Trabajo en altura: 5 lecciones que podrían salvarte la vida

Introducción: El vértigo no es el único peligro.

Cuando pensamos en los peligros de trabajar en altura, la primera imagen que nos viene a la mente es la caída en sí misma, el vértigo y el miedo instintivo al vacío. Sin embargo, la seguridad laboral ha demostrado que esta percepción, aunque natural, es incompleta. La prevención de caídas es una ciencia con principios técnicos, físicos y fisiológicos que a menudo resultan sorprendentes y van mucho más allá de simplemente «no caerse».

Para comprender el contexto, es fundamental definir qué la normativa considera trabajo en altura. Técnicamente, se define como cualquier trabajo con riesgo de caída desde una altura superior a dos metros. Este umbral establece la seriedad del asunto y activa una serie de protocolos y conocimientos que no son de dominio público, pero resultan vitales para la supervivencia en el entorno profesional.

1. La red antes que el arnés: por qué la protección colectiva siempre es la primera opción.

Cuando se habla de seguridad en altura, el arnés es el equipo icónico que todos reconocen. Sin embargo, uno de los principios fundamentales y menos conocidos de la seguridad laboral es la primacía de la protección colectiva sobre la individual.

La protección colectiva se refiere a sistemas que protegen a todos los trabajadores de una zona de riesgo sin que estos deban realizar ninguna acción, como barandillas, redes de seguridad o protección de los huecos. En cambio, la protección individual, como el arnés, depende de que el trabajador la utilice correctamente y solo actúa una vez que el accidente ya ha ocurrido.

La lógica es sencilla, pero crucial: la protección colectiva está diseñada para evitar que se produzca el accidente, mientras que la protección individual solo sirve para minimizar las lesiones una vez que la caída es inevitable. Esta jerarquía no es una mera recomendación, sino una obligación legal. La Ley 31/1995 de Prevención de Riesgos Laborales es explícita al respecto:

«El empresario adoptará las medidas que antepongan la protección colectiva a la individual».

Este principio no resulta evidente, ya que nuestra atención se centra en el drama de la caída y en la imagen del trabajador suspendido en el aire. Sin embargo, la seguridad más efectiva es la que pasa desapercibida, como una barandilla sólida o una red bien instalada que impide que la caída llegue a producirse.

2. El peligro oculto después de la caída: el síndrome de compresión.

Sobrevivir a una caída gracias a un arnés parece el final de la historia, pero puede ser el comienzo de una emergencia médica silenciosa y mortal: el síndrome de compresión, también conocido como síndrome ortoestático.

Este síndrome se produce cuando un trabajador permanece suspendido e inmóvil en su arnés durante un tiempo prolongado. Las cintas del arnés, especialmente las que rodean los muslos, actúan como un torniquete, comprimiendo las venas y restringiendo el flujo sanguíneo desde las piernas hacia el resto del cuerpo.

El mecanismo fisiológico es devastador: la sangre estancada en las extremidades se queda sin oxígeno y acumula toxinas. Si el trabajador es rescatado y puesto en posición horizontal bruscamente, esta sangre tóxica regresa masivamente al torrente sanguíneo, lo que puede provocar un fallo renal agudo e incluso un paro cardíaco.

En resumen, un trabajador puede sobrevivir a la caída sin un solo rasguño, pero estar en peligro mortal si no es rescatado de forma rápida y adecuada. Por esta razón, el plan de rescate no es un apéndice opcional en la planificación de trabajos en altura, sino una parte tan crítica y vital como el propio arnés.

3. No es la altura, es la física: entendiendo el «factor de caída».

No todas las caídas son iguales, incluso si la distancia es la misma. La gravedad de una caída y la fuerza de impacto que recibe el cuerpo del trabajador se miden mediante un concepto técnico fundamental: el factor de caída (F).

Este factor expresa la relación entre la altura de la caída y la longitud del sistema de conexión (la cuerda o eslinga) que la detiene. La fórmula es sencilla:

F = Altura de la caída (H) / Longitud de la cuerda (L)

Para entenderlo de forma visual y sencilla:

  • Anclaje por encima de la cabeza (Factor < 1): Si te anclas a un punto por encima de tu cabeza, la distancia de caída será muy corta, siempre menor que la longitud de tu cuerda. El impacto será mínimo. Esta es la situación más segura.
  • Anclaje a la altura de los pies (Factor 2): Si te anclas a un punto a la altura de tus pies y caes, recorrerás una distancia igual al doble de la longitud de tu cuerda antes de que esta se tense. Este es el escenario más peligroso, que genera una fuerza de choque altísima sobre el cuerpo y el equipo.

El factor de caída demuestra que la seguridad en altura no solo consiste en «estar atado», sino también en comprender la física que hay detrás. La posición del punto de anclaje es tan importante como el propio equipo y un anclaje mal ubicado puede convertir un sistema de seguridad en una fuente de lesiones graves.

4. La escalera de mano: tu último recurso, no el primero.

La escalera de mano es una herramienta muy común en nuestros hogares, por lo que tendemos a subestimar su peligrosidad en el ámbito profesional. La normativa es sorprendentemente estricta y establece su uso como último recurso, no como primera opción. Debe utilizarse solo en situaciones de bajo riesgo o de corta duración, en las que no esté justificado el uso de equipos más seguros, como andamios o plataformas elevadoras.

Muchas de las prácticas habituales son, en realidad, graves infracciones de seguridad. A continuación, se muestran algunas de las reglas más importantes y comúnmente ignoradas:

  • Prohibido trabajar en los últimos peldaños: Esta es una regla general para cualquier tipo de escalera de mano. Es una de las causas más frecuentes de pérdida de equilibrio, ya que el trabajador no puede mantener una postura estable y segura.
  • Prohibido el trabajo “a caballo” en escaleras de tijera: Específicamente, en escaleras de tijera, está prohibido pasar de un lado a otro por su parte superior o sentarse a horcajadas sobre ellas para trabajar.
  • La regla del ángulo de 75°: Para una estabilidad óptima, la base de una escalera de apoyo debe separarse de la pared una distancia equivalente a una cuarta parte de su longitud. Esto crea un ángulo de aproximadamente 75 grados.
  • Subir y bajar siempre de frente y con las manos libres: El ascenso y el descenso deben hacerse de cara a la escalera, usando ambas manos para agarrarse a los peldaños. Las herramientas deben transportarse en cinturones o bolsas portaherramientas, nunca en las manos.

Estas normas demuestran que un equipo aparentemente simple se rige por principios de estabilidad y seguridad muy estrictos en un entorno profesional.

5. El ABCD de la seguridad personal: un sistema, no un simple equipo.

Un sistema de protección individual contra caídas no se reduce a un arnés. Se trata de un conjunto de cuatro componentes críticos que deben funcionar en perfecta armonía. La falla de uno solo de ellos invalida por completo la seguridad del sistema. A este concepto se le conoce como «ABCD del trabajo en altura».

  • A: Dispositivo de anclaje: Es el punto de conexión seguro con la estructura (una viga, una línea de vida, etc.). Debe ser capaz de resistir las fuerzas generadas durante una caída. Sin un anclaje fiable, el resto del equipo resulta inútil.
  • B: Sistema de unión: Es el elemento que conecta el arnés al anclaje. Puede ser una cuerda, una eslinga con absorbedor de energía o un dispositivo retráctil. Su diseño y su longitud son clave para gestionar el Factor de Caída.
  • C: Arnés de cuerpo entero: Es el dispositivo que sujeta el cuerpo. Su función es distribuir las fuerzas de impacto de la caída sobre las partes del cuerpo capaces de soportarlas (pelvis, hombros, pecho) y mantener al trabajador en posición vertical tras la caída.
  • D: Plan de Rescate: Es el procedimiento planificado para rescatar a un trabajador que ha quedado suspendido tras una caída. Como vimos con el síndrome de compresión, un rescate rápido y seguro es tan vital como detener la caída.

Pensar en términos de “ABCD” nos obliga a ver la seguridad personal no como la compra de un equipo, sino como la implementación de un sistema integral en el que cada componente es interdependiente y absolutamente esencial.

Conclusión: mirar hacia abajo con más sabiduría.

La seguridad en altura es un campo mucho más profundo y técnico de lo que parece a simple vista. No se basa en la ausencia de miedo, sino en el conocimiento de los principios de la física, la fisiología y la normativa. Desde la jerarquía que antepone una barandilla a un arnés hasta la física de una caída o la fisiología de un rescate, comprender estos principios transforma nuestra percepción del riesgo.

La próxima vez que veas a alguien trabajando en altura, sabrás que su seguridad depende de un sistema complejo y bien ejecutado. Esto nos lleva a una pregunta inevitable: ¿qué otras suposiciones sobre la seguridad en nuestro día a día deberíamos empezar a cuestionar?

En esta conversación, aprenderás sobre conceptos que seguramente te resultarán interesantes.

Este vídeo resume muy bien las ideas más importantes sobre este tema.

Aquí tenéis un breve manual de formación sobre trabajos en altura y verticales.

Pincha aquí para descargar

Curso:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Montaje por movimientos horizontales de puentes atirantados

Los procedimientos de montaje por movimientos horizontales de puentes atirantados se aplican cuando el puente —total o parcialmente— se construye fuera de su posición definitiva y se traslada posteriormente hasta ella. Este enfoque permite reducir la interferencia con el cauce, el tráfico o las infraestructuras existentes, además de mejorar la seguridad y el control de calidad, ya que la mayor parte de los trabajos se realizan en condiciones estables sobre tierra firme.

En todos los casos, las torres y el tablero deben comportarse de forma solidaria durante el desplazamiento, apoyándose el conjunto en pilas o apoyos provisionales que garanticen la estabilidad global. La elección del método depende de las condiciones geométricas del emplazamiento, de las luces principales, de la rigidez del sistema atirantado y de la disponibilidad de medios auxiliares.

Se distinguen tres métodos fundamentales de ejecución:

a) Puentes empujados longitudinalmente

Este procedimiento es similar al empleado en los puentes de vigas lanzadas incrementalmente, pero está adaptado a la configuración atirantada. El tablero se construye por tramos en una orilla y se empuja progresivamente hacia el vano principal mediante gatos hidráulicos. Para compensar los momentos negativos en el frente de avance, se coloca una nariz de lanzamiento o una estructura auxiliar ligera.

Durante el empuje, los apoyos provisionales y las torres soportan cargas variables, por lo que es necesario controlar continuamente la tensión en los tirantes y realizar ajustes secuenciales para evitar sobreesfuerzos o deformaciones excesivas. Para ello, se utilizan dispositivos deslizantes de baja fricción, como placas de neopreno-PTFE sobre acero inoxidable o carros rodantes en combinación con gatos sincronizados. Además, se realiza una instrumentación topográfica y extensométrica en tiempo real para controlar la geometría de avance.

Un ejemplo representativo es el puente de la calle Jülicher, en Düsseldorf, donde este sistema se aplicó con éxito, combinando el control hidráulico de las tensiones en los tirantes con el uso de apoyos provisionales sobre las pilas intermedias durante el avance del tablero. El mismo procedimiento se empleó en el puente de la calle Franklin, también en Düsseldorf, siguiendo una metodología constructiva similar.

Puente de la calle Jülicher en Düsseldorf, Alemania. https://de.wikipedia.org/wiki/Br%C3%BCcke_J%C3%BClicher_Stra%C3%9Fe

b) Puentes girados

Cuando las condiciones del terreno o del cauce hacen inviable el empuje longitudinal, se puede recurrir al giro del puente completo o de sus semitableros desde una posición lateral de montaje. El conjunto se apoya temporalmente sobre una articulación o pivote reforzado bajo la torre principal, mientras el extremo libre describe un sector circular hasta alcanzar su posición definitiva.

Durante la maniobra, es fundamental mantener el equilibrio del centro de gravedad y la estabilidad frente al vuelco o la torsión, por lo que suelen emplearse lastres temporales y gatos hidráulicos sincronizados. La precisión se garantiza mediante un control topográfico y de tensiones en los tirantes antes y después del giro.

El puente sobre el canal del Danubio, en Viena, es un ejemplo clásico de dos semipuentes girados hasta su posición final. Otro caso notable es el puente de Ben-Ahin (Père Pire) sobre el río Mosa, en Bélgica, que se construyó por completo en una orilla y se giró alrededor de su pila principal en 1987. La maniobra, que desplazó decenas de miles de toneladas, supuso en su momento un récord europeo por el peso movilizado mediante una rotación controlada. Este puente, construido en 1988, fue en su momento el de mayor masa girada del mundo. La pila tiene 84 metros de altura; el tablero mide 341 metros de largo y pesa 16 000 toneladas. Lo soportan 40 cables en abanico situados en un plano.

Puente de Ben-Ahin, Bélgica. Imagen: C. Pujos. Fuente: http://www.puentemania.com/3502

c) Puentes ripados transversalmente

El ripado o traslación transversal consiste en construir el puente en su ubicación final y trasladarlo lateralmente mediante sistemas de deslizamiento controlado. Este método requiere alineamientos precisos entre la posición inicial y la definitiva, así como patines o cojinetes de deslizamiento lubricados, que a menudo se combinan con transportadores modulares autopropulsados (SPMT, por sus siglas en inglés) o con gatos de empuje y freno.

El puente de Oberkassel, en Düsseldorf, es un ejemplo representativo de este tipo de maniobra. La estructura principal se desplazó lateralmente desde su zona de ensamblaje hasta el eje del río mediante carros rodantes y guías transversales, bajo una monitorización topográfica en tiempo real que garantizó la precisión del posicionamiento final. El puente tiene una luz principal de 257,75 m y una torre central de 100 m de altura sobre el tablero. Su superestructura metálica, de 35 m de ancho, está formada por una viga cajón de tres células con losa ortótropa.

Puente sobre el Rin Düsseldorf-Oberkassel. Fuente: https://www.visitduesseldorf.de/en/attractions/oberkasseler-bruecke-bridge-b2338616ec

El ripado presenta ventajas en emplazamientos con suficiente espacio lateral, ya que reduce los trabajos en el cauce y minimiza las afecciones medioambientales o de tráfico. No obstante, exige un estudio detallado del coeficiente de fricción, de las reacciones en los apoyos provisionales y de los esfuerzos transitorios en los tirantes y en las pilas durante el movimiento.

Consideraciones generales

En los puentes atirantados, los movimientos horizontales requieren una planificación constructiva precisa y un análisis estructural temporal que contemple la evolución de las tensiones, las deformaciones y la estabilidad global en cada fase. Es fundamental modelar los estados transitorios y definir procedimientos de tensado, destensado y control geométrico con el apoyo de instrumentación avanzada (celdas de carga, inclinómetros y estaciones totales automatizadas).

En la práctica, estos métodos ofrecen varias ventajas: permiten trabajar en seco y en condiciones controladas, reducen los riesgos laborales y minimizan la interferencia con el entorno. Entre sus principales limitaciones se encuentran el coste de los equipos especializados, la complejidad de las maniobras y la necesidad de personal altamente cualificado.

En resumen, el montaje por movimientos horizontales es una técnica versátil y segura, plenamente consolidada en la ingeniería de puentes moderna, que combina la precisión geométrica con la eficiencia constructiva. Ha demostrado su viabilidad en numerosos puentes atirantados europeos, como los de Düsseldorf, Viena y Ben-Ahin.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entre acero y poesía: La vida de Joseph Strauss, la cara visible del Golden Gate

Joseph Baermann Strauss (1870-1938). https://magazine.uc.edu/

Joseph Baermann Strauss nació el 9 de enero de 1870 en Cincinnati, Ohio, apenas una década después del fin de la guerra de Secesión estadounidense. Creció en el seno de una familia de artistas de origen judío alemán: su madre era pianista, aunque un accidente frustró su carrera, y su padre, Raphael Strauss, fue pintor y escritor. En ese entorno, Joseph desarrolló desde joven una profunda sensibilidad artística y una pasión por la poesía, con el anhelo inicial de seguir una trayectoria en las artes. Sin embargo, su vida tomaría otro rumbo en el que la ciencia, la ingeniería y la expresión poética acabarían entrelazándose.

Ingresó en la Universidad de Cincinnati para estudiar ingeniería civil, donde destacó tanto por sus cualidades intelectuales como por su liderazgo. Fue elegido delegado de su clase y también poeta oficial. Durante su etapa universitaria, formó parte de la fraternidad Sigma Alpha Epsilon y escribió un extenso poema titulado Reveries, que leyó como discurso de graduación en 1892. En él presentó una tesis ambiciosa: un proyecto utópico para construir un ferrocarril que conectara Alaska con Rusia a través del estrecho de Bering. Aunque su propuesta sorprendió a la audiencia, su sinceridad, visión y entusiasmo le valieron el respeto del público.

Una experiencia marcó profundamente su orientación profesional. Durante una enfermedad, fue hospitalizado en la enfermería universitaria y, desde la cama, podía contemplar el puente colgante John A. Roebling, que cruzaba el río Ohio entre Cincinnati y Covington. Este puente, el más largo del mundo entre 1866 y 1883, le causó una impresión duradera y despertó en él una profunda fascinación por la ingeniería de puentes que definiría el resto de su vida.

Tras graduarse, Strauss comenzó su carrera profesional como delineante en la empresa New Jersey Steel and Iron Company y, posteriormente, en la compañía Lassig Bridge and Iron Works, en Chicago. En 1899, fue contratado como asistente principal del reconocido ingeniero Ralph Modjeski. Durante su etapa en la empresa, Strauss comenzó a especializarse en puentes basculantes, también conocidos como drawbridges. Se dio cuenta de que los contrapesos de hierro que se utilizaban en estas estructuras resultaban caros y pesados, por lo que propuso reemplazarlos por contrapesos de hormigón, que eran más económicos y eficientes. Su sugerencia fue rechazada, por lo que abandonó la empresa y, en 1904, fundó su propia compañía: la Strauss Bascule Bridge Company of Chicago, que posteriormente abrió también oficinas en San Francisco.

Durante las décadas siguientes, Strauss se convirtió en un innovador y referente nacional en el diseño de puentes móviles. Entre sus obras más representativas se encuentra el puente basculante del ferrocarril HB&T sobre el Buffalo Bayou de Houston, diseñado en 1912 y que aún se encuentra parcialmente operativo. También diseñó el puente basculante Cherry Street Strauss Trunnion en Toronto, el puente Skansen en Noruega, el puente Burnside en Portland (Oregón) y el puente Lewis y Clark sobre el río Columbia, que conecta Longview (Washington) con Rainier (Oregón). A lo largo de su carrera, participó en la construcción de más de cuatrocientos puentes basculantes en América del Norte y Europa, consolidándose como el máximo exponente de este tipo de estructuras.

El mayor desafío de su vida llegó en 1916, cuando el ingeniero municipal de San Francisco publicó un artículo en el que afirmaba que no sería posible construir un puente sobre el Golden Gate —el estrecho que conecta la bahía de San Francisco con el océano Pacífico— por menos de 100 millones de dólares. Strauss respondió que él podía hacerlo por 17 millones. Así comenzó una larga cruzada para hacer realidad lo que entonces parecía imposible. Durante más de diez años, Strauss trabajó sin descanso para convencer a ciudadanos, políticos, al ejército, a la marina y a los inversores de que el puente era viable. Se enfrentó a una fuerte oposición por parte de compañías de ferris, ecologistas, administraciones locales e incluso otros ingenieros.

En noviembre de 1930, ya en plena Gran Depresión, los votantes aprobaron una emisión de bonos que dio luz verde al proyecto. La obra comenzó en enero de 1933, con un presupuesto final de 35 millones de dólares, 13 millones menos de lo estimado inicialmente, y se finalizó antes de lo previsto. Aunque Strauss había propuesto inicialmente un diseño híbrido de suspensión y voladizo, finalmente optó por un diseño colgante clásico, con un tramo principal de 1280 metros, lo que lo convirtió en el puente colgante más largo del mundo hasta la década de 1960.

Strauss supervisó personalmente gran parte de la construcción. En homenaje a su alma mater, colocó un ladrillo del edificio McMicken de la Universidad de Cincinnati en el anclaje sur del puente. También introdujo un elemento innovador en materia de seguridad: una red de protección bajo el tablero que salvó la vida de 19 trabajadores, una cifra significativa para la época, lo que supuso una medida pionera en obras civiles de gran escala.

Monumento a Strauss en San Francisco (marzo de 2010). https://es.wikipedia.org/wiki/Joseph_Strauss_(ingeniero)

Sin embargo, el proceso no estuvo exento de conflictos. Aunque Strauss fue la cara visible del proyecto, el diseño estructural detallado fue obra de los ingenieros Charles Alton Ellis y Leon Moissieff. Strauss, empeñado en recibir todo el reconocimiento, minimizó las contribuciones de Ellis, que fue excluido de los créditos en la ceremonia inaugural de 1937. Esta omisión se corrigió finalmente en 2012, cuando se colocó una placa conmemorativa en su honor junto al puente.

Durante los años de construcción, Strauss empezó a mostrar signos de deterioro físico y emocional. Estuvo ausente durante más de seis meses, lo que generó rumores sobre una crisis nerviosa. En ese periodo se divorció de su mujer y se casó con una joven cantante muchos años menor que él. Tras finalizar el puente, agotado, se retiró a Arizona para recuperarse.

El puente Golden Gate se inauguró oficialmente el 27 de mayo de 1937. Strauss celebró el acontecimiento escribiendo y leyendo su poema The Mighty Task is Done, un homenaje lírico a la culminación de su obra más ambiciosa. Este poema supuso su despedida de la ingeniería y también el cierre simbólico de su vida profesional. Menos de un año después, el 16 de mayo de 1938, Strauss falleció en Los Ángeles a causa de un derrame cerebral. Tenía 68 años.

En 1941, su viuda financió la construcción de una estatua en su honor ubicada en el extremo sur del puente, en el lado de San Francisco. La inscripción reza: «Joseph B. Strauss, 1870-1938. El hombre que construyó el puente». Aunque su figura ha sido objeto de controversia, su contribución a la ingeniería es indiscutible. Además de su legado técnico, dejó una notable obra poética, que incluye el poema «Las secuoyas», inspirado en los árboles monumentales de California, y que aún hoy se vende como recuerdo en los parques naturales.

Joseph B. Strauss fue un ingeniero y poeta, un soñador meticuloso que cruzó el puente entre el arte y la técnica. Su vida demuestra que la grandeza de la ingeniería no solo se mide en acero y cemento, sino también en visión, valor y sensibilidad humana. El Golden Gate, con su silueta roja suspendida sobre el océano, sigue siendo el mejor poema que pudo haber escrito.

Pero aquí os dejo la pequeña entrevista que me hicieron sobre el Golden Gate.

Os dejo algunos vídeos sobre el Golden Gate. Pero podéis ver más vídeos sobre la construcción de este puente aquí: https://victoryepes.blogs.upv.es/2013/06/24/golden-gate/

Eugène Freyssinet

De Desconocido – https://efreyssinet-association.com/apropos/lhomme/, Dominio público, https://commons.wikimedia.org/w/index.php?curid=81910629

Eugène Freyssinet nació el 13 de julio de 1879 en Objat, Corrèze (Francia), y falleció el 8 de junio de 1962 en Saint-Martin-Vésubie, Alpes-Maritimes (Francia). Fue un ingeniero de gran renombre, proyectista, constructor, inventor, empresario y artista, reconocido como el inventor del pretensado.

Pasó sus primeros años en un ambiente rural, hasta que en 1885 se trasladó con su familia a París, donde asistió a una escuela local y descubrió el Museo de Artes y Oficios. Pronto se familiarizó con todos los modelos expuestos y, entre los 10 y los 12 años, participó en cursos de electricidad aplicada, química y física. Durante las vacaciones escolares, pasaba el tiempo en Objat, donde se interesó por las tareas realizadas por los agricultores locales. Este grupo de personas, orgulloso y trabajador, extraía todo lo posible de la tierra árida, apenas suficiente para sobrevivir. Por ello, los agricultores también desempeñaban otros oficios, como ebanistas, carpinteros, albañiles, herreros y tejedores. A lo largo de su vida, Freyssinet siempre se sintió parte de este grupo. De estas personas, que trabajaban mucho y hablaban poco, aprendió a utilizar habilidades manuales y astucia para crear los mejores artefactos con pocos recursos materiales. Fue aquí, siendo aún un niño, donde Freyssinet adquirió las habilidades que más tarde le permitirían llevar a cabo innovaciones fundamentales en la construcción con hormigón.

Con una admiración casi religiosa por las habilidades manuales y una beca, Freyssinet asistió a la escuela Chaptal y logró ingresar en la École Polytechnique en su segundo intento en 1899. Posteriormente, estudió en la École des Ponts et Chaussées, de la que se graduó en 1905. Allí recibió una fuerte influencia de los profesores Charles Rabut, Jean Résal y Paul Séjourné. En 1903, todavía estudiante (se licenció en 1905), obtuvo su primer cargo: ingeniero de servicios ordinarios y vecinales, con la función de asesorar técnicamente a varios alcaldes del distrito este, concretamente de Vichy y Lapalisse. Comenzó a trabajar como ingeniero júnior en la oficina local de Ponts et Chaussées en Moulins, donde asesoraba a alcaldes rurales sobre temas relacionados con la ingeniería. En este trabajo, tenía libertad para diseñar y construir estructuras, utilizando siempre el hormigón reforzado. Entre sus obras de este período destacan los tres puentes de arco de hormigón pretensado sobre el río Allier.

En 1904 se interesó por las propiedades elásticas y de deformación del hormigón armado, una combinación de acero y hormigón. La búsqueda de la perfección de este material se convirtió en su principal objetivo. Sirvió en el Ejército de Tierra francés entre 1904 y 1907, y nuevamente durante la Primera Guerra Mundial como ingeniero de carreteras. Entre 1914 y 1928 fue director técnico y socio de la empresa Mercier-Limousin, donde obtuvo su primera patente de hormigón pretensado en 1920. En 1928, patentó un sistema de pretensado y comenzó a industrializar elementos prefabricados de hormigón armado, aunque su negocio de fabricación de postes eléctricos fracasó entre 1928 y 1933.

Entre 1907 y 1911, supervisó la construcción del puente de Veurdre, donde se enfrentó a problemas relacionados con los desplazamientos verticales de los arcos de hormigón armado. Con la ayuda de trabajadores de confianza, utilizó gatos hidráulicos para elevar los arcos y salvar el puente, que funcionó bien hasta ser destruido en la Segunda Guerra Mundial.

Freyssinet descubrió que el comportamiento del hormigón no es lineal y que, con una tensión compresiva constante, la contracción aumentaba con el tiempo. Este fenómeno, que observó en el Pont du Veurdre, se conocería más tarde como fluencia. Su comprensión del comportamiento del hormigón contrastaba con la de las autoridades científicas de la teoría de estructuras, que defendían la predominancia de lo lineal. Sin embargo, se estaba gestando un cambio de paradigma.

Eugène Freyssinet (1879-1962)

El gran avance en la construcción con hormigón pretensado se produjo en 1928, cuando Freyssinet y Jean Seailles patentaron su sistema de pretensado. A pesar de algunos fracasos iniciales, Freyssinet revolucionó el sector de la construcción con hormigón, consolidando su nombre como un referente en el campo. Entre sus obras más destacadas se encuentran el hangar de dirigibles de Orly (1921-1923), el Pont de Plougastel (1926-1930) y los audaces puentes de Marne construidos en la década de 1940. A partir de 1943, la tecnología del pretensado se expandió por todo el mundo. Freyssinet fundó la empresa STUP, que en 1970 se transformó en Freyssinet International.

Entre 1929 y 1933, Freyssinet experimentó con nuevas formas de fabricación de vigas y presentó el de hormigón pretensado en un artículo de 1933. Este tipo de hormigón, sometido a presiones antes de su uso, mejoraba la resistencia y permitía la construcción de estructuras más delgadas y esbeltas.

Ese mismo año se presentó a la cátedra de hormigón de la Academia de Ciencias, pero fue rechazado. Luego, se centró en probar la viabilidad del hormigón pretensado para mejorar el puerto de Le Havre en 1934. Gracias a este éxito, Edme Campenon, presidente de Enterprises Campenon-Bernard, le contrató para realizar varios proyectos en Argelia.

Sin embargo, con el inicio de la Segunda Guerra Mundial y la derrota francesa de 1940, Freyssinet tuvo que ocultar sus conocimientos para evitar que los alemanes se aprovecharan de ellos. Además, varias de sus obras fueron destruidas. A pesar de ello, no interrumpió por completo su actividad constructiva. En 1943, Edme Campenon fundó la STUP (Sociedad Técnica para la Utilización del Pretensado) para aplicar las investigaciones de Freyssinet sobre esta técnica. En la posguerra, Freyssinet perfeccionó el uso del hormigón pretensado, que implementó en nuevos puentes y en diversos edificios, como el faro de Berck y la basílica subterránea del santuario de Lourdes.

Su origen rural tuvo una gran influencia en su carrera como ingeniero, que comenzó a una edad temprana. Tendía a simplificar sus construcciones y a hacerlas económicas. A pesar de su sólida formación matemática, que utilizaba cuando era necesario, su espíritu artesano e intuitivo lo llevaba a confiar más en la experiencia. Apasionado y tenaz, Eugène Freyssinet fue muy apreciado por sus colegas.

Principales contribuciones a la teoría de estructuras: L’Amélioration des constructions en béton armé par l’introduction de déformations élastiques systématiques [1928]; Procédé de fabrication de pièces en béton armé [1928]; Note sur: Bétons plastiques et bétons fluides [1933]; Progrès pratiques des méthodes de traitement mécanique des bétons [1936/1]; Une révolution dans les techniques du béton [1936/2]; Une révolution dans l’art de bâtir: les constructions précontraintes [1941]; Ouvrages en béton précontraint destinés à contenir ou à retenir des liquides [1948/1]; Ponts en béton précontraint [1948/2]; Überblick über die Entwicklung des Gedankens der Vorspannung [1949]; Un amour sans limite [1993].

Os dejo algunos vídeos, que espero, os interesen.

Referencia:

FERNÁNDEZ-ORDÓÑEZ, J.A. (1978). Eugène Freyssinet. 2c Ediciones, Barcelona.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Activación de la fuerza de pretensado e inyección en construcciones de hormigón

La construcción de estructuras de hormigón conlleva procesos técnicos complejos que requieren una planificación rigurosa y una ejecución meticulosa. Entre estos procesos, destacan la activación de la fuerza de pretensado y la inyección de armaduras, esenciales para mejorar el rendimiento estructural y la durabilidad. Este artículo aborda estos procedimientos y detalla principios teóricos, parámetros técnicos y normativas aplicables.

Tesado de armaduras activas

Armadura pasiva y vainas para el acero de postesado durante la construcción de un puente de sección cajón. De Störfix – Fotografía propia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=297005

El tesado de armaduras activas es el proceso mediante el cual se aplica una fuerza de pretensado al acero de refuerzo del hormigón. Esto aumenta la capacidad de carga, reduce las deformaciones y mejora la durabilidad de la estructura.

El proceso de tesado se basa en el principio de generar fuerzas internas en el acero que compensen las tensiones externas previstas durante la vida útil de la estructura. Al aplicar una fuerza controlada, el acero se somete a tracción y el hormigón a compresión, lo que mejora el comportamiento global del elemento estructural.

La operación de tesado deberá realizarse según un plan previamente establecido, teniendo en cuenta las recomendaciones del fabricante del sistema utilizado. Se deberá asegurar que el gato esté perpendicular y centrado sobre el anclaje y que la operación la lleve a cabo personal cualificado. El tesado debe realizarse de forma lenta y progresiva. Si se lleva a cabo en condiciones de bajas temperaturas, deberán tomarse precauciones especiales.

Si se rompe un elemento de la armadura, se podrá alcanzar la fuerza total de pretensado necesaria aumentando la tensión en los elementos restantes, sin exceder el 5 % del valor inicialmente previsto. En caso de que se pierda totalmente la fuerza de pretensado debido a la rotura de elementos irreemplazables de la armadura, la pérdida no podrá superar el 2 % de la fuerza de pretensado prevista en el proyecto.

La temperatura ambiente es un factor crítico. Debe evitarse el tesado a temperaturas inferiores a 5 °C, salvo que se implementen medidas específicas para compensar los efectos del frío, como el uso de equipos de calefacción en el área de trabajo. Además, el acero utilizado debe cumplir con normas internacionales como la EN 10080, que garantizan su calidad y resistencia.

La seguridad durante el tesado es un aspecto prioritario. Las medidas de seguridad incluyen protecciones detrás de los gatos y se prohibirá el paso entre dichas protecciones y el gato durante el izado. En las pretesas, es esencial colocar señales visibles que indiquen la carga máxima permitida para la que han sido proyectados los estribos de anclaje, así como delimitar las zonas de acceso restringido. Además, para evitar que las armaduras salten si se rompen durante el tesado, se deben utilizar placas horadadas, cubriéndolas o envolviéndolas. El tesado no se iniciará sin la autorización de la dirección de obra, que comprobará la idoneidad del programa de tesado y la resistencia del hormigón. Todo el proceso debe estar supervisado por personal técnico cualificado.

Armaduras pretesas

Hormigón pretensado en forma de viguetas. https://www.becosan.com/es/hormigon-pretensado/

Las armaduras pretesas se tensan antes del vertido del hormigón para garantizar que la fuerza se transfiera a la matriz del hormigón durante el fraguado. Este método se utiliza principalmente en la fabricación de elementos prefabricados, como vigas, losas y pilares.

El proceso de pretensado consiste en fijar los extremos de las armaduras en dispositivos de anclaje y aplicarles una fuerza controlada antes de verter el hormigón. Una vez que el hormigón alcanza la resistencia requerida, se libera la tensión de manera gradual, lo que permite que el hormigón absorba el esfuerzo de pretensado.

El programa de tesado deberá especificar el orden de tesado de las armaduras y, en su caso, las sucesivas etapas parciales de pretensado. También se deberá indicar la presión o fuerza que no debe sobrepasarse en los gatos, el valor de la carga de tesado en los anclajes y los alargamientos que deben obtenerse, teniendo en cuenta los movimientos originados por la penetración de la cuña. Además, se debe detallar el modo y la secuencia a seguir para liberar los tendones, así como la resistencia requerida del hormigón en el momento de la transferencia.

La adherencia de las armaduras activas al hormigón depende de la longitud de transmisión, necesaria para transferir al hormigón, por adherencia, la fuerza de pretensado introducida en las armaduras, y de la longitud de anclaje, que garantiza la resistencia del anclaje por adherencia hasta la rotura del acero. Estos factores dependen principalmente de tres elementos: el diámetro de la armadura, sus características superficiales y la resistencia del hormigón.

El destesado es la operación mediante la cual se transmite el esfuerzo de pretensado de las armaduras pretesas al hormigón, para lo cual se deben soltar de manera lenta, gradual y uniforme, sin sacudidas bruscas y de forma ordenada, con el fin de evitar asimetrías. Antes de iniciar esta operación, se verifica que el hormigón haya alcanzado la resistencia especificada, se eliminan obstáculos que impidan el movimiento de las piezas y se cortan las puntas de las armaduras que sobresalgan de las testas si van a quedar expuestas y no embebidas en el hormigón. El destesado prematuro representa un peligro debido a las pérdidas elevadas, mientras que el destesado brusco puede causar esfuerzos anormales, aumentar la longitud de transmisión y anclaje, y aumentar los riesgos de deslizamiento.

Armaduras postesas

Anclajes de hormigón postesado. https://www.becosan.com/es/hormigon-pretensado/

Las armaduras postesas se tensan una vez fraguado el hormigón, lo que permite una mayor flexibilidad en el diseño de estructuras complejas. Se utilizan comúnmente en grandes puentes, viaductos y edificios importantes.

Durante el proceso, los tendones se colocan dentro de vainas que atraviesan el hormigón. Una vez fraguado, se aplican fuerzas de pretensado mediante gatos hidráulicos y se fijan los extremos con cuñas especiales que aseguran la transferencia de cargas a largo plazo.

El programa de tesado deberá especificar expresamente la secuencia detallada de tesado de las armaduras, la presión o fuerza que debe desarrollarse en el gato, los alargamientos esperados y la máxima penetración de la cuña, así como el momento de retirada de las cimbras durante el tesado, si procede. También se deberá indicar la resistencia requerida del hormigón antes del tesado, el número, el tipo y la localización de los acopladores, así como la necesidad de protección temporal si el tesado se realiza en etapas sucesivas. El tesado no se iniciará sin la autorización de la dirección de obra, que comprobará la idoneidad del programa de tesado y la resistencia del hormigón. Cada etapa debe ejecutarse en condiciones de control estrictas, registrándose cada operación para su posterior verificación y trazabilidad.

La tensión máxima inicial admisible en las armaduras se limita con el fin de disminuir riesgos como la rotura o la corrosión. El valor máximo de la tensión en las armaduras antes de anclarlas no podrá exceder el menor de los siguientes valores: el 75 % de la carga unitaria máxima característica o el 90 % del límite elástico característico. De forma temporal, esta tensión podrá aumentarse hasta alcanzar uno de los siguientes valores: el 85 % de la carga unitaria máxima característica o el 95 % del límite elástico característico.

Proceso postesado. Fuente: Catálogo Stronghold

El proceso de tesado consta de varias fases secuenciales, cuidadosamente planificadas, para garantizar la correcta transferencia de la fuerza de pretensado. En primer lugar, se colocan y alinean los gatos hidráulicos frente a los anclajes, asegurándose de que queden perpendiculares y centrados para evitar desviaciones.

Una vez posicionados, se inicia el proceso de aplicación de fuerza de forma gradual y continua. La presión se incrementa en etapas controladas para evitar tensiones repentinas que puedan causar daños estructurales. Durante esta fase, se realiza un seguimiento constante de la presión y del alargamiento de las armaduras.

A medida que el acero se alarga, hay que verificar los anclajes y realizar ajustes si es necesario. El equipo técnico debe registrar cada paso, documentando las presiones aplicadas, los alargamientos medidos y los incidentes que puedan ocurrir durante el proceso.

Una vez alcanzada la fuerza especificada en el proyecto, se fijan definitivamente las armaduras mediante cuñas mecánicas o dispositivos de anclaje hidráulico. De este modo, se asegura que el acero mantenga la tensión aplicada incluso después de retirar los equipos de tesado.

Por último, se llevan a cabo inspecciones visuales y técnicas para confirmar que el proceso de tesado se ha realizado correctamente. Cualquier anomalía detectada debe corregirse antes de pasar a la siguiente fase de construcción.

El control del tesado implica medir simultáneamente el esfuerzo ejercido por el gato y el alargamiento de la armadura, con una precisión de ±2 % del recorrido total. Se debe garantizar que la fuerza de pretensado se mantenga dentro de ±5 % del valor de proyecto y que los alargamientos sean de ±15 % para un tendón particular y de ±5 % para la suma de todos los valores en la misma sección. Para facilitar el control, se utilizará una tabla de tesado que incluirá los datos del programa, la identificación de los tendones, los resultados del tesado y los incidentes. Los datos recopilados deben documentarse con todo detalle, incluyendo las desviaciones y las correcciones realizadas.

El retesado de armaduras postesas se define como cualquier operación de tesado efectuada sobre un tendón después de su tesado inicial. Este procedimiento solo está justificado si es necesario para uniformar las tensiones de los diferentes tendones de un mismo elemento o si está previsto en el programa el tesado en etapas sucesivas. No se debe realizar un retesado con el único objetivo de disminuir las pérdidas diferidas de tensión, salvo en circunstancias especiales.

Antes de proceder con el retesado, se realiza una evaluación exhaustiva de la estructura para determinar si es necesario realizarla. El procedimiento debe ajustarse al programa de tesado original y a las condiciones actuales del proyecto. Las presiones aplicadas durante el retesado deben controlarse con cuidado para evitar daños en los elementos estructurales.

Además, es fundamental recalibrar los equipos de tesado antes de iniciar esta operación para garantizar que los valores aplicados sean precisos. Una vez finalizado, deben realizarse nuevas inspecciones y pruebas de carga para verificar la efectividad del proceso.

Inyección de armaduras

La inyección de lechada es fundamental para proteger las armaduras de pretensado contra la corrosión y garantizar su adherencia al hormigón. Este proceso consiste en llenar los conductos que albergan los tendones con una mezcla diseñada para resistir agresiones químicas y ambientales. Debe realizarse lo antes posible tras el tesado.

La preparación de la mezcla de inyección es una etapa clave para garantizar el correcto funcionamiento del sistema de pretensado. La lechada es una mezcla cuidadosamente dosificada de cemento, agua y aditivos específicos. La proporción de estos componentes se calcula en función de factores como la temperatura ambiente, el tipo de estructura y las condiciones específicas del lugar de construcción.

El proceso de mezclado debe realizarse con equipos mecánicos especializados que aseguren una mezcla homogénea y libre de grumos. El tiempo de mezclado oscila entre 2 y 4 minutos, aunque puede prolongarse si se utilizan aditivos retardadores, en caso de prever un tiempo de más de 30 minutos antes de la inyección.

La relación agua-cemento debe mantenerse dentro de márgenes estrictos, generalmente entre 0,4 y 0,5, para garantizar una consistencia coloidal que facilite el flujo de la lechada a través de los conductos. Además, es indispensable realizar pruebas preliminares para verificar la fluidez, la resistencia inicial y la adherencia.

La temperatura de la mezcla no debe exceder los 30 °C para evitar fraguados prematuros. Si se anticipa una demora en el proceso de inyección, se pueden incorporar aditivos estabilizantes que prolonguen la trabajabilidad de la lechada sin afectar a sus propiedades mecánicas.

Finalmente, antes de proceder con la inyección, se debe inspeccionar visual y técnicamente el equipo de mezclado para garantizar su correcto funcionamiento y evitar contaminaciones o errores en la dosificación.

La ejecución de la inyección requiere una planificación detallada que tenga en cuenta las condiciones del proyecto y las especificaciones técnicas establecidas. El programa de inyección debe contener, al menos, las características de la lechada (tiempos), las del equipo de inyección, la limpieza de los conductos, la secuencia de operaciones y los ensayos a realizar, las probetas para los ensayos, el volumen de lechada a preparar y la previsión de incidentes, entre otros aspectos. Se deben utilizar equipos de inyección calibrados para garantizar la aplicación continua y uniforme de la lechada.

La ejecución de la inyección de armaduras postesas requiere comprobar previamente las siguientes condiciones: el equipo de inyección, la bomba de inyección auxiliar, el suministro permanente de agua a presión y aire comprimido, el exceso de materiales para el amasado del producto de inyección, las vainas libres de materiales perjudiciales, los conductos a inyectar preparados e identificados y los ensayos de control de la lechada preparados.

El proceso comienza con la conexión segura del equipo de inyección a los conductos. La inyección debe realizarse bajo las siguientes condiciones: la longitud máxima de inyección no debe superar los 120 m y, en tiempo frío, se debe asegurar de que no haya hielo en los conductos, inyectando agua caliente si es necesario. Queda prohibido efectuar la inyección con aire comprimido. La inyección debe ser continua e ininterrumpida, con una velocidad de avance constante entre 5 y 15 m/min, y debe realizarse desde puntos bajos para garantizar un llenado completo y evitar bolsas de aire. El proceso finaliza cuando la lechada comienza a rebosar por los puntos de purga con la misma consistencia que la mezcla inicial. Una vez finalizada la operación, se obstruyen herméticamente los orificios de purga para evitar la entrada de aire o humedad que pueda afectar a la durabilidad de la estructura. La presión de inyección se ajusta cuidadosamente para garantizar una distribución uniforme del material y minimizar el riesgo de rotura de los conductos.

La inspección de la inyección debe incluir la elaboración de un informe para cada inyección, en el que se anoten las características del producto, la temperatura ambiente en el momento de la inyección, el tipo de cemento utilizado, el aditivo incorporado a la mezcla (si corresponde) y su dosificación, la relación agua/cemento elegida, el tipo de mezclador, la duración del mezclado y las probetas fabricadas para controlar las condiciones relativas a los productos de inyección. Estos informes deben archivarse como parte de los registros permanentes de la obra.

La seguridad durante la inyección debe extremarse. El personal involucrado debe recibir capacitación específica en técnicas de inyección y en procedimientos de seguridad. Es obligatorio el uso de equipos de protección individual, como guantes, gafas y cascos, especialmente en áreas donde exista riesgo de contacto con productos químicos. Está prohibido que los operarios miren a través de los tubos o de los rebosaderos.

Durante la inyección, debe establecerse un perímetro de seguridad en torno a la zona de trabajo para prevenir accidentes. Además, es imprescindible realizar inspecciones visuales y técnicas en tiempo real para detectar posibles fugas, obstrucciones o anomalías en la aplicación.

Por último, una auditoría posterior a la inyección debe verificar que todos los conductos se han llenado correctamente y que las purgas se han realizado conforme a los estándares. Este control garantiza que el sistema de pretensado funcione de manera óptima y se mantenga con el paso del tiempo.

Consideraciones normativas

Las operaciones relacionadas con el pretensado y la inyección deben cumplir con estándares técnicos específicos que garanticen la seguridad, la durabilidad y la funcionalidad de las estructuras construidas. La normativa europea EN 13391 regula los dispositivos de anclaje utilizados en el pretensado y especifica los requisitos de diseño, de resistencia y los métodos de prueba.

El Código Estructural establece pautas detalladas para el diseño y la ejecución de elementos pretensados, incluidos los procedimientos de tesado, inyección y control de calidad. También exige que cada etapa del proceso esté documentada y supervisada por profesionales acreditados.

En proyectos internacionales, normas como la ACI 318 (American Concrete Institute) establecen criterios adicionales para el cálculo estructural y la verificación de los materiales. El cumplimiento de estas normativas garantiza la integridad estructural, la capacidad portante y la resistencia a condiciones adversas durante la vida útil de la estructura.

Además, los reglamentos de seguridad laboral exigen que los operarios estén certificados y se implementen medidas de protección para evitar accidentes. El seguimiento estricto de estas disposiciones permite minimizar riesgos y garantizar el éxito del proyecto desde la fase inicial hasta la finalización.

Conclusión

La activación de la fuerza de pretensado y la inyección en construcciones de hormigón son procesos técnicos esenciales. Si se siguen procedimientos detallados, normas específicas y controles de calidad rigurosos, su correcta aplicación garantiza estructuras seguras y duraderas.

Dejo a continuación unos vídeos que, espero, os resulten interesantes.

A continuación, os dejo una presentación de Luis Cosano, del departamento técnico de Freyssinet, S.A. Espero que os sea de interés.

Pincha aquí para descargar

Además, a continuación podéis descargar el artículo 50 del Código Estructural relativo a los procesos de colocación y tesado de las armaduras activas.

Pincha aquí para descargar

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los sistemas de pretensado en las estructuras de hormigón

Figura 1. Viga postesada. https://prodac.pe/edificaciones/soluciones-para-la-industria-de-prefabricados/alambre-pretensado/

El pretensado es una técnica que aumenta la capacidad de resistencia del hormigón a cargas al someterlo previamente a esfuerzos de compresión. Esta técnica crea una resistencia adicional a los esfuerzos de tracción, lo que permite construir estructuras más resistentes y duraderas. Se utiliza ampliamente en la construcción de puentes, vigas, losas y otros elementos sometidos a cargas significativas, tanto en estructuras prefabricadas como en construcciones in situ.

En esencia, el sistema de pretensado consiste en instalar y tensar armaduras activas, como cables, alambres o cordones de acero de alta resistencia, dentro del hormigón antes de que este se someta a las cargas de servicio. Al tensar estas armaduras, se generan fuerzas internas que comprimen el hormigón y contrarrestan las fuerzas externas a las que estará sometido. De esta manera, el hormigón precomprimido es más eficaz para soportar tensiones, lo que previene problemas como las fisuras y mejora la estabilidad de la estructura.

El proceso comienza con la elección de las armaduras activas y el almacenamiento adecuado del acero para protegerlo de la corrosión y la contaminación. A continuación, se colocan y tesan las armaduras, para lo cual se utilizan equipos especializados, como enfiladoras, gatos hidráulicos y centrales de presión. Estos equipos permiten tensar las armaduras de forma controlada y precisa, asegurando que se alcancen los niveles de tensión adecuados según el diseño estructural.

Los anclajes cumplen una función fundamental, ya que fijan los extremos de las armaduras tensadas al hormigón y aseguran la transmisión de las fuerzas de compresión. Existen dos tipos de anclajes: activos o móviles, que se colocan en el extremo de tensado, y pasivos o fijos, situados en el extremo opuesto. Los empalmes permiten extender los tendones cuando la estructura lo requiere y garantizan la continuidad y la alineación. Por su parte, los conectadores permiten aplicar tensión en puntos intermedios de tendones cerrados o de acceso limitado.

Las vainas son otros componentes esenciales del sistema, ya que alojan los tendones en el hormigón y permiten inyectar adecuadamente materiales adherentes o protectores. Los productos de inyección, como lechadas de cemento para sistemas adherentes, betunes y grasas para sistemas no adherentes, protegen los tendones contra la corrosión y aumentan la adherencia en los sistemas adherentes. Esto es esencial para garantizar la durabilidad y la eficacia del pretensado.

El sistema de pretensado es muy eficiente, pero requiere precisión en su ejecución y un control estricto de la calidad, ya que cualquier fallo en el tensado o en los materiales puede afectar a la integridad estructural del proyecto. Si se implementa adecuadamente, el pretensado permite construir estructuras seguras y resistentes que maximizan las ventajas del hormigón y lo convierten en un material adecuado para una amplia gama de aplicaciones de ingeniería.

Introducción a los sistemas de pretensado

El pretensado es una técnica avanzada de construcción que consiste en aplicar esfuerzos de compresión al hormigón antes de que el elemento estructural soporte su carga de servicio, con el fin de mejorar su resistencia. En este método, se induce una compresión interna en el hormigón, lo que permite que la estructura soporte mejor los esfuerzos de tracción y aumente su capacidad de resistir cargas elevadas y deformaciones excesivas. Este sistema, ampliamente utilizado en proyectos de construcción como puentes, edificios de gran altura, cubiertas y elementos prefabricados, se basa en armaduras activas, normalmente de acero, que se tensan y se anclan en el interior de la estructura para transmitir la fuerza de compresión al hormigón.

En este artículo se describen en detalle los distintos elementos y equipos que intervienen en los sistemas de pretensado. Cada componente, desde los tendones y los anclajes hasta las vainas y los equipos de tesado, cumple una función específica en el éxito del sistema de pretensado y en la calidad final de la estructura de hormigón.

1. Armaduras activas: suministro y almacenamiento

Las armaduras activas son el componente principal del sistema de pretensado y están fabricadas principalmente en acero de alta resistencia. Estas armaduras se tensan previamente para introducir esfuerzos de compresión en el hormigón, lo que aumenta su capacidad para soportar tracciones sin agrietarse ni presentar otras deformaciones no deseadas.

1.1 Tipos de armaduras activas

  • Alambres: suelen entregarse en rollos y su diámetro de bobinado no debe ser inferior a 250 veces el diámetro del alambre para evitar deformaciones.
  • Barras: se entregan en tramos rectos, lo que garantiza su resistencia y evita daños durante el transporte.
  • Cordones: existen cordones de 2, 3 o 7 alambres que se utilizan según el diseño estructural y los requisitos de carga. Los cordones de 2 o 3 alambres se entregan en rollos con un diámetro mínimo de 600 mm, mientras que los de 7 alambres se suministran en bobinas o carretes con un diámetro interior de 750 mm o mayor.
Figura 2. Unidades de anclaje de 3 y 5 cordones en forjado postesado. http://www.freyssinet.es/freyssinet/wfreyssinetsa_sp.nsf/sb/soluciones.construccion..pretensado-(cordones)

1.2 Requerimientos de suministro

Para que las armaduras activas mantengan sus propiedades mecánicas y estén protegidas frente a factores externos, deben almacenarse y transportarse siguiendo medidas específicas. El acero debe protegerse de la humedad y de la contaminación por polvo, grasas y otros agentes que puedan alterar su comportamiento estructural.

1.3 Almacenamiento de armaduras activas

El almacenamiento de las armaduras es esencial para garantizar su durabilidad y el correcto funcionamiento en la obra. Las principales recomendaciones son las siguientes:

  • Ventilación adecuada: las armaduras deben almacenarse en locales bien ventilados, lejos de la humedad del suelo y de las paredes.
  • Clasificación y limpieza: es importante que las armaduras estén libres de grasa, aceite, polvo u otras materias que puedan afectar a su adherencia. También deben clasificarse por tipo y por lote.
  • Inspección de la superficie: antes de ser utilizadas, las armaduras deben inspeccionarse para detectar cualquier deterioro superficial y garantizar que cumplen las condiciones de uso.

2. Sistemas de pretensado: componentes y función de los elementos

Un sistema de pretensado es un conjunto de elementos estructurales y dispositivos especializados diseñados para aplicar y mantener la tensión en las armaduras activas y transmitirla de forma segura y eficiente al hormigón.

2.1 Componentes principales del sistema de pretensado

Los principales elementos del sistema de pretensado son los anclajes, los empalmes, los conectadores y las vainas. Estos componentes cumplen funciones específicas, como asegurar los tendones, extender su longitud o permitir la transmisión uniforme de fuerzas.

  • Los anclajes son dispositivos esenciales en los sistemas de pretensado, ya que aseguran los tendones y transmiten las fuerzas de tensión al hormigón. Existen dos tipos principales de anclajes: el anclaje activo o móvil, situado en el extremo del tendón por donde se aplica la tensión, y el anclaje pasivo o fijo, situado en el extremo opuesto del tendón, donde no se aplica tensión. Este tipo de anclaje permite que los cables de acero se tensen según el diseño estructural y soporten las fuerzas aplicadas. El otro tipo de anclaje es el pasivo o fijo, situado en el extremo opuesto del tendón, donde no se aplica tensión. Este anclaje asegura la estabilidad del tendón y permite que el esfuerzo de compresión se transmita eficazmente al hormigón. Dentro de estos tipos, destacan varios modelos de anclaje adaptados a diferentes necesidades y geometrías, como los anclajes activos tipo L y los anclajes pasivos tipo S, que se emplean en vigas y elementos lineales. Cada anclaje está diseñado para resistir esfuerzos específicos y garantizar una adecuada transmisión de fuerzas al hormigón.
  • Los empalmes son elementos que dan continuidad a los tendones cuando estos requieren extensiones adicionales debido al tamaño del proyecto o al método de construcción. Los empalmes se clasifican en: empalme fijo, que mantiene los tendones en posición fija y asegura su continuidad sin movimientos adicionales, y empalme móvil, que permite cierta movilidad a los tendones, facilita el alineado de las armaduras y reduce los esfuerzos durante el tensado. Ambos tipos de empalme son esenciales para estructuras de grandes dimensiones y en casos en que el tendón debe dividirse en varias secciones.
  • Los conectadores permiten aplicar tensión en puntos intermedios o en elementos cerrados (como tuberías o silos) a los que es difícil acceder por sus extremos. Estos conectadores proporcionan puntos adicionales de anclaje en estructuras grandes o con geometrías complejas y aseguran la transferencia uniforme de las fuerzas.

    Figura 3. Selección del tipo de anclaje o conector a utilizar en el hormigón pretensado

2.2 Elementos de aseguramiento y distribución

También existen elementos auxiliares que colaboran en la distribución uniforme de las fuerzas y la fijación de las armaduras activas en el sistema de pretensado:

  • Cuñas: estas piezas metálicas fijan los extremos de las armaduras activas a las placas de anclaje.
  • Placas de anclaje: placas perforadas de forma cónica en las que se alojan las cuñas, lo que permite sujetar el tendón de forma efectiva.
  • Placas de reparto: dispositivos situados entre la placa de anclaje y el hormigón que distribuyen las fuerzas en la zona de contacto y evitan sobrecargas.
  • Trompetas de empalme: estas piezas, troncocónicas o cónicas, enlazan las placas de anclaje con las vainas y facilitan la transferencia de tensiones en las armaduras activas.

 

Figura 4. Placa de anclaje.De Störfix – Fotografía propia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=296999

3. Vainas y accesorios

Las vainas son conductos de pretensado que albergan los tendones. Estos conductos pueden fabricarse en metal, plástico u otros materiales y son esenciales para proteger y guiar las armaduras postesas en el interior del hormigón, evitando así el contacto directo con el hormigón y facilitando el proceso de inyección.

3.1 Vainas metálicas

Las vainas metálicas son las más comunes, especialmente por su resistencia al aplastamiento y su capacidad para soportar el peso del hormigón fresco. Además, la superficie corrugada de las vainas mejora la adherencia al hormigón y la rigidez estructural de las vainas. Las características principales de las vainas metálicas son las siguientes:

  • Resistencia mecánica: deben ser lo suficientemente robustas como para soportar el peso y la presión del hormigón fresco sin deformarse.
  • Estanqueidad: las vainas deben ser herméticas para evitar la infiltración de agua o la lechada de cemento en su interior y mantener las armaduras activas protegidas.
  • Diámetro adecuado: el diámetro interno de la vaina debe ser el apropiado para permitir una inyección eficaz del producto y asegurar una cobertura uniforme alrededor de los tendones.

3.2 Otros accesorios en vainas

  • Separadores: piezas que ayudan a distribuir las armaduras activas dentro de las vainas y aseguran una distancia y una alineación uniformes.
  • Tubo matriz: tubo flexible, generalmente de polietileno, que se coloca dentro de la vaina para suavizar el trazado y evitar tensiones no deseadas en las armaduras.

3.3 Tubos de purga

Los tubos de purga o respiraderos son pequeñas piezas que se colocan en los puntos altos y bajos del trazado de las vainas. Estos tubos permiten la evacuación del aire y del agua durante el proceso de inyección, lo que asegura que no queden huecos y que el producto inyectado cubra toda el área interna.

4. Equipos para enfilado, tesado e inyección

La tecnología de pretensado requiere equipos especializados para facilitar el enfilado de los tendones, la aplicación de tensión y la inyección de materiales protectores en los conductos. Los equipos esenciales son las enfiladoras, los gatos hidráulicos, las centrales de presión y los equipos auxiliares de manipulación.

  • Enfiladoras: son máquinas diseñadas para colocar los tendones dentro de las vainas de pretensado mediante un sistema de empuje o de estirado, según el diseño de la estructura. Estas máquinas garantizan que los tendones estén correctamente alineados antes de aplicar la tensión.
  • Gatos hidráulicos: son dispositivos hidráulicos que permiten el tesado de los tendones con una fuerza precisa y controlada. Se utilizan en combinación con cuñas para mantener la tensión en los extremos anclados y asegurar que la fuerza de pretensado se transmita de forma uniforme al hormigón.
  • Centrales de presión: las centrales de presión controlan los gatos hidráulicos mediante válvulas reguladoras y circuitos eléctricos que permiten ajustar la presión aplicada con precisión. Estos sistemas incluyen manómetros o dinamómetros para garantizar que la presión de tesado cumpla con los requisitos especificados en el proyecto.
  • Equipos auxiliares: incluyen grúas y otros medios de manipulación que facilitan el posicionamiento de los gatos, las vainas y las armaduras activas. Son especialmente útiles en obras de gran envergadura, donde el peso y el tamaño de los elementos dificultan su instalación manual.

5. Productos de inyección

La inyección de materiales en las vainas es fundamental para proteger las armaduras activas y mejorar la adherencia entre el tendón y el hormigón. Existen dos tipos principales de productos de inyección:

  • Inyecciones adherentes: consisten en lechadas o morteros de cemento que llenan los conductos de las vainas y mejoran la unión entre el tendón y el hormigón. Algunas características esenciales de estos productos son:

— Uso de cemento Portland CEM-I, que asegura una buena adherencia y resistencia mecánica.
— Aditivos que permiten modificar las propiedades de la lechada para mejorar la protección de las armaduras.
— Relación agua/cemento baja (entre 0,38 y 0,43) para lograr una mayor resistencia a la compresión y una porosidad baja.

  • Inyecciones no adherentes: los productos de inyección no adherentes, como los betunes, mástiques bituminosos y grasas solubles, protegen las armaduras contra la corrosión sin generar adherencia al hormigón. Son adecuados para estructuras que requieren flexibilidad en los tendones y una menor adherencia al hormigón.

Para aplicar los productos de inyección se utilizan equipos de mezcla e inyección que aseguran la preparación y la distribución uniforme del material dentro de las vainas. Estos equipos deben contar con sistemas de control de calidad que permitan ajustar la mezcla y supervisar su aplicación durante el proceso de inyección.

Conclusión

Los sistemas de pretensado en hormigón son una solución técnica que aumenta la resistencia y la durabilidad de las estructuras. Desde el suministro y almacenamiento de las armaduras activas hasta el tesado y la inyección, cada componente del sistema es crucial para el éxito de la estructura. Estos sistemas no solo aumentan la capacidad del hormigón para resistir esfuerzos de tracción, sino que también contribuyen a reducir el riesgo de deformaciones y a mejorar la calidad estructural general de las obras de ingeniería.

Os dejo algunos vídeos que espero sean de vuestro interés.

Curso:

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Pincha aquí para descargar

Proceso constructivo de un puente colgante

Figura 1. Gran Puente de Akashi Kaikyō, el puente colgante de mayor vano del mundo. Wikipedia.

El sistema de construcción de puentes colgantes tiene un impacto significativo en su estructura. Las fases principales en la ejecución de un puente colgante pasa por la construcción de las torres y contrapesos, el montaje de los cables principales y la ejecución del tablero.

Lo habitual es que el proceso constructivo comience con la ejecución de los anclajes y las torres. Los anclajes implican trabajos importantes de movimiento de tierras. Las torres o mástiles pueden ser de acero o de hormigón, presentando el desafío de la construcción en altura. En el caso del acero, se emplean técnicas bien desarrolladas de unión, como soldadura y tornillos de alta resistencia. Las torres de acero se montan por módulos prefabricados que se elevan mediante grúas trepadoras ancladas a la propia torre. En el caso del hormigón, se utilizan encofrados trepadores o deslizantes. En cualquier caso, se deben considerar los medios necesarios para elevar cargas de peso considerable a grandes alturas. Las grúas pueden ir creciendo a medida que las torres se elevan, estando ancladas a ellas.

Cuando los cables se anclan externamente, los contrapesos se vuelven indispensables y constituyen un elemento fundamental en la ejecución de la estructura. Los contrapesos requieren una precisa colocación de las piezas metálicas que servirán de anclaje al cable. En el caso de los puentes colgantes autoanclados, los cables principales se anclan al tablero, lo que elimina la necesidad de contrapesos. Por tanto, el tablero se convierte en el primer elemento a construir. Sin embargo, esta configuración conlleva la pérdida de una de las principales ventajas de la construcción de puentes colgantes, que es la capacidad de construir el tablero por etapas, sin importar la ubicación del puente.

Una vez ejecutadas las torres y los anclajes, es necesario proceder al montaje del cable principal, el cual constituye el elemento fundamental de la estructura resistente del puente colgante. El montaje de los cables principales es la fase más compleja, pues implica superar el vano existente entre las dos torres, lo que requiere tenderlo en el vacío. Se comienza lanzando unos cables guía, que son los primeros en abarcar la luz del puente y alcanzar los puntos de anclaje. En la mayoría de los puentes colgantes ubicados en áreas navegables, es posible pasar estos cables iniciales utilizando un remolcador. En la actualidad, este proceso ya no representa un problema gracias al uso de helicópteros e incluso drones.

Figura 2. Montaje de los cables en un puente colgante. https://www.ihi.co.jp/iis/en/technology/airspining/index.html

A partir del cable inicial, se instalan las pasarelas que se emplean para devanar los alambres del cable, ya sea mediante alambres individuales “in situ” (air spinning) o por cordones. Durante esta etapa, el viento representa el desafío más significativo, ya que puede ocasionar grandes desplazamientos laterales en la polea móvil. En algunas ocasiones, esto ha llevado a detener el proceso de montaje del puente, generando retrasos significativos en la construcción. Finalmente, se compacta el cable principal de manera discontinua por bandas de presión o de forma continua mediante recubrimiento de alambre.

En cuanto al montaje del tablero, se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. También es posible llevar las dovelas a su posición definitiva mediante flotación y elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas.

Una vez se han montado los cables principales, adoptando la curva catenaria correspondiente a su propio peso, se procede al montaje del tablero. El proceso de montaje del tablero se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. Este método requiere el uso de grúas ubicadas sobre el tablero ya construido, capaces de elevar piezas de diferentes tamaños. También es posible llevar las dovelas estancas que se transportan flotando hasta su posición y elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas. Este sistema de montaje resulta más económico que el anterior y, en este caso, la secuencia de montaje se ejecuta desde el centro del vano hacia las torres, de manera simétrica.

Una vez finalizado el montaje estructural, se pasa a una fase de ajustes y comprobaciones, en la que se controlan las tensiones de los cables, la nivelación del tablero y la geometría de la catenaria. También se realizan las pruebas de carga estática y dinámica necesarias para verificar el comportamiento global antes de ponerlo en servicio.

El mantenimiento de un puente colgante comienza en el momento de su inauguración. Los cables principales, las péndolas y los anclajes están sometidos a esfuerzos continuos y a la acción de agentes ambientales agresivos, por lo que deben inspeccionarse periódicamente. Las operaciones de mantenimiento habituales incluyen la limpieza y repintado de los cables, el control de la corrosión, la sustitución de péndolas o alambres deteriorados y la supervisión del comportamiento aerodinámico frente al viento.

Una correcta planificación de estas operaciones es esencial para garantizar la durabilidad del puente y la seguridad de los usuarios a lo largo de su vida útil, que puede superar fácilmente los cien años si se mantienen adecuadamente sus componentes estructurales.

Os dejo algún vídeo sobre la construcción de este tipo de puentes. También os recomiendo mi artículo sobre la construcción del puente del Estrecho de Mackinac.

Referencias:

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2.ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos de hormigón pretensado en carreteras y aeropuertos

Figura 1. Pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

Con el fin de evitar fisuras en el pavimento, las losas de hormigón se tesan para contrarrestar la tracción provocada por el tráfico, la retracción y los gradientes térmicos. El principio de diseño de un pavimento de hormigón pretensado consiste en comprimirlo mediante el tesado de cables de acero insertados en la losa de hormigón. El tesado puede ser unidireccional o bidireccional, siendo este último aconsejable para pavimentos industriales, en cuyo caso, se recomienda que el nivel de tensión sea similar en ambas direcciones.

De esta manera, el hormigón comprimido permite espesores de losa menores que los de los pavimentos de hormigón en masa o armado. Además, es posible diseñar grandes áreas sin juntas o con juntas que pasan desapercibidas debido a la compresión que el hormigón recibe. De esta forma, se pueden distanciar las juntas hasta 150 m y se reduce el espesor de la losa en un 50 % debido a la disminución de las tensiones. Para ello, se han ensayado diversos sistemas de pretensado, tanto internos —con cables o alambres (postesado)— como externos —con gatos planos hidráulicos y juntas neumáticas—. Las juntas utilizadas están especialmente diseñadas para soportar cambios máximos de apertura, pero en algunos sistemas los estribos están dispuestos para resistir el empuje horizontal.

Los pavimentos pretensados evitan las grietas de retracción y flexión, eliminan las juntas de contracción y reducen el mantenimiento. Además, minimizan el alabeo de las losas, ofrecen un comportamiento elástico al sobrecargarse y reducen los espesores, a la vez que mejoran la planeidad con el tiempo. Sin embargo, su construcción requiere más cuidado y personal más especializado, además de una mayor supervisión para garantizar la adecuada colocación y el tesado de los cables. En caso de que falle una zona, hay que sustituir toda el área construida de forma unitaria, por lo que resulta poco rentable en superficies pequeñas. La rentabilidad de los pavimentos pretensados requiere una longitud de pavimento superior a 100 m o cuando los suelos presentan características mediocres. Se pueden conseguir pavimentos de 10 000 m² sin juntas.

Los requisitos de la plataforma de apoyo o de la superficie de subrasante son similares a los de los pavimentos de hormigón convencionales. Sin embargo, dado que los pavimentos postesados son más finos, el sistema resulta más flexible y se generan mayores esfuerzos verticales en la base. Por lo tanto, la calidad y la resistencia de la base son aún más importantes en este tipo de pavimentos que en los convencionales. Por esta razón, normalmente se especifica que el módulo de reacción de la base o la constante de balasto no sea inferior a 54 MPa/m.

Generalmente, los cables se postesan y anclan después de que el hormigón haya alcanzado una resistencia suficiente para soportar la fuerza del anclaje. El postesado puede ser adherido o no. A pesar de lo anterior, el diseño de este tipo de pavimentos plantea algunas dificultades para la reparación en caso de daños. Además, el diseño de las juntas entre las áreas donde se realiza el postesado no es un asunto trivial. Normalmente, se recomienda que el espaciamiento entre los cables longitudinales sea de entre 2 y 4 veces el espesor de la losa y de entre 3 y 6 veces el espesor de la losa para los cables transversales.

Figura 2. Sección de un pavimento de hormigón pretensado

Durante los años 60, varios países europeos desarrollaron técnicas de construcción mediante el pretensado en carreteras. Sin embargo, la geometría de las carreteras provoca más dificultades que ventajas, sobre todo debido a la dificultad de introducir el pretensado. En España se experimentó en 1963 en el tramo de pruebas de la N-II, pero no se continuó con el uso de esta técnica. Después de unos años de intenso tráfico, se dejó descomprimir y se reforzó con mezclas bituminosas.

Figura 3. Hormigonado de un pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

La tecnología del hormigón pretensado se emplea sobre todo en pistas de aeropuertos y zonas industriales, donde se pueden encontrar grandes superficies continuas y casi horizontales, sin curvas en planta ni en alzado, como en las carreteras. Esto permite un menor espesor de la losa y una organización distinta de la de conservación. La primera aplicación en un pavimento aeroportuario tuvo lugar en Francia, en la pista de Orly. Sin embargo, esta pista falló después de seis años en servicio debido a la rotura de los aceros pretensados por oxidación. Por otro lado, en el aeropuerto de Schiphol, en Ámsterdam, se construyeron más de 700 000 m² de pavimento pretensado durante 15 años, con excelentes resultados.

Una alternativa viable es la construcción de pavimentos con losas pretensadas prefabricadas. En algunos países, especialmente en regiones con condiciones ambientales adversas, como el norte de la antigua Unión Soviética, se ha adoptado el método de las losas prefabricadas para evitar la complejidad de la colada «in situ» y los posibles errores asociados. De este modo, se logra industrializar el proceso, asegurar la calidad y reducir los plazos de obra. Además, esta técnica permite trabajar en cualquier época del año, incluso en condiciones de bajas temperaturas, donde no es posible utilizar hormigón o mezcla bituminosa debido a su enfriamiento instantáneo.

Figura 4. Losas prefabricadas pretensadas para pavimentos. https://www.concrete.org/portals/0/wp-content/uploads/pdf/webinars/ws_2021_Snyder_Precast.pdf

Existen dos tipos de losas prefabricadas: las que tienen un pretensado longitudinal y transversal y las que solo tienen un pretensado longitudinal. Las dimensiones de las primeras pueden alcanzar los 3,50 m x 6,00 o 7,00 m. Para el pretensado se emplea acero de 3 a 5 mm en dos capas cercanas a cada cara. Los cantos resultantes varían de 14 a 22 cm y se requieren entre 2 y 3 MPa de tensión inicial. El tamaño está limitado por el peso para el traslado y la colocación posteriores. Por otro lado, las losas pretensadas axialmente son más sencillas y tienen menores dimensiones: 1,75 o 2,00 m x 6,00 o 7,00 m. En este caso, se opta por un acero de mayor diámetro (14 a 16 mm) y un refuerzo transversal con armadura de barras de 5 a 7 mm. Además, los bordes llevan un armado suplementario.

En las losas se dejan abrazaderas para unirlas mediante soldadura in situ. Las juntas se rellenan dos tercios con un mortero pobre de arena y se sellan con un mástico anticarburante. Cada dos o tres, se dejan libres para permitir la dilatación, lo cual depende de la gama de temperaturas ambiente. Las bases en este tipo de pavimento son las tradicionales de los pavimentos rígidos, aunque se recomienda tratarlas con cemento. A veces, se extiende una capa de 3 a 6 cm de arena y cemento para asegurar una mejor superficie de apoyo, según el tipo de base empleado.

Os dejo un artículo sobre pavimentos prefabricados de hormigón.

Pincha aquí para descargar

Referencias:

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid

KRAEMER, C.; PARDILLO, J.M.; ROCCI, S.; ROMANA, M.G.; SÁNCHEZ, V.; DEL VAL, M.A. (2010). Ingeniería de carreteras II. McGraw-Hill, Madrid.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización heurística de un nuevo tipo de cercha pretensada

Acaban de publicarnos un artículo en Materials, revista indexada en el primer cuartil del JCR. En este caso se ha optimizado, mediante un algoritmo de optimización heurística, un nuevo tipo de cercha metálica pretensada. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. En este caso, se trata de una colaboración entre nuestro grupo de investigación e investigadores de Georgia.

Este artículo presenta nuevos enfoques para el cálculo, el diseño y la optimización de cerchas pretensadas con un elemento de unión. Los sistemas estructurales con grandes luces, como cerchas, vigas, pórticos, etc., están sometidos a un riesgo considerable de pérdida de capacidad de carga debido a los diferentes tipos de cargas utilizadas. Algunos métodos de diseño tradicionales definen los valores del pretensado en el elemento de unión y las fuerzas internas en los elementos de la celosía para evitar esta pérdida de capacidad de carga. Sin embargo, la precisión y los límites de la determinación de las fuerzas no son necesariamente conocidos. Los autores proponen un nuevo tipo de celosía pretensada y algunos nuevos enfoques en el proceso de diseño y cálculo para resolver estos inconvenientes. Los principales objetivos del estudio fueron diseñar una innovadora y nueva forma geométrica de celosía arqueada pretensada, que permite el desarrollo de una fuerza de pretensado de alto valor, para optimizar una nueva celosía para reducir el peso propio, aumentando la capacidad de carga en comparación con sus análogos. Durante el estudio se empleó el recocido simulado. Un nuevo avance en la optimización de la celosía arqueada pretensada sugerido por los autores reduce el peso propio y mejora la capacidad de carga de la celosía entre un 8 y un 17%, dependiendo de la luz.

Abstract:

This paper represents new approaches for calculating, designing, and optimizing prestressed arched trusses with a tie member. Structural systems with long spans, such as trusses, beams, frames, etc., are subjected to a considerable/substantial risk of losing load-carrying capacity because of the different types of loads used. Some traditional design methods define the values of prestressing force in the tie member and internal forces in the truss elements to avoid this load capacity loss. However, the accuracy and limits of the determination of the forces are not necessarily known. The authors offer a new type of prestressed arched truss and some new approaches in the design and calculation process to solve these disadvantages. The study’s main objectives were to design an innovative and new geometric form of prestressed arched truss, which allows the development of high-value prestressing force, to optimize a new truss for reducing self-weight, increasing load-carrying capacity compared to its analogs. The force, stiffness matrix, and simulated annealing methods were used during the study. A new advance to the optimization of prestressed arched truss suggested by the authors reduces the self-weight and improves the load capacity of the truss by 8–17%, depending on the span.

Keywords:

Prestressed truss; stiffness matrix method; tensile element; compressed element; optimization; simulated annealing.

Reference:

PARTSKHALADZE, G.; ALCALÁ, J.; MEDZMARIASHVILI, E.; CHAVLESHVILI, G.; SURGULADZE, B., I.; YEPES, V. (2022). Heuristic Optimization of a New Type Prestressed Arched Truss. Materials, 15(22): 8144. DOI:10.3390/ma15228144

Pincha aquí para descargar