Seis secretos de la perforación horizontal: la tecnología invisible que construye el mundo bajo tus pies

Figura 1. Esquema de Perforación Horizontal Dirigida

Todos conocemos la estampa: una calle principal cortada, el ensordecedor ruido de la maquinaria, el tráfico desviado durante semanas y zanjas abiertas que suponen un obstáculo constante. Estas son las molestias habituales de las obras urbanas tradicionales, una realidad que asumimos como necesaria para mantener y ampliar las infraestructuras que nos prestan servicio. Sin embargo, bajo nuestros pies se está produciendo una revolución silenciosa. Existe una forma de instalar tuberías esenciales para el agua, el gas, la electricidad o las telecomunicaciones sin que apenas nos demos cuenta: las «tecnologías sin zanja».

Una de las más revolucionarias es la Perforación Horizontal Dirigida (PHD). Aunque su trabajo es invisible, su impacto es monumental. Este artículo revela seis aspectos sorprendentes sobre el funcionamiento de esta tecnología que está transformando el subsuelo de nuestras ciudades de manera más inteligente, rápida y respetuosa con el medio ambiente.

Figura 2. Máquina de perforación horizontal ideada por Leonardo da Vinci, antes de 1495. Fuente: http://trenchless-australasia.com/

1. Una idea renacentista: sus orígenes se remontan a Leonardo da Vinci.

Cuando pensamos en una tecnología tan sofisticada, capaz de perforar kilómetros bajo tierra con precisión centimétrica, la asociamos instintivamente al siglo XXI. La realidad es mucho más sorprendente. La idea conceptual de una máquina de perforación horizontal fue concebida nada menos que por Leonardo da Vinci antes de 1495. Aunque tuvieron que pasar casi cinco siglos para que la tecnología madurara, la primera instalación moderna de PHD con una tubería de acero se llevó a cabo en 1971 para cruzar el río Pájaro, en California.

Es fascinante reflexionar sobre cómo una visión renacentista sentó las bases de una de las técnicas de construcción más avanzadas de nuestro tiempo. Este largo camino de innovación demuestra que a menudo las grandes ideas necesitan siglos para encontrar las herramientas adecuadas para hacerse realidad, conectando el genio de un artista del pasado con las necesidades de la ingeniería del futuro.

2. No se trata solo de evitar zanjas, sino de salvar la vida útil de nuestras ciudades.

El principal beneficio que se asocia a la PHD es la comodidad: evitar el caos de las zanjas abiertas. Sin embargo, su verdadero impacto es mucho más profundo y estratégico. El método tradicional de abrir y cerrar zanjas tiene un coste oculto devastador para nuestras infraestructuras. Según los expertos, la simple apertura de una zanja puede reducir la vida útil de un pavimento en un 30 %. Esto significa que las calles que deberían durar décadas se deterioran prematuramente, lo que obliga a realizar reparaciones costosas y constantes.

Por tanto, el beneficio de la PHD va mucho más allá de la simple conveniencia. Se trata de una decisión económica y ecológica fundamental. Al eliminar la necesidad de excavar, no solo se reducen los plazos de ejecución, el impacto ambiental y las restricciones de tráfico, sino que también se preserva la integridad de la infraestructura urbana existente. En última instancia, esto reduce los costes finales de la obra y protege una de las inversiones públicas más importantes: nuestras calles y carreteras.

3. No se perfora a ciegas, sino que se «navega» bajo tierra con precisión centimétrica.

Una de las ideas erróneas más comunes sobre la perforación horizontal dirigida (PHD) es imaginarla como un proceso de perforación «a ciegas». Nada más lejos de la realidad. La cabeza de perforación es, básicamente, un vehículo teledirigido que se «navega» bajo tierra con una precisión asombrosa. La trayectoria se controla en todo momento mediante sistemas de navegación avanzados, lo que permite alcanzar grandes longitudes con una precisión centimétrica.

Existen tres tipos principales de sistemas para guiar la perforación:

  • «Walk-Over»: similar a un detector de metales muy avanzado, un operario camina por la superficie siguiendo la trayectoria de la cabeza perforadora en tiempo real.
  • «Wire-Line»: un cable en el interior de la sarta de perforación transmite la información de posición.
  • «Gyro Compass»: un sistema giroscópico, similar al utilizado en aeronáutica, permite una navegación autónoma sin necesidad de acceder a la superficie.
Tabla. Diferentes procedimientos de navegación de PHD (IbSTT, 2013).

Esta precisión no es un lujo, sino una necesidad crítica. No solo garantiza que la perforación llegue al punto de salida exacto, sino que también es fundamental para evitar dañar la maraña de servicios soterrados existente (cables de fibra óptica, tuberías de gas y conducciones de agua). Un error podría acarrear «desorbitados costes legales por daños a terceros», convirtiendo una obra eficiente en un desastre económico y de seguridad.

4. El héroe anónimo: El fluido de perforación es mucho más que «lodo».

En cualquier operación de PHD se puede observar un fluido espeso, que a menudo se denomina «mud» o lodo, que circula constantemente. Podría parecer un simple subproducto, pero en realidad es uno de los componentes con mayor ingeniería de todo el proceso y el verdadero héroe anónimo de la operación, ya que cumple cinco funciones cruciales e irremplazables. Su composición se diseña específicamente para la geología del terreno que se va a atravesar y cumple cinco funciones cruciales e irremplazables:

  • Refrigerar las herramientas de corte, que giran a gran velocidad y generan una intensa fricción.
  • Ayudar en el corte del terreno gracias a la alta presión con la que se inyecta (efecto hidrojet).
  • Transportar los detritos (el material excavado) fuera del túnel y mantenerlo limpio.
  • Lubricar tanto la sarta de perforación como la tubería final durante su instalación.
  • Contener y mantener estables las paredes de la perforación, creando una especie de «revestimiento» temporal que evita derrumbes.

Sin este fluido multifuncional, la técnica sería inviable. Garantiza la estabilidad del túnel, la eficiencia del corte y el éxito de la instalación de la tubería.

Figura 3. Escariador. Imágen de Catalana de Perforacions

5. La paradoja de la rapidez: el éxito depende de una planificación meticulosa.

Una de las grandes ventajas de la PHD es su rapidez de ejecución en comparación con los métodos tradicionales. Sin embargo, esta rapidez en la fase de obra es el resultado de una fase de preparación extraordinariamente exhaustiva. En el sector se utiliza una proporción muy reveladora: «1 día de trabajo, 2 de planificación». El éxito no se improvisa, se diseña.

Antes de que entre en funcionamiento la primera máquina, es imprescindible valorar la viabilidad del proyecto mediante estudios previos. Estos incluyen análisis topográficos detallados y, fundamentalmente, estudios geológicos exhaustivos para conocer a la perfección el subsuelo. Estos estudios, realizados por geólogos expertos en la técnica PHD, pueden incluir perforaciones de investigación, prospecciones geofísicas (como el georradar para detectar servicios enterrados) y pruebas de laboratorio de los materiales del terreno. El objetivo es claro: reducir los riesgos de construcción al mínimo y anticiparse a cualquier obstáculo o cambio en el terreno antes de empezar a perforar. Esta fase de preparación es la que garantiza que la «navegación» subterránea sea un éxito y no un desastre, y evita precisamente los «desorbitados costes legales» que se producirían al dañar servicios existentes.

6. Mucho más que tuberías: creando tomas de agua que protegen los ecosistemas marinos.

Si bien la PHD es una aliada clave en entornos urbanos, algunas de sus aplicaciones más innovadoras y con mayor impacto se encuentran en la protección de ecosistemas sensibles. Dos ejemplos de ello son las tecnologías «APPROACH» y «NEODREN®», que utilizan la PHD como herramienta de ingeniería medioambiental.

  • APPROACH permite realizar conexiones tierra-mar, como emisarios o tomas de agua, sin dañar la zona intermareal y submarina vulnerable. La perforación se realiza desde tierra firme y sale directamente en el punto deseado del fondo marino, evitando así cualquier tipo de excavación en la costa o en el lecho marino.
  • NEODREN® es un sistema revolucionario de captación de agua marina. Su genialidad consiste en que, en lugar de una simple toma de agua marina, convierte el propio subsuelo marino en una planta de filtración natural. Se instalan múltiples drenes horizontales desde la costa hasta una capa permeable bajo el lecho marino. Estos drenes funcionan como un pozo de alto volumen que extrae agua de mar después de que esta se haya filtrado lentamente a través de la arena y las rocas, «consiguiéndose un agua de alta calidad, sin turbidez y de caudal constante», ideal para plantas desalinizadoras. Este método elimina por completo la necesidad de realizar excavaciones en el fondo marino.
Figura 4. Neodren®. https://www.catalanadeperforacions.com/es/soluciones/sistema-neodren/neodren-captacion-de-agua-marina/

El impacto ecológico de estas aplicaciones es enorme, tal y como lo resumen los expertos, al ser una técnica subterránea, se evita trabajar en la zona marítima, que es de difícil maniobra y siempre está expuesta a daños causados por temporales, al mismo tiempo que se protegen zonas de especial valor ecológico, como las praderas de posidonia. Así, la PHD trasciende su papel como técnica de construcción para convertirse en una herramienta que permite desarrollar infraestructuras críticas en perfecta armonía con el entorno y proteger los ecosistemas que antes se sacrificaban en nombre del progreso.

Conclusión: la próxima frontera de la construcción ya está aquí.

La perforación horizontal dirigida es mucho más que un método ingenioso para evitar zanjas. Se trata de una disciplina de alta tecnología con una historia sorprendente, una precisión casi quirúrgica y aplicaciones innovadoras que están redefiniendo la construcción moderna. Nos muestra que el futuro de la infraestructura no radica en dominar la superficie, sino en trabajar de manera inteligente y respetuosa con el entorno que se encuentra debajo, lo que hace que nuestras ciudades y costas sean más eficientes, resilientes y sostenibles.

La próxima vez que camines por una calle sin obras ni atascos o disfrutes de una playa virgen, ¿te preguntarás qué maravillas de la ingeniería se están construyendo silenciosamente bajo tus pies?

A continuación, dejo un audio donde se habla del PHD.

También os dejo este vídeo, donde se resumen conceptos importantes. No obstante, en este blog encontrarás muchos más vídeos y artículos sobre este tema de tanto interés.

Referencias:

Allouche, E., Ariaratnam, S., and Lueke, J. (2000). Horizontal Directional Drilling: Profile of an Emerging Industry. Journal of Construction Engineering and Management, Volume 126, No. 1, pp. 68–76.

Ariaratnam, S. T., and Allouche, E. N. (2000). Suggested practices for installations using horizontal directional drilling. Practice Periodical on Structural Design and Construction, Volume 5, No. 4, pp. 142-149.

Ariaratnam, S. T., and Proszek, J. (2006). Legal consequences of damages to underground facilities by horizontal directional drilling. Journal of Professional Issues in Engineering Education and Practice, Volume 132, No. 4, pp. 342-354.

IbSTT Asociación Ibérica de Tecnología SIN Zanja (2013). Manual de Tecnologías Sin Zanja.

Jaganathan, A. P., Shah, J. N., Allouche, E. N., Kieba, M., and Ziolkowski, C. J. (2011). Modeling of an obstacle detection sensor for horizontal directional drilling (HDD) operations. Automation in Construction, Volume 20, No. 8, pp. 1079-1086.

Lubrecht, M. D. (2012). Horizontal directional drilling: A green and sustainable technology for site remediation. Environmental Science & Technology, Volume 46, No. 5, pp. 2484-2489.

Yepes, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

Yepes, V. (2015). Aspectos generales de la perforación horizontal dirigida. Curso de Postgrado Especialista en Tecnologías Sin Zanja, Ref. M7-2, 10 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Microtúneles: Tecnología sin zanja para la construcción subterránea

Figura 1. Microtúnel.https://purewater-int.com/services/microtunneling/

La ingeniería civil ha desarrollado tecnologías avanzadas que permiten la instalación y el mantenimiento de infraestructuras subterráneas sin afectar significativamente a la superficie. Una de estas tecnologías, particularmente útil en áreas urbanas y entornos sensibles, es la de los microtúneles.

En este artículo, exploraremos los aspectos principales de los microtúneles, sus ventajas y limitaciones, los distintos tipos de escudos y los métodos de revestimiento, como el uso de dovelas y la hinca de tubería, que aseguran la estabilidad de los túneles.

1. ¿Qué son los microtúneles?

Los microtúneles son un tipo específico de tecnología sin zanja diseñada para instalar tuberías y conductos subterráneos a través de un proceso de perforación y revestimiento controlado, sin requerir excavaciones abiertas en la superficie. Estos túneles de pequeño diámetro suelen utilizarse para instalar colectores, redes de agua y sistemas de alcantarillado. A diferencia de otras técnicas de perforación, los microtúneles ofrecen mayor precisión y estabilidad estructural, ya que se utilizan tuneladoras y sistemas de guiado avanzados.

Ventajas de los microtúneles

  • Impacto mínimo en la superficie: Como no es necesario abrir zanjas, los microtúneles reducen las interrupciones en el tráfico y minimizan los daños en la infraestructura existente.
  • Menor impacto ambiental: Este método evita la remoción de grandes cantidades de tierra y reduce los desechos de la construcción, por lo que es una opción más ecológica.
  • Ideal para áreas de difícil acceso: Al requerir solo pozos de entrada y salida, los microtúneles son ideales para trabajos en áreas urbanas densamente pobladas o bajo infraestructuras ya existentes.

Limitaciones de los microtúneles

  • Costos iniciales elevados: La maquinaria y planificación requerida pueden aumentar los costos, especialmente en terrenos sencillos donde una excavación tradicional sería suficiente.
  • Necesidad de estudios geotécnicos detallados: Para asegurar el éxito del proyecto, es necesario un análisis exhaustivo del tipo de suelo, así como un diseño específico para el trazado y la maquinaria a emplear.

2. Maquinaria y equipos utilizados en la perforación de microtúneles

La construcción de microtúneles requiere diferentes tipos de escudos, que son dispositivos que protegen el frente de excavación y facilitan la extracción de material. El tipo de escudo elegido depende de las características del terreno y de las especificaciones del proyecto.

Tuneladoras de escudo abierto

Los escudos abiertos son los más básicos y se utilizan en terrenos cohesivos y por encima del nivel freático. Su diseño permite que el personal trabaje dentro del escudo y retire el material excavado mediante cintas transportadoras o vagonetas. Sin embargo, su principal limitación es que no pueden prevenir derrumbes, lo que los hace adecuados solo para suelos estables. Existen versiones que utilizan aire presurizado para estabilizar el entorno en algunas condiciones.

Tuneladoras de escudo cerrado

Las tuneladoras de escudo cerrado son las máquinas principales utilizadas en los microtúneles. Estos equipos están diseñados para evitar derrumbes y permiten un control preciso sobre la extracción del material excavado. Existen dos tipos principales de tuneladoras de escudo cerrado:

  • Tuneladora EPB (Earth Pressure Balance): Equilibra la presión en el frente usando el propio material excavado, lo cual es especialmente útil en terrenos arcillosos. Además, utiliza espumas y polímeros para estabilizar el suelo.
  • Tuneladora hidroescudo: Este tipo de tuneladora utiliza lodos para estabilizar el frente de excavación, lo que resulta especialmente útil en suelos arenosos o bajo el nivel freático.

Ambos tipos de escudos permiten extraer el material en seco o húmedo, asegurando una operación segura y eficiente en diversas condiciones geológicas.

Figura 2. Tuneladora EPB. https://www.gypsum.in/microtunneling/

3. Métodos de revestimiento en microtúneles

Un aspecto importante en la construcción de microtúneles es el revestimiento, que garantiza la estabilidad y durabilidad del túnel, especialmente en terrenos inestables. Existen dos métodos principales de revestimiento: el método de dovelas y el método de hinca de tubería.

Revestimiento con dovelas

Este método consiste en el uso de dovelas, secciones de anillo prefabricadas, que se ensamblan en el interior del túnel a medida que avanza la tuneladora. El procedimiento implica montar las dovelas dentro de la máquina y posteriormente inyectar mortero en el trasdós para garantizar la estabilidad del revestimiento y evitar filtraciones. Este método permite construir túneles con radios de curvatura pequeños, adaptándose a trazados complejos y de gran diámetro.

Revestimiento con hinca de tubería

El revestimiento con hinca de tubería es ideal para túneles de menor diámetro y consiste en empujar tramos de tubería prefabricada desde el pozo de ataque hasta el pozo de salida. Este proceso puede incorporar estaciones intermedias para longitudes extensas, y utiliza bentonita como lubricante para reducir la fricción durante la hinca. La principal ventaja de este método es que no requiere que el personal opere dentro de la tuneladora y facilita la alineación precisa gracias al sistema de guiado continuo.

Ambos métodos de revestimiento cumplen la función de asegurar la estabilidad y el sellado del túnel, aunque su selección dependerá de las características específicas del proyecto.

4. Planificación y ejecución de un proyecto de microtúnel

Para llevar a cabo un proyecto de microtúnel, es fundamental una planificación detallada que incluya:

  • Estudios geotécnicos: Analizar el tipo de suelo es esencial para definir el equipo y las técnicas de excavación adecuadas, especialmente en terrenos variables o inestables.
  • Selección de tuneladora y herramientas de corte: La tuneladora debe ser seleccionada en función de las condiciones del suelo, y equipada con herramientas de corte específicas.
  • Diseño del pozo de ataque: Los pozos de entrada y salida deben ser diseñados para facilitar el montaje y operación de la tuneladora.
  • Sistema de guiado: Un sistema de guiado, como un teodolito láser motorizado, asegura que la perforación siga el trazado previsto, evitando desviaciones que podrían afectar la estructura del túnel.

5. Caso de estudio: El colector de Valdemarín

Un ejemplo destacado de aplicación de los microtúneles es el proyecto del colector de Valdemarín, en el que se utilizó una tuneladora EPB con dovelas para construir un colector de aguas en un terreno arenoso y de alta abrasividad. El colector, con un diámetro nominal de 2760 mm, fue diseñado para superar el reto de excavar bajo un nivel freático considerable y con una geometría compleja, incluyendo curvas de pequeño radio. Gracias a la tecnología de microtúnel, fue posible instalar el colector, minimizando el impacto en el entorno urbano y controlando el proceso de excavación en un suelo particularmente desafiante.

Conclusión

Los microtúneles son una solución avanzada para la construcción subterránea, especialmente útil en entornos urbanos densos y ambientalmente sensibles. Con diversas opciones de escudos (abiertos y cerrados) y métodos de revestimiento, como las dovelas y la hinca de tuberías, esta tecnología proporciona flexibilidad y precisión en una amplia gama de condiciones geológicas. La implementación de microtúneles sigue siendo una herramienta clave para el desarrollo de infraestructuras subterráneas sostenibles, ya que minimiza el impacto en la superficie y optimiza el proceso constructivo.

Os dejo algunos vídeos para ilustrar esta técnica constructiva.

Referencias:

FRENCH SOCIETY FOR TRENCHLESS TECHNOLOGY (FSTT). Microtunneling and Horizontal Drilling: Recommendations. John Wiley & Sons, 2010.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Pincha aquí para descargar

Un estudio de la UPV permite abaratar costes y reducir el impacto medioambiental en la construcción de túneles subterráneos

Figura 1. Marcos prefabricados en Vilaseca. Cortesía de ANDECE.

Un estudio realizado por investigadores de la Universitat Politècnica de València (UPV), pertenecientes al Instituto de Ciencia y Tecnología del Hormigón (ICITECH), ofrece una alternativa más económica y sostenible para la construcción con marcos prefabricados de hormigón de infraestructuras de transporte, como túneles subterráneos, edificios y otras estructuras. Sus resultados han sido publicados en la revista Materials.

En su trabajo, enmarcado dentro del proyecto Hydelife, han desarrollado diferentes algoritmos cuya aplicación permite ahorros económicos de hasta un 24% en el coste final de la estructura, disminuyendo los costes asociados con la producción y el transporte de materiales.

Además, según las estimaciones que ha realizado el equipo del ICITECH-UPV, permitiría optimizar el uso de materiales en la estructura y reducir alrededor de un 30% de las emisiones de CO₂ asociadas a la construcción.

Pensemos una obra lineal donde tengamos, por ejemplo, 1000 metros de un túnel subterráneo que se pueda ejecutar con marcos prefabricados. Además del ahorro económico, en nuestro trabajo, estimamos que la reducción de 1 euro en el coste final de un marco de hormigón armado es equivalente a evitar la emisión de cerca de 2 kg de CO₂”, destaca Víctor Yepes, investigador del Instituto ICITECH de la Universitat Politècnica de València.

Así, este estudio presenta una alternativa sostenible y eficiente en términos de recursos para los marcos tradicionales de hormigón armado in situ.

Nuestro objetivo era ampliar el conocimiento sobre la tipología estructural de marcos prefabricados articulados de hormigón y su empleo como sustituto de los marcos tradicionales de hormigón armado colado in situ. Y los resultados que hemos obtenido constatan su enorme potencial para grandes infraestructuras. El estudio es de especial interés para ámbitos como la ingeniería civil y arquitectura y, sobre todo, para las empresas de prefabricados de hormigón”, concluye Víctor Yepes.

Referencia:

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). Optimal design of sustainable reinforced concrete precast hinged frames. Materials, 16(1):204. DOI:10.3390/ma16010204.

Os paso a continuación la repercusión de esta noticia en algunos medios de prensa.

Marcos prefabricados de hormigón para la construcción, una opción más barata y sostenible

Algoritmos para abaratar costes y reducir el impacto medioambiental al usar marcos prefabricados de hormigón en la construcción

https://24noticias.org/marcos-prefabricados-de-hormigon-alternativa-para-la-construccion/

https://www.levante-emv.com/sostenibilitat/2023/05/25/estudi-upv-revela-com-reduir-87816604.html

Algorithms for cleaner and cheaper construction of underground tunnels

https://www.upv.es/noticias-upv/noticia-14122-mas-sostenible-es.html

https://aplicat.upv.es/exploraupv/ficha-prensa/noticia/14122

https://www.cope.es/actualidad/sociedad/noticias/marcos-prefabricados-hormigon-para-construccion-una-opcion-mas-barata-sostenible-20230521_2719911

https://valenciaplaza.com/marcos-prefabricados-hormigon-construccion-opcion-mas-barata-sostenible

https://noticiasdelaciencia.com/art/46721/algoritmos-para-una-construccion-mas-limpia-y-mas-barata-de-tuneles-subterraneos

Acueducto de la Rambla de los Molinos de Biar (Alicante)

Figura 1. Acueducto de la Rambla de los Molinos. Imagen: V. Yepes (2023)

El Acueducto Ojival, conocido también como Acueducto de la Rambla dels Molins o Acueducto Medieval de Biar, se encuentra en Biar (Alicante). Ubicado al este de la carretera de Banyeres de Mariola, al salir del pueblo en dirección norte.

Este acueducto, de 70 m de longitud, fue construido en el siglo XV en estilo gótico por el maestro de obras Pere Compte, originario de Girona. Posee dos arcos ojivales y uno de medio punto, y su propósito principal era superar el desnivel de la rambla de los Molinos y proveer riego a los campos en la orilla opuesta. Para su construcción se empleó principalmente piedra, aunque también se utilizaron ladrillos de barro cocido en algunas partes. En su base existen machones y contrafuertes para contrarrestar las puntuales crecidas de la rambla. La base del acueducto cuenta con pilares y contrafuertes para resistir las eventuales crecidas de la rambla. La primera mención escrita sobre este acueducto data de 1490.

Figura 2. Detalle de los arcos ojivales. Imagen: V. Yepes (2023)

Pere Compte es reconocido por la catedral de Valencia, se le atribuye la ampliación del primer tramo de la nave. Su obra más importante es la Lonja de Valencia (1483-1498). También intervino en la construcción de las Torres de Quart. En 1498 inició las obras para la construcción del Consulado de Mar.

Figura 3. Vista superior del canal del acueducto. Imagen: V. Yepes (2023)

El Acueducto Ojival, además de ser catalogado como un bien de relevancia local, forma parte del impresionante itinerario turístico del Camino del Cid. Recomiendo encarecidamente explorar esta zona en una excursión. Biar es un encantador y bien conservado pueblo que se desarrolló alrededor de su castillo de origen almohade, construido en el siglo XII sobre los cimientos de un asentamiento romano anterior. Uno de sus aspectos más destacados es la imponente torre del homenaje, que se eleva a una altura de dieciocho metros y posee la singularidad de albergar la única cúpula almohade nervada de la Comunitat Valenciana. Para darles un anticipo visual, os sugiero que vean el siguiente vídeo proporcionado por la Diputación de Alicante.

Referencias:

YEPES, V. (2010).  Puentes históricos sobre el viejo cauce del Turia. Un análisis histórico, estético y constructivo a las obras de fábrica. Inédito.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de un sistema de drenes cerrados en un terreno de espesor indefinido

Figura 1. Sistema de drenes cerrados en un terreno de espesor indefinido

Sea un sistema de drenes cerrados, construido en terreno de espesor indefinido, espaciados una distancia D uno de otro, tal y como se puede observar en la Figura 1. El problema habitual consiste en determinar la profundidad seca que queda dado un espaciamiento entre los drenes, suponiendo que existe una alimentación vertical de caudal q constante por unidad de superficie.

Os paso un problema, totalmente resuelto, donde se deduce la expresión que sirve para calcular este tipo de problemas. Este problema forma parte del Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY.  Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Pincha aquí para descargar

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nomograma para el cálculo del radio hidráulico de una sección trapecial

En un artículo previo, explicamos cómo calcular el radio hidráulico para diferentes secciones. A continuación presentamos un ejercicio resuelto para el caso de una sección trapecial.

Además, presentamos un nomograma original elaborado en colaboración con los profesores Daniel Boulet, Matías Raja y Pedro Martínez-Pagán. En este nomograma se puede utilizar cualquier unidad para las longitudes. Espero que esta información sea de vuestro interés.

Pincha aquí para descargar

Referencias:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nomograma para el cálculo del radio hidráulico de una sección circular

En un artículo previo, explicamos cómo calcular el radio hidráulico para diferentes secciones. Sin embargo, en el caso de una sección circular, el uso de un nomograma es más conveniente, pues evita el cálculo intermedio del ángulo del sector circular que abarca el agua.

Además, el empleo de esta resolución gráfica permite visualizar aspectos que son difíciles de deducir directamente de las fórmulas aplicadas. En este caso, el nomograma permite observar que los radios hidráulicos pueden ser iguales para diferentes calados. También permite ver claramente el rango de variación y el valor máximo. Aunque las fórmulas también pueden proporcionar información sobre el valor extremo, es necesario calcular la derivada, igualarla a cero y resolver la ecuación.

A continuación, se presenta un problema resuelto que incluye las ecuaciones utilizadas, el nomograma y un par de gráficas que relacionan el calado normalizado con el diámetro en relación con el ángulo del sector circular y al radio hidráulico normalizado. Además, presentamos un nomograma original elaborado en colaboración con los profesores Daniel Boulet y Pedro Martínez-Pagán. Espero que esta información sea de vuestro interés.

Pincha aquí para descargar

Referencias:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo del transporte hidráulico de pulpas

Figura 1. Bomba horizontal de pulpas (Bouso y Martínez-Pagán, 2023)

Una pulpa es una mezcla líquida que contiene partículas sólidas en suspensión. Las características de la pulpa dependen de la naturaleza, tamaño, forma, densidad y cantidad de las partículas sólidas, así como de la naturaleza, densidad y viscosidad del líquido. El flujo de las pulpas es diferente al de los líquidos homogéneos, donde su naturaleza (laminar, transitorio o turbulento) se determina a partir de las propiedades físicas del líquido y su conductividad. Para calcular un sistema de transporte hidráulico de pulpa, compuesto por una bomba y una tubería, es esencial conocer previamente parámetros como la densidad de sólido y líquido, viscosidad, concentración de sólidos, tipo de tubería y topografía del terreno.

La caracterización de una pulpa es más compleja que la de un líquido debido a la presencia de partículas sólidas y su influencia en la mezcla. Es importante tener en cuenta que una pulpa no es una disolución, sino una suspensión de sólidos en líquidos donde cada componente está claramente definido. Debemos considerar el fenómeno de sedimentación de los sólidos en el líquido, especialmente cuando las turbulencias son bajas o no existen. Este fenómeno puede causar acumulaciones de sólidos y dificultar las operaciones de transporte o almacenamiento. En términos generales, las pulpas se pueden clasificar en dos grupos: pulpas sin sedimentación y pulpas con sedimentación.

Figura 2.  Bomba de pulpas. https://www.mogroup.com/es/informacion/e-books/manual-de-bombas–para-pulpa/

Las pulpas sin sedimentación, también conocidas como pulpas homogéneas, están compuestas por partículas finas (menores de 50 mm) y forma una mezcla homogénea y estable. No causan desgaste significativo, pero requieren una atención especial en la selección y funcionamiento de las bombas debido a su aumento de viscosidad. Cuando el contenido de partículas es alto, su reología se asemeja a la de líquidos No-Newtonianos. Ejemplos de este tipo de pulpa incluyen lodos espesados de la extracción de áridos, lechadas de cemento y lodos de perforación.

Las pulpas con sedimentación están formadas por partículas gruesas que tienden a crear una mezcla inestable y se comportan como líquidos Newtonianos. Generalmente, causan un elevado desgaste y requieren una selección cuidadosa de las tuberías, debido a su tendencia a sedimentar y causar obstrucciones. Este tipo de pulpa es común en el transporte de pulpas y se conoce como pulpa heterogénea, ya que los sólidos no se distribuyen uniformemente en conducciones horizontales a lo largo de su eje vertical a altas velocidades. Las fases sólida y líquida mantienen su propia identidad y el aumento de viscosidad es generalmente de poca importancia. Las pulpas heterogéneas suelen ser de menor concentración de sólidos y con partículas de mayor diámetro que las pulpas homogéneas. Ejemplos incluyen pulpas en plantas de tratamiento de áridos y minerales, equipos de dragado, etc.

En el transporte de pulpas minerales por tubería, la naturaleza de las partículas y las velocidades de flujo determinan los regímenes de flujo, que pueden ser tanto turbulentos como laminares. Sin embargo, en la mayoría de las aplicaciones, el régimen turbulento, que se produce cuando las partículas son gruesas y tienden a sedimentar, es el más común. Este tipo de fluido se conoce como fluido newtoniano. En cambio, las pulpas con partículas finas y uniformes suelen producir regímenes de flujo laminar.

Os dejo a continuación un artículo, elaborado por Juan Luis Bouso y Pedro Martínez-Pagán, donde se presenta un ejemplo de cálculo para una operación de bombeo de pulpas. Se exploran las diferentes alternativas de cálculo, que pueden variar debido a las preferencias personales de los técnicos o a la adaptabilidad de un procedimiento específico a las características de la operación de bombeo. Al final del trabajo, se incluye un anexo con gráficos y cálculos, que pueden ser muy útiles. Espero que os sea de interés.

Pincha aquí para descargar

Referencias:

ANDREA, E. (2014). Tecnología metalúrgica. Universidad de Cantabria. https://ocw.unican.es/course/view.php?id=261

BOUSO, J.L.; MARTÍNEZ-PAGÁN, P. (2023). Bombeo de pulpas minerales. Diferentes procedimientos de cálculo. Rocas y Minerales, 605:56-73.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ-PAGÁN, P.; PERALES, A. (2020). Tecnología metalúrgica, 2ª edición. Universidad Politécnica de Cartagena. https://ocw.bib.upct.es/course/view.php?id=178

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El radio hidráulico y el perímetro mojado de una sección

En un artículo anterior presentamos el cálculo de una cuneta de carretera. Se trata de un caso común de cálculo hidráulico en el que se utilizan dos parámetros de interés: el radio hidráulico y el perímetro mojado de una sección. Un caso frecuente es la determinación del movimiento permanente uniforme en canales abiertos, donde se emplea con mucha frecuencia la fórmula de Manning-Strickler.

El perímetro mojado de un conducto es la porción del perímetro donde la pared está en contacto con el fluido (excluida la superficie libre del líquido). El radio hidráulico es el cociente entre la sección por donde circula el fluido y el perímetro mojado. Este radio se emplea en el cálculo de pérdidas de carga en la fórmula de Manning.

A continuación, os dejo un problema en el que se calculan estos parámetros en función de la geometría de la sección. Se han aplicado a secciones rectangulares, trapezoidales, triangulares simétricas, circulares y con forma de parábola. Espero que os resulte interesante.

Pincha aquí para descargar

Referencias:

DIRECCIÓN GENERAL DE CARRETERAS (2018). Norma 5.2-IC de la Instrucción de Carreteras. Drenaje superficial. Ministerio de Fomento.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.