Modelización y métodos de optimización aplicados al consumo energético en los ferrocarriles

El sector ferroviario, reconocido por su eficiencia energética, sigue siendo objeto de investigación para mejorar su sostenibilidad. Pese a representar solo el 2 % del consumo energético del transporte en Europa, su relevancia en el transporte de mercancías y pasajeros impulsa la investigación para reducir su huella de carbono. La necesidad de reducir las emisiones de gases de efecto invernadero y mejorar la competitividad económica ha llevado a realizar estudios exhaustivos centrados en el consumo energético ferroviario.

 

Modelización del consumo energético

El modelado del consumo energético permite evaluar y simular el rendimiento de los trenes sin necesidad de realizar pruebas experimentales. Las técnicas de modelado se clasifican principalmente en modelos deterministas y métodos alternativos, como redes neuronales y modelos estocásticos. Estos enfoques permiten analizar múltiples escenarios operativos y optimizar las decisiones estratégicas y operativas.

Modelos deterministas

El enfoque predominante utiliza ecuaciones basadas en la ecuación de Davis, que describe la resistencia al movimiento del tren en función de factores como la velocidad, la masa y la fricción. Su modularidad permite incluir características como frenos regenerativos y sistemas de almacenamiento a bordo. Aunque estos modelos son fiables, requieren numerosos parámetros técnicos, algunos de los cuales son difíciles de obtener debido a su complejidad técnica y a la necesidad de realizar mediciones precisas.

La ecuación de Davis se amplía con frecuencia para incorporar factores como la inclinación de la vía, la resistencia aerodinámica y la fricción en curvas. Estas ampliaciones permiten crear simuladores más detallados que evalúan trayectorias específicas y condiciones operativas complejas. Algunos estudios incluyen incluso el consumo de sistemas auxiliares, como el aire acondicionado y la iluminación, lo que mejora la precisión.

Además, el modelado detallado permite tener en cuenta aspectos como la variación de la masa del tren debida a la carga de pasajeros o mercancías, así como las condiciones meteorológicas y la interacción entre trenes en redes densas. Gracias a estas mejoras, los simuladores no solo evalúan el consumo energético, sino también el impacto de distintas estrategias operativas.

Alternativas al enfoque determinista

Los modelos basados en redes neuronales (Neural Networks) y en técnicas estocásticas (Stochastic Methods) han sido menos explorados, pero ofrecen flexibilidad y pueden manejar incertidumbres como retrasos y cambios en la carga de pasajeros. Las redes neuronales permiten entrenar modelos a partir de grandes volúmenes de datos operativos, lo que les permite aprender patrones complejos que los modelos deterministas podrían pasar por alto. Sin embargo, estos métodos requieren grandes volúmenes de datos y procesos de entrenamiento complejos.

Los modelos estocásticos integran factores aleatorios, como fallos en el sistema y condiciones meteorológicas. Su uso es particularmente relevante en redes ferroviarias densas, donde las interacciones entre trenes generan escenarios difíciles de prever mediante métodos deterministas. Los estudios actuales sugieren que estas técnicas podrían aplicarse a la gestión en tiempo real de las redes ferroviarias para mejorar la eficiencia global.

Métodos de optimización

La optimización del consumo energético ferroviario implica resolver problemas complejos, desde la gestión de perfiles de velocidad hasta la distribución de tiempos de espera y la configuración de infraestructuras. Estos estudios buscan minimizar el consumo energético sin comprometer los tiempos de viaje ni la capacidad operativa.

La formulación de problemas de optimización se basa en variables como los tiempos de viaje, los perfiles de velocidad, el consumo energético y la utilización de las infraestructuras, y su enfoque varía en función de si se optimiza un solo tren o un sistema completo. Las metodologías utilizadas incluyen la optimización unidimensional, que se centra en variables individuales como, por ejemplo, minimizar el tiempo de viaje o el consumo energético, y la optimización multidimensional, que aborda simultáneamente varios factores como el tiempo, el consumo energético, los costos operativos y las emisiones contaminantes. Los problemas de optimización pueden ser estáticos, donde se consideran condiciones fijas, o dinámicos, que ajustan decisiones en tiempo real con datos operativos actualizados.

Los métodos de optimización incluyen la búsqueda directa, que evalúa todas las soluciones posibles y es adecuada para problemas simples con pocos parámetros, y el análisis de principios máximos, que obtiene soluciones exactas mediante ecuaciones matemáticas avanzadas, aunque para ello sea necesario realizar simplificaciones y hacerlos computacionalmente viables. Las metaheurísticas, inspiradas en procesos naturales, se utilizan ampliamente por su capacidad para gestionar espacios de solución complejos. Entre ellas destacan los algoritmos genéticos, que han demostrado su versatilidad y eficacia en numerosos estudios. También se emplean técnicas como la optimización por enjambre de partículas y la optimización por colonias de hormigas, que son útiles en problemas específicos como, por ejemplo, la asignación de horarios y rutas óptimas. Además, la optimización basada en aprendizaje combina aprendizaje individual y colectivo para mejorar los resultados en contextos operativos cambiantes.

Los métodos de optimización también incluyen técnicas como la programación lineal, la programación dinámica y los algoritmos híbridos, que combinan diferentes enfoques para superar las limitaciones de cada uno de ellos. Las técnicas más avanzadas integran sistemas de inteligencia artificial y algoritmos de predicción para ajustar dinámicamente los parámetros operativos.

Discusión y análisis estadístico

Un análisis estadístico muestra que los modelos deterministas predominan debido a su precisión y facilidad para incluir múltiples factores. En optimización, los algoritmos genéticos son ampliamente preferidos, aunque métodos como la optimización por enjambre de partículas han demostrado ser eficaces en ciertos problemas.

Estudios recientes sugieren la posibilidad de combinar diferentes algoritmos para cubrir todo el espacio de soluciones y abordar problemas complejos que incluyen interacciones entre múltiples trenes y redes ferroviarias completas. Estas estrategias son esenciales para implementar operaciones ferroviarias completamente autónomas y sostenibles.

Además, el uso de análisis estadísticos avanzados, como el análisis de correspondencias y el modelado predictivo, permite identificar patrones ocultos y mejorar la precisión de los modelos y algoritmos utilizados.

Conclusión

La combinación de modelos deterministas y técnicas complementarias podría mejorar la precisión de los estudios. En optimización, el desarrollo de enfoques híbridos que combinen diferentes algoritmos metaheurísticos podría suponer un gran avance en la gestión energética ferroviaria. La integración de datos en tiempo real y técnicas de aprendizaje automático (Machine Learning Techniques) podría revolucionar el campo y llevar a sistemas ferroviarios más sostenibles y eficientes.

Referencia:

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

Os dejo la versión autor del artículo, para su consulta.

Descargar (PDF, 517KB)

Transporte del hormigón en tiempo frío

Figura 1. Transporte del hormigón en tiempo frío. https://betoniatecnico.blog/2024/04/08/influencia-de-la-climatologia-las-condiciones-ambientales-del-entorno-y-la-temperatura-de-los-materiales-en-la-realizacion-de-pavimentos-de-hormigon-concreto/

El transporte del hormigón en tiempo frío debe realizarse con mayor cuidado para evitar interrupciones y retrasos en su puesta en obra. El calor generado en el interior de la cuba, si se trata de una amasadora, por el rozamiento del hormigón con las paredes y las palas, evita que el agua de amasado se congele, siempre y cuando el tiempo de permanencia no sea muy prolongado y las temperaturas ambientales no sean extremadamente frías. De lo contrario, sería necesario adoptar medidas especiales de aislamiento de las cubas. El suministro debe estar sincronizado con la puesta en obra para evitar esperas, tanto del hormigón ya colocado y desprotegido como de los camiones pendientes de descarga. Se recomienda que el tiempo de transporte desde la planta hasta la obra sea lo más breve posible.

Se pueden evaluar las pérdidas de temperatura del hormigón durante el transporte, expresadas en °C por cada hora, considerando el tiempo transcurrido entre el amasado y la colocación. Estas pérdidas se expresan como un porcentaje de la diferencia entre la temperatura prevista del hormigón en el momento de su colocación y la temperatura ambiente. El porcentaje de pérdida depende del tipo de transporte: 25 % en camiones hormigoneras, 20 % en camiones o recipientes abiertos, y 10 % en camiones o recipientes cubiertos.

Las bajas temperaturas ambientales en las que se va a transportar el hormigón afectan especialmente a los camiones hormigoneras. Estos vehículos, con su tambor metálico y su sistema de paletas, así como la canaleta, pueden estar extremadamente fríos, especialmente los primeros camiones de la mañana después de una noche de temperaturas gélidas y formación de hielo. En algunas regiones, se implementan medidas para contrarrestar estos efectos, como el uso de resistencias externas que generan calor en el tambor, el lavado con agua caliente o el estacionamiento de los camiones en espacios interiores.

En el caso del transporte por cinta, especialmente si es muy larga, se debe proteger el hormigón de la acción del viento para evitar su enfriamiento y desecación. Además, si se emplea una relación agua/cemento muy baja, también se debe proteger del secado.

En el caso del transporte por bombeo, si la tubería es muy larga, se recomienda aislarla para evitar el enfriamiento del hormigón.

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 306. Cold wheather concreting (ACI 306R-16). American Concrete Institute.

AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Nomograma para el cálculo de la producción del ripado y transporte con un buldócer

Figura 1. Buldócer Cat D9T. https://commons.wikimedia.org/wiki/File:CatD9T.jpg

Uno de los ejemplos usuales es la producción de un buldócer (bulldozer, en inglés), que primero debe escarificar un terreno y luego debe empujarlo hasta una distancia de transporte determinada. En una entrada anterior dimos la resolución de la producción combinada de un buldócer.

Ahora os presentamos un nomograma elaborado junto con el profesor Pedro Martínez-Pagán sobre la producción del ripado y transporte con dicha máquina. Se han seguido las recomendaciones empíricas recogidas en el “Manual de arranque, carga y transporte en minería de cielo abierto” (Gómez de las Heras et al., 1995).

A continuación os voy a dar resuelto un problema de este tipo. Se trata de uno de los muchos casos que explicamos en el Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Os animo a que, si estáis interesados, os informéis de este curso en línea.

 

Descargar (PDF, 1.17MB)

Referencias:

GÓMEZ DE LAS HERAS, J.; MANGLANO, S.; TOLEDO, J.; LÓPEZ-JIMENO, C.; LÓPEZ-JIMENO, E. (1995). Manual de arranque, carga y transporte en minería a cielo abierto. Instituto Geológico y Minero de España, Madrid, 604 pp.

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras

Tengo el placer de presentar un nuevo libro que acaba de salir de imprenta. Se trata de una colaboración con los profesores Pedro Martínez Pagán y Marcos A. Martínez Segura, de la Universidad Politécnica de Cartagena.

Es un libro que está editado en abierto, por lo que es posible su descarga gratuita. Se trata de un libro sobre ejercicios resueltos de sistemas de transporte continuo, centrado en bombas y cintas transportadoras.

Lo podéis descargar directamente en esta dirección del Repositorio Digital de la Universidad Politécnica de Cartagena: https://repositorio.upct.es/handle/10317/12154

Los problemas tipo que aquí se abordan son similares a los tratados durante las clases de resolución de problemas y casos prácticos que se imparten en la asignatura de Ingeniería Minera del Grado en Recursos Minerales y Energía (GIRME) de la Universidad Politécnica de Cartagena (España). De esta forma, el libro es apropiado para todos aquellos estudiantes de grado o cursos de máster relacionados con la industria mineral, de los áridos o de la obra civil; donde se presenta la necesidad de resolver problemas sobre bombeo de pulpas, elevación de agua, transporte de materias primas, etc.

Al final del texto se facilitan algunos libros y enlaces que los autores sugieren para completar o adquirir conocimientos que serían recomendables para la resolución de algunos de los problemas que aquí se presentan, así como las plantillas y ábacos utilizados en la resolución de los problemas. Los autores quieren agradecer las útiles sugerencias y aportaciones recibidas durante la elaboración de este trabajo por todos aquellos especialistas en esta materia, especialmente a D. Juan Luis Bouso Aragonés, presidente de Eral Chile, S.A.

También aquí, como en otros libros anteriores, esperamos y deseamos que su consulta sea útil y que el lector sepa disculpar posibles erratas que hayan podido producirse.

Resumen:
Este libro lo componen unos 40 problemas tipo totalmente resueltos, abordando la resolución de sistemas hidráulicos de bombeo para el transporte de aguas y pulpas y transporte de material sólido a granel por medio de cintas transportadoras, unidades imprescindibles encargadas de favorecer y mantener el flujo continuo entre unidades de procesos en la industria minera y civil. Por ello, estos equipos se encuentran instalados de una manera muy extendida en la industria: plantas de tratamiento de recursos minerales, petroquímicas, canteras para la fabricación de áridos, cementeras, obras civiles, etc. En definitiva, estos ejercicios resueltos pretenden ayudar a dimensionar y seleccionar adecuadamente estas unidades, siguiendo criterios internacionalmente establecidos, por lo que lo convierten en un libro de consulta idóneo para aquellos profesionales o especialistas relacionados con los procesos de minerales, las plantas de áridos, la construcción, la obra civil, etc.
Palabras clave:

Cintas transportadoras; bombas; transporte de graneles sólidos; transporte hidráulico de pulpas; sustancias minerales; mineralurgia; procesos minerales; materias primas

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2023). Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras. Ediciones UPCT. Universidad Politécnica de Cartagena, 284 pp.

También tenéis la opción de descargarlo aquí mismo:

Descargar (PDF, 16.1MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo del transporte hidráulico de pulpas

Figura 1. Bomba horizontal de pulpas (Bouso y Martínez-Pagán, 2023)

Una pulpa es una mezcla líquida que contiene partículas sólidas en suspensión. Las características de la pulpa dependen de la naturaleza, tamaño, forma, densidad y cantidad de las partículas sólidas, así como de la naturaleza, densidad y viscosidad del líquido. El flujo de las pulpas es diferente al de los líquidos homogéneos, donde su naturaleza (laminar, transitorio o turbulento) se determina a partir de las propiedades físicas del líquido y su conductividad. Para calcular un sistema de transporte hidráulico de pulpa, compuesto por una bomba y una tubería, es esencial conocer previamente parámetros como la densidad de sólido y líquido, viscosidad, concentración de sólidos, tipo de tubería y topografía del terreno.

La caracterización de una pulpa es más compleja que la de un líquido debido a la presencia de partículas sólidas y su influencia en la mezcla. Es importante tener en cuenta que una pulpa no es una disolución, sino una suspensión de sólidos en líquidos donde cada componente está claramente definido. Debemos considerar el fenómeno de sedimentación de los sólidos en el líquido, especialmente cuando las turbulencias son bajas o no existen. Este fenómeno puede causar acumulaciones de sólidos y dificultar las operaciones de transporte o almacenamiento. En términos generales, las pulpas se pueden clasificar en dos grupos: pulpas sin sedimentación y pulpas con sedimentación.

Figura 2.  Bomba de pulpas. https://www.mogroup.com/es/informacion/e-books/manual-de-bombas–para-pulpa/

Las pulpas sin sedimentación, también conocidas como pulpas homogéneas, están compuestas por partículas finas (menores de 50 mm) y forma una mezcla homogénea y estable. No causan desgaste significativo, pero requieren una atención especial en la selección y funcionamiento de las bombas debido a su aumento de viscosidad. Cuando el contenido de partículas es alto, su reología se asemeja a la de líquidos No-Newtonianos. Ejemplos de este tipo de pulpa incluyen lodos espesados de la extracción de áridos, lechadas de cemento y lodos de perforación.

Las pulpas con sedimentación están formadas por partículas gruesas que tienden a crear una mezcla inestable y se comportan como líquidos Newtonianos. Generalmente, causan un elevado desgaste y requieren una selección cuidadosa de las tuberías, debido a su tendencia a sedimentar y causar obstrucciones. Este tipo de pulpa es común en el transporte de pulpas y se conoce como pulpa heterogénea, ya que los sólidos no se distribuyen uniformemente en conducciones horizontales a lo largo de su eje vertical a altas velocidades. Las fases sólida y líquida mantienen su propia identidad y el aumento de viscosidad es generalmente de poca importancia. Las pulpas heterogéneas suelen ser de menor concentración de sólidos y con partículas de mayor diámetro que las pulpas homogéneas. Ejemplos incluyen pulpas en plantas de tratamiento de áridos y minerales, equipos de dragado, etc.

En el transporte de pulpas minerales por tubería, la naturaleza de las partículas y las velocidades de flujo determinan los regímenes de flujo, que pueden ser tanto turbulentos como laminares. Sin embargo, en la mayoría de las aplicaciones, el régimen turbulento, que se produce cuando las partículas son gruesas y tienden a sedimentar, es el más común. Este tipo de fluido se conoce como fluido newtoniano. En cambio, las pulpas con partículas finas y uniformes suelen producir regímenes de flujo laminar.

Os dejo a continuación un artículo, elaborado por Juan Luis Bouso y Pedro Martínez-Pagán, donde se presenta un ejemplo de cálculo para una operación de bombeo de pulpas. Se exploran las diferentes alternativas de cálculo, que pueden variar debido a las preferencias personales de los técnicos o a la adaptabilidad de un procedimiento específico a las características de la operación de bombeo. Al final del trabajo, se incluye un anexo con gráficos y cálculos, que pueden ser muy útiles. Espero que os sea de interés.

Descargar (PDF, 36.36MB)

Referencias:

ANDREA, E. (2014). Tecnología metalúrgica. Universidad de Cantabria. https://ocw.unican.es/course/view.php?id=261

BOUSO, J.L.; MARTÍNEZ-PAGÁN, P. (2023). Bombeo de pulpas minerales. Diferentes procedimientos de cálculo. Rocas y Minerales, 605:56-73.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ-PAGÁN, P.; PERALES, A. (2020). Tecnología metalúrgica, 2ª edición. Universidad Politécnica de Cartagena. https://ocw.bib.upct.es/course/view.php?id=178

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Costes de los neumáticos de la maquinaria de construcción

Figura 1. Neumáticos de dúmperes rígidos. Imagen: V. Yepes

Los costes de los neumáticos pueden representar en las grandes máquinas (tractores pesados, mototraíllas…) un tercio de su coste total. En algunos casos, los neumáticos se venden aparte, ajustándose al tipo de trabajo realizado por el equipo.

En condiciones ideales, la vida de servicio de unos neumáticos radiales es de unas 6.000 horas. Sin embargo, lo habitual son desgastes fuertes, por lo que se reponen, por término medio, entre las 2.500 a 4.000 horas de trabajo (de 30.000 a 50.000 km). En el caso de mototraíllas o palas cargadoras en condiciones de gran dureza, la vida se reduce a unas 1.000 horas.

Para comparar la vida de los neumáticos se puede utilizar el concepto de T.V.H. que representa el producto de las toneladas medias transportadas por la velocidad media y por las horas recorridas. A mayor T.V.H., mejor comportamiento del neumático.

Las condiciones que más inciden en la duración de los neumáticos son los impactos, que producen dobleces y descascarillados, la abrasión y otros factores que dependen de las condiciones naturales y del terreno, del tipo y hábitos del operador y del mantenimiento realizado. En la Tabla 1 se recoge la duración estimada, en función de las condiciones de trabajo, para los neumáticos de distintas máquinas.

Tabla 1. Duración típica de los neumáticos, en horas (Nunnally, 2001)

Tipo de equipo Condiciones de trabajo
Favorables Medias Desfavorables
Buldócer o cargadora 3.200 2.100 1.300
Motoniveladora 5.000 3.200 1.900
Mototraílla convencional 4.600 3.300 2.500
Mototraílla de doble tracción 4.000 3.000 2.300
Mototraílla push-pull y autocargable 3.600 2.700 2.100
Dúmper extravial y motovagón 3.500 2.100 1.100

En la Tabla 2 se indican los factores que habría que aplicar para calcular la longevidad de los neumáticos en el caso de equipos de acarreo para movimiento de tierras.

Tabla 2. Factores que reducen la longevidad de los neumáticos en vehículos de transporte de movimiento de tierras

Eje motriz Tracción continua a 4 ruedas 0,9
Tracción intermitente a 4 ruedas 0,8
Eje de apoyo 1,0
Presión de inflado Presión correcta 1,0
Presión de inflado un 10% inferior 0,9
Carga Ninguna sobrecarga 1,0
10% sobrecarga 0,9
20% sobrecarga 0,8
Condiciones de la rodadura o ruta de transporte Tierra blando con un poco de piedras 1,0
Camino de grava bien mantenido 1,0
Camino de grava mal mantenido 0,9
Rocas dinamitadas 0,7
Mantenimiento del sitio de carga y descarga Excelente 1,0
Deficiente 0,9
Curvas Ninguna o muy suaves 1,0
Cerradas 0,9
Pendientes (solo para las ruedas motrices) No pasan del 6% 1,0
Superior al 6% 0,9
Velocidad media 16 km/h 1,0
32 km/h 0,9
Experiencia del operador Más de 6 meses 1,0
Menos de 6 meses 0,9

Por ejemplo, la longevidad de los neumáticos radiales de un dúmper pasa de 6.000 horas a 3.540 horas al aplicar el producto de todos los coeficientes (0,59) en el caso siguiente: presión de inflado recomendada, sobrecarga del 10%, camino de transporte de grava deficientemente mantenido, mantenimiento-conducción, carga, descarga defectuoso, curvas suaves, pendientes que no sobrepasan el 6%, velocidad media aproximada de 32 km/h y operador con experiencia.

En la Tabla 3 se adjunta una tabla parecida donde se recogen los factores de reducción de la vida de los neumáticos (Solminihan y Thenoux, 2008).

Tabla 3. Factores de reducción de la vida de los neumáticos (Solminihan y Thenoux, 2008)

Condiciones de uso Factor a aplicar
1,0 0,9 0,8 0,7 0,6
Presión del neumático (kg/cm2), en comparación con la especificada 100% 90% 80% 75% 70%
Carga del neumático, en comparación con la especificada 100% 129% 139% 150%
Velocidad media (km/h) 16 24 32 40 48
Posición de la rueda Traseras de arrastre Frontales De tracción en vagonetas de acarreo de materiales Motora
Clase de superficie del recorrido Tierra blanda, suave o suelta Camino de grava, grava angulosa Roca angulosa

Como la vida de los neumáticos es inferior a la de la máquina, los costes de propiedad y de operación de ambos se estudian por separado. Así, la amortización de este tipo de maquinaria se hará deduciendo el coste de las cámaras y neumáticos del de adquisición de aquella. Su coste horario se calcula como la relación entre el coste de las cámaras y de los neumáticos y las horas de vida útil, considerando un 10% sobre el costo por reparaciones: recauchutados, pinchazos, etc.

Referencias:

NUNNALLY, S.W. (2001). Construction Methods and Management. 5th edition, Prentice Hall, New Yersey, 549 pp.

SOLMINIHAC, H.; THENOUX, G. (2008). Procesos y técnicas de construcción. Quinta edición, Ediciones de la Universidad Católica de Chile, Santiago, Chile, 545 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 253 pág.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Producción combinada de un equipo con varias tareas: el caso de un buldócer

Buldócer Caterpillar D9T. https://commons.wikimedia.org/wiki/File:CatD9T.jpg

Es habitual encontrarnos con equipos que, aunque trabajen de forma aislada, deban realizar varios tipos de trabajos consecutivos para acabar de terminar una tarea. Además, en cada uno de estos trabajos, su producción es diferente. El problema es calcular la producción combinada conjunta. Uno de los ejemplos usuales es la producción de un buldócer (bulldozer, en inglés), que primero debe escarificar un terreno y luego debe empujarlo hasta una distancia de transporte determinada.

A continuación os voy a dar resuelto un problema de este tipo. Se trata de uno de los muchos casos que explicamos en el Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Os animo a que, si estáis interesados, os informéis de este curso en línea.

Descargar (PDF, 258KB)

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problema resuelto sobre distancia crítica de transporte

En un artículo anterior definimos la distancia crítica de transporte en un movimiento de tierras como aquella distancia en la que el equipo de cargadoras y camiones está equilibrado. Es decir, ni sobran ni faltan camiones o cargadoras. O dicho de otra forma, es la distancia de transporte en la que no existen esperas en las máquinas. Esta es una distancia teórica, puesto que para calcularla debemos conocer todos los datos de antemano, y estos no son deterministas. Por otra parte, en obra ocurre lo contrario: tenemos una distancia de transporte como dato, pero en este caso se trataría de saber cuántos camiones y cargadoras serían necesarios para que no existiesen demoras. Afortunadamente en obra se puede corregir rápidamente cualquier desfase. En dicho artículo proporcionamos, incluso, una calculadora en línea para que se pudiesen visualizar los cambios.

Aquí lo que presento es un problema resuelto que, espero, os sea de interés. Este problema lo puse en su momento en un examen de Procedimientos de Construcción, en la ETS de Ingeniería de Caminos, Canales y Puertos de Valencia.

Descargar (PDF, 203KB)

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Desarrollo de criterios sociales para la evaluación del ciclo de vida social de las infraestructuras ferroviarias

El diseño sostenible de las infraestructuras requiere la consideración de los impactos económicos, ambientales y sociales. Desde la firma del Acuerdo de París, se han hecho grandes esfuerzos para desarrollar las metodologías orientadas a evaluar los impactos económicos y ambientales a lo largo del ciclo de vida de las infraestructuras. Sin embargo, la evaluación de la dimensión social en el diseño de las infraestructuras todavía requiere un desarrollo significativo. La presente comunicación propone un conjunto de indicadores sociales orientados a la evaluación del ciclo de vida de las infraestructuras ferroviarias. En particular, se presenta la evaluación de los impactos sociales de una vía férrea convencional con balasto. A continuación, se sugiere un indicador basado en la aplicación de procedimientos de toma de decisión multicriterio que ayudará en la elección del diseño de vía más ventajoso en términos sociales.

ABSTRACT

The sustainable design of infrastructures requires the consideration of the economic, environmental, and social impacts. Since the establishment of the Paris Agreement, significant efforts have been made on the methodologies to assess infrastructures’ economic and environmental life cycle impacts. However, evaluating the social dimension in the design of infrastructures still requires significant development. The present communication proposes a set of social indicators oriented towards the life cycle assessment of railway infrastructures. In particular, the evaluation of the social impacts of a conventional ballasted rail track is presented. A multi-criteria decision-making procedure-based indicator is proposed to help decide the most advantageous track design in social terms.

Keywords:

Multi-criteria Decision-making; Sustainability; Life cycle assessment; Railway; Social impacts.

Reference:

NAVARRO, I.J.; VILLALBA, I.; YEPES, V. (2022). Development of social criteria for the social life cycle assessment of railway infrastructures. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain).

Os dejo la presentación que hicimos en el congreso y la comunicación completa.

Descargar (PDF, 329KB)