes semánticas». Para que una nueva información sea útil y duradera, debe conectarse con la red existente en nuestra mente. Sin esa conexión, se trata de un dato aislado, fácil de olvidar e inútil para resolver problemas. Aprender no es acumular, sino construir significado.

La enseñanza basada en metodologías activas se centra en el estudiante y en su formación en competencias propias de la disciplina. Estas estrategias conciben el aprendizaje como un proceso constructivo y no como un proceso receptivo.

Revelación 2: no importa tanto lo que sabes, sino cómo aprendes.

En un mundo saturado de información, la habilidad más valiosa no es memorizar datos, sino aprender de forma autónoma. Las metodologías activas se centran en el desarrollo del «aprendizaje autodirigido», cultivando las habilidades metacognitivas que nos serán útiles a lo largo de toda la vida.

Esto significa ser conscientes de nuestro propio proceso de aprendizaje: evaluar la dificultad de un problema, comprender si hemos entendido un texto, saber cuándo debemos buscar estrategias alternativas y medir nuestro progreso. Esta autonomía es crucial en un panorama laboral cambiante que exige un aprendizaje continuo, por lo que se convierte en una capacidad mucho más relevante que cualquier dato memorizado.

Se trata de promover habilidades que permitan al estudiante valorar la dificultad de los problemas, detectar si ha comprendido un texto, saber cuándo debe utilizar estrategias alternativas para comprender la documentación y evaluar su progreso en la adquisición de conocimientos.

Revelación 3: el aprendizaje se enciende con problemas reales, no con teoría abstracta.

¿Por qué aprendemos? La respuesta más potente es para resolver problemas. Esta revelación sostiene que la enseñanza debe producirse en el contexto de los desafíos del mundo real o de la práctica profesional. Al enfrentar situaciones complejas y significativas, el aprendizaje adquiere un propósito claro y tangible.

Esta contextualización no solo aumenta la motivación, sino que también facilita la transición de la universidad al mundo laboral. Cuando el conocimiento se ancla en la realidad, deja de ser un ejercicio abstracto para convertirse en una herramienta poderosa y fundamental para el futuro profesional.

Revelación 4: el profesor no es un orador, sino un arquitecto de experiencias.

El modelo tradicional nos dio al «sabio en el escenario» (sage on the stage). La metodología activa nos ofrece la figura del «guía a tu lado» (guide on the side) o, más precisamente, la de un «arquitecto de experiencias de aprendizaje». Su papel ya no consiste en transmitir información, sino en diseñar escenarios que despierten la curiosidad.

En estos escenarios, el profesor asigna un papel profesional a los estudiantes («ustedes son un equipo de ingenieros…») y plantea un problema. A menudo, utiliza un «objeto de información» —una noticia de periódico, una imagen intrigante, un poema— que actúa como catalizador. Este objeto no da pistas, sino que crea una «necesidad de aprendizaje», un motor que impulsa a los estudiantes a buscar el conocimiento necesario para cumplir su misión.

Revelación 5: el equipo no es un grupo de amigos, sino una estructura de responsabilidades.

El trabajo en grupo es un pilar fundamental de este enfoque, que se estructura según los principios del «aprendizaje cooperativo» para recrear entornos profesionales y garantizar la participación de todos. La complejidad de los problemas del mundo real a menudo es tal que los miembros del grupo necesitan repartirse las tareas para avanzar.

Hay dos conceptos clave. El primero es la interdependencia positiva: la tarea está diseñada de modo que todos los miembros del grupo sean necesarios para alcanzar el éxito. El segundo es la exigibilidad individual: cada estudiante es responsable de su parte del trabajo y de comprender la labor del resto del equipo. No se trata solo de una tarea académica, sino de un entrenamiento directo para el mundo laboral, donde la colaboración y la responsabilidad compartida son la norma.

Conclusión: una invitación a repensar el aprendizaje.

Estas revelaciones nos obligan a redefinir el concepto de éxito educativo. Ya no se trata de cuánta información se ha transmitido, sino de qué capacidades se han desarrollado. Suponen un cambio de paradigma fundamental: el foco deja de estar en lo que enseña el docente para ponerse en lo que el estudiante es capaz de hacer con lo que aprende.

Este enfoque fomenta una comprensión más profunda, una mayor motivación y habilidades de colaboración y resolución de problemas, tan demandadas en el mundo actual. Supone dejar de ser receptores pasivos para convertirnos en constructores activos de nuestro propio conocimiento.

Si pudieras aplicar solo una de estas ideas a tu forma de aprender o de enseñar, ¿cuál elegirías y por qué?

Aquí te dejo una conversación que ilustra bien lo expuesto.

Y si quieres un resumen, puedes ver este vídeo.

Referencias:

Brunning, R. H., Schraw, G. J., & Ronning, R. R. (1995). Cognitive psychology and instruction (2ª ed.). Englewood Cliffs, NJ: Prentice Hall.

Duch, B. J., Groh, S. E., & Allen, D. E. (2001). The power of problem-based learning. Sterling, VA: Stylus.

Glaser, R. (1991). The maturing of the relationship between the science of learning and cognition and educational practice. Learning and Instruction, 1(2), 129–144.

Johnson, D. W., Johnson, R. T., & Smith, K. A. (2000). Active learning: Cooperation in the college classroom. Edina, MN: Interaction Book.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Prohibieron la IA en sus clases de ingeniería. Ahora es su mejor herramienta para enseñar a pensar.

Introducción: El dilema de la IA en las aulas.

En los pasillos de la educación superior, un debate resuena con fuerza: ¿qué hacemos con la inteligencia artificial generativa (IAG)? Para muchos, herramientas como ChatGPT suponen una amenaza directa para el pensamiento crítico, ya que facilitan el plagio y fomentan la superficialidad académica. El temor es comprensible y está muy extendido.

Sin embargo, ¿y si el problema no fuera la herramienta, sino nuestra forma de reaccionar ante ella? El proyecto PROFUNDIA (acrónimo de PROFUNDo y autonomÍA) surge de esta cuestión, pero con un enfoque inesperado. Esta iniciativa de innovación educativa en ingeniería estructural no surgió de una prohibición teórica, sino de un problema práctico y urgente: el uso no regulado de la IA por parte de los estudiantes estaba deteriorando la calidad de su aprendizaje.

En lugar de intensificar la prohibición, este proyecto propone una solución radicalmente diferente. Este artículo explora los cuatro descubrimientos clave de un enfoque que busca transformar la IA de una amenaza en una de las herramientas pedagógicas más potentes.

Los 4 descubrimientos clave del proyecto PROFUNDIA

1. La cruda realidad es que el uso no supervisado de la IA estaba deteriorando el aprendizaje.

El proyecto PROFUNDIA no se basó en una hipótesis abstracta, sino que surgió de una necesidad urgente detectada en las aulas a partir del curso 2023-2024. El profesorado comenzó a observar un patrón preocupante en los trabajos de los estudiantes.

Las estadísticas internas confirmaron la sospecha: las encuestas revelaron que más del 60 % del alumnado ya utilizaba la IA para hacer sus trabajos. Sin embargo, el dato más alarmante era otro: solo el 25 % de ellos revisaba críticamente los resultados que la herramienta generaba.

La consecuencia fue una «notable disminución de la calidad técnica y argumentativa» de los proyectos. El problema era específico y grave: aunque la herramienta ofrecía soluciones funcionales, no podía verificar las hipótesis iniciales ni razonar la adecuación del modelo al contexto técnico. Los estudiantes dependían de la IA de forma acrítica, entregando trabajos con «errores conceptuales importantes» y debilitando su capacidad de razonamiento. Esto demostró que mirar hacia otro lado no era una opción, sino que era necesaria una intervención educativa guiada.

2. El cambio de paradigma: de la prohibición a la integración crítica.

Hasta entonces, la política en las asignaturas implicadas era clara: el uso de la IA «estaba explícitamente prohibido». Sin embargo, la realidad demostró que esta medida era ineficaz y contraproducente.

En lugar de librar una batalla perdida contra una tecnología omnipresente, el proyecto PROFUNDIA optó por un cambio de 180 grados: integrarla de forma «explícita, guiada y crítica». La nueva filosofía consistía en enseñar a los estudiantes a utilizar la herramienta de manera inteligente en lugar de ignorarla.

La esencia de este nuevo paradigma se resume en su declaración de intenciones:

Frente a enfoques que restringen o penalizan el uso de la IA, PROFUNDIA propone su integración crítica y formativa como herramienta cognitiva para potenciar el aprendizaje profundo, la interpretación técnica, la argumentación fundamentada y el desarrollo de la autonomía del estudiante.

3. El método: aprender a pensar «enseñando» a la IA.

La propuesta metodológica supone un cambio estructural en el aprendizaje, ya que se pasa de un proceso lineal (profesor-estudiante) a otro triangular (profesor-estudiante-IA). En primer lugar, los estudiantes resuelven un problema por sus propios medios. Después, piden a la IA que resuelva el mismo problema. La fase clave llega a continuación: deben comparar críticamente su solución con la de la IA.

En este punto radica la innovación más profunda del método. La IA se incorpora «como un agente más en el proceso, con un papel activo y con un sesgo deliberado hacia el error». El papel del estudiante cambia radicalmente: deja de ser un usuario pasivo para convertirse en entrenador activo de la IA. Su tarea ya no consiste en obtener una respuesta, sino en identificar, cuestionar y corregir los errores de la herramienta, lo que les lleva a «enseñar» a la IA a resolver problemas complejos y, en el proceso, a dominar el tema a un nivel mucho más profundo.

El objetivo final de este proceso es la «reflexión metacognitiva». Se pretende que el estudiante «reflexione sobre cómo piensa y aprende» al contrastar su razonamiento con el de la IA, sus compañeros y el profesor.

4. La meta final: la IA como una «mindtool» para crear mejores ingenieros.

Este enfoque no es solo una técnica ingeniosa, sino que se fundamenta en un concepto pedagógico sólido: el de las mindtools o «herramientas para la mente». Esta idea defiende el uso de la tecnología no como un sustituto del esfuerzo intelectual, sino como un andamio para potenciar el pensamiento crítico y la construcción activa del conocimiento, es decir, tratar la tecnología no como una muleta, sino como un gimnasio para la mente.

Este planteamiento conecta directamente con las demandas del mercado laboral actual. Como señalan estudios previos (Pellicer et al., 2017), las empresas no solo buscan egresados con conocimientos técnicos, sino también con habilidades transversales como la resolución de problemas, la autonomía y el juicio crítico.

Por tanto, los resultados de aprendizaje que se persiguen son extremadamente precisos y potentes. El objetivo es formar ingenieros que puedan:

  1. Formular problemas técnicos complejos con la precisión necesaria para que la IAG pueda analizarlos.
  2. Evaluar y validar críticamente las soluciones generadas por la IAG, justificando sus decisiones.
  3. Gestionar de forma autónoma el uso de la IAG dentro de estrategias complejas de resolución de problemas.

En definitiva, se les prepara para un entorno profesional «complejo, colaborativo y en constante evolución».

Conclusión: ¿Y si dejamos de temer a la tecnología y empezamos a usarla para pensar mejor?

El proyecto PROFUNDIA demuestra que es posible cambiar la perspectiva sobre la IA en la educación. Transforma lo que muchos consideran una amenaza para el aprendizaje en una oportunidad única para fomentar un pensamiento más profundo, crítico y autónomo.

Su reflexión trasciende las aulas de ingeniería. ¿Qué otras tecnologías emergentes podríamos empezar a integrar en nuestras profesiones, no como un atajo, sino como un catalizador para desarrollar un pensamiento más crítico y sofisticado?

Os dejo un audio en el que dos personas hablan y discuten sobre este tema.

También os dejo un vídeo que resume muy bien el contenido del proyecto.

Referencias:

Blight, T., Martínez-Pagán, P., Roschier, L., Boulet, D., Yepes-Bellver, L., & Yepes, V. (2025). Innovative approach of nomography application into an engineering educational context. PloS one, 20(2), e0315426.

Castro-Aristizabal, G., Acosta-Ortega, F., & Moreno-Charris, A. V. (2024). Los entornos de aprendizaje y el éxito escolar en Latinoamérica. Lecturas de Economía, (101), 7-46.

Hadgraft, R. G., & Kolmos, A. (2020). Emerging learning environments in engineering education. Australasian Journal of Engineering Education, 25(1), 3-16.

Jiang, N., Zhou, W., Hasanzadeh, S., & Duffy Ph D, V. G. (2025). Application of Generative AI in Civil Engineering Education: A Systematic Review of Current Research and Future Directions. In CIB Conferences (Vol. 1, No. 1, p. 306).

Jonassen, D. H., Peck, K. L., & Wilson, B. G. (1999). Learning with technology: A constructivist perspective. Columbus, OH: Merrill/Prentice-Hall.

Liao, W., Lu, X., Fei, Y., Gu, Y., & Huang, Y. (2024). Generative AI design for building structures. Automation in Construction157, 105187.

Navarro, I. J., Marti, J. V., & Yepes, V. (2023). Evaluation of Higher Education Students’ Critical Thinking Skills on Sustainability. International Journal of Engineering Education, 39(3), 592-603.

Onatayo, D., Onososen, A., Oyediran, A. O., Oyediran, H., Arowoiya, V., & Onatayo, E. (2024). Generative AI applications in architecture, engineering, and construction: Trends, implications for practice, education & imperatives for upskilling—a review. Architecture4(4), 877-902.

Pellicer, E., Yepes, V., Ortega, A. J., & Carrión, A. (2017). Market demands on construction management: View from graduate students. Journal of Professional Issues in Engineering Education and Practice143(4), 04017005.

Perkins, D., & Unger, C. (1999). La enseñanza para la comprensión. Argentina: Paidós.

Torres-Machí, C., Carrión, A., Yepes, V., & Pellicer, E. (2013). Employability of graduate students in construction management. Journal of Professional Issues in Engineering Education and Practice139(2), 163-170.

Xu, G., & Guo, T. (2025). Advances in AI-powered civil engineering throughout the entire lifecycle. Advances in Structural Engineering, 13694332241307721.

Zhou, Z., Tian, Q., Alcalá, J., & Yepes, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 100268.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entornos de aprendizaje emergentes en la educación en ingeniería

La formación en ingeniería está experimentando una transformación profunda, impulsada por desafíos globales como el cambio climático, la revolución digital y la creciente brecha entre la enseñanza académica y las exigencias del mercado laboral. A continuación, analizamos el trabajo de Hadgraft y Kolmos (2020), donde se explora cómo la educación en ingeniería está evolucionando para hacer frente a estos retos mediante cuatro tendencias clave: el aprendizaje centrado en el estudiante, el aprendizaje contextual, la digitalización de la enseñanza y el desarrollo de competencias profesionales. A partir de estas líneas de cambio, se propone que la educación futura debe pasar de un enfoque en disciplinas individuales a currículos integrados que aborden problemas complejos y promuevan trayectorias de aprendizaje personalizadas. En última instancia, se hace hincapié en la necesidad de un cambio sistémico en el diseño curricular para preparar a los ingenieros para un futuro laboral en constante cambio.

La educación en ingeniería se enfrenta a tres desafíos fundamentales: la sostenibilidad y el cambio climático, la Cuarta Revolución Industrial (Industria 4.0) y la empleabilidad de los graduados. Estos desafíos exigen que los ingenieros del futuro posean habilidades transdisciplinares, pensamiento sistémico y contextual, y la capacidad de actuar en situaciones complejas y caóticas. Para responder a estas necesidades, la educación en ingeniería ha evolucionado hacia un enfoque centrado en el estudiante, la integración de la teoría y la práctica, el aprendizaje digital y en línea, y el desarrollo de competencias profesionales. A largo plazo, se tenderá a modelos curriculares más personalizados y centrados en proyectos que permitan a los estudiantes construir sus propias trayectorias de aprendizaje y documentar sus competencias para el aprendizaje a lo largo de la vida.

1. Desafíos clave para la educación en ingeniería

Se identifican tres desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería:

  • Sostenibilidad y cambio climático: la ingeniería es fundamental para abordar los 17 Objetivos de Desarrollo Sostenible (ODS) de la ONU, especialmente en lo que respecta a la pobreza, el hambre, la salud, el agua, la energía, el crecimiento económico y la acción climática. La educación en ingeniería debe preparar a los graduados para responder a estos desafíos humanitarios, sociales y económicos.
  • Cuarta Revolución Industrial (Industria 4.0): Esta revolución implica la integración generalizada de tecnologías como la automatización, el internet de las cosas (IoT), la inteligencia artificial (IA), la robótica y la fabricación aditiva. Tradicionalmente, la ingeniería no se ha enseñado de manera integradora, pero el éxito de la Industria 4.0 depende de la interacción y la integración de estas tecnologías. Esto requiere una mayor colaboración interdisciplinaria entre diferentes programas y disciplinas universitarias, como informática, análisis de datos, robótica, automatización, producción, gestión, electrónica y materiales. La segunda revolución industrial, que está en la agenda política e industrial, implica la integración generalizada de tecnologías como la automatización, el IoT, la IA, la robótica, los materiales avanzados, la fabricación aditiva, la impresión multidimensional, las bio-, nano- y neurotecnologías, y las realidades virtuales y aumentadas.
  • Empleabilidad y competencias de innovación: a pesar de la creciente importancia de habilidades como el emprendimiento y el pensamiento de diseño, aún existe una brecha entre la formación en ingeniería y la preparación para el mundo laboral. La integración de la teoría y la práctica mediante pasantías, proyectos en colaboración con el sector y laboratorios de aprendizaje son soluciones parciales. El aprendizaje basado en problemas o proyectos (PBL) se presenta como un mecanismo para abordar este desafío. La brecha entre la educación en ingeniería y la preparación para el trabajo sigue existiendo, por lo que se deben integrar la teoría y la práctica mediante un enfoque centrado en la empleabilidad y la colaboración con la industria mediante pasantías, proyectos de asociación y laboratorios de aprendizaje.
Desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería

Estos tres desafíos exigen, en conjunto, un mayor énfasis en la responsabilidad social, la integración del contexto social y la interdisciplinariedad, combinados con habilidades digitales y genéricas.

2. Respuestas actuales y tendencias emergentes

La educación en ingeniería ha respondido a estos desafíos con cuatro tendencias principales que se materializarán a corto plazo:

  1. Aprendizaje centrado en el estudiante: Un cambio significativo de la enseñanza tradicional (el profesor da la clase, los estudiantes escuchan) a un currículo más interactivo donde los estudiantes influyen en la dirección de su propio aprendizaje. Esto incluye metodologías como el aprendizaje activo, el aprendizaje colaborativo, el aprendizaje basado en equipos, el aprendizaje basado en el diseño, el aprendizaje basado en la investigación y, en particular, el aprendizaje basado en problemas y proyectos (PBL). El PBL ha demostrado su eficacia para aumentar la motivación, reducir las tasas de abandono y desarrollar competencias, y constituye una respuesta clave a la necesidad de un aprendizaje más complejo. El aprendizaje centrado en el estudiante es un área bien investigada. Los estudios sobre aprendizaje activo, aprendizaje basado en la investigación, aprendizaje basado en el diseño y aprendizaje basado en desafíos muestran efectos positivos en los resultados del aprendizaje. La motivación aumenta cuando los estudiantes inician proyectos, en los que identifican problemas y tienen un alto grado de influencia en la dirección del proyecto.
  2. Aprendizaje contextual y basado en la práctica: Incorporación de elementos curriculares relacionados con situaciones laborales futuras, como pasantías, proyectos de la industria, emprendimiento y centros de innovación. Los proyectos iniciados externamente (por empresas o la comunidad) son particularmente valiosos porque son auténticos y exponen a los estudiantes a la complejidad del mundo real. Junto con la tendencia del aprendizaje centrado en el estudiante, existe una tendencia de aprendizaje contextual y relacionado con la práctica, en la que los estudiantes cuentan con elementos del currículo relacionados con situaciones laborales posteriores, como pasantías, proyectos de la industria, emprendimiento y centros de innovación.
  3. Aprendizaje digital y en línea: Evolución del aprendizaje a distancia a estrategias de aprendizaje combinado (blended learning) que utilizan nuevas tecnologías como la realidad aumentada y la visualización 3D. El modelo del «aula invertida» (flipped classroom) es un ejemplo destacado, en el que los estudiantes se preparan con contenido en línea antes de clase y utilizan el tiempo en el aula para actividades interactivas y resolución de problemas. Este enfoque es una respuesta a la ineficacia de las clases magistrales tradicionales para los niveles superiores de la taxonomía de Bloom y los aspectos complejos del marco Cynefin. En la actualidad, el aprendizaje digital se centra en las estrategias de aprendizaje combinado. La digitalización es más que ofrecer plataformas y entornos de aprendizaje en línea como Blackboard o Moodle; consiste en usar nuevas tecnologías para el aprendizaje, como la realidad aumentada, la visualización 3D, etc. El modelo de «aula invertida», como enfoque centrado en el estudiante, es una respuesta a la metodología de enseñanza y aprendizaje más extendida en la educación en ingeniería, que consiste en un aprendizaje instructivo basado en libros de texto organizado como conferencias, tutoriales y laboratorios, combinado con la resolución de pequeños ejercicios.
  4. Competencias profesionales: Reconocimiento de la creciente importancia de desarrollar competencias profesionales integradas para la empleabilidad en el siglo XXI. Esto incluye el «aprendizaje meta» para que los estudiantes identifiquen y desarrollen sus propias competencias de manera personalizada, a menudo a través de portafolios que les permitan articular su aprendizaje y trayectoria profesional. Se enfatiza la responsabilidad individual en la construcción de la trayectoria de aprendizaje, combinada con la participación en actividades colaborativas. Otro aspecto emergente en la educación en ingeniería es la creciente importancia del aprendizaje integrado de competencias profesionales. Los portafolios desempeñarán un papel fundamental en este proceso, ya que ayudarán a los estudiantes a presentar su aprendizaje a sí mismos, a sus mentores académicos y a futuros empleadores en una entrevista de trabajo.
Respuestas actuales y tendencias en la educación en ingeniería

3. La complejidad y los sistemas en la educación en ingeniería

Los desafíos del futuro requieren que los ingenieros operen en situaciones de complejidad creciente. El marco Cynefin se utiliza para clasificar las situaciones en simples, complicadas, complejas y caóticas, y prescribe diferentes enfoques para cada una:

  • Simple: Comportamiento bien entendido, «mejores prácticas» definidas. Se aplica el método «sentir, categorizar y responder» (ej. fundamentos de ingeniería, problemas de examen tipo fórmula).
  • Complicado: Requiere comportamiento experto, múltiples respuestas correctas. Se aplica «sentir, analizar y responder» (ej. diseño de puentes o teléfonos móviles; proyectos de diseño de estudiantes). La ingeniería de sistemas proporciona un marco estructurado.
  • Complejo: No hay una solución clara o única; surgen soluciones. Se aplica «probar, sentir y responder». Estos son los «problemas complejos» (wicked problems), caracterizados por no tener una formulación definitiva, no tener una mejor solución única, no tener un punto final claro, y donde cada intento de solución impacta el sistema. El diseño de sistemas de transporte para grandes ciudades es un ejemplo.
  • Caótico: Resultado de desastres, requiere acción inmediata para estabilizar antes de aplicar otros enfoques. No suelen ser el foco directo de un grado de ingeniería, excepto en la ética de la ingeniería, aprendiendo de desastres pasados.

Los currículos de ingeniería deben incluir formación para afrontar situaciones simples, complicadas y, crucialmente, complejas. Se necesitan currículos de ingeniería que incluyan la complejidad y lo complicado. Además, para educar a los estudiantes del futuro, deben tener la posibilidad de aprender tanto disciplinas específicas como la transdisciplinariedad, así como conocimientos y habilidades técnicos simples y complicados, y la complejidad que implica la comprensión del contexto, los sistemas, la sostenibilidad y los valores.

4. Modelos curriculares futuros e integrados

La evolución de las respuestas educativas muestra una transición de lo «dirigido por el profesor» a lo «dirigido por el estudiante» y de «módulos únicos» a «modelos de currículo completo».

  • Cambio a nivel de sistema: Existe una tendencia emergente a diseñar currículos a nivel de sistema, coordinando todos los elementos curriculares en lugar de simplemente agregar o modificar cursos individuales. Este enfoque sistémico es crucial para el aprendizaje de la complejidad. Pero, en términos generales, definitivamente ha habido un cambio de un entorno de aprendizaje dirigido por el profesor a otro mucho más dirigido por el estudiante. Además, está surgiendo la tendencia a desarrollar currículos a nivel de sistema, lo que implica coordinar todos los elementos del currículo.
  • Proyectos como núcleo: Los proyectos constituyen un elemento central en los modelos curriculares emergentes, especialmente aquellos iniciados por entidades externas (industria, comunidad). Estos proyectos permiten el desarrollo de habilidades técnicas, sociales y ambientales (comunicación, trabajo en equipo, ética, sostenibilidad) y de diseño y resolución de problemas (pensamiento de diseño, ingeniería de sistemas). También facilitan la consideración de perspectivas multidisciplinares y la comprensión de problemas en contexto, con múltiples puntos de vista y sistemas de valores.
  • Ejemplos de modelos emergentes:
    • University College London (UCL) – Integrated Engineering Program (IEP): Dedica una semana de cada cinco a un proyecto integrado. Esto permite a los estudiantes ver las conexiones entre diferentes módulos y disciplinas.
    • Charles Sturt University (CSU): Programa radicalmente diferente con tres semestres orientados a proyectos, donde los estudiantes aprenden «justo a tiempo» a través de módulos en línea y pasan la mitad de su tiempo en proyectos. Luego realizan cuatro pasantías de un año.
    • Swinburne University: Enfoque similar al de CSU, con proyectos de seis semanas patrocinados por la industria realizados en la universidad, operando como una empresa de ingeniería.
    • Iron Range Engineering: Los estudiantes trabajan en proyectos de empresa y reflexionan continuamente sobre su aprendizaje.

Estos ejemplos muestran cómo las instituciones combinan el aprendizaje basado en proyectos, el aprendizaje digital/en línea y el uso de portafolios para apoyar las trayectorias de aprendizaje personalizadas.

5. Perspectivas y conclusiones

La educación en ingeniería se dirige hacia un futuro en el que la combinación de trayectorias de aprendizaje personales, competencias profesionales y capacidad de abordar la complejidad será la tendencia dominante. Esto implica lo siguiente:

  • Currículos sistémicos: Es necesario un enfoque más sistémico y holístico en el diseño curricular, en lugar de modificaciones aisladas a nivel de curso. Los modelos tradicionales centrados en cursos individuales a menudo dejan la tarea de integrar el conocimiento al estudiante.
  • Aprendizaje para la complejidad: La educación debe preparar a los estudiantes para manejar problemas complejos, que requieren integrar conocimientos disciplinarios e interdisciplinarios, teoría y práctica, comprensión contextual y abstracta, y construcción de conocimiento individual y colaborativa.
  • Habilidades del Siglo XXI: La automatización de cálculos técnicos significa que los ingenieros futuros necesitarán comprender los requisitos sociales, ambientales y económicos de la tecnología y su aplicación.
  • Aprendizaje a lo largo de la vida: Los ingenieros serán cada vez más responsables de sus propias rutas de aprendizaje personales y necesitarán saber cómo construir su crecimiento individual dentro de comunidades de aprendizaje colaborativas. El acceso al conocimiento en línea (MOOCs) aumentará, pero la clave será cómo los estudiantes desarrollan competencias para el aprendizaje a lo largo de la vida, incluida la reflexión crítica y el pensamiento sistémico, normativo y anticipatorio.

En resumen, la educación en ingeniería debe evolucionar de un enfoque basado en la transmisión de conocimientos técnicos simples a otro que fomente la capacidad de los estudiantes para navegar y resolver problemas complejos, multidisciplinares y contextualizados, preparándolos para ser aprendices activos de por vida en un mundo en constante cambio.

Referencia:

Hadgraft, R.G.; Kolmos, A. (2020). «Emerging learning environments in engineering education«, Australasian Journal of Engineering Education, 25:1, 3-16, DOI: 10.1080/22054952.2020.1713522

Glosario de términos clave

  • Aprendizaje centrado en el estudiante: Un enfoque pedagógico en el que el estudiante se convierte en el centro del proceso de aprendizaje, con métodos como el aprendizaje activo, colaborativo, basado en problemas y proyectos, donde los estudiantes tienen una influencia significativa en la dirección de su aprendizaje.
  • Aprendizaje contextual y basado en la práctica: Un enfoque de aprendizaje que integra situaciones del mundo real y experiencias prácticas en el currículo, incluyendo pasantías, proyectos industriales y hubs de innovación, para conectar la teoría con la futura situación laboral.
  • Aula invertida (Flipped Classroom): Una metodología de aprendizaje semipresencial donde la instrucción directa se mueve de la clase a un espacio individual (generalmente en línea), y el tiempo en clase se transforma en un entorno de aprendizaje dinámico e interactivo donde el educador guía a los estudiantes a aplicar conceptos.
  • CDIO (Concebir, Diseñar, Implementar, Operar): Un marco curricular para la educación en ingeniería que enfatiza el desarrollo de habilidades profesionales y un enfoque holístico e integrado del currículo, desde la concepción de una idea hasta su operación.
  • Competencias profesionales: Conjunto de conocimientos, habilidades y aptitudes (tanto técnicas como genéricas, como la comunicación, el trabajo en equipo y la ética) que se espera que los ingenieros adquieran para desempeñarse eficazmente en el lugar de trabajo.
  • Complejidad (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto solo puede discernirse en retrospectiva, y las soluciones emergen del sondeo y la experimentación. Se caracteriza por problemas «perversos» sin soluciones únicas o definitivas.
  • Complicado (en el marco Cynefin): Un dominio de situaciones que requieren experiencia y análisis para encontrar múltiples respuestas correctas, pero donde la relación causa-efecto es clara, aunque puede no ser obvia para todos. La resolución de problemas implica «sentir, analizar y responder».
  • Cuarta Revolución Industrial (Industria 4.0): Un término que describe la tendencia actual de automatización e intercambio de datos en las tecnologías de fabricación, incluyendo sistemas ciberfísicos, el Internet de las Cosas (IoT), la computación en la nube y la inteligencia artificial (IA).
  • Currículo sistémico/integral: Un enfoque de diseño curricular que coordina todos los elementos de un programa educativo a nivel de sistema, en lugar de centrarse solo en módulos o asignaturas individuales, buscando una progresión y coherencia holísticas en los resultados del aprendizaje.
  • Cynefin Framework: Un modelo conceptual creado por Dave Snowden que ayuda a la toma de decisiones al categorizar los problemas en diferentes dominios (simple, complicado, complejo, caótico y desorden) basados en la naturaleza de su relación causa-efecto.
  • Diseño centrado en el usuario (User Experience – UX): Se refiere a la experiencia general que tiene un usuario al interactuar con un producto o sistema. En ingeniería, implica diseñar soluciones que realmente satisfagan los requisitos del cliente, el usuario y la comunidad.
  • Diseño de sistemas (Systems Design): Un enfoque estructurado para el diseño de sistemas complejos que considera las interacciones entre los componentes y el entorno, y busca satisfacer un conjunto de requisitos funcionales y no funcionales.
  • Pensamiento de diseño (Design Thinking): Una metodología de resolución de problemas centrada en el ser humano que implica fases como empatizar, definir, idear, prototipar y probar, común en muchas disciplinas de diseño, incluida la ingeniería.
  • Emergencia: En el contexto de los entornos de aprendizaje, se refiere a cómo las estructuras, patrones y comportamientos de aprendizaje se vuelven visibles a través de las interacciones entre elementos más pequeños, como estudiantes y recursos, indicando posibles direcciones futuras en la educación.
  • Habilidades blandas/genéricas: Habilidades no técnicas pero igualmente importantes, como la comunicación, el trabajo en equipo, la ética, el pensamiento crítico y la resolución de problemas, que son aplicables en una amplia gama de contextos profesionales.
  • Internet de las Cosas (IoT): Una red de objetos físicos equipados con sensores, software y otras tecnologías que les permiten conectarse e intercambiar datos con otros dispositivos y sistemas a través de Internet.
  • PBL (Aprendizaje Basado en Problemas y Proyectos): Un enfoque pedagógico centrado en el estudiante donde los alumnos aprenden sobre un tema trabajando en un problema abierto o un proyecto complejo, desarrollando habilidades de resolución de problemas, trabajo en equipo e investigación.
  • Portafolio: Una colección de trabajos de los estudiantes que demuestra su aprendizaje, habilidades y crecimiento a lo largo del tiempo. En ingeniería, se utiliza para articular las trayectorias de aprendizaje individuales y las competencias profesionales a mentores y futuros empleadores.
  • Simple (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto es obvia para todos, y las «mejores prácticas» pueden aplicarse. La resolución de problemas implica «sentir, categorizar y responder», como la aplicación de fórmulas fundamentales de ingeniería.
  • Sostenibilidad (ODS): La capacidad de satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades. Los ODS (Objetivos de Desarrollo Sostenible) son una colección de 17 objetivos globales interconectados establecidos por las Naciones Unidas.
  • Sistemas (Pensamiento sistémico): La capacidad de comprender cómo los componentes de un sistema interactúan entre sí y con el entorno para producir un comportamiento determinado, en lugar de analizar los componentes de forma aislada.
  • Trayectorias de aprendizaje personalizadas: Rutas de aprendizaje adaptadas a las necesidades, intereses y aspiraciones profesionales individuales de los estudiantes, permitiéndoles configurar y documentar su propio desarrollo de competencias como parte de una estrategia de aprendizaje a lo largo de toda la vida.

Comunicaciones presentadas al XI Congreso de Innovación Educativa y Docencia en Red INRED 2025

Me complace informar a mis lectores que el XI Congreso de Innovación Educativa y Docencia en Red (INRED) 2025 se celebrará los días 17 y 18 de julio en Valencia. En un contexto en el que las instituciones educativas están experimentando una transformación vertiginosa, la innovación educativa se presenta como una herramienta esencial para renovar los procesos de enseñanza y aprendizaje y adaptarse a los nuevos retos. La Ley Orgánica de Sistema Universitario (LOSU) plantea que la innovación docente es un medio para mejorar la calidad de la educación superior y para fortalecer la capacidad de adaptación a nuevos escenarios formativos. Además, la considera una estrategia esencial para el desarrollo profesional del profesorado.

Desde hace tiempo, las universidades fomentan la participación del profesorado en proyectos de innovación y se ha avanzado notablemente en la forma de diseñar y desarrollar estos proyectos. No obstante, hoy más que nunca es crucial impulsar propuestas de innovación más rigurosas y orientadas a dar respuesta a los grandes retos educativos a los que nos enfrentamos.

Este enfoque nos remite al concepto de scholarship o enfoque académico de la docencia, una perspectiva que se ha consolidado en la educación superior y que propone valorar la enseñanza al mismo nivel que la investigación disciplinar.

Detrás de esta idea se encuentra una forma de innovar basada en tres pilares fundamentales:

  • El análisis sistemático de la enseñanza y sus efectos en el aprendizaje del estudiantado.
  • La comunicación de los conocimientos sobre enseñanza y aprendizaje generados en entornos académicos, como congresos y revistas científicas.
  • La revisión crítica por parte de iguales en comunidades académicas, con el fin de validar o refutar el conocimiento producido.

En esta nueva edición del Congreso INRED 2025, reflexionaremos sobre cómo avanzar desde una innovación basada en la experiencia y con un nivel incipiente de fundamentación empírica hacia una innovación con un enfoque académico. Un enfoque que no solo se apoye en la experimentación y el análisis sistemático de la docencia, sino que también genere evidencia comunicable y susceptible de ser sometida a revisión crítica por parte de la comunidad académica. Además, exploraremos los nuevos desafíos que plantea este modelo desde las perspectivas técnica y ética.

En este congreso, tengo el placer de anunciar que tenemos aceptadas dos comunicaciones:

YEPES, V. (2025). Pensamiento lateral para mejorar la resolución de problemas complejos en estudios de máster. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 – 18 de julio de 2025.

Esta comunicación presenta una metodología innovadora que integra el pensamiento lateral mediante la técnica de los «Seis sombreros para pensar» de Edward de Bono en la enseñanza de la resolución de problemas complejos en ingeniería. El objetivo principal es evaluar la efectividad de esta técnica para desarrollar habilidades críticas y creativas en los estudiantes. La metodología se implementó en un curso de ingeniería, donde los estudiantes trabajaron en grupos para abordar un problema específico utilizando los enfoques que cada sombrero representa. Se realizaron encuestas antes y después de la actividad para medir la mejora en la capacidad de resolución de problemas y colaboración entre los estudiantes. Los resultados indican que la aplicación del pensamiento lateral mejora significativamente la capacidad de los estudiantes para resolver problemas complejos y fomenta un ambiente de aprendizaje colaborativo. Los estudiantes afirmaron haber aumentado su creatividad y disposición para compartir ideas. Esta metodología es exportable a otras titulaciones y niveles educativos, convirtiéndose en una herramienta valiosa para la innovación docente en diversas disciplinas.

YEPES, V.; YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P. (2025). Impacto de la diversidad cultural en la resolución colaborativa de problemas en la docencia universitaria de ingeniería. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 – 18 de julio de 2025.

La globalización y la movilidad académica han transformado las aulas universitarias en entornos multiculturales, donde la diversidad cultural es fundamental para el desarrollo de competencias profesionales. Este trabajo investiga la influencia de la diversidad cultural en la resolución colaborativa de problemas (RCP) en programas en ingeniería. Para ello, se desarrollaron actividades en grupos heterogéneos que promovieron la participación y el desarrollo de habilidades interpersonales mediante una metodología activa y colaborativa. Se aplicó una encuesta a 79 estudiantes para evaluar su percepción sobre la influencia de la diversidad cultural en su aprendizaje y en la dinámica de trabajo en equipo. Los resultados indican que la diversidad cultural no solo enriquece las interacciones y fomenta la creatividad, sino que también mejora la toma de decisiones y la resolución de problemas. Este estudio aporta pruebas empíricas que respaldan la necesidad de gestionar pedagógicamente la diversidad como un recurso estratégico en la educación. Se concluye que una enseñanza inclusiva y consciente de la diversidad potencia la sinergia entre conocimientos técnicos y competencias interculturales, mejorando la calidad educativa en ingeniería.

 

 

 

Implicaciones éticas de chatbots generativos en la educación superior

En la actualidad, la inteligencia artificial (IA) está cada vez más presente en nuestra vida diaria, transformando industrias y planteando nuevas preguntas sobre la sociedad, la economía y, por supuesto, la educación. Entre las herramientas de IA emergentes, los «chatbots» generativos como ChatGPT han llamado especialmente la atención, ya que prometen revolucionar la enseñanza y el aprendizaje. Estas potentes plataformas pueden simular conversaciones humanas, ofrecer explicaciones e incluso generar textos complejos como poemas o ensayos. Sin embargo, a medida que educadores y legisladores consideran la implementación de estas tecnologías innovadoras en el ámbito educativo, es crucial reflexionar sobre las implicaciones éticas que conllevan. Aunque los beneficios potenciales son innegables, desde una mayor accesibilidad hasta experiencias de aprendizaje personalizadas, también existen desafíos significativos.

En este artículo, exploramos las consideraciones éticas clave relacionadas con el uso de chatbots generativos en la educación superior. La información que se presenta a continuación se basa en el artículo «The ethical implications of using generative chatbots in higher education» de Ryan Thomas Williams, publicado en Frontiers in Education.

A continuación, se examinan las implicaciones éticas de integrar chatbots generativos, como ChatGPT, en la educación superior. Se abordan preocupaciones clave como la privacidad de los datos de los estudiantes y los desafíos para cumplir con las regulaciones de protección de datos cuando la información es procesada y almacenada por la IA. El artículo también explora el sesgo algorítmico y señala cómo los prejuicios inherentes a los datos de entrenamiento pueden perpetuar estereotipos, además de abordar el impacto en la autoeficacia de los estudiantes al depender excesivamente de la IA, lo que podría disminuir el pensamiento crítico. Por último, se aborda el creciente problema del plagio y las «alucinaciones» de la IA, donde los chatbots generan información incorrecta, y se sugiere la necesidad de políticas claras, detección avanzada y métodos de evaluación innovadores.

1. ¿Cuáles son las principales implicaciones éticas de integrar los chatbots generativos en la educación superior?

La integración de chatbots generativos en la educación superior, como ChatGPT, aborda varias cuestiones éticas fundamentales. En primer lugar, la gestión de los datos sensibles de los estudiantes plantea importantes desafíos de privacidad, por lo que es necesario cumplir estrictamente con las normativas de protección de datos, como el RGPD, lo cual puede ser complejo debido a la naturaleza de los algoritmos de aprendizaje automático que aprenden de los datos y complican su «verdadera» eliminación. En segundo lugar, existe un riesgo significativo de sesgo algorítmico, ya que los chatbots aprenden de vastas fuentes de datos de internet que pueden perpetuar sesgos sociales (por ejemplo, de género o raciales), lo que podría afectar negativamente a la experiencia de aprendizaje del estudiante y a su visión del mundo. En tercer lugar, si bien los chatbots pueden fomentar la autonomía en el aprendizaje al ofrecer acceso bajo demanda a recursos y explicaciones personalizadas, existe la preocupación de que una dependencia excesiva pueda reducir la autoeficacia académica de los estudiantes, desincentivando el pensamiento crítico y la participación en actividades de aprendizaje más profundas. Finalmente, el plagio emerge como una preocupación primordial, ya que la capacidad de los chatbots para generar contenido sofisticado podría alentar a los estudiantes a presentar el trabajo generado por la IA como propio, lo que comprometería la integridad académica.

2. ¿Cómo afectan los chatbots generativos a la privacidad de los datos de los estudiantes en entornos educativos?

La implementación de chatbots en entornos educativos implica la recopilación, el análisis y el almacenamiento de grandes volúmenes de datos de los estudiantes, que pueden incluir desde su rendimiento académico hasta información personal sensible. Esta «gran cantidad de datos» permite experiencias de aprendizaje personalizadas y la identificación temprana de estudiantes en situación de riesgo. Sin embargo, esto genera importantes preocupaciones relacionadas con la privacidad. Existe el riesgo de uso indebido o acceso no autorizado a estos datos. Además, las regulaciones actuales de privacidad de datos, como el RGPD, permiten a los individuos solicitar la eliminación de sus datos, pero la naturaleza del aprendizaje automático significa que los algoritmos subyacentes ya han aprendido de los datos de entrada, por lo que es difícil aplicar un verdadero «derecho al olvido» o «eliminación». También hay una falta de transparencia algorítmica por parte de las empresas sobre la implementación de los algoritmos de los chatbots y sus bases de conocimiento, lo que dificulta el cumplimiento total de la ley de protección de datos, que exige que las personas estén informadas sobre el procesamiento de sus datos. Para mitigar estas preocupaciones, las instituciones educativas deben establecer directrices claras para la recopilación, almacenamiento y uso de datos, alineándose estrictamente con la normativa de protección de datos y garantizando la transparencia con todas las partes interesadas.

3. ¿Qué es el sesgo algorítmico en los chatbots educativos y cómo se puede abordar?

El sesgo algorítmico ocurre cuando los sistemas de IA, incluidos los chatbots, asimilan y reproducen los sesgos sociales presentes en los grandes conjuntos de datos con los que son entrenados. Esto puede manifestarse en forma de sesgos de género, raciales o de otro tipo que, si se reflejan en el contenido generado por la IA (como casos de estudio o escenarios), pueden perpetuar estereotipos y afectar a la experiencia de aprendizaje de los estudiantes. Para abordar esta situación, es fundamental que los conjuntos de datos utilizados para entrenar los sistemas de IA sean diversos y representativos, evitando fuentes de datos únicas o limitadas que no representen adecuadamente a grupos minoritarios. Se proponen asociaciones entre institutos educativos para compartir datos y garantizar su representatividad. Además, se deben realizar auditorías regulares de las respuestas del sistema de IA para identificar y corregir los sesgos. Es fundamental que se sea transparente sobre la existencia de estos sesgos y que se eduque a los estudiantes para que evalúen críticamente el contenido generado por la IA en lugar de aceptarlo como una verdad objetiva. El objetivo no es que la IA sea inherentemente sesgada, sino que los datos generados por humanos que la entrenan pueden contener sesgos, por lo que se requiere un enfoque deliberado y crítico para el desarrollo e implementación de la IA en la educación.

4. ¿Cómo impacta la dependencia de los estudiantes de los chatbots en su autoeficacia académica y su pensamiento crítico?

Si bien los chatbots pueden ofrecer una autonomía significativa en el aprendizaje al proporcionar acceso inmediato a recursos y respuestas personalizadas, existe la preocupación de que una dependencia excesiva pueda reducir la autoeficacia académica de los estudiantes. Esta dependencia puede llevar a los estudiantes a no comprometerse con el aprendizaje auténtico, lo que les disuade de participar en seminarios, lecturas recomendadas o discusiones colaborativas. A diferencia de las tecnologías informáticas tradicionales, la IA intenta reproducir habilidades cognitivas, lo que plantea nuevas implicaciones para la autoeficacia de los estudiantes con la IA. Además, la naturaleza en tiempo real de las interacciones con el chatbot puede fomentar respuestas rápidas y reactivas en lugar de una consideración reflexiva y profunda, lo que limita el desarrollo del pensamiento crítico. Las tecnologías de chatbot suelen promover formas de comunicación breves y condensadas, lo que puede restringir la profundidad de la discusión y las habilidades de pensamiento crítico que se cultivan mejor a través de una instrucción más guiada e interactiva, como las discusiones entre compañeros y los proyectos colaborativos. Por lo tanto, es crucial equilibrar la autonomía que ofrecen los chatbots con la orientación y supervisión de educadores humanos para fomentar un aprendizaje holístico.

5. ¿Cuál es la preocupación principal con respecto al plagio en la era de los chatbots generativos y qué soluciones se proponen?

El plagio se ha convertido en una preocupación ética crítica debido a la integración de herramientas de IA como ChatGPT en la educación. La capacidad de los chatbots para generar respuestas textuales sofisticadas, resolver problemas complejos y redactar ensayos completos crea un entorno propicio para la deshonestidad académica, ya que los estudiantes pueden presentar la producción de la IA como propia. Esto es especialmente problemático en sistemas educativos que priorizan los resultados (calificaciones, cualificaciones) sobre el proceso de aprendizaje. Los estudiantes pueden incurrir incluso en plagio no intencional si utilizan chatbots para tareas administrativas o para mejorar su escritura en inglés sin comprender completamente las implicaciones. Para abordar esta situación, es necesario un enfoque integral que incluya educar a los estudiantes sobre la importancia de la honestidad académica y las consecuencias del plagio. También se propone desplegar software avanzado de detección de plagio capaz de identificar texto generado por IA, aunque se reconoce que estas metodologías deben evolucionar continuamente para mantenerse al día con los avances de la IA. Más allá de la detección, es esencial reevaluar las estrategias de evaluación y diseñar tareas que evalúen la comprensión de los estudiantes y fomenten el pensamiento original, la creatividad y las habilidades que actualmente están más allá del alcance de la IA, como las presentaciones orales y los proyectos en grupo. También es crucial fomentar la transparencia sobre el uso de la IA en el aprendizaje, algo similar a lo que se hace con los correctores ortográficos.

6. ¿Qué se entiende por «alucinaciones» de la IA en los chatbots educativos y por qué son problemáticas?

Las «alucinaciones» de la IA se refieren a las respuestas generadas por modelos de lenguaje de IA que contienen información falsa o engañosa presentada como si fuera real. Este fenómeno ganó atención generalizada con la llegada de los grandes modelos de lenguaje (LLM), como ChatGPT, donde los usuarios notaron que los chatbots insertaban frecuentemente falsedades aleatorias en sus respuestas. Si bien el término «alucinación» ha sido criticado por su naturaleza antropomórfica, el problema subyacente es la falta de precisión y fidelidad a fuentes de conocimiento externas. Las alucinaciones pueden surgir de discrepancias en grandes conjuntos de datos, errores de entrenamiento o secuencias sesgadas. Para los estudiantes, esto puede llevar al desarrollo de conceptos erróneos, lo que afecta a su comprensión de conceptos clave y a su confianza en la IA como herramienta educativa fiable. Para los educadores, el uso de contenido generado por IA como recurso en el aula plantea un desafío ético significativo, ya que son los responsables de garantizar la precisión de la información presentada. Los estudios han descubierto que un porcentaje considerable de referencias generadas por chatbots son falsas o inexactas. Si bien la IA puede reducir la carga de trabajo de los docentes, la supervisión humana sigue siendo esencial para evitar imprecisiones, lo que puede crear una carga administrativa adicional.

7. ¿Cómo pueden las instituciones educativas equilibrar los beneficios de los chatbots con sus riesgos éticos?

Para conseguirlo, las instituciones educativas deben adoptar un enfoque reflexivo y multifacético. Esto implica establecer límites éticos firmes para proteger los intereses de los estudiantes, los educadores y la comunidad educativa en general. Se recomienda implementar políticas claras y sólidas de recopilación, almacenamiento y uso de datos, alineándose estrictamente con regulaciones de protección de datos como el RGPD, a pesar de los desafíos relacionados con la eliminación de datos y la transparencia algorítmica. Para mitigar el sesgo algorítmico, las instituciones deben garantizar que los conjuntos de datos de entrenamiento sean diversos y representativos, y realizar auditorías regulares. Para evitar una dependencia excesiva y mantener la autoeficacia académica de los estudiantes, los educadores deben fomentar la autonomía en el aprendizaje sin comprometer el pensamiento crítico ni el compromiso auténtico. Con respecto al plagio, es fundamental educar a los estudiantes sobre la integridad académica, utilizar software avanzado de detección de plagio y reevaluar los métodos de evaluación para fomentar el pensamiento original y las habilidades que la IA no puede replicar. Por último, es crucial que se conciencie a la sociedad sobre las «alucinaciones» de la IA, para lo cual los educadores deben verificar la exactitud de la información generada por la IA y reconocer su naturaleza evolutiva, comparándola con los primeros días de Wikipedia. Es una responsabilidad colectiva de todas las partes interesadas garantizar que la IA se utilice de una manera que respete la privacidad, minimice el sesgo, apoye la autonomía equilibrada del aprendizaje y mantenga el papel vital de los maestros humanos.

8. ¿Qué papel juega la transparencia en el uso ético de los chatbots de IA en la educación?

La transparencia es un pilar fundamental para el uso ético de los chatbots de IA en la educación, ya que aborda varias de las preocupaciones éticas clave. En el ámbito de la privacidad de los datos, es esencial que los usuarios estén informados sobre las prácticas de gestión de datos para aliviar sus preocupaciones y generar confianza en los chatbots adoptados. Esto incluye informar a los usuarios sobre cómo se recopilan, almacenan y utilizan sus datos. Con respecto al sesgo algorítmico, la transparencia significa reconocer que los chatbots pueden mostrar sesgos ocasionalmente debido a los datos de entrenamiento subyacentes. Se debe alentar a los estudiantes a evaluar críticamente la producción de los chatbots, en lugar de aceptarla como una verdad objetiva, teniendo en cuenta que el sesgo no es inherente a la IA, sino a los datos generados por humanos con los que se entrena. En la prevención del plagio, la transparencia en la educación es vital para el uso responsable de las herramientas de IA; los estudiantes deben ser conscientes de que deben reconocer la ayuda recibida de la IA, de la misma manera en que se acepta la ayuda de herramientas como los correctores ortográficos. Además, para las «alucinaciones» de la IA, es importante que los educadores y los estudiantes sean conscientes de la posibilidad de que los chatbots generen información falsa o engañosa, lo que requiere un escrutinio humano continuo para su verificación. En general, la transparencia fomenta la alfabetización digital y la conciencia crítica, y empodera a los usuarios para navegar por el panorama de la IA de manera más efectiva.

Referencia:

WILLIAMS, R. T. (2024). The ethical implications of using generative chatbots in higher education. In Frontiers in Education (Vol. 8, p. 1331607). Frontiers Media SA.

Glosario de términos clave

  • Inteligencia artificial (IA): La capacidad de un sistema informático para imitar funciones cognitivas humanas como el aprendizaje y la resolución de problemas (Microsoft, 2023). En el contexto del estudio, se refiere a sistemas que pueden realizar tareas que normalmente requieren inteligencia humana.
  • Chatbots generativos: Programas de IA capaces de simular conversaciones humanas y generar respuestas creativas y nuevas, como poemas, historias o ensayos, utilizando Procesamiento del Lenguaje Natural (PLN) y vastos conjuntos de datos.
  • Procesamiento del lenguaje natural (PLN): Un subcampo de la IA que permite a las máquinas entender, responder y generar lenguaje humano. Es fundamental para la funcionalidad de los chatbots avanzados.
  • Aprendizaje automático (ML): Un subconjunto de la IA que permite a los sistemas aprender de los datos sin ser programados explícitamente. Los chatbots modernos utilizan ML para mejorar sus respuestas a lo largo del tiempo.
  • Privacidad de datos: La protección de la información personal de los individuos, asegurando que se recopile, almacene y utilice de forma ética y legal. En el contexto educativo, se refiere a la información sensible de los estudiantes.
  • Reglamento general de protección de datos (GDPR): Una ley de la Unión Europea sobre protección de datos y privacidad en el Área Económica Europea y el Reino Unido. Es relevante para la gestión de datos sensibles de estudiantes.
  • Ley de protección de la privacidad en línea de los niños (COPPA): Una ley de Estados Unidos que impone ciertos requisitos a los operadores de sitios web o servicios en línea dirigidos a niños menores de 13 años.
  • Derecho al olvido: El derecho de un individuo a que su información personal sea eliminada de los registros de una organización, un concepto que se complica con la naturaleza del aprendizaje de los algoritmos de IA.
  • Transparencia algorítmica: La capacidad de entender cómo funcionan los algoritmos de IA y cómo toman decisiones, incluyendo el acceso a los detalles de su implementación y bases de conocimiento.
  • Big Data: Conjuntos de datos tan grandes y complejos que los métodos tradicionales de procesamiento de datos no son adecuados. En los chatbots, se utilizan para personalizar experiencias.
  • Sesgo algorítmico: Ocurre cuando los sistemas de IA asimilan y reproducen sesgos sociales presentes en los datos con los que fueron entrenados, lo que puede llevar a resultados injustos o estereotipados.
  • Autoeficacia académica: La creencia de un estudiante en su capacidad para tener éxito en sus tareas académicas. El estudio explora cómo una dependencia excesiva de la IA podría impactarla negativamente.
  • Autoeficacia en IA: La confianza de un individuo en su capacidad para usar y adaptarse a las tecnologías de inteligencia artificial. Distinto de la autoeficacia informática tradicional debido a las capacidades cognitivas de la IA.
  • Plagio: La práctica de tomar el trabajo o las ideas de otra persona y presentarlas como propias, sin la debida atribución. Se convierte en una preocupación crítica con la capacidad de los chatbots para generar texto.
  • Software de detección de plagio: Herramientas diseñadas para identificar instancias de plagio comparando un texto con una base de datos de otros textos. La evolución de la IA plantea desafíos para su eficacia.
  • Alucinación de IA: Una respuesta generada por un modelo de lenguaje de IA que contiene información falsa, inexacta o engañosa, presentada como si fuera un hecho.
  • Modelos de lenguaje grandes (LLMs): Modelos de IA muy grandes que han sido entrenados con inmensas cantidades de texto para comprender, generar y responder al lenguaje humano de manera sofisticada. ChatGPT es un ejemplo de LLM.
  • Integridad académica: El compromiso con la honestidad, la confianza, la justicia, el respeto y la responsabilidad en el aprendizaje, la enseñanza y la investigación. Es fundamental para el entorno educativo y está amenazada por el plagio asistido por IA.

Os dejo este artículo, pues está en acceso abierto:

Pincha aquí para descargar

¿Cómo formar a los arquitectos del futuro? Un modelo innovador desde la educación técnica

La transformación digital y la industrialización de la construcción están generando una demanda creciente de profesionales altamente cualificados. Tanto la arquitectura, como la ingeniería civil, requieren un cambio profundo en la forma de formar a los futuros profesionales.

En este contexto, un grupo de investigadores de la Hunan University of Science and Engineering (China) y de la Universitat Politècnica de València (España) propone un nuevo modelo formativo que conecta mejor la educación superior con las necesidades reales del sector.

El artículo examina la necesidad de modernizar la educación en arquitectura y sugiere un modelo innovador para formar a los profesionales del futuro. Este modelo busca conectar la educación superior con las demandas reales de la industria de la construcción, caracterizada por la digitalización y la industrialización. La metodología empleada incluye análisis de datos, modelos matemáticos y la integración de la teoría con la práctica profesional. El objetivo principal es preparar arquitectos con competencias sólidas en construcción industrializada y tecnología digital, adaptados a las exigencias del mercado laboral contemporáneo.

Introducción: el desafío de modernizar la educación en arquitectura

El sector de la construcción está experimentando una transformación profunda impulsada por la digitalización, la automatización y la necesidad de soluciones sostenibles. Sin embargo, los sistemas educativos técnicos no siempre han sabido adaptarse a estas exigencias. En todo el mundo, los modelos educativos tradicionales en arquitectura muestran una desconexión creciente con la realidad del mercado laboral, especialmente en áreas como la prefabricación, el diseño colaborativo con BIM o el uso de tecnologías inteligentes.

El artículo revisado se enmarca en este contexto, tomando como referencia el caso chino, pero con ideas extrapolables a otras regiones. El objetivo principal es diseñar un sistema de formación profesional que responda de forma más efectiva a los retos de la construcción industrializada, incorporando criterios técnicos, sociales y pedagógicos.

Metodología: combinar datos, teoría y práctica

El estudio emplea una metodología cuantitativa que incluye:

  • Análisis de datos nacionales e internacionales sobre educación y empleo en el sector de la construcción.
  • Modelos matemáticos de predicción, como regresiones polinómicas y simulaciones con MATLAB.
  • Aplicación del modelo de evaluación educativa de Levin, ajustado mediante métodos de entropía para ponderar factores como calidad docente, entorno familiar, habilidades cognitivas y recursos institucionales.

A partir de estos datos, se diseñó un modelo de formación por etapas —llamado «optimización innovadora de múltiples módulos»— que articula mejor el aprendizaje teórico con la práctica profesional en empresas.

Aportaciones relevantes: una formación más adaptada al mercado

El artículo presenta un nuevo marco para la formación de profesionales de la arquitectura más alineado con las necesidades del sector. Sus aportaciones clave son las siguientes:

  • Propuesta de un modelo formativo escalonado, adaptable al ritmo del alumnado y al contexto institucional.
  • Inclusión de criterios de evaluación integral: desde la calidad académica hasta factores personales y sociales.
  • Análisis detallado de las políticas públicas chinas como base para la propuesta, con énfasis en la colaboración universidad-empresa.
  • Validación de la propuesta mediante simulaciones y estudios de casos reales.

Este enfoque integrador permite preparar a profesionales técnicos con competencias sólidas en construcción industrializada, tecnología digital y gestión de obra.

Discusión de resultados: mejoras observables y retos pendientes

Los resultados del estudio muestran mejoras concretas en la motivación del alumnado, su adecuación a los puestos de trabajo y su capacidad de adaptación a entornos reales. Se observa un aumento del interés por la profesión y una mejora de la empleabilidad, especialmente en sectores vinculados con tecnologías emergentes.

No obstante, el artículo reconoce desafíos importantes, como la falta de infraestructura adecuada para la formación práctica, la escasez de docentes con experiencia en obra y las dificultades para establecer colaboraciones estables con empresas.

Futuras líneas de investigación: ampliar, adaptar, evaluar

A partir del modelo propuesto, el artículo sugiere explorar:

  • Aplicación del sistema en otros países con necesidades similares de actualización en formación técnica.
  • Seguimiento longitudinal de las trayectorias laborales del alumnado.
  • Incorporación de inteligencia artificial y plataformas digitales para personalizar la enseñanza.
  • Extensión del modelo a otras ramas de la ingeniería civil, como estructuras o transporte.

Conclusión

El artículo revisado propone una reforma de la educación técnica en arquitectura con una propuesta estructurada, ambiciosa y bien fundamentada. Su valor radica en integrar múltiples factores en un solo modelo formativo con una base matemática sólida y una clara vocación práctica. En un momento en que el sector de la construcción necesita perfiles técnicos con nuevas competencias, investigaciones como esta ofrecen herramientas útiles para transformar la manera en que formamos a los futuros talentos.

Referencia:

ZHOU, Z.; TIAN, Q.; ALCALÁ, J.; YEPES, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 9:100268. DOI:10.1016/j.caeo.2025.100268.

Este artículo está publicado en abierto, por lo que os lo dejo para su descarga.

Pincha aquí para descargar

Glosario de términos clave

  • BIM (Building Information Modeling): Metodología de trabajo colaborativa para la creación y gestión de un proyecto de construcción. Su objetivo es centralizar toda la información del proyecto en un modelo digital.
  • Construcción industrializada: Proceso constructivo que implica la fabricación de componentes o módulos en un entorno de fábrica, bajo condiciones controladas, para luego ser ensamblados en el lugar de la obra.
  • Digitalización: Proceso de convertir información y procesos de formatos analógicos a digitales, aplicando tecnologías que permiten la automatización y mejora de la eficiencia.
  • Entropía (en evaluación educativa): Concepto utilizado en el estudio para ponderar y ajustar la importancia de diferentes factores de evaluación (calidad docente, entorno familiar, habilidades cognitivas, recursos institucionales) dentro del modelo de Levin.
  • Gestión de obra: Disciplina que abarca la planificación, organización, dirección y control de los recursos para llevar a cabo un proyecto de construcción de manera eficiente y dentro de los plazos y presupuestos establecidos.
  • MATLAB: Entorno de programación y plataforma numérica utilizada para realizar cálculos matemáticos, análisis de datos, desarrollo de algoritmos y modelado de sistemas, empleada en el estudio para simulaciones.
  • Modelo de evaluación educativa de Levin: Un marco teórico o práctico para valorar la calidad y eficacia de un sistema educativo, que en el estudio es ajustado con métodos de entropía para una ponderación más precisa de sus factores.
  • Modelos matemáticos de predicción: Herramientas que utilizan ecuaciones y algoritmos para prever comportamientos futuros o resultados basándose en datos históricos o actuales, como las regresiones polinómicas.
  • Optimización innovadora de múltiples módulos: Nombre del modelo formativo propuesto en el artículo, diseñado por etapas para integrar el aprendizaje teórico con la práctica profesional y adaptarse a diferentes contextos.
  • Prefabricación: Técnica constructiva que consiste en producir elementos o componentes de un edificio en un lugar distinto al de la obra, generalmente en una fábrica, para luego transportarlos e instalarlos en el sitio.
  • Regresiones polinómicas: Un tipo de análisis de regresión en el que la relación entre la variable independiente y la variable dependiente se modela como un polinomio de n-ésimo grado, utilizado para predicción en el estudio.
  • Sostenibilidad (en construcción): Enfoque que busca minimizar el impacto ambiental de las edificaciones a lo largo de su ciclo de vida, optimizando el uso de recursos, reduciendo residuos y promoviendo la eficiencia energética y el bienestar humano.
  • Transformación digital: El cambio integral que experimenta una organización o sector al integrar tecnologías digitales en todos los aspectos de sus operaciones, cultura y estrategias, lo que lleva a la creación de nuevos modelos de negocio y servicios.