UPV



programación


Publicada By  Víctor Yepes Piqueras - algoritmo, costes, Docencia, estructuras, hormigón, ingeniería civil, investigación, modelo matemático, optimización, ordenadores, Polimedia, programación    

Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.

Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejos algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.

Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.

Referencias:

  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg 
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  • MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 (descargar versión autor)
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics45(6): 723-740. (link)
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
  • YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
  • CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235.  (link) [Global best local search applied to the economic design of reinforced concrete vauls]
  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588.  (link)
  • PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455.  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Efficient Design of Reinforced Concrete Building Frames. Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
  • YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.  (link)
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978.  (link)
  • PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)
  • PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)
26 Julio, 2017
 

Publicada By  Víctor Yepes Piqueras - calidad, programación, proyectos    

ejemplo-de-uso-sistema-kanbanDentro de los objetivos de la filosofía Lean Construction para producir resultados óptimos se encuentra hacer que la producción, y por tanto también el valor, fluya sin interrupciones, de un modo continuo. Para ello se pone en práctica el llamado flujo tenso (pull) según la demanda del cliente para evitar la sobreproducción. Kanban es una parte fundamental del flujo tenso, considerándose como un subsistema del Just in Time (JIT). El JIT constituye un sistema de organización de la producción que permite aumentar la productividad reduciendo el costo de la gestión y por pérdidas en almacenes debido a acciones innecesarias.

El método kanban se origina inicialmente por la empresa automotriz de Toyota en el año de 1956, once años después de la segunda guerra mundial. Dado la necesidad de generar competencia a nivel de un mercado internacional y poder competir con firmas tales como Ford y Chevrolet a nivel de producción y entrega más próxima. El modelo Kanban se inspiró en los supermercados concretamente en la “comunicación” entre el cliente y el producto ya que en estos sitios se ofrecen los productos al consumidor cuando lo necesitan en la cantidad que lo necesitan. Viéndolo como una línea de producción corresponde ofrecerles a los obreros los componentes que necesiten para realizar su tarea en el momento que lo necesiten y en la cantidad que necesiten garantizando la eficiencia.

Kanban es una traducción libre del japonés de “tarjeta”, siendo un sistema de información basado en señales que controla de modo armónico la fabricación de los productos necesarios en la cantidad y tiempo necesarios en cada uno de los procesos. Una tarjeta kanban es una autorización para producir y/o mover existencias empleado para controlarlas y poner al descubierto problemas u oportunidades de cambio. La principal función de esta tarjeta es ser una orden de trabajo: un dispositivo de dirección automática que nos da información acerca de qué nos da información  acerca de que se va a producir, en que cantidad, mediante que medios y como transportarlo. Se diseña para evitar la sobreproducción y para asegurarse de que los componentes pasan de un sub-proceso al siguiente en el orden adecuado. De este modo se diseña un sistema de relleno que controla las cantidades producidas. Los componentes se reponen únicamente cuando sea necesario y en la cantidad adecuada.

Es importante mencionar que este tipo de tarjeta no funciona como método kanban si no contiene la mayoría de la siguiente información:

  • Nombre y/o código del puesto o máquina que procesará el material requerido.
  • Iniciales o código del encargado de procesar.
  • Nombre y/o código del material procesado o por procesar, requerido.
  • Cantidad requerida de ese material (resaltada o en letra más grande).
  • Destino del material requerido.
  • Capacidad del contenedor de los materiales requeridos.
  • Momento en el que fue procesado el material.
  • Momento en el que debe ser entregado al proceso subsiguiente.
  • Número de turno.
  • Número del lugar de almacén principal.
  • Estado del material procesado.

Se pueden omitir algún tipo de información mencionada anteriormente, pero esta debe ir diligenciada correctamente con el material. De esta manera se convierte en una orden; de tal manera que en el momento de la entrega se genera una resolución de la orden.

En lugar de utilizar kanban diseñados específicamente para ello, se pueden poner en marcha otros sistemas reutilizables tales como contenedores, palets o bandas codificadas (o coloreadas) que designan materiales específicos. Al dejar el embalaje para el suministrador  en una ubicación específica implica una solicitud para rellenar con el componente adecuado, sin necesidad de que se produzca ninguna comunicación oral o escrita.

El flujo tenso del producto desde aguas arriba se indica mediante un kanban de retirada (withdrawal). El flujo tenso del cliente retira componentes del “supermercado”; éste se define como un lugar de capacidad limitada para almacenar el producto proveniente del proceso de suministro. El supermercado se rellena emitiendo un kanban de producción cuando el inventario es demasiado bajo. Este kanban de producción da la orden adecuada al proceso de suministro para producir más componentes. El proceso de suministro emite las unidades necesarias para reponer lo extraído. Este método evita la sobreproducción, pero permite un inventario rígido que se sitúa entre los procesos de suministro y del cliente.

kanban3

La alternativa al Kanban es producir anticipándose a las necesidades basándose en predicciones, caso habitual en los sistemas push. Estos sistemas tienden a incrementar la cantidad de pérdidas (por ejemplo, largos tiempos de espera o inventarios excesivamente grandes) dado que están basados en la estimación e incluyen factores adicionales para tener en cuenta la incertidumbre.  La incertidumbre puede manifestarse en mayor o menor medida en un proyecto; en ese caso los sistemas pull están mejor preparados para adaptarse que los sistemas push.

En el sector de la construcción es aplicable este sistema pull a los procesos por lotes, como puede ser la fabricación y transporte del hormigón o del aglomerado. En este caso existe un proceso del cliente (el contratista principal), el cual emite una orden para el proceso de suministro (la planta de aglomerado) y recibe el producto como resultado. Estos procesos por lotes no admiten ningún tipo de inventario del producto, dado que el producto es perecedero.

Os dejo algunos vídeos explicativos que espero sean de vuestro interés.

También se puede utilizar este método para la gestión de proyectos y tareas para equipos.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

3 Mayo, 2017
 
|   Etiquetas: ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - algoritmo, Docencia, gestión, obras, procedimientos de construcción, programación    

Toda actividad necesita recursos para ejecutarse. La programación de los recursos disponibles constituye un tema crucial para lograr que la obra esté finalizada en los plazos y costes establecidos. Consiste en asociar los recursos a sus tareas respectivas y ver cómo se ensamblan en el conjunto de la obra. Se emplea para ello una representación gráfica de los recursos necesarios a lo largo del tiempo; recibe el nombre de diagrama de carga. Estos histogramas proporcionan un medio gráfico eficaz para observar su evolución temporal y para analizar los períodos de carencia previsibles por superposición con los diagramas de recursos disponibles (véase la figura).

La limitación de recursos en la realización de una obra provoca conflictos que pueden resolverse mediante métodos de nivelación y de asignación. Los primeros laminan el diagrama de cargas sin producir retrasos en el plazo programado. Los métodos de asignación, por otra parte, pretenden que los recursos necesarios no superen los disponibles, pero con la condición de que el retraso provocado sea el mínimo posible. Con ayuda de las diversas técnicas de redes, se habrá establecido un camino crítico y unas holguras para cada una de las actividades. La prioridad en la asignación de los recursos será mayor cuanto menor sea la holgura disponible para cada una de las actividades.

Dada la dificultad de resolver estos problemas, se suelen utilizar métodos heurísticos que proporcionan soluciones suficientemente buenas con tiempos de cálculo razonables. El método de Burgess-Killebrew para la nivelación, o el método de Wiest-Levy para la asignación de recursos constituyen algunos ejemplos de heurísticas.

El algoritmo de Burgess-Killebrew es uno de los algoritmos pioneros en este campo; está considerado también como uno de los más eficientes. El diagrama de carga del recurso busca la actividad no crítica que tenga la fecha temprana de finalización más avanzada. Esta actividad retrasa su finalización unidad a unidad de tiempo hasta agotar su holgura. Se elige como fecha más temprana de finalización de la actividad la que haga mínima la suma de los cuadrados de las cargas. Se repite esta pauta con todas las tareas no críticas, teniendo prioridad aquella actividad que posea mayor holgura, en caso de que la fecha temprana de finalización más avanzada de dos tareas coincida. Una vez realizado con todas, se vuelve a iniciar un nuevo ciclo de iteraciones hasta que finalizada una iteración no resulte posible disminuir la suma de los cuadrados de las cargas.

El algoritmo de Wiest-Levy se sustenta en la programación de las actividades que puedan realizarse con los recursos disponibles. No obstante esta programación puede ser revisada en posteriores iteraciones. Cuando la carga es superior a las disponibilidades, se recurre a retrasar alguna actividad, eligiendo entre las no críticas, la que resuelva el problema con el menor retraso. Si existen dos actividades que reúnen las mismas condiciones, se retrasa primero la de mayor holgura, con lo que las actividades críticas se retrasan cuando no hay otra opción.

Referencias:

PELLICER, E.; YEPES, V. (2007). Gestión de recursos, en Martínez, G.; Pellicer, E. (ed.): Organización y gestión de proyectos y obras. Ed. McGraw-Hill. Madrid, pp. 13-44. ISBN: 978-84-481-5641-1.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V.; PELLICER, E. (2008). Resources Management, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 165-188. ISBN: 83-89780-48-8.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Publicada By  Víctor Yepes Piqueras - competitividad, costes, economía, gestión, Planificación, programación, proyectos, toma de decisiones    

Una metodología adoptada con frecuencia para realizar un control efectivo de los costes es la del análisis del valor ganado. Permite un control económico-temporal del proyecto considerando las repercusiones económicas que produce un retraso en el plazo. Las variaciones, tanto de tiempo como de coste respecto de la planificación prevista deben ser corregidas, lo antes posible, de modo que el proyecto pueda cumplir los objetivos previstos. Para calcular estas variaciones se definen tres variables básicas (utilizando la nomenclatura propuesta por el Project Management Institute):

 

  • Coste presupuestado del trabajo planificado (PV).
  • Coste presupuestado del trabajo realizado (EV) o valor ganado.
  • Coste real del trabajo realizado (AC).

 

PV representa el coste previsto originalmente contra el cual se mide el rendimiento real. Desde el punto de vista del contrato, PV es el presupuesto contratado menos el beneficio previsto por la empresa. Para un período determinado, PV se determina sumando los costes de cada una de las tareas finalizadas y de la parte proporcional de las tareas en curso.

(más…)

28 Noviembre, 2016
 

Publicada By  Víctor Yepes Piqueras - carreteras, obras, programación    

14794-5768959En numerosas ocasiones es necesario proyectar, ejecutar y conservar durante la construcción de una obra principal otras obras accesorias necesarias para que dicha obra principal se pueda realizar. Así, por ejemplo, se deben construir desvíos de tráfico para que una carretera pueda seguir funcionando mientras se construye un puente. Otras veces es necesaria una cimentación provisional para sujetar una grúa de puerto durante la construcción de un dique rompeolas. También sirve como ejemplo la ejecución de un tablestacado por medio de perfiles metálicos que permita la contención de tierras mientras se realiza un vaciado.

Una obra temporal también puede formar parte ineludible en el proceso constructivo de una unidad de obra: por ejemplo, con la técnica de la precarga se consigue mejorar la capacidad portante y disminuir la deformabilidad de un suelo siendo necesario para ello la acumulación, durante un periodo dilatado de tiempo (meses) de acopios de material que luego debe ser retirado. Otro ejemplo de obra temporal inherente a un procedimiento constructivo es la ejecución de toda una estructura provisional como es la cimbra y su encofrado para poder hormigonar un puente realizado “in situ”.

Otras veces las obras temporales tratan de mantener los servicios o las servidumbres de terceros que se ven afectados por la obra principal. Así, tramos de canales o acequias de riego, carreteras de acceso vecinales, drenajes provisionales o pantallas antirruido podrían ser obras o instalaciones que duran mientras se ejecutan las obras principales.

A pesar de que este tipo de obras puedan ser efímeras en el tiempo, se les debe exigir una adecuada planificación desde la fase de proyecto hasta la ejecución y desmantelamiento o desmontaje de las mismas. Muchas veces se confía en la experiencia acumulada en casos parecidos lo cual provoca accidentes y riesgos no asumibles durante la construcción. Por tanto, estas obras precisan, si no están definidas en el proyecto principal, de un proyecto específico firmado por técnico competente y una supervisión en obra que garantice la seguridad a las personas y a los bienes mientras se realiza la obra principal.

Además de lo anteriormente indicado, resulta necesario establecer con antelación la forma en que se ha de demoler, desmantelar o desmontar la obra temporal, o en su caso, restaurar las áreas y servicios afectados. En este sentido, cabría mencionar que el empleo de materiales reciclables o modulares que sean desmontables pueden disminuir los costes de ejecución y reducir los impactos ambientales de este tipo de obras e instalaciones temporales.

ObrasGenSanjJunio2012snp

Desvío provisional de obras

En el caso de que una obra temporal no se retire tras la finalización de su ejecución, debería autorizarse de forma expresa y recalcular, si es necesario, su funcionamiento para una vida útil mayor que no estaba prevista de antemano. En efecto, muchas normas de acciones prescriben coeficientes parciales de seguridad en estos casos inferiores a los que serían necesarios en el caso de que la obra fuese definitiva. Además, deberían revisarse los condicionantes de durabilidad de los materiales (oxidación metálica, recubrimientos de las armaduras del hormigón insuficientes, etc.) y otros asociados a la funcionalidad (flechas inaceptables, aparición de grietas, etc.).

Os dejo a continuación un vídeo donde se puede ver cómo se puede organizar un verdadero caos cuando hay desvíos provisionales de obra. En estos casos, la señalización es fundamental.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp.

17 Noviembre, 2015
 

Publicada By  Víctor Yepes Piqueras - Docencia, gestión, Planificación, Polimedia, programación, proyectos    

Hoy día los programas informáticos nos ayudan en la programación de los proyectos, sobre todos los complejos. Sin embargo, ésto no ha sido siempre así. A veces no hay que olvidar nuestros fundamentos y recordar lo que en su momento estudiamos sobre programación de obras.

Este es un nuevo post que sigue a uno anterior sobre PERT y a otro sobre red de flechas. Aquí vamos a presentar, mediante dos vídeos Polimedia, tanto el propio método de red de precedencias como su cálculo. Espero que os gusten.

(más…)

23 Octubre, 2015
 

Publicada By  Víctor Yepes Piqueras - algoritmo, investigación operativa, optimización, ordenadores, Planificación, programación, proyectos    

Henry Laurence Gantt (1861-1919)

Si tuviésemos que hablar de la historia de la planificación y control de las obras, deberíamos referirnos a la primera de las construcciones realizadas por el hombre y perdida en el origen de nuestra especie. Construcciones como las pirámides de Egipto no pudieron construirse sin un plan previo y una compleja organización de recursos. Sin embargo, si queremos utilizar las actuales técnicas de planificación, podríamos reducir significativamente nuestra historia y remontarnos apenas medio siglo en Estados Unidos, cuando tanto desde el ámbito militar como desde el civil, de forma independiente, se sentaron las bases de la técnicas basadas en el método del camino crítico (Critical Path Method, CPM) y en el método PERT (Program Evaluation and Review Technique). La planificación y programación de proyectos complejos, sobre todo grandes proyectos unitarios no repetitivos, comenzó a ser motivo de especial atención al final de la Segunda Guerra Mundial, donde el diagrama de barras de Henry Gantt  era la única herramienta de planificación de la que se disponía, que fue un método innovador en su momento, pero muy limitado. Gannt publicó en 1916 “Work, Wages, and Profits“, un texto donde discutía estos aspectos de planificación y otros relacionados con la productividad. De todos modos, para ser más exactos, Gantt no fue el pionero en el uso de esta herramienta. Otros autores como Joseph Priestley en 1765 o William Playfair en 1786, ya había sugerido ideas precursoras, que el ingeniero  Karol Adamiecki desarrolló en 1896 en lo que él llamó como “Harmonograma”. También deberíamos destacar aquí los primeros intentos desarrollados, entre 1955 y 1957 por la “Imperial Chemical Industries” y el “Central Electricity Generating Board”, en el Reino Unido, donde se desarrolló una técnica capaz de identificar la secuencia de estados más larga e irreductible para la ejecución de un trabajo, en línea con lo que después se llamaría CPM (Crítical Path Method). Estas empresas consiguieron ahorros de tiempo en torno al 40%, pero debido a que no se publicaron estas innovaciones, cayeron en la oscuridad, de la cual se despertó con los avances que se desarrollaron al otro lado del océano. (más…)

28 Enero, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - costes, gestión, programación, proyectos    

La curva de avance o curva “S”, representa en un proyecto el avance real respecto al planificado en un periodo acumulado hasta la fecha. La curva recibe el nombre de “S” por su forma: al principio del proyecto hay una tendencia de costes acumulados crecientes, mientras que éstos costes acumulados decrecen hacia el final.

Curvas S. Vía Diego Navarro http://direccion-proyectos.blogspot.com.es/

La primera versión de la Curva S se crea a partir del cronograma vigente y el presupuesto inicial. Posteriormente se puede actualizar conforme se crean las nuevas versiones. El objetivo es detectar las desviaciones existentes y tomar medidas para corregirlas. Esta curva indica que porcentaje de avance físico de trabajo es más bajo al inicio y al final de la actividad. Este hecho se debe a que en el inicio del trabajo, se requiere tiempo para familiarizarse con la documentación, necesidades del cliente y crear el ambiente motivacional sobre el cuál se desarrollará el proyecto.

 

Para aclarar estos conceptos, os dejo un vídeo explicativo que espero os guste.

 Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

16 Diciembre, 2014
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Publicada By  Víctor Yepes Piqueras - algoritmo, investigación operativa, logística, modelo matemático, optimización, Polimedia, programación    

Los problemas de optimización en los que las variables de decisión son enteras, es decir, donde el espacio de soluciones está formado por ordenaciones o subconjuntos de números naturales, reciben el nombre de problemas de optimización combinatoria. En este caso, se trata de hallar el mejor valor de entre un número finito o numerable de soluciones viables. Sin embargo la enumeración de este conjunto resulta prácticamente imposible, aún para problemas de tamaño moderado.

Las raíces históricas de la optimización combinatoria subyacen en ciertos problemas económicos: la planificación y gestión de operaciones y el uso eficiente de los recursos. Pronto comenzaron a modelizarse de esta manera aplicaciones más técnicas, y hoy vemos problemas de optimización discreta en diversas áreas: informática, gestión logística (rutas, almacenaje), telecomunicaciones, ingeniería, etc., así como para tareas variadas como el diseño de campañas de marketing, la planificación de inversiones, la división de áreas en distritos políticos, la secuenciación de genes, la clasificación de plantas y animales, el diseño de nuevas moléculas, el trazado de redes de comunicaciones, el posicionamiento de satélites, la determinación del tamaño de vehículos y las rutas de medios de transporte, la asignación de trabajadores a tareas, la construcción de códigos seguros, el diseño de circuitos electrónicos, etc. (Yepes, 2002). La trascendencia de estos modelos, además del elevado número de aplicaciones, estriba en el hecho de que “contiene los dos elementos que hacen atractivo un problema a los matemáticos: planteamiento sencillo y dificultad de resolución” (Garfinkel, 1985). En Grötschel y Lobas (1993) se enumeran otros campos en los cuales pueden utilizarse las técnicas de optimización combinatoria.

REFERENCIAS

GARFINKEL, R.S. (1985). Motivation and Modeling, in LAWLER, E.L.; LENSTRA, J.K.; RINNOOY KAN, A.H.G.; SHMOYS, D.B. (eds.) The Traveling Salesman Problem: A Guide Tour of Combinatorial Optimization. Wiley. Chichester.

GRÖTSCHEL, M.; LÓVASZ, L. (1993). Combinatorial Optimization: A Survey. Technical Report 93-29. DIMACS, May.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

Publicada By  Víctor Yepes Piqueras - algoritmo, ciencia, estructuras, hormigón, innovación, investigación, materiales, programación, proyectos, Puentes, seguridad, sostenibilidad    

2013-05-03 09.20.32

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

Creo interesante comentar en este post los resultados que estamos obteniendo de un Proyecto de Investigación financiado por el Ministerio de Ciencia e Innovación que nuestro grupo de investigación llama HORSOST. Su nombre completo describe el contenido del trabajo que estamos desarrollando: “Diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos“.

Se trata de un proyecto que empezamos en el año 2012 y que tiene prevista su finalización a finales del 2014. Nuestro grupo de investigación está formado por seis profesores y varios becarios de investigación del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de  la Universidad Politécnica de Valencia. En dicho grupo me corresponde el papel de investigador principal. Espero que esta breve descripción os oriente sobre lo que estamos haciendo.

Este proyecto de investigación se encuentra relacionado con otros ya finalizados y otros en marcha, tanto de convocatorias competitivas como de convenios de transferencia tecnológica con empresas (constructoras, empresas de prefabricados, consultoras, etc.).

El objetivo fundamental del proyecto de investigación HORSOST consiste en (más…)

Página siguiente »

Universidad Politécnica de Valencia