Preguntas frecuentes sobre entibaciones

Figura 1. Detalle de cajones de blindaje Robust BOX. Fuente: www.atenko.com

1. ¿Qué es una entibación y cuándo es necesaria en construcción?

Una entibación es un sistema provisional de contención de tierras compuesto por elementos (metálicos o de madera) que se apuntalan entre sí. Su función principal es evitar el derrumbe de las paredes verticales en excavaciones como zanjas, minas, galerías subterráneas o pozos. Se utiliza cuando no es posible crear un talud estable que impida los desprendimientos o restrinja los movimientos del terreno. También es crucial cuando la profundidad de la zanja supone un peligro para los trabajadores, en concreto a partir de 1,30 m en terrenos cohesivos y 0,80 m en terrenos no cohesivos, siempre que no haya otras solicitaciones adicionales. No sería necesaria una entibación si la excavación presenta taludes estables (45° en suelos no cohesivos, 60° en suelos cohesivos o 80° en suelos rocosos), pero factores desfavorables, como vibraciones fuertes o rellenos mal compactados, pueden hacerla indispensable. Además, es fundamental para evitar sifonamientos en suelos no cohesivos por debajo del nivel freático.

2. ¿Cuáles son los principales tipos de entibaciones de madera y sus aplicaciones?

Las entibaciones de madera se clasifican principalmente en dos tipos, según la disposición de sus tablas y el tipo de terreno:

  • Entibaciones con tablas horizontales: Se usan en terrenos cohesivos y autoestables durante la excavación. La excavación y la entibación se van alternando cada 0,80-1,30 m, apuntalando las tablas de lado a lado con codales o rollizos hasta alcanzar la profundidad total.
  • Entibaciones con tablas verticales: Ideales para terrenos sin cohesión, como arenas sueltas o lodazales. Las tablas verticales con punta se hincan con una maza antes de excavar y pueden alcanzar hasta 2 m de profundidad. A medida que se hincan, se colocan las correas o cabeceros y se apuntalan.
Figura 2. Entibación de madera. http://www.generadordeprecios.info/rehabilitacion/Acondicionamiento_del_terreno/Recalces/Entibaciones/

Además, las entibaciones de madera se clasifican según el porcentaje de superficie de excavación que cubren:

  • Entibación cuajada: Cubre el 100 % de las paredes, con tablones contiguos, y se utiliza en gravas, arenas sueltas, limos y arcillas blandas de escasa consistencia.
  • Entibación semicuajada: Cubre el 50 % de las paredes, con tablones separados unos 0,75 m, y se emplea en terrenos suficientemente compactos.
  • Entibación ligera: Cubre menos del 50 %, sin tableros, solo cabeceros apuntalados por codales separados entre 1,5 y 2 m. Se emplea también en terrenos compactos.

Aunque han sido reemplazadas en gran medida por sistemas metálicos por razones económicas y de velocidad, las entibaciones de madera siguen siendo útiles en zanjas con muchas tuberías transversales o cuando el transporte de otros sistemas no es posible.

3. ¿Qué es un muro berlinés y en qué situaciones se recomienda su uso?

Un muro berlinés es un sistema de entibación temporal que consiste en perfiles metálicos hincados verticalmente en el terreno y separados entre sí, de modo que se pueden insertar tablones de madera para contener las tierras. Es una técnica segura y económica para excavaciones de poca o media profundidad (normalmente de 3 a 8 metros) en terrenos poco estables, como suelos arenosos o finos.

Se clasifica como un muro flexible y «abierto», lo que significa que no impide el paso del agua subterránea, por lo que es necesario agotar el nivel freático de forma simultánea durante la excavación. No se recomienda su uso cerca de cimentaciones existentes ni en caso de presencia de nivel freático. Su proceso constructivo consiste en hincar perfiles de doble T a intervalos regulares y, a medida que se excava, colocar los tablones de madera entre las alas de los perfiles. La colocación de los perfiles en perforaciones preejecutadas minimiza los ruidos y las vibraciones en zonas urbanas, y la fácil manipulación de los tablones permite dejar espacios para las instalaciones existentes.

Figura 3. Muro berlinés

4. ¿Cuáles son las principales ventajas de las entibaciones metálicas frente a las de madera?

Las entibaciones metálicas, que a menudo están prefabricadas y están compuestas por paneles de aluminio o acero, presentan varias ventajas significativas con respecto a las de madera:

  • Rentabilidad y productividad: Son más económicas y rápidas de instalar debido a su ligereza, sencillez de colocación y menor necesidad de mano de obra.
  • Seguridad: Se montan y desmontan desde el exterior de la excavación con maquinaria, lo que reduce el riesgo para los operarios.
  • Reutilización y durabilidad: Pueden reutilizarse en numerosas ocasiones, con un mínimo mantenimiento y una larga vida útil.
  • Versatilidad: Permiten excavar zanjas de diversas anchuras y profundidades, independientemente de la longitud de la tubería que se vaya a instalar.
  • Eficiencia: El ritmo de colocación de tuberías es alto, ya que la excavación y la entibación se realizan simultáneamente.
  • Minimización de alteraciones: El extremo inferior de las entibaciones no llega al fondo de la excavación, por lo que no se alteran los rellenos laterales de los tubos al extraerlas y se mantiene la homogeneidad y compactación de los rellenos.
  • Extracción sencilla: En suelos expansivos, se puede regular la separación entre los paneles para relajar las presiones del suelo antes de la extracción y facilitar el proceso.

5. ¿Qué tipos de entibaciones con paneles metálicos existen y para qué profundidades son adecuadas?

Existen dos grandes familias de entibaciones con paneles metálicos, adecuadas para diferentes profundidades:

  • Sistemas de cajones de entibación (blindajes o escudos): Se recomiendan para profundidades máximas de 4 metros. Estos cajones están formados por dos paneles unidos por codales de longitud regulable y se utilizan no solo para el sostenimiento, sino también para proteger a los trabajadores. Se ensamblan en obra y pueden usarse en terrenos no cohesivos. Para profundidades mayores, su extracción se vuelve difícil y puede causar descompensaciones del terreno.
  • Sistemas con guías deslizantes (paneles con guías deslizantes): Ideales para profundidades superiores a 4 metros. Están formados por paneles de acero que se deslizan a lo largo de unas guías laterales unidas por codales. Son especialmente ventajosos en terrenos no cohesivos y permiten alcanzar mayores profundidades con dimensiones variables. Su diseño garantiza un deslizamiento suave y mantiene el paralelismo entre las planchas, lo que elimina los problemas de asentamiento.

También se menciona la entibación ligera con paneles de aluminio para suelos cohesivos, que no debe superar los 2,40 m de profundidad y que se utiliza comúnmente como blindaje del borde de zanjas de hasta 1,75 m para proteger aceras y calzadas en zonas urbanas. También se describe el sistema de entibación por presión hidráulica, con una profundidad recomendada de hasta 7 m. Este sistema es ideal para reparar conductos o instalar tuberías y es adecuado para trabajos arqueológicos, ya que no transmite vibraciones.

Figura 4. Entibadora hidráulica Pressbox Serie 800. Cortesía SBH Tiefbautechnick

6. ¿Cuáles son las medidas de seguridad más importantes a la hora de trabajar con entibaciones metálicas?

La seguridad es primordial al utilizarlas. Entre las medidas de prevención comunes y esenciales se incluyen:

  • Certificación y cumplimiento: Se deben emplear sistemas certificados que sigan estrictamente las instrucciones del fabricante, y verificar que las condiciones reales de la obra coincidan con el proyecto y las cargas admisibles.
  • Manipulación segura: Al manipular los paneles, el enganche debe realizarse en los cuatro puntos designados, utilizando eslingas y cadenas en perfecto estado y con marcado CE.
  • Protección completa de la excavación: Las entibaciones deben proteger toda la superficie excavada y sobresalir al menos 15 cm de la coronación de la zanja o pozo para evitar desplomes del frente de la excavación.
  • Orden de instalación y desinstalación: La entibación se ejecuta de arriba hacia abajo, mientras que el desentibado se realiza en orden inverso, de abajo hacia arriba, manteniendo la estabilidad de la excavación y rellenando y compactando simultáneamente.
  • Distancias de protección: Se deben respetar distancias de protección de al menos 0,60 m alrededor de la entibación, incluida la maquinaria.
  • Acceso seguro: Se deben disponer escaleras aseguradas para acceder a las zanjas, que deben sobrepasar al menos un metro del borde. Queda estrictamente prohibido subir y bajar por los codales.

7. ¿En qué se diferencia el método de descenso directo del método de descenso escalonado para la instalación de cajones de entibación?

Ambos métodos consisten en la instalación de cajones de blindaje o escudos, pero se aplican en condiciones del terreno diferentes:

  • Método de descenso directo (o de ajuste): En este método, la entibación se introduce completa hasta el fondo de una zanja ya excavada. Es adecuado para paredes de excavación estables y verticales, y cuando la zanja tiene la misma anchura que la entibación. El espacio entre la cara exterior del blindaje y el frente de excavación debe ser mínimo y rellenarse para evitar movimientos laterales del cajón. La instalación se realiza con maquinaria sencilla, como una retroexcavadora o una pequeña grúa.
  • Método de descenso escalonado (o de «corte y bajada»): Este método se utiliza para cajones provistos de bordes cortantes y es más adecuado para terrenos menos estables. Consiste en empujar cada panel con la cuchara de una pala excavadora, alternando el descenso con la excavación y la retirada del suelo. El avance en el descenso no debe exceder los 0,50 m del borde inferior de la plancha, lo que permite un control más gradual y seguro en condiciones en las que la zanja no puede permanecer abierta sin soporte.

8. ¿Qué papel juega el tipo de terreno en la selección de un sistema de entibación?

El tipo de terreno es un factor determinante a la hora de elegir el sistema de entibación más adecuado, ya que influye directamente en su estabilidad y en el empuje que ejercerá sobre las estructuras de contención.

  • Terrenos cohesivos (arcillas, limos firmes): Pueden ser autoestables durante periodos cortos. Las entibaciones con tablas horizontales son útiles para excavaciones alternas. Para entibaciones metálicas ligeras, los sistemas de cabeceros verticales son adecuados para suelos estables. En general, se requiere menos cobertura (entibación ligera o semicuajada) si son suficientemente compactos, pero a mayor profundidad o con solicitaciones externas (vial, cimentación), se necesitarán entibaciones más robustas (semicuajadas o cuajadas).
  • Terrenos no cohesivos o blandos (arenas sueltas, gravas, lodazales): Son inestables y propensos al desplome inmediato. Requieren entibaciones que cubran la totalidad de las paredes (entibación cuajada de madera) o sistemas de contención continua. Para las entibaciones de madera se emplean tablas verticales que se hincan antes de excavar. Las entibaciones metálicas con guías deslizantes son muy recomendables a partir de los 4 m de profundidad en terrenos flojos y no cohesivos, al igual que los cajones de blindaje para profundidades máximas de 4 m.
  • Terrenos con nivel freático: La presencia de agua subterránea añade complejidad. Las entibaciones «abiertas», como el muro berlinés, requieren un agotamiento simultáneo del nivel freático. En suelos no cohesivos por debajo del nivel freático, es esencial utilizar una entibación para evitar el peligro de sifonamiento.

La Norma Tecnológica NTE-ADZ establece recomendaciones específicas sobre los tipos de entibaciones de madera (ligera, semicuajada y cuajada) en función del tipo de terreno, solicitación (sin solicitación, vial o de cimentación) y profundidad de corte, y hace hincapié en la necesidad de realizar estudios pertinentes en caso de duda.

Os dejo un vídeo y un audio que resume este tema:

Glosario de términos clave

  • Acodalado: Se refiere a elementos estructurales que están soportados o apuntalados lateralmente por codales o puntales, proporcionando estabilidad contra movimientos horizontales.
  • Andamios: Estructuras auxiliares provisionales que sirven para elevar materiales y permitir el acceso de los trabajadores a distintos puntos de una obra.
  • Apeos: Estructuras provisionales diseñadas para sostener una parte de una edificación o terreno que se encuentra en riesgo de colapso, descargando el peso sobre elementos más estables.
  • Berma: Plataforma horizontal o escalón que se forma en el talud de una excavación o terraplén para mejorar su estabilidad, reducir la altura de la entibación o facilitar el acceso.
  • Cimbra: Estructura provisional de apoyo utilizada para sostener un arco, bóveda o losa de hormigón durante su construcción, hasta que adquiere la resistencia necesaria.
  • Codal: Elemento horizontal, generalmente un puntal o rollizo, que se coloca entre las paredes de una zanja o entre los paneles de una entibación para mantener su separación y resistir el empuje del terreno.
  • Cohesivo (terreno): Tipo de suelo que posee cohesión entre sus partículas (como las arcillas o limos), lo que le permite mantener una forma sin desmoronarse fácilmente.
  • Encofrado: Estructura temporal que moldea el hormigón fresco hasta que este fragua y adquiere su forma y resistencia definitiva.
  • Entibación: Sistema de contención provisional de tierras, compuesto por elementos de madera o metálicos, acodalados entre sí, para evitar el desplome de las paredes de excavaciones.
  • Entibación cuajada: Entibación de madera que cubre la totalidad de las paredes de la excavación, con los tablones situados uno a continuación del otro. Se usa en terrenos de muy escasa consistencia.
  • Entibación ligera: Entibación de madera que cubre menos del 50% de las paredes de la excavación, utilizando principalmente cabeceros apuntalados por codales. Se aplica en terrenos compactos.
  • Entibación semicuajada: Entibación de madera donde los cabeceros se unen con tablas verticales que cubren el 50% de las paredes de la excavación, con tablones separados aproximadamente 0,75 m. Se usa en terrenos compactos.
  • Nivel freático: Nivel superior de la capa de agua subterránea que satura el suelo. Su presencia afecta la estabilidad del terreno y la necesidad de entibaciones impermeables o sistemas de agotamiento.
  • No cohesivo (terreno): Tipo de suelo cuyas partículas no tienen cohesión entre sí (como las arenas o gravas), lo que lo hace propenso a desmoronarse si no se contiene.
  • Muro berlinés: Entibación temporal formada por perfiles metálicos (generalmente doble T) hincados verticalmente, entre los cuales se insertan tablones de madera para contener el terreno. Es de tipo flexible y «abierto» al agua subterránea.
  • Panel metálico: Componente prefabricado, generalmente de aluminio o acero, utilizado en sistemas de entibación moderna. Ofrecen ligereza, rapidez de instalación y alta resistencia.
  • Rollizo: Tronco de árbol sin labrar o descortezar, utilizado comúnmente como codal o puntal en entibaciones de madera.
  • Sifona miento: Fenómeno que ocurre en suelos no cohesivos bajo el nivel freático, donde el flujo de agua ascendente puede arrastrar partículas de suelo, provocando la pérdida de estabilidad y posibles desplomes.
  • Tablas (de madera): Elementos planos de madera, de un espesor determinado, utilizados para conformar las paredes de las entibaciones de madera, ya sea en disposición horizontal o vertical.
  • Tablestacas: Elementos prefabricados, generalmente metálicos o de hormigón, que se hincan en el terreno para formar una pantalla continua de contención, a menudo utilizada en entibaciones o muros pantalla.
  • Talud: Inclinación o pendiente de una superficie de terreno. En excavaciones, un talud estable es aquel que no requiere entibación para evitar el desplome.
  • Zanja: Excavación alargada y estrecha realizada en el terreno, generalmente para la instalación de tuberías, cables o cimentaciones.

 Referencias:

  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • GONZÁLEZ CABALLERO, M. (2001). El terreno. Edicions UPC, Barcelona, 309 pp.
  • IZQUIERDO, F.A. (2001). Cuestiones de geotecnia y cimientos. Editorial Universidad Politécnica de Valencia, 227 pp.
  • LAMBE, T.W.; WHITMAN, R.V. (1996). Mecánica de suelos. Limusa, México, D.F., 582 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MINISTERIO DE LA VIVIENDA (2006). Código Técnico de la Edificación
  • TERZAGHI, K.; PECK, R. (1967). Soil Mechanics in Engineering Practice. 2nd Edition, John Wiley, New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La interacción suelo–estructura como factor decisivo en el diseño optimizado y robusto frente al colapso progresivo de edificios de hormigón armado

Acaban de publicarnos un artículo en Innovative Infrastructure Solutions, revista indexada en el JCR. El artículo presenta un marco de optimización estructural para edificios con pórticos de hormigón armado que integra la resistencia frente al colapso progresivo y la interacción suelo-estructura con el objetivo de conseguir diseños seguros, sostenibles y realistas. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la optimización matemática se ha convertido en una herramienta muy valiosa para la ingeniería. Lejos de ser un mero ejercicio teórico, se ha comprobado que permite diseñar estructuras más eficientes, con menos consumo de materiales, costes e impacto medioambiental. Sin embargo, hasta ahora, un aspecto importante había quedado fuera de estos procesos de optimización: la seguridad frente al colapso progresivo, un fenómeno en el que el fallo localizado de un elemento estructural provoca una reacción en cadena que puede ocasionar el derrumbe total del edificio.

Este tipo de situaciones no son meramente hipotéticas: explosiones accidentales, impactos de vehículos, errores de ejecución e incluso actos intencionados han provocado a lo largo de la historia fallos de este tipo, con consecuencias devastadoras en términos humanos y económicos. Por este motivo, organismos como la General Services Administration (GSA) y el Departamento de Defensa (DoD) de EE. UU. han desarrollado directrices específicas para incorporar criterios de robustez frente al colapso progresivo en el diseño estructural.

La principal aportación de este trabajo es la propuesta de un marco computacional integrado denominado Optimization-based Robust Design to Progressive Collapse (ObRDPC), que combina tres elementos fundamentales:

  1. Optimización estructural mediante algoritmos heurísticos.

  2. Diseño robusto frente a colapso progresivo, aplicado desde el inicio del proceso de cálculo con el método del Alternate Path.

  3. Consideración de la interacción suelo–estructura (SSI), aspecto habitualmente ignorado, pero que modifica de forma notable la respuesta real de un edificio.

La metodología desarrollada no se limita a verificar a posteriori si una estructura cumple los requisitos de robustez, sino que integra estas exigencias como restricciones en el propio proceso de optimización. Así, el algoritmo no solo busca minimizar un objetivo (en este caso, las emisiones de CO₂ asociadas a la construcción), sino que también garantiza la seguridad frente a escenarios de fallo.

Para validar la propuesta, se estudiaron cinco casos de edificios de pórticos de hormigón armado tridimensionales con distintas combinaciones de número de plantas (de cuatro a seis) y longitudes de vano (cuatro, seis y ocho metros). A cada edificio se le aplicaron dos escenarios de daño: la eliminación de una columna de esquina y la eliminación de una columna exterior. Estos escenarios, definidos en la guía GSA, simulan situaciones críticas y permiten evaluar la capacidad de la estructura para redistribuir las cargas y evitar un colapso en cadena.

El marco ObRDPC integra un proceso automatizado en el que el modelado estructural se realiza con SAP2000, enlazado con rutinas programadas en MATLAB. Además, se tiene en cuenta el diseño constructivo de cimentaciones mediante zapatas aisladas, que se modelan como losas apoyadas sobre un suelo con comportamiento elástico. En este punto, la SSI es fundamental, ya que los asientos diferenciales de la cimentación generan esfuerzos adicionales en pilares y vigas, lo que modifica la redistribución de cargas en caso de fallo. El estudio muestra que ignorar este efecto puede dar lugar a errores de hasta el 24 % en el dimensionamiento de la superestructura tras la pérdida de un pilar, lo que se traduce en diseños potencialmente inseguros o, por el contrario, sobredimensionados y poco sostenibles.

Los resultados más destacados se pueden resumir así:

  • Influencia de la altura del edificio: a medida que aumenta el número de plantas, la estructura gana en robustez. Esto se debe a la redundancia estructural y a la existencia de múltiples caminos alternativos para la redistribución de cargas (efecto de pórtico global, mecanismos tipo Vierendeel, etc.). En consecuencia, los edificios de mayor altura presentan una menor diferencia entre un diseño convencional y otro robusto frente al colapso progresivo.

  • Influencia de la luz de vano: a diferencia de lo que ocurre con la altura, un mayor aumento de la luz compromete la robustez. En vanos de 8 metros, el impacto ambiental de un diseño robusto frente al colapso progresivo aumenta en más de un 50 %. La razón es doble: por un lado, las vigas deben absorber momentos flectores mucho mayores cuando desaparece un apoyo y, por otro, disminuye la redundancia estructural al haber menos pilares por unidad de superficie.

  • Estrategias de redistribución de cargas: los mecanismos estructurales varían según el elemento. En las vigas, la optimización conduce a secciones más profundas y a un incremento del refuerzo superior de hasta el 35 % en zonas críticas. En los pilares, tienden a utilizarse secciones más robustas y hormigones de mayor resistencia (hasta 40 MPa) para controlar las solicitaciones combinadas de axiles y flectores. Las cimentaciones, por su parte, tienden a tener geometrías más cuadradas, lo que mejora su respuesta frente a asientos diferenciales.

  • Impacto ambiental y sostenibilidad: en edificios con vanos moderados (4 m), el sobrecoste ambiental de diseñar frente a un colapso progresivo es inferior al 8 %, una cifra razonable para garantizar una mayor seguridad. Sin embargo, en estructuras con vanos grandes, el impacto es muy significativo, por lo que es necesario reflexionar sobre las limitaciones geométricas de ciertos proyectos si se pretende compatibilizar sostenibilidad y robustez.

El valor práctico de esta investigación es indudable. Frente a los métodos tradicionales basados en el ensayo y el error y en hipótesis de apoyo rígido, la propuesta permite automatizar el proceso de diseño e integrar la seguridad y la sostenibilidad desde el principio. Para los ingenieros y proyectistas, esto supone una herramienta que evita tanto el riesgo de subdiseño (estructuras inseguras) como el de sobrediseño (estructuras innecesariamente pesadas y contaminantes).

En definitiva, este trabajo supone un avance hacia una ingeniería estructural más integral, ya que no solo se trata de optimizar costes o reducir emisiones, sino también de garantizar la resiliencia de nuestras construcciones frente a eventos extremos. La integración de la interacción suelo-estructura añade, además, un realismo que acerca la investigación a la práctica profesional. En el futuro, esta metodología podría extenderse a otros sistemas estructurales, como marcos metálicos, estructuras mixtas o rascacielos, lo que supondría un horizonte prometedor para la construcción de infraestructuras seguras, sostenibles y duraderas.

Referencia:

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

Os dejo el artículo para que lo descarguéis, ya que está publicado en abierto.

Pincha aquí para descargar

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más allá del coste inicial: cómo elegir la mejor estrategia de refuerzo sísmico con criterios de sostenibilidad

Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. Desarrolla un marco de decisión multicriterio que integra análisis del ciclo de vida (económico, ambiental y social) con técnicas avanzadas de decisión en entornos de incertidumbre (DEMATEL, DANP y TOPSIS en entornos difusos). El modelo se ha aplicado a un caso real de refuerzo de pilares de hormigón armado en Quito, una ciudad expuesta a riesgos sísmicos y volcánicos, por lo que los resultados son especialmente relevantes para la práctica profesional. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración con la Universidad Central de Ecuador. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la ingeniería civil ha tenido que replantear las estrategias de intervención en el patrimonio edificado. En regiones con alta peligrosidad sísmica, es imperioso reforzar las estructuras de hormigón armado construidas conforme a normativas antiguas. La demolición y reconstrucción, aunque técnicamente es posible, tiene un gran impacto ambiental y social, y supone un coste elevado. Por este motivo, la investigación reciente se orienta hacia metodologías que permitan adoptar soluciones integrales que equilibren la seguridad estructural, la sostenibilidad ambiental, la viabilidad económica y la aceptación social.

Un objetivo ambicioso: tomar decisiones informadas y sostenibles.

El objetivo del estudio es proporcionar a los ingenieros un procedimiento para priorizar técnicas de refuerzo sísmico de pilares de hormigón armado que tenga en cuenta de manera simultánea los siguientes aspectos:

  • Costes de ciclo de vida (LCC): diseño, construcción, mantenimiento y demolición.
  • Impactos ambientales (LCA): consumo de recursos, emisiones con efectos sobre la salud humana y daños a los ecosistemas.
  • Impactos sociales (S-LCA): seguridad de los trabajadores, derechos laborales, efectos sobre la comunidad local, compatibilidad arquitectónica y tiempo de interrupción del uso.

Lo novedoso es que estos criterios no se tratan como compartimentos estancos, sino como un sistema interdependiente en el que las decisiones económicas repercuten en lo social y lo ambiental, y viceversa.

La metodología paso a paso

  1. Selección de criterios: se identificaron nueve indicadores distribuidos en tres dimensiones (económica, ambiental y social).
  2. Análisis de relaciones causales (fuzzy DEMATEL): permitió visualizar qué criterios actúan como causa (por ejemplo, el coste de construcción influye en varios indicadores) y cuáles como efecto (por ejemplo, la salud humana se ve afectada por las decisiones ambientales y económicas).
  3. Determinación de pesos relativos (DANP): se asignó importancia a cada criterio teniendo en cuenta esas interdependencias. La dimensión social emergió como la de mayor peso global (44,6%), seguida de la ambiental (32,2%) y la económica (23,1%).
  4. Evaluación de alternativas (TOPSIS): se compararon tres técnicas habituales de refuerzo de pilares:
    • Encamisado con hormigón armado.
    • Encamisado con acero.
    • Revestimiento con CFRP (polímeros reforzados con fibra de carbono).
      Cada una se evaluó en todas las fases del ciclo de vida, desde la extracción de materias primas hasta el final de vida.

Resultados: el CFRP como mejor opción global

El análisis mostró perfiles muy diferenciados:

  • Hormigón armado (RC):
    • Ventaja: la alternativa más barata en coste inicial y en LCC.
    • Inconveniente: presenta los mayores impactos ambientales y sociales, debido al uso intensivo de materiales (cemento y áridos) y a la mayor duración y molestias de obra.
  • Acero (ST):
    • Ventaja: menor impacto social que el hormigón, reducción moderada de impactos ambientales.
    • Inconveniente: costes significativamente más altos, sobre todo en mantenimiento y fin de vida (protecciones contra corrosión, demolición).
  • CFRP:
    • Ventaja: mejor desempeño ambiental (hasta un 81% menos de consumo de recursos respecto al RC) y social (reducción de hasta un 85% en impactos sobre la sociedad). Además, tiempos de ejecución mucho más cortos, con mínima afectación al uso del edificio.
    • Inconveniente: coste inicial muy superior (un 154% más que el RC).
    • Resultado: pese a ese mayor coste inicial, es la alternativa mejor valorada globalmente cuando se consideran los 50 años de vida útil.

La conclusión es clara: el criterio de sostenibilidad a largo plazo favorece el uso del CFRP, aunque su adopción aún depende de la disponibilidad económica y de la madurez del mercado en cada contexto.

Aplicaciones prácticas en la ingeniería real

Para el proyecto de refuerzo de una estructura, este estudio ofrece varias lecciones prácticas:

  • Justificación técnica y económica: el marco permite presentar a clientes y administraciones un análisis riguroso que va más allá del presupuesto inicial, considerando impactos a 50 años.
  • Planificación de obra: la valoración de los tiempos de intervención y la compatibilidad arquitectónica muestra que soluciones como el CFRP pueden reducir notablemente la interrupción de la actividad en edificios de uso crítico (hospitales, colegios, edificios administrativos).
  • Selección de materiales: el análisis evidencia cómo el acero requiere medidas de protección adicionales frente a la corrosión, mientras que el hormigón aumenta considerablemente la huella de carbono. Esto impulsa a considerar materiales compuestos, incluso con su mayor precio, cuando la sostenibilidad y el servicio a la comunidad son prioritarios.
  • Diseño normativo y políticas públicas: al integrar impactos sociales, el modelo puede orientar normativas de rehabilitación sísmica en países con gran stock de edificaciones vulnerables, priorizando soluciones que maximicen beneficios sociales, además de estructurales.

Conclusiones y recomendaciones para la práctica profesional

  1. Mirar más allá del coste inicial: la ingeniería actual debe adoptar un enfoque de ciclo de vida para que las decisiones sean sostenibles y no hipotequen a futuras generaciones.
  2. Dar peso a lo social: en muchos contextos, el impacto en trabajadores y usuarios pesa tanto como la seguridad estructural. Reducir los tiempos de obra y las afecciones al entorno puede ser determinante.
  3. Promover materiales innovadores: el CFRP se posiciona como un referente en refuerzos sísmicos por su durabilidad, bajo impacto ambiental y beneficios sociales.
  4. Aplicar marcos multicriterio: metodologías como la propuesta permiten al ingeniero defender decisiones complejas con base científica y transparencia.
  5. Aprovechar el modelo en la planificación pública: puede guiar programas de rehabilitación masiva en países sísmicamente activos, optimizando recursos y beneficios.

En definitiva, este trabajo no solo aporta un modelo matemático, sino también una forma de pensar y justificar nuestras decisiones como ingenieros civiles. Es un claro ejemplo de cómo la integración de herramientas de análisis avanzado con criterios de sostenibilidad puede transformar la práctica profesional y alinearla con los retos del siglo XXI.

Este audio os puede servir para entender el trabajo realizado.

Os dejo un vídeo que resume este trabajo.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Posibles consecuencias de una nueva DANA en el otoño de 2025

https://cadenaser.com/comunitat-valenciana/2025/07/15/9-meses-despues-de-la-dana-la-legislacion-urbanistica-sigue-sin-cambios-radio-valencia/

En artículos anteriores, ya he explicado cuáles son las características que debería tener una reconstrucción tras una catástrofe. Argumenté entonces que limitarse a devolver la situación al estado previo al desastre supone, en la práctica, que la sociedad acepte que los efectos del desastre se repetirán y eso es inasumible. Para ilustrarlo, imaginemos una familia —una pareja, dos niños pequeños y una persona mayor— circulando en un coche por la autopista a 120 km/h sin llevar cinturones de seguridad: bastaría con que se cruzara un animal en la carretera para que el accidente fuera mortal. Esa es precisamente la analogía de lo que supone enfrentarse a una nueva DANA, como la que sufrió Valencia en 2024: aun suponiendo que la reconstrucción hubiera sido rápida y eficaz, restableciendo viviendas, servicios e infraestructuras al estado anterior a la catástrofe, no se ha llevado a cabo una actuación integral de defensa que proteja realmente a la población.

Hay quien opina que lo mejor sería «no coger el coche», es decir, evacuar a la población de las zonas inundables. Sin embargo, otros pensamos que, en muchas ocasiones, merece la pena «ponerse los cinturones», equipar el «vehículo» con airbags, silla de retención infantil y todas las medidas de protección necesarias para circular con seguridad por esa autopista. La solución no es sencilla, pero, ocho meses y medio después de la DANA, tengo la impresión de que todavía falta algo más que reconstruir. Hay que iniciar las acciones integrales que protejan a la población. En este sentido, remito al lector a la Iniciativa Legislativa Popular para la Modificación de la Ley de Aguas, en apoyo de este tipo de acciones integrales.

La creciente frecuencia e intensidad de las DANAs en el Mediterráneo sitúan a la Comunidad Valenciana como una región especialmente vulnerable a eventos extremos de lluvia y avenidas repentinas. Según la Agencia Europea de Medio Ambiente, fenómenos como la DANA de octubre de 2024 anticipan un repunte continuado de inundaciones terrestres y costeras, con episodios que superarán con frecuencia las expectativas de diseño de las infraestructuras actuales (eea.europa.eu).

  1. Vulnerabilidad de infraestructuras en reconstrucción

A mediados de 2025, muchas obras de renovación de redes de drenaje, carreteras y puentes seguirán en fase de ejecución. Las soluciones parciales adoptadas, como bombeos provisionales, diques temporales y canalizaciones pendientes, no están concebidas para resistir lluvias extremas. Una nueva DANA podría dañar o destruir tramos sin concluir, lo que obligaría a reiniciar los proyectos, encarecer los materiales y prolongar los plazos de entrega. Además, la falta de flexibilidad constatada en los contratos públicos dificulta la adaptación rápida de las obras a las variaciones atmosféricas imprevistas (joint-research-centre.ec.europa.eu).

  1. Agotamiento financiero y riesgo de “efecto dominó”

Hasta la fecha, las administraciones centrales, autonómicas y locales han movilizado más de 29 000 millones de euros en ayudas y obras. Sin embargo, los presupuestos aprobados para 2025 contemplan márgenes muy ajustados. Un nuevo desembolso urgente de una magnitud similar tensionaría la capacidad de endeudamiento, obligaría a redirigir partidas previstas para servicios esenciales (sanidad, educación, mantenimiento urbano) y podría provocar recortes en la inversión pública. El Network for Greening the Financial System advierte de que los eventos climáticos repetidos podrían provocar una caída del 5 % del PIB de la eurozona en los próximos cinco años, comparable a crisis financieras previas (Reuters).

  1. Impactos socioeconómicos acumulativos

La población y las empresas locales aún no se han recuperado plenamente de la DANA de 2024. Los hogares que tramitaron reclamaciones a los seguros podrían ver reabiertos sus expedientes, las pymes del sector primario y del turismo de interior perderían de nuevo ingresos críticos en temporada alta y los autónomos que volvieron a la normalidad tras recibir ayudas iniciales se enfrentarían de nuevo a la incertidumbre. Esta inestabilidad puede traducirse en migración temporal de trabajadores, aumento del paro en economías locales dependientes del sector primario y ralentización de la reconstrucción social (The Guardian).

  1. Agravamiento del daño ambiental

Las intervenciones de emergencia han empleado grandes cantidades de áridos y han adoptado medidas provisionales en los cauces y las riberas. Una nueva inundación arrastraría sedimentos contaminados, dificultaría la recuperación de los ecosistemas fluviales y aceleraría la pérdida de biodiversidad. Según estudios del Joint Research Centre, la combinación de construcciones urgentes y posteriores avenidas pone en riesgo la productividad primaria del litoral mediterráneo, lo que podría suponer pérdidas anuales de hasta 4700 millones de euros en el sector pesquero si no se implementan medidas de adaptación más eficaces (joint-research-centre.ec.europa.eu).

  1. Erosión de la confianza ciudadana y gobernanza

Encuestas recientes indican que más del 65 % de las personas afectadas considera que la respuesta institucional es insuficiente. Un segundo episodio destructivo reforzaría la percepción de incapacidad de las administraciones, lo que desencadenaría protestas ciudadanas y obstaculizaría la aprobación de nuevos créditos en las Cortes y en Les Corts. La escasa coordinación inicial entre los distintos niveles de gobierno en 2024 sentaría un precedente de fragmentación política que dificultaría tanto la gestión de la crisis como la aplicación de soluciones a medio plazo (eea.europa.eu).

  1. Consecuencias sobre la salud mental y sanitaria

El síndrome postraumático de las víctimas y supervivientes de la DANA de 2024 aún no se ha tratado en profundidad. Un nuevo impacto reactivaría el estrés colectivo, incrementaría la demanda de atención psicológica y tensionaría un sistema sanitario que ya está volcado en equilibrar la recuperación y las campañas de salud pública. La EEA advierte de que los efectos de las inundaciones repetidas no solo incluyen lesiones físicas, sino también trastornos mentales, infecciones y problemas crónicos derivados de la exposición prolongada a entornos contaminados (eea.europa.eu).

Conclusión

La probabilidad de una nueva DANA en otoño de 2025 supone un riesgo multidimensional que compromete obras en curso, presiona las finanzas públicas, frena la recuperación socioeconómica, daña el medio ambiente, debilita la confianza institucional y agrava la carga sobre la salud mental y física de la población. Solo mediante un enfoque preventivo que combine adaptación estructural, innovación en sistemas de alerta temprana y planificación urbanística, la Comunidad Valenciana podrá afrontar un nuevo evento de este tipo sin sucumbir a un «efecto multiplicador» de crisis.

Os paso a continuación una entrevista que me han hecho en Hoy por hoy Comunitat Valenciana, de la Cadena Ser y un enlace a la noticia. Espero que os sea de interés.

https://cadenaser.com/comunitat-valenciana/2025/07/15/9-meses-despues-de-la-dana-la-legislacion-urbanistica-sigue-sin-cambios-radio-valencia/

Referencias

  • European Environment Agency, Extreme weather: floods, droughts and heatwaves (eea.europa.eu)
  • Joint Research Centre, Facing increasing river flood risk in Europe (joint-research-centre.ec.europa.eu)
  • Reuters, Extreme weather could cause 5% drop in euro zone GDP (Reuters)
  • The Guardian, Are we heading for ‘managed retreat’? (The Guardian)
  • EEA, Climate change poses increasingly severe risks (eea.europa.eu)

RESILIFE: Optimización resiliente de estructuras híbridas en condiciones extremas

En este artículo se explica el proyecto RESILIFE, cuyos investigadores principales son Víctor Yepes y Julián Alcalá, de la Universitat Politècnica de València. Se trata de un proyecto de investigación de carácter internacional en el que también colaboran profesores de Brasil, Chile y China. Además, se están realizando varias tesis doctorales de estudiantes de Cuba, Perú, México y Ecuador, así como de estudiantes españoles. A continuación, se describe brevemente el proyecto y se incluye una comunicación reciente donde se explica con más detalle.

El proyecto RESILIFE se centra en optimizar de forma resiliente el ciclo de vida de estructuras híbridas y modulares para conseguir una alta eficiencia social y medioambiental, especialmente en condiciones extremas. La investigación aborda la necesidad de diseñar, construir y mantener infraestructuras que puedan resistir y recuperarse rápidamente de desastres naturales o provocados por el ser humano, minimizando las pérdidas y el impacto en la sociedad y el medioambiente. Para ello, el estudio propone utilizar inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos en un enfoque multicriterio. El objetivo es mejorar la seguridad, reducir costes y optimizar la recuperación, alineándose con los Objetivos de Desarrollo Sostenible (ODS). La metodología integral incluye el análisis del ciclo de vida, así como la aplicación de lógica neutrosófica y redes bayesianas para la toma de decisiones.

¿Qué problema aborda el proyecto RESILIFE y por qué es urgente?

El proyecto RESILIFE aborda el desafío crítico que supone diseñar y mantener infraestructuras resilientes y sostenibles frente a desastres naturales y provocados por el ser humano. La urgencia es evidente debido a las enormes pérdidas humanas y económicas causadas por estos eventos (más de 1,1 millones de muertes y 1,5 billones de dólares en pérdidas entre 2003 y 2013), lo que subraya la necesidad de estructuras de alto rendimiento que protejan vidas y economías, al tiempo que se alinean con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas. Además, los errores de diseño y construcción, así como la falta de mantenimiento, han demostrado ser causas significativas de colapso estructural, y solo el 50 % de las reparaciones de hormigón resultan efectivas en Europa.

¿Cuál es el objetivo principal de RESILIFE?

El objetivo general del proyecto RESILIFE es optimizar el diseño, el mantenimiento y la reparación de estructuras híbridas y modulares (MMC) de alta eficiencia social y medioambiental para que puedan resistir condiciones extremas. Para ello, se deben abordar problemas complejos de toma de decisiones en los ámbitos público y privado, integrando criterios de sostenibilidad social y medioambiental durante todo el ciclo de vida de las estructuras y teniendo en cuenta la variabilidad e incertidumbre inherentes al mundo real. El objetivo es que estas estructuras sean tan seguras como las tradicionales, pero con una mayor capacidad de recuperación rápida y un menor impacto social y medioambiental.

 

¿Qué tipos de estructuras son el foco de RESILIFE y por qué?

El proyecto se centra en estructuras híbridas (que combinan, por ejemplo, acero y hormigón) y en estructuras basadas en métodos modernos de construcción (MMC), especialmente las modulares. Estas estructuras se han elegido como objeto de estudio debido a su gran potencial para mejorar la resiliencia estructural, la eficiencia en la construcción (al reducir las interrupciones en obra y mejorar el control de calidad) y la sostenibilidad. A pesar de sus ventajas, se han identificado lagunas en la investigación sobre su optimización para eventos extremos y su aplicación en estructuras complejas, aspectos que el proyecto RESILIFE busca subsanar.

¿Qué metodologías innovadoras utiliza RESILIFE para lograr sus objetivos?

RESILIFE emplea un enfoque multidisciplinario e innovador que integra diversas técnicas avanzadas:

¿Cómo aborda RESILIFE la incertidumbre y la variabilidad en el diseño y mantenimiento de estructuras?

El proyecto aborda la incertidumbre y la variabilidad mediante varias estrategias:

  • Análisis de funciones de distribución de eventos extremos: Para el diseño óptimo basado en fiabilidad.
  • Metamodelos y metaheurísticas híbridas basadas en fiabilidad: Permiten manejar la aleatoriedad de los parámetros y asegurar que los proyectos optimizados no sean inviables ante pequeños cambios en las condiciones.
  • Técnicas de decisión multicriterio (lógica neutrosófica y redes bayesianas): Integran aspectos inciertos y criterios subjetivos en la toma de decisiones.
  • Análisis de sensibilidad: De los escenarios presupuestarios y las hipótesis del ciclo de vida para identificar las mejores prácticas.

¿Qué se entiende por «resiliencia» en el contexto de RESILIFE y cómo se cuantifica?

En el contexto de RESILIFE, la resiliencia se define como la capacidad de una estructura para resistir eventos extremos, mantener su funcionalidad o recuperarla rápidamente con reparaciones mínimas tras sufrir daños, y con un bajo coste social y medioambiental. El objetivo es ir más allá de la simple resistencia y centrarse en la capacidad de adaptación y recuperación. El proyecto tiene como objetivo desarrollar procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas, un aspecto que actualmente presenta una laguna en la investigación. Esto incluye tener en cuenta la funcionalidad técnico-socioeconómica y los impactos a lo largo de toda su vida útil.

¿Qué tipo de casos de estudio se aplican en la metodología RESILIFE?

La metodología de RESILIFE se aplica a varios casos de estudio clave:

  • Optimización de pórticos de edificios altos: Con estructura de acero híbrido y hormigón armado, sometidos a un fuerte incremento de temperatura, o ante el fallo completo de soportes para evitar el colapso progresivo.
  • Viviendas sociales prefabricadas en zonas sísmicas: Optimizando su resistencia a acciones extremas y su capacidad de reparación rápida.
  • Mantenimiento y reparación de patologías: Resultantes de eventos extremos en diversas estructuras.
  • Otras estructuras como puentes mixtos y estructuras modulares: Ampliando el alcance más allá de las viviendas. Estos casos de estudio permiten validar la aplicabilidad de las metodologías propuestas en situaciones reales y complejas.

¿Cuáles son las principales contribuciones esperadas de RESILIFE a la ingeniería estructural y la sostenibilidad?

Las principales contribuciones esperadas de RESILIFE son:

  • Desarrollo de soluciones constructivas innovadoras: Como conexiones especiales y estructuras fusibles para aumentar la resiliencia y evitar el colapso progresivo.
  • Formulación de metodologías de participación social: Para integrar criterios objetivos y subjetivos en decisiones multicriterio.
  • Propuesta de técnicas de optimización multiobjetivo avanzadas: Basadas en metaheurísticas híbridas de deep learning, teoría de juegos y fiabilidad.
  • Introducción de nuevas métricas: Que prioricen soluciones resilientes en la frontera de Pareto.
  • Identificación de políticas presupuestarias efectivas: Y definición de buenas prácticas de diseño, reparación y mantenimiento robusto en construcciones MMC y estructuras híbridas.
  • Avances en la modelización y evaluación: De la sostenibilidad a largo plazo y el impacto ambiental de las infraestructuras, contribuyendo a normativas y software de diseño más eficientes.

Pincha aquí para descargar

Glosario de términos clave

  • Resiliencia (estructural): Capacidad de una estructura para absorber, resistir, adaptarse y recuperarse de un evento extremo, manteniendo o recuperando su funcionalidad rápidamente y con costes mínimos.
  • Estructuras híbridas: Estructuras que combinan dos o más materiales estructurales diferentes, como acero y hormigón, para optimizar sus propiedades y rendimiento.
  • Estructuras modulares: Estructuras compuestas por unidades o módulos prefabricados que se ensamblan en el lugar de la construcción, ofreciendo ventajas en velocidad de construcción y control de calidad.
  • Eventos extremos: Desastres naturales (terremotos, tsunamis, inundaciones) o provocados por humanos (explosiones, impactos) que causan daños significativos a las estructuras y la sociedad.
  • Optimización del ciclo de vida: Proceso de diseño, construcción, mantenimiento y reparación de una estructura, considerando su impacto total (económico, social, ambiental) a lo largo de toda su vida útil.
  • Sostenibilidad: Principio que busca satisfacer las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, integrando aspectos ambientales, sociales y económicos.
  • Inteligencia artificial (IA): Campo de la informática que dota a las máquinas de la capacidad de aprender, razonar y resolver problemas, utilizada aquí para evaluar y mejorar la resiliencia.
  • Metaheurísticas híbridas: Algoritmos de optimización que combinan diferentes técnicas heurísticas o metaheurísticas para encontrar soluciones eficientes a problemas complejos, especialmente en la optimización multiobjetivo.
  • Aprendizaje profundo (Deep Learning – DL): Subcampo del aprendizaje automático que utiliza redes neuronales artificiales con múltiples capas para aprender representaciones de datos, aplicado para mejorar la toma de decisiones y reducir tiempos de cálculo.
  • Teoría de juegos: Rama de las matemáticas que estudia las interacciones estratégicas entre agentes racionales, aplicada en la optimización multiobjetivo para el diseño de estructuras.
  • Lógica neutrosófica: Marco matemático para tratar la indeterminación y la inconsistencia, utilizado en la toma de decisiones multicriterio para manejar la incertidumbre.
  • Redes bayesianas: Modelos gráficos probabilísticos que representan relaciones de dependencia condicional entre variables, empleadas en el análisis multicriterio y la gestión de incertidumbre.
  • Colapso progresivo: Fenómeno en el cual un daño inicial localizado en una estructura se propaga a otras partes, llevando al colapso desproporcionado de una gran porción o de toda la estructura.
  • Modern Methods of Construction (MMC): Métodos de construcción modernos que incluyen tecnologías de prefabricación, construcción modular e impresión 3D, buscando mayor eficiencia y control de calidad.
  • BIM (Building Information Modeling / Modelos de Información en la Construcción): Proceso de creación y gestión de un modelo digital de un edificio o infraestructura, que facilita la integración del proyecto estructural y la toma de decisiones a lo largo del ciclo de vida.
  • Metamodelo (o modelo subrogado): Modelo simplificado de un sistema complejo que permite realizar cálculos más rápidos y eficientes, crucial para reducir los tiempos de computación en la optimización.
  • Diseño óptimo basado en fiabilidad: Enfoque de diseño que considera la probabilidad de fallo y las incertidumbres inherentes para optimizar las estructuras, garantizando un nivel de seguridad predefinido.
  • Frontera de Pareto: Conjunto de soluciones óptimas en problemas de optimización multiobjetivo, donde ninguna de las funciones objetivo puede mejorarse sin degradar al menos otra función objetivo.

Agradecimientos:

Grant PID2023-150003OB-I00 funded by MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund (ERDF), a program of the European Union (EU).

Robustez estructural y colapso progresivo: claves para entender y proteger nuestras construcciones

Colapso de una torre de viviendas en Ronan Point (Reino Unido). By Derek Voller, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=59931718

La robustez estructural es la cualidad que permite a un edificio o puente soportar eventos inesperados —un fallo aislado, un impacto, una explosión—sin que ello provoque un colapso generalizado. Con el fin de aclarar el tema, se plantea la siguiente hipótesis: ¿qué ocurriría si un edificio perdiera de forma repentina uno de sus pilares portantes? En caso de que el diseño del edificio sea adecuado, las cargas que anteriormente transmitía dicho pilar se distribuirán de manera alternativa entre los elementos restantes, evitando así su colapso total. La capacidad de «resistir a contracorriente» ante situaciones inusuales se denomina robustez, constituyendo una línea de defensa fundamental para garantizar la seguridad de las personas y la continuidad del uso de la infraestructura.

El concepto puede resultar abstracto, pero es suficiente con considerar ejemplos dramáticos del pasado: en 1968, el colapso de una torre de viviendas en Ronan Point (Reino Unido) se originó por la explosión de una bombona de gas en un piso. Un fallo local aparentemente limitado desencadenó la caída de varias plantas, debido a la falta de mecanismos suficientes para redirigir las cargas. Por el contrario, un diseño sólido y bien fundamentado prevé esa posibilidad y mantiene la estructura del edificio en pie incluso tras el daño inicial, minimizando el número de víctimas y la magnitud del desastre.

Dentro de la robustez, se identifican diversas cualidades fundamentales. La redundancia implica disponer de múltiples vías para garantizar la llegada de las cargas al terreno. En caso de una interrupción en una de las vías, las demás están preparadas para asumir la carga de inmediato. La ductilidad se define como la capacidad de los materiales —como el acero, el hormigón armado o la madera— para deformarse sin quebrarse bruscamente. Esta «flexibilidad» les permite absorber la energía generada por impactos o terremotos, evitando así roturas instantáneas. La integridad estructural se define como la continuidad de todos los elementos conectados, de modo que las vigas, columnas y losas formen un conjunto que trabaje armónicamente y no se separe ante un esfuerzo puntual.

El colapso progresivo es un proceso en el que un fallo inicial genera otros a su alrededor, extendiéndose como una fiebre que consume toda la estructura. Analogía: el desplome de la primera ficha de dominó puede desencadenar la caída de todas las demás. En el ámbito de la ingeniería estructural, se busca evitar dicha reacción en cadena. Para ello, se implementan técnicas de «atado» o «conexión reforzada», mediante las cuales se une las vigas y columnas con armaduras continuas o refuerzos en puntos críticos. De esta manera, en caso de que falte un elemento, el resto del sistema no se ve comprometido.

En el ámbito de la ingeniería, la incorporación de la robustez en los proyectos se aborda mediante diversas estrategias. Una de las metodologías más eficaces consiste en anticipar los posibles escenarios de daño, tales como impactos de vehículos, explosiones accidentales o errores de construcción. Posteriormente, se verifica mediante modelos simplificados que la estructura mantiene su estabilidad incluso cuando falta un pilar o una viga. Otra estrategia prescriptiva consiste en el refuerzo de elementos clave, tales como las columnas exteriores o los núcleos de las escaleras, mediante la incorporación de armaduras o perfiles metálicos de mayor sección, a fin de actuar como «pilares de reserva» que soporten las cargas críticas.

La normativa europea, establecida en los Eurocódigos, ha establecido durante años la exigencia de que los edificios posean la capacidad de resistir sin colapsar de manera desproporcionada ante acciones accidentales. Es importante destacar que esta medida no implica tener que afrontar situaciones de alto riesgo, como bombardeos o terremotos de gran intensidad. En cambio, se refiere a la capacidad del edificio para resistir eventos menos probables pero potencialmente significativos, como la explosión de una tubería de gas o el choque de un camión contra un pilar. Para ello, se establecen diversos niveles de severidad del daño y se implementan criterios de diseño más o menos rigurosos, en función del riesgo para las personas y el entorno.

En la práctica, estos requisitos se traducen en aspectos constructivos específicos, tales como la unión de las vigas de forjado a las vigas principales y a los muros de cerramiento, la instalación de estribos continuos en las columnas para mejorar su comportamiento ante daños localizados o la previsión de refuerzos metálicos en los puntos de unión más expuestos. Asimismo, se recomienda el empleo de materiales con suficiente ductilidad, como aceros estructurales de alta deformabilidad, y técnicas de construcción que garanticen conexiones firmes, tales como soldaduras completas, atornillados de alta resistencia o conectores especiales en estructuras de madera.

Estos principios, además de aplicarse a la obra nueva, también se emplean en el refuerzo de edificios existentes. En el proceso de rehabilitación de estructuras antiguas, con frecuencia se implementa la adición de pórticos metálicos interiores o el refuerzo de las conexiones de hormigón armado con fibras de carbono, con el propósito de incrementar la ductilidad. En el caso de los puentes, se instalan amortiguadores o cables adicionales que permitan la redistribución de esfuerzos en caso de rotura de un tirante. El objetivo principal es la integración de elementos de seguridad en el sistema portante.

En resumen, la robustez estructural es un enfoque global que integra el diseño conceptual, el análisis de riesgos, la definición de escenarios y los detalles constructivos, con el objetivo de evitar que un fallo puntual derive en un colapso mayor. Es imperativo comprender el colapso progresivo y aplicar medidas de redundancia, ductilidad e integridad —junto a estrategias prescriptivas y de análisis directo—. De esta manera, nuestros edificios y puentes se convierten en sistemas más seguros, preparados para afrontar lo imprevisto y reducir al máximo las consecuencias de cualquier incidente.

Tómese un momento para consultar el siguiente texto, que contiene información adicional relevante para su referencia. El presente informe, elaborado por la EU Science Hub, en consonancia con los Eurocódigos, aborda el tema de la resistencia estructural, con el propósito de prevenir colapsos progresivos y desproporcionados en estructuras tales como edificios y puentes. Por favor, proceda a analizar las directrices de diseño vigentes en Europa y en otros países, identificando fortalezas y debilidades de las normativas actuales. El documento propone nuevas estrategias de diseño, como métodos mejorados de fuerza de atado horizontal y consideraciones sobre rutas de carga alternativas, y aborda la importancia de tener en cuenta el envejecimiento, el deterioro y el diseño multirriesgo. Se presentan ejemplos ilustrativos de aplicación a diversas estructuras.

Pincha aquí para descargar

Glosario de términos clave

  • Robustez (estructural): Capacidad o propiedad de un sistema para evitar una variación desproporcionada del rendimiento estructural (rendimiento del sistema) con respecto al daño correspondiente (perturbación del sistema).
  • Vulnerabilidad: Describe el grado de susceptibilidad de un sistema estructural a alcanzar un determinado nivel de consecuencias ante un evento peligroso dado.
  • Daño admisible (damage tolerance): Capacidad de un sistema estructural para soportar un determinado nivel de daño sin perder el equilibrio con las cargas aplicadas.
  • Continuidad: Conexión continua de los miembros de un sistema estructural.
  • Ductilidad: Capacidad de un sistema estructural para soportar las cargas aplicadas disipando energía plástica.
  • Integridad: Condición de un sistema estructural para permitir la transferencia de fuerzas entre los miembros en caso de eventos accidentales.
  • Incertidumbres: Estado de información deficiente, por ejemplo, relacionada con la comprensión o el conocimiento de un evento, su consecuencia o probabilidad.
  • Probabilidad: Expresión matemática del grado de confianza en una predicción.
  • Fiabilidad (reliability): Medida probabilística de la capacidad de un sistema estructural para cumplir con requisitos de diseño específicos. La fiabilidad se expresa comúnmente como el complemento de la probabilidad de falla.
  • Seguridad estructural: Calidad de un sistema estructural, referida a la resistencia, estabilidad e integridad de una estructura para soportar los peligros a los que es probable que esté expuesta durante su vida útil.
  • Riesgo: Una medida de la combinación (generalmente el producto) de la probabilidad o frecuencia de ocurrencia de un peligro definido y la magnitud de las consecuencias de la ocurrencia.
  • Redundancia: La capacidad del sistema para redistribuir la carga que ya no puede soportar algunos elementos dañados y/o deteriorados entre sus miembros.
  • Peligro: Amenaza excepcionalmente inusual y severa, por ejemplo, una posible acción anormal o influencia ambiental, resistencia o rigidez insuficiente, o desviación perjudicial excesiva de las dimensiones previstas.
  • Escenario peligroso: Serie de situaciones, transitorias en el tiempo, que un sistema podría experimentar y que pueden poner en peligro el propio sistema, a las personas y al medio ambiente.
  • Consecuencias del fallo: Los resultados o impactos de un fallo estructural pueden ser directos (daño a elementos afectados directamente) o indirectos (fallo parcial o total del sistema subsiguiente).
  • Análisis por presión-impulso (pressure–impulse analysis): Método utilizado para evaluar el rendimiento y el daño de elementos estructurales individuales bajo carga dinámica, definido por curvas iso-daño que relacionan la presión y el impulso.
  • Capacidad de diseño (capacity design): Un principio de diseño sísmico que establece una jerarquía de resistencias de los miembros para garantizar que las rótulas plásticas se formen en las ubicaciones deseadas, típicamente en las vigas en lugar de en las columnas (regla columna débil-viga fuerte – SCWB).
  • Factor de robustez R(𝜌, Δ): Un factor propuesto para cuantificar la robustez estructural, que relaciona el indicador de rendimiento residual (𝜌) con el índice de daño (Δ), a menudo mediante un parámetro de forma (𝛼).
  • Atados (ties): Elementos o disposiciones utilizados en el diseño estructural para proporcionar resistencia a la tracción y mejorar la robustez, especialmente en caso de pérdida de un elemento vertical de soporte de carga. Pueden ser horizontales o verticales.

Referencias:

MAKOOND, N.; SETIAWAN, A.; BUITRAGO, M., ADAM, J.M. (2024). Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). DOI:10.1038/s41586-024-07268-5

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

Ya son 6 meses desde el desastre de la DANA en Valencia

Hoy se cumplen seis meses desde aquel fatídico 29 de octubre de 2024, en el que una inundación catastrófica causó cientos de muertes y graves daños materiales en varias comunidades autónomas, pero especialmente, en la valenciana.

Ahora estamos en fase de reconstrucción. A este respecto, os paso algunas reflexiones que he realizado y también unos apuntes en prensa escrita sobre este tema. Espero que el mensaje vaya calando.

 

https://theconversation.com/la-ingenieria-ante-la-dana-la-reconstruccion-no-basta-si-se-repiten-los-errores-del-pasado-250852

https://www.elperiodico.com/es/sociedad/20250427/victor-yepes-catedratico-ingenieria-dana-critico-construccion-116784837

https://www.laprovincia.es/sociedad/2025/04/27/victor-yepes-catedratico-ingenieria-dana-116784827.html

https://www.farodevigo.es/sociedad/2025/04/27/victor-yepes-catedratico-ingenieria-dana-116784828.html

https://www.eldia.es/sociedad/2025/04/27/victor-yepes-catedratico-ingenieria-dana-116784831.html

https://www.diariodeibiza.es/sociedad/2025/04/27/victor-yepes-catedratico-ingenieria-dana-116784834.html

https://www.laopiniondemurcia.es/sociedad/2025/04/27/seis-meses-dana-reconstruccion-dimensiones-historicas-millar-infraestructuras-dana-116781571.html

https://www.levante-emv.com/comunitat-valenciana/2025/04/27/reconstruccion-dana-construimos-igual-volvera-ocurrir-catastrofe-repensar-planificacion-116721432.html

 

Jornada sobre infraestructuras resilientes al clima

El Colegio de Ingenieros de Caminos, Canales y Puertos organizó una jornada sobre Infraestructuras Resilientes al Clima el 4 de abril en el Auditorio Agustín de Betancourt. Estas jornadas tan interesantes se grabaron en un vídeo, que ahora os dejo.

El vídeo, titulado «Jornada sobre Infraestructuras Resilientes al Clima», es un recurso muy valioso que aborda la creciente necesidad de desarrollar infraestructuras que puedan resistir y adaptarse a los efectos del cambio climático.

Durante la jornada, se presentaron diferentes puntos de vista sobre cómo la ingeniería civil puede hacer frente a estos desafíos, resaltando la importancia de la resiliencia climática en la planificación y gestión de infraestructuras. Y ahora, vamos a echar un vistazo más de cerca a todo lo que se habló en la jornada.

 

 

 

1. Importancia de la resiliencia climática

La resiliencia climática se ha convertido en un concepto central en la planificación de infraestructuras, debido a la creciente vulnerabilidad de las comunidades ante eventos climáticos extremos.

Los impactos del cambio climático, tales como huracanes, inundaciones y sequías, han aumentado en frecuencia e intensidad. Estos fenómenos no solo afectan a las infraestructuras físicas, sino que también tienen repercusiones sociales y económicas significativas, que incluyen la pérdida de vidas, desplazamientos forzados y daños económicos.

A modo ilustrativo, en la jornada se expusieron ejemplos de comunidades que han adoptado soluciones resilientes, tales como sistemas de drenaje mejorados, infraestructura verde y edificaciones diseñadas para resistir eventos extremos. Estos ejemplos ponen de manifiesto los beneficios tangibles a largo plazo que conlleva la inversión en resiliencia.

2. Oportunidades profesionales en ingeniería civil

La jornada puso de manifiesto que la búsqueda de infraestructuras resilientes está generando nuevas oportunidades profesionales para los ingenieros civiles.

Se evidenció una demanda de especialistas debido a la necesidad imperante de adaptación al cambio climático, lo que ha generado una demanda de expertos en diversas áreas, tales como la gestión de recursos hídricos, la planificación urbana sostenible y la ingeniería de infraestructuras.

Se subrayó la relevancia de la educación continua y la formación especializada para que los profesionales puedan afrontar los desafíos emergentes en este campo. Los programas de capacitación y certificación en resiliencia climática son de vital importancia para la preparación de los ingenieros del futuro.

3. Retos normativos y de implementación

Uno de los asuntos más críticos que se ha planteado es la necesidad imperativa de adaptar las normativas vigentes para facilitar la implementación de infraestructuras resilientes.

Un número significativo de normativas vigentes no han sido concebidas para hacer frente a los riesgos asociados al cambio climático. Esta situación puede generar obstáculos para la implementación de soluciones innovadoras y efectivas.

En este sentido, se destacó la importancia de la colaboración interdisciplinaria entre ingenieros, urbanistas, arquitectos y responsables políticos. Un enfoque interdisciplinario puede ayudar a crear un marco normativo que apoye la resiliencia y facilite la implementación de proyectos.

Finalmente, se presentan ejemplos de mejores prácticas de otras regiones que han logrado adaptar sus normativas con éxito, lo que puede servir de modelo para otras comunidades.

4. Ingeniería humanitaria y adaptación a emergencias

En las jornadas también se subrayó el rol de la ingeniería humanitaria en el desarrollo de infraestructuras resilientes.

En lo que respecta a los denominados «Proyectos de respuesta rápida», se debatieron enfoques para el diseño de infraestructuras que puedan ser implantadas con celeridad en situaciones de emergencia, garantizando que las comunidades afectadas tengan acceso a servicios básicos de manera inmediata.

Por último, se abordó la importancia de la capacitación y los recursos, así como la formación de equipos de respuesta a emergencias y la disponibilidad de recursos adecuados, elementos esenciales para asegurar que las infraestructuras puedan soportar eventos extremos y facilitar la recuperación.

5. Educación y conciencia social

La jornada puso de manifiesto la importancia de la educación y la comunicación en la promoción de infraestructuras resilientes.

Es imperativo que la sociedad comprenda la relevancia de invertir en infraestructuras resilientes. En este sentido, la educación desempeña un papel crucial, ya que permite a las comunidades identificar los beneficios a largo plazo de tales inversiones.

Se propusieron programas de sensibilización que involucren a la comunidad en la planificación y diseño de infraestructuras, fomentando un sentido de propiedad y responsabilidad.

6. Financiación de infraestructuras resilientes

La financiación constituye uno de los desafíos más significativos en el desarrollo de infraestructuras resilientes.

En lo que respecta a las fuentes de financiación, se presentan diversas estrategias para asegurar fondos, tales como la colaboración entre los sectores público y privado, así como la búsqueda de fondos internacionales destinados a proyectos de adaptación y mitigación del cambio climático.

También se presentaron ejemplos de modelos de inversión exitosos que han permitido financiar proyectos de infraestructura resiliente, destacando la importancia de demostrar el retorno de inversión a largo plazo.

7. Implementación de directivas y normativas en España

La jornada abordó la implantación de la directiva de gestión de avenidas en España, cuyo objetivo es el de mejorar la preparación y respuesta ante inundaciones.

Se abordó la cuestión de las dificultades que enfrentan las autoridades para aplicar estas directivas de manera efectiva, así como las adaptaciones necesarias para enfrentar fenómenos climáticos inesperados.

Finalmente, se presentaron las lecciones aprendidas de la implantación de estas directivas, así como recomendaciones para mejorar la efectividad de las políticas existentes.

8. Innovaciones tecnológicas y soluciones sostenibles

La jornada destacó la importancia de la tecnología en el desarrollo de infraestructuras resilientes. También se abordó el tema de tecnologías emergentes, tales como la inteligencia artificial y el modelado predictivo, que tienen el potencial de ayudar a anticipar y gestionar los riesgos climáticos.

En lo que respecta a la Infraestructura Verde, se expusieron soluciones basadas en la integración de la naturaleza, como los techos verdes y los sistemas de drenaje sostenible, que se presentan como una estrategia eficaz para aumentar la resiliencia de las infraestructuras.

9. Perspectivas futuras y llamado a la acción

La jornada concluyó con una exhortación a la acción dirigida a todos los profesionales implicados en la planificación y gestión de infraestructuras.

Se hizo especial hincapié en que la responsabilidad de hacer frente al cambio climático es compartida y requiere la colaboración de todos los sectores de la sociedad.

Asimismo, se instó a los profesionales a adoptar una visión a largo plazo en la planificación de infraestructuras, contemplando no solo las necesidades actuales, sino también los desafíos futuros que plantea el cambio climático.

Conclusión

La jornada sobre infraestructuras resilientes al clima constituye un llamamiento a la acción dirigido a los profesionales de la ingeniería civil y otros actores implicados en la planificación y gestión de infraestructuras. La adaptación al cambio climático no solo es una responsabilidad, sino una oportunidad para innovar y crear un futuro más seguro y sostenible. Para ello, resulta imprescindible la colaboración, la educación y la inversión, que son pilares fundamentales para lograr infraestructuras que no solo resistan los desafíos actuales, sino que también estén preparadas para los retos del futuro. Este enfoque integral resulta imperativo para asegurar que las comunidades no solo sobrevivan, sino que prosperen en un mundo cada vez más afectado por el cambio climático.

Aquí tenéis un mapa conceptual de la jornada.

Pero creo que lo mejor es que, si tenéis un rato, oigáis de primera mano todas y cada una de las intervenciones en este vídeo. Espero que os sea de interés.

Glosario de términos clave

  • Adaptación al Cambio Climático: Proceso de ajuste a los impactos actuales o esperados del cambio climático. En el contexto de las infraestructuras, implica modificar su diseño, construcción y operación para soportar condiciones climáticas extremas.
  • Resiliencia (Climática): Capacidad de un sistema, comunidad o infraestructura para anticipar, resistir, adaptarse y recuperarse de eventos adversos del clima.
  • Dana (Depresión Aislada en Niveles Altos): Fenómeno meteorológico que puede causar lluvias torrenciales e inundaciones severas, mencionado en el texto como causa de trágicas consecuencias.
  • Niveles Preindustriales: Periodo de referencia (antes de la Revolución Industrial) utilizado para medir el aumento de la temperatura global debido a las actividades humanas.
  • Fenómenos Meteorológicos Extremos: Eventos climáticos de intensidad inusual, como olas de calor, sequías, inundaciones torrenciales y tormentas severas.
  • Infraestructuras Críticas: Infraestructuras esenciales para el funcionamiento de la sociedad y la economía, como las de transporte, energía, agua y telecomunicaciones, cuya afectación tiene consecuencias significativas.
  • Plan Nacional de Adaptación al Cambio Climático (PNACC): Marco de acción en España para integrar el cambio climático en la planificación sectorial, incluyendo las infraestructuras.
  • Ley de Cambio Climático y Transición Energética (2021): Ley española que establece objetivos de reducción de emisiones y promueve la adaptación al cambio climático en diversos sectores.
  • Directiva de Resiliencia de Infraestructuras Críticas: Normativa de la Unión Europea que obliga a los Estados miembros a adoptar estrategias para mejorar la resiliencia de sus infraestructuras esenciales.
  • Seopán: Asociación de Empresas Constructoras y Concesionarias de Infraestructuras, mencionada por su análisis de inversión en infraestructuras prioritarias.
  • CEDEX (Centro de Estudios y Experimentación de Obras Públicas): Organismo técnico español que realiza estudios y análisis relacionados con la ingeniería civil y el medio ambiente.
  • Cuencas Hidráulicas: Áreas geográficas donde el agua drena hacia un río principal, mencionadas en relación con la planificación hidrológica y la gestión de inundaciones.
  • Soluciones Basadas en la Naturaleza: Enfoques para abordar los desafíos ambientales que utilizan o imitan procesos naturales para proporcionar beneficios tanto para el medio ambiente como para la sociedad.
  • Sistemas de Saneamiento: Infraestructuras urbanas destinadas a la recogida y tratamiento de aguas residuales y pluviales.
  • Vías Separativas: Sistemas de saneamiento en los que las aguas residuales y las aguas pluviales se recogen y transportan por redes de tuberías separadas.
  • Resiliencia Estructural: Capacidad de una estructura para mantener su función y recuperarse después de ser sometida a eventos extremos o perturbaciones.
  • Robustez: Capacidad de una infraestructura o sistema para resistir un evento adverso sin una pérdida significativa de funcionalidad.
  • Rapidez (en Resiliencia): Velocidad con la que un sistema o infraestructura puede recuperarse y restaurar su funcionalidad después de una perturbación.
  • Análisis de Riesgos Climáticos: Evaluación de la probabilidad e impacto potencial de los eventos climáticos adversos sobre las infraestructuras.
  • Marco de Sendai para la Reducción del Riesgo de Desastres (2015-2030): Acuerdo internacional que establece un marco global para la reducción del riesgo de desastres, incluyendo la importancia de invertir en resiliencia.
  • Predicción y Modelos Predictivos: Uso de datos y herramientas para anticipar futuros eventos climáticos y sus posibles impactos.
  • Incertidumbre Profunda: Situación en la que hay una falta de conocimiento sobre las probabilidades o los posibles resultados de un evento.
  • Cisne Negro (Teoría): Término utilizado para describir eventos altamente improbables, de gran impacto y que solo se pueden explicar o predecir en retrospectiva.
  • Disponibilidad: Capacidad de una infraestructura para estar operativa y proporcionar su servicio.
  • Capacidad (en Infraestructura): Volumen o nivel de servicio que una infraestructura puede soportar o manejar.
  • Vulnerabilidad: Susceptibilidad de una infraestructura a sufrir daños o perder funcionalidad debido a un evento climático adverso.
  • Exposición: Grado en que una infraestructura está situada en un área propensa a eventos climáticos adversos.
  • Sensibilidad: Grado en que una infraestructura se ve afectada por un evento climático adverso una vez expuesta a él.
  • Escenarios de Cambio Climático: Proyecciones de posibles futuras condiciones climáticas basadas en diferentes supuestos sobre las emisiones de gases de efecto invernadero.
  • Trayectorias Socioeconómicas Compartidas (SSP): Marcos utilizados en la investigación del cambio climático para describir posibles futuros socioeconómicos y sus implicaciones para las emisiones y la adaptación.
  • Análisis Coste-Beneficio: Método para evaluar la rentabilidad de diferentes opciones de inversión, comparando los costos y beneficios esperados.
  • Gobernanza: Procesos y estructuras para tomar decisiones e implementar acciones, en este contexto, relacionadas con la resiliencia de las infraestructuras.
  • Inventario de Activos: Base de datos que contiene información detallada sobre las infraestructuras y sus componentes.
  • Sistemas de Ayuda a la Decisión: Herramientas informáticas y modelos que asisten en la toma de decisiones complejas, como la gestión de inundaciones o sequías.
  • Llanuras de Inundación Controlada: Áreas designadas para ser inundadas de manera planificada durante eventos de crecida para reducir el riesgo en otras zonas.
  • Probable Maximum Flood (PMF) / Avenida Máxima Probable: Estimación del evento de inundación más severo que es razonablemente posible en un lugar dado.
  • Flash Floods / Crecidas Repentinas: Inundaciones rápidas y violentas que ocurren con poca o ninguna advertencia, a menudo causadas por lluvias torrenciales intensas.
  • Six Sigma: Metodología de gestión de procesos que busca reducir al mínimo la probabilidad de defectos o errores.
  • Poka-yoke: Sistemas a prueba de errores diseñados para prevenir o detectar errores humanos.
  • Consorcio Administrativo: Entidad legal formada por varias administraciones públicas para coordinar y ejecutar acciones conjuntas.
  • Gemelos Digitales: Réplicas virtuales de sistemas o infraestructuras físicas que permiten la simulación y el análisis.
  • Big Data: Conjuntos de datos muy grandes y complejos que pueden ser analizados para revelar patrones y tendencias.
  • Ingeniería Humanitaria: Aplicación de principios y habilidades de ingeniería para abordar crisis humanitarias y promover el bienestar humano.
  • Estacionariedad Climática: Suposición de que las propiedades estadísticas del clima (como las distribuciones de precipitación o temperatura) permanecen constantes a lo largo del tiempo.
  • Análisis Probabilístico: Enfoque para evaluar la probabilidad de ocurrencia de eventos y sus posibles consecuencias.
  • Métodos Semiprobalísticos: Métodos de diseño estructural que utilizan factores de seguridad parciales basados en consideraciones probabilísticas.
  • Trayectorias Adaptativas: Secuencias de medidas de adaptación que se pueden implementar a lo largo del tiempo para hacer frente a los impactos cambiantes del cambio climático.
  • KPIs Financieros (Indicadores Clave de Rendimiento Financiero): Métricas utilizadas para evaluar el desempeño financiero, que pueden incorporarse en el análisis de la resiliencia de las infraestructuras.

Conferencia: Gestión de riesgos en infraestructuras. Estrategias y medidas de resiliencia

Os anuncio mi participación como ponente en la jornada inaugural del curso «Infraestructuras resilientes al clima», que se celebrará el 4 de abril de 2025, de forma presencial y telemática. Se celebrará a las 10:30 h en el Auditorio Agustín de Betancourt de la institución. Este curso está organizado por el Colegio de Ingenieros de Caminos, Canales y Puertos y está patrocinado por FCC Construcción y el Ministerio para la Transición Ecológica y el Reto Demográfico.

La inscripción es gratuita y se puede seguir por streaming. El enlace de inscripción es: Inscripción a la jornada (acceso gratuito)

Durante este acto, de acceso libre, los directores del curso presentarán los contenidos que se abordarán a lo largo de las diversas sesiones formativas. Además, se debatirán los riesgos de las infraestructuras frente al cambio climático, así como las estrategias y medidas de resiliencia que pueden adoptarse.

Esta formación, organizada por el Comité Técnico de Agua, Energía y Cambio Climático del Colegio, tiene como objetivo analizar el impacto del cambio climático y explorar enfoques que faciliten la planificación, diseño, construcción y operación de infraestructuras resilientes al clima.

Os paso mi participación en este vídeo. Espero que os sea de interés.

El impacto del cambio climático en las infraestructuras

DANA OCTUBRE 2024 – Vías del Metro entre Picanya y Paiporta. https://commons.wikimedia.org/

El diseño y la planificación de infraestructuras se han basado históricamente en el análisis de datos climáticos pasados para definir criterios estructurales de seguridad. Sin embargo, la aceleración del cambio climático ha puesto en cuestión la validez de esta metodología y ha obligado a reconsiderar los fundamentos sobre los que se establecen los códigos de construcción y las normativas de diseño. El carácter no estacionario del clima, la creciente magnitud de los eventos meteorológicos extremos y la necesidad de infraestructuras más resilientes han convertido la adaptación al cambio climático en un imperativo técnico y social.

Las estructuras deben garantizar la seguridad de sus ocupantes en condiciones tanto ordinarias como extremas, así como su funcionalidad a lo largo de su ciclo de vida. Es preciso tener en cuenta que la frecuencia y severidad de ciertos fenómenos, como tormentas, inundaciones y variaciones térmicas, ya no pueden preverse con precisión únicamente mediante datos históricos. La integración de modelos de análisis probabilístico y enfoques basados en la fiabilidad estructural representa una vía fundamental para mitigar los riesgos asociados al cambio climático y asegurar la estabilidad y operatividad de infraestructuras críticas en el futuro.

El fin de la estacionariedad climática y sus implicaciones en el diseño estructural

El diseño estructural se ha desarrollado bajo la premisa de que las condiciones climáticas permanecen relativamente estables a lo largo del tiempo, lo que ha permitido definir cargas normativas basadas en registros históricos. No obstante, el cambio climático ha invalidado esta hipótesis al introducir una variabilidad que altera tanto la frecuencia como la intensidad de los fenómenos atmosféricos y compromete la fiabilidad de los métodos de predicción empleados en el ámbito de la ingeniería.

Las estructuras diseñadas bajo códigos convencionales pueden experimentar cargas superiores a las previstas en su diseño original, lo que resulta en un aumento del riesgo estructural y la necesidad de reevaluaciones constantes para garantizar su seguridad. La acumulación de efectos derivados de condiciones climáticas extremas no solo afecta a la estabilidad estructural inmediata, sino que acelera los procesos de deterioro de los materiales y compromete la capacidad de servicio de la infraestructura a largo plazo.

El análisis de la no estacionariedad climática requiere el desarrollo de nuevas herramientas de modelado que permitan proyectar escenarios de carga climática futura con mayor precisión. La variabilidad espacial y temporal de las alteraciones climáticas obliga a establecer criterios de diseño diferenciados según la localización geográfica, la exposición a determinados fenómenos y la importancia funcional de cada infraestructura. En este contexto, la colaboración entre científicos del clima e ingenieros estructurales se erige como un componente esencial para la elaboración de mapas de cargas dinámicos que reflejen las condiciones cambiantes del entorno.

Aumento de cargas climáticas y su impacto en la estabilidad estructural

El cambio climático incide directamente en la magnitud y distribución de las cargas climáticas, lo que supone un desafío significativo para el diseño estructural. El incremento de la temperatura media global y la intensificación de eventos meteorológicos extremos tienen un impacto directo en la resistencia y durabilidad de los materiales de construcción, lo que requiere una revisión exhaustiva de los criterios de diseño para adaptarlos a condiciones más exigentes.

El aumento de la carga de viento, debido a la mayor frecuencia de tormentas severas y huracanes, plantea desafíos particulares para estructuras expuestas a esfuerzos aerodinámicos, tales como rascacielos, puentes y torres de telecomunicaciones. La variabilidad en la dirección y velocidad de los vientos extremos introduce incertidumbre en el diseño convencional, lo que requiere la aplicación de metodologías de análisis probabilístico que permitan anticipar los efectos acumulativos de estas fuerzas sobre los elementos estructurales.

Ciertamente, la carga de nieve y hielo constituye un factor de riesgo cuya evolución en un clima cambiante requiere especial atención. En climas fríos, la combinación de precipitaciones extremas y ciclos de congelación y deshielo genera esfuerzos adicionales sobre cubiertas y soportes, lo que puede ocasionar la fatiga de los materiales y aumentar el riesgo de fallos estructurales. La acumulación de hielo en líneas de transmisión eléctrica y otros elementos de infraestructura crítica puede comprometer su funcionalidad, lo que resalta la necesidad imperante de implementar estrategias de adaptación en el diseño de dichos sistemas.

El aumento del nivel del mar y la intensificación de tormentas costeras representan amenazas crecientes para las infraestructuras situadas en zonas litorales. La erosión del suelo y la intrusión salina pueden afectar la estabilidad de las cimentaciones y las estructuras de contención, mientras que el aumento en la magnitud de las marejadas ciclónicas aumenta el riesgo de colapso en las edificaciones expuestas. Por lo tanto, es esencial adoptar enfoques probabilísticos para estimar las cargas de inundación y considerar criterios de adaptación costera en el diseño estructural, con el fin de mitigar estos efectos y garantizar la seguridad y estabilidad de las infraestructuras en zonas litorales.

Resiliencia estructural y continuidad operativa en escenarios de riesgo creciente

En lo que respecta a la resistencia inmediata de las infraestructuras a eventos climáticos extremos, su capacidad de recuperación y continuidad operativa tras un desastre constituye un aspecto de suma importancia en el contexto del cambio climático. La resiliencia estructural implica no solo garantizar que las edificaciones y redes de transporte soporten cargas excepcionales sin fallar, sino también que puedan volver a estar plenamente operativas en un tiempo razonable tras una interrupción.

La planificación de infraestructuras resilientes requiere un enfoque basado en la funcionalidad tras el desastre, estableciendo criterios de diseño que permitan minimizar los tiempos de inactividad y optimizar los procesos de reparación y reconstrucción. Este enfoque cobra especial relevancia en infraestructuras críticas, tales como hospitales, plantas de tratamiento de agua y redes de energía, cuya operatividad continua resulta esencial para la estabilidad de las comunidades.

El diseño basado en rendimiento (Performance-Based Design, PBD) surge como una herramienta clave para integrar la resiliencia en la ingeniería estructural. A diferencia de los enfoques convencionales basados en requisitos normativos predeterminados, el PBD permite establecer objetivos concretos de rendimiento para cada tipo de estructura, considerando tanto su resistencia ante cargas extremas como su capacidad de recuperación tras eventos disruptivos.

Conclusión: La adaptación de las infraestructuras al cambio climático como una necesidad inaplazable

La evidencia científica sobre el impacto del cambio climático en la infraestructura es concluyente y requiere una revisión exhaustiva de los criterios de diseño estructural. La dependencia exclusiva de datos históricos ya no constituye una estrategia viable en un contexto donde la frecuencia e intensidad de eventos extremos están en constante aumento. Por ello, es necesario implementar análisis probabilísticos, actualizar periódicamente los mapas de cargas climáticas y adoptar estrategias de resiliencia estructural. Estos cambios son fundamentales para garantizar la seguridad y funcionalidad de las infraestructuras en el futuro.

La ingeniería estructural debe evolucionar hacia un enfoque basado en la adaptación y la gestión del riesgo, integrando modelos de predicción climática en el diseño y planificación de nuevas construcciones. La colaboración entre ingenieros, científicos del clima y responsables de políticas públicas será esencial para desarrollar normativas que reflejen la realidad cambiante del entorno y permitan la creación de infraestructuras más seguras y sostenibles.

La adaptación al cambio climático no es únicamente una cuestión técnica, sino una necesidad económica y social que determinará la capacidad de las comunidades para hacer frente a los desafíos del siglo XXI. El diseño estructural del futuro debe asumir este reto con un enfoque proactivo, asegurando que las infraestructuras no solo resistan el clima cambiante, sino que también contribuyan a la estabilidad y el bienestar de la sociedad en su conjunto.

Referencias:

  • ASCE. (2015). Adapting infrastructure and civil engineering practice to a changing climate. Reston, VA: ASCE.
  • ASCE. (2018). Climate-resilient infrastructure: Adaptive design and risk management, MOP 140. Reston, VA: ASCE.
  • ASCE. (2021). Hazard-resilient infrastructures: Analysis and design, MOP 144. Reston, VA: ASCE.
  • Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., et al. (2017). State-of-the-art on multihazard design. Journal of Structural Engineering, 143(10), 03117002.
  • Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change, 5(1), 8–10.
  • Ellingwood, B. R., van de Lindt, J. W., & McAllister, T. (2020). Community resilience: A new challenge to the practice of structural engineering. Structural Magazine, 27(11), 28–30.
  • Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.
  • Eisenhauer, E., Henson, S., Matsler, A., Maxwell, K., Reilly, I., Shacklette, M., Julius, S., Kiessling, B., Fry, M., Nee, R., Bryant, J., Finley, J., & Kieber, B. (2024). Centering equity in community resilience planning: Lessons from case studies. Natural Hazards Forum, Washington, D.C.
  • IPCC (1997). The regional impacts of climate change: an assessment of vulnerability. IPCC, Geneva.
  • McAllister, T., Walker, R., & Baker, A. (2022). Assessment of resilience in codes, standards, regulations, and best practices for buildings and infrastructure systems. NIST Technical Note 2209. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.TN.2209
  • O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., & Warren, R. (2022). Key risks across sectors and regions. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2411–2538). Cambridge University Press. https://doi.org/10.1017/9781009325844.025
  • Poland, C. D. (2009). The resilient city: Defining what San Francisco needs from its seismic mitigation policies. San Francisco Planning and Urban Research Association Report. Earthquake Engineering Research Institute.
  • Vogel, J., Carney, K. M., Smith, J. B., Herrick, C., et al. (2016). Climate adaptation: The state of practice in US communities. The Kresge Foundation and Abt Associates.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.