La cadena crítica en la planificación de proyectos de construcción

En el ámbito de la ingeniería de la construcción, la planificación de proyectos es fundamental para asegurar el cumplimiento de los plazos y la optimización de los recursos. Tradicionalmente, este proceso ha estado marcado por el uso del método PERT/CPM, que se basa en la premisa de que los proyectos están condicionados principalmente por el tiempo. En este enfoque, los pasos clave incluyen la asignación de duraciones a las actividades y la definición de sus precedencias. Sin embargo, este método asume de manera implícita que los recursos, como la mano de obra, los equipos y los materiales, están siempre disponibles y en cantidades suficientes para cumplir con la secuencia constructiva planificada. En la práctica, muchas veces ni siquiera se consideran los recursos de las actividades al definir la red de trabajo; en su lugar, el enfoque se limita a gestionar los aspectos temporales de la programación.

La realidad del sector de la construcción presenta otros desafíos, como los «cuellos de botella», que afectan significativamente el cronograma de los proyectos. En este contexto de limitaciones de recursos ha surgido el método de la cadena crítica (Critical Chain Method, CCM; Critical Chain Scheduling, CCS; o Critical Chain Project Management, CCPM). Este enfoque innovador no solo tiene en cuenta la secuencia de las actividades, sino también la disponibilidad de los recursos, lo que permite una planificación más realista y eficaz.

Además, es importante mencionar que la metodología tradicional de elaboración de cronogramas tiende a utilizar duraciones «hinchadas», lo que puede provocar una dilatación de los plazos del proyecto. El método de la cadena crítica (CCPM) sugiere reducir significativamente estas estimaciones, eliminando las reservas de tiempo innecesarias. La solución propuesta consiste en programar el proyecto con duraciones más ajustadas y añadir «colchones» para gestionar el tiempo de manera más efectiva. Al aplicar el CCPM, se incorpora la teoría de las restricciones a la gestión de proyectos, lo que supone un cambio significativo en la forma de planificar y ejecutar los proyectos.

Origen de la cadena crítica

La cadena crítica tiene sus raíces en la novela «La meta», publicada en 1984 por el físico israelí Eliyahu M. Goldratt. En esta obra, Goldratt llamó la atención del público al presentar ideas innovadoras sobre la gestión de empresas, utilizando como telón de fondo una fábrica ineficiente y su atormentado director, que siempre se enfrentaba a los cuellos de botella de la producción. A través de esta narrativa, Goldratt introdujo los principios de la teoría de las restricciones, que establece que, en cada momento, hay un número limitado de factores que actúan como obstáculos para el pleno desarrollo de la producción.

En 1997, Goldratt amplió estos conceptos en su libro «La cadena crítica», donde se centró en la velocidad y la fiabilidad en la ejecución de proyectos. Su enfoque se basa en la reducción drástica de la duración de las actividades y en la incorporación de colchones de protección en los plazos. Goldratt, reconocido como un gurú en el ámbito empresarial, difundió el concepto de cadena crítica en el sector de las grandes corporaciones. Los expertos consideran sus ideas como una de las mayores contribuciones a la planificación de proyectos de los últimos treinta años. A medida que el método de la cadena crítica se ha ido implementando progresivamente en el sector de la construcción, se han logrado reducciones en los plazos de entrega de entre un 10 % y un 50 %.

Teoría de las restricciones

La teoría de las restricciones (Theory of Constraints, TOC) se define por la identificación de «restricciones», que son aquellos factores que impiden que un sistema alcance su máximo rendimiento. Según la TOC, cada sistema presenta al menos una restricción que afecta a su flujo de producción. Si no existieran restricciones, el flujo podría crecer indefinidamente o, en el extremo opuesto, ser nulo, ya que el flujo máximo de producción no puede exceder el de su recurso de menor capacidad, conocido como «cuello de botella».

La analogía de un proyecto con un flujo de corriente permite identificar que su restricción es el eslabón más débil, el cual determina la capacidad del sistema. Desde la perspectiva temporal, la restricción de un proyecto corresponde a la secuencia más larga de actividades, que a su vez establece el plazo total.

Es importante destacar que las restricciones pueden ser tanto físicas como no físicas e incluir factores políticos y emocionales. Un problema central, conocido como «conflicto sin resolver» (core conflict), debe ser abordado por el equipo de gestión, que tiene la responsabilidad de encontrar una solución o, al menos, minimizar su impacto.

El algoritmo de la teoría de las restricciones (TOC) para optimizar el rendimiento de una cadena de actividades se compone de cinco pasos que pueden considerarse una estrategia de mejora continua. Estos pasos incluyen:

  1. Identificar la restricción del sistema: El objetivo es completar el proyecto lo antes posible. La cadena crítica representa el camino más corto, considerando no solo las dependencias lógicas y las duraciones de las actividades, sino también la disponibilidad de recursos.
  2. Explorar la restricción: Esta fase consiste en proteger la duración total del proyecto contra retrasos en las tareas que forman parte de la cadena crítica. Comprimir la duración de estas actividades, eliminando obstáculos y márgenes de tiempo, contribuye a que el proyecto cumpla plazos más ajustados.

En conclusión, la adopción de la cadena crítica y la teoría de las restricciones en la planificación de proyectos de construcción no solo mejora la eficiencia, sino que también proporciona un enfoque más realista para gestionar los plazos y los recursos. Con una implementación adecuada de estas metodologías, las empresas constructoras pueden optimizar su rendimiento y alcanzar sus objetivos de manera más efectiva.

Os dejo algunos vídeos explicativos al respecto.

Referencias:

GOLDRATT, E. M.; COX, J. (2016). The goal: a process of ongoing improvement. Routledge.

GOLDRATT, E. M. (2017). Critical chain: A business novel. Routledge, 2017.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2013). Construction management. John Wiley & Sons.

MATTOS, A.D.; VALDERRAMA, F. (2020). Métodos de planificación y control de obras. Editorial Reverté.

YANG, J-B. How the critical chain scheduling method is working for construction. Cost engineering, 2007, vol. 49, no 4, p. 25.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Interpretación de las holguras de una actividad en la planificación de un proyecto

En un artículo anterior ya vimos los errores que suelen cometerse en el cálculo de las holguras, especialmente cuando se está trabajando con un diagrama de precedencias. El concepto de holgura se emplea en la planificación para describir la libertad de desplazamiento que, dentro de un cierto intervalo de tiempo, puede tener un suceso o una actividad. También suelen llamarse juegos o tiempos flotantes. En esta entrada vamos a interpretar qué significa cada una de las holguras que existen en una actividad. Esta interpretación es fundamental para el responsable de la tarea, pues debe comprender qué implica el retraso de su actividad en el contexto del proyecto o de la obra que está realizando.

En la Figura 1 se muestra cómo una actividad aij se representa como una flecha orientada desde parte del nodo i y llega al nodo j. A los nodos se les denomina “sucesos” o “acontecimientos“.

Figura 1. Definición de los tiempos disponibles de una actividad

Estos nodos presentan una holgura de suceso o margen de etapa que, en el caso del nodo i, se calcula de la siguiente forma:

En esta expresión, Ei representa la fecha más temprana del acontecimiento i, mientras que Li representa la fecha más tardía.

Con los conceptos anteriores, es fácil demostrar que el margen de etapa en un determinado nudo es igual a la diferencia entre los tiempos “disponible total” y “disponible libre” de cualquier actividad que termine en dicho nudo. En efecto, para una actividad aij, se tiene:

Pues bien, cualquier actividad, como la aij, debe transcurrir entre sus nodos de inicio y de final. Como cada nodo presenta dos fechas, una más temprana y otra más tardía, los nodos de entrada y salida de una actividad dan lugar a cuatro fechas que definen cuatro posibles tiempos disponibles para la actividad (ver Figura 1).

Se define como holgura o margen de una actividad como el tiempo disponible que queda después de descontar la duración de dicha tarea. Como existen cuatro posibles tiempos disponibles, se podrán definir cuatro tipos de holguras para las actividades. Es evidente que si una actividad pertenece a un camino crítico, no tiene holguras.

Recordemos que la fecha más tardía para que la actividad aij pueda empezar, se calcula como Ljtij. Esta fecha no tiene por qué coincidir con Li, tal y como ya discutimos en un artículo anterior.

Si dibujamos la actividad aij en un diagrama de barras, podríamos representar la actividad empezando lo antes posible, es decir, en el instante Ei. Otra opción sería dibujar la actividad empezando en el instante más tardío del acontecimiento i (volvemos a recordar que no es la fecha más tardía en que puede empezar la actividad aij). De esta forma, podemos visualizar las holguras que presenta la actividad en la Figura 2. Se puede ver una quinta holgura, que es la holgura interferente, como diferencia entre la holgura total y la holgura libre.

Figura 2. Representación de las holguras de una actividad

Vamos a analizar cada una de estas holguras para poder interpretar lo que significan. Ya os adelanto que las holguras más empleadas son la total y la libre. Pero hay más.

Holgura total

La holgura total se define como la diferencia entre el tiempo disponible total y la duración de la actividad. Es una holgura que es mayor o igual a cero y se calcula de la siguiente forma:

Es el margen en que una actividad puede atrasar su inicio más temprano, su término más temprano o su duración, sin atrasar el término programado del proyecto. Si se consume esta holgura, la actividad y el suceso siguiente se hacen críticos. Este es el valor menos probable de todas las holguras, pues está condicionado al hecho de que la actividad comience en el tiempo más optimista y que la actividad no sufra desviación alguna.

La holgura total pertenece al camino del que forma parte la actividad. Es decir, que dicha holgura se puede consumir completamente en una de las tareas del camino o distribuir el margen entre distintas actividades de dicho camino. Es por ello que a la holgura total también suele llamarse “margen de camino“.

Holgura libre

La holgura libre se define como la diferencia entre el tiempo disponible libre y la duración de la actividad, siendo un valor mayor o igual a cero. Se calcula de la siguiente forma:

Se trata de la cantidad de tiempo en que una actividad puede atrasar su inicio más temprano, su término más temprano o aumentar su duración, sin atrasar el inicio más temprano de sus actividades subsecuentes. Esta holgura es muy importante para el gestor de la actividad, pues si mantengo el retraso dentro de este límite, no afectaré a las actividades que vengan después. Si se consume esta holgura, la red permanece inalterada. Por eso se llama a esta holgura “margen de actividad“.

La holgura total se puede obtener sumando a la holgura libre el margen de la etapa de llegada. En efecto,

Como se puede comprobar, la holgura libre no puede ser mayor a la holgura total. Además, la condición necesaria (pero no suficiente) para que exista es que llegue más de una actividad al nodo de terminación de la actividad que estamos analizando.

Holgura interferente

La holgura interferente se define como la diferencia entre la holgura total y la holgura libre. Se interpreta como la cantidad de tiempo que se puede demorar la terminación de una actividad, sin demorar la terminación del proyecto, pero cuyo uso retrasará el inicio de alguna de las actividades siguientes. La holgura interferente es exactamente el margen de etapa del nodo de llegada de la actividad. Se puede calcular de la siguiente forma:

Cuando se representa en un diagrama de barras una actividad, empezando lo antes posible, si existe holgura total, debe diferenciarse con un trazo vertical qué parte es holgura libre y qué parte es interferente. En la Figura 3 se muestra cómo debe hacerse.

Figura 3. Representación de la holgura total, libre e interferente en un diagrama de barras

Holgura independiente

La holgura independiente es la diferencia entre el tiempo disponible independiente y la duración de la actividad. También se llama “holgura mínima“. Suele ser un valor muy pequeño, incluso negativo. Además, siempre es menor o igual a la holgura libre (Figura 2). Se calcula de la siguiente forma:

Esta holgura es el retraso que puede sufrir una actividad con su inicio demorado al máximo por las actividades precedentes, sin que ese retraso ocasione aplazamientos en el comienzo de cualquier actividad posterior. Al igual que la holgura libre, la independiente no se comparte con ninguna otra actividad.

En la práctica no se suele emplear esta holgura, aunque puede ser útil como parámetro representativo de las condiciones más desfavorables en que puede desarrollarse una actividad.

La holgura independiente se puede calcular como la holgura total menos la suma de los márgenes de las etapas inicial y final de la actividad. También como la diferencia entre la holgura libre y el margen de la etapa inicial de la actividad. Por dicho motivo, la holgura independiente no puede superar a la holgura libre, al igual que la holgura libre no podía ser mayor a la holgura total.

Holgura condicionada

La holgura condicionada, también llamada “holgura intermedia“, es el margen en que una actividad puede atrasar su inicio demorado al máximo por las actividades precedentes, su término más temprano o su duración, sin atrasar el término programado del proyecto. Se puede calcular de la siguiente forma:

Como se puede observar, su interpretación es similar a la holgura total, pero suponiendo que el inicio se ha retrasado al máximo posible por las actividades precedentes.

Si observamos la Figura 2, es fácil deducir que la holgura condicionada es la suma de la holgura independiente y la interferente. O lo que es lo mismo, la holgura condicionada es la holgura independiente, menos la diferencia de la holgura total y la libre.

A modo de ejemplo, vamos a analizar las holguras de la actividad E perteneciente al siguiente proyecto:

Como se puede observar, la actividad E podría empezar, como muy pronto, en la etapa 10, y como muy tarde, en la etapa 15. Asimismo, podría terminar, como muy pronto, en la etapa 15, y como muy tarde, en la etapa 20.

El cálculo de las holguras sería el siguiente:

Holgura total: L5 – E3 – t35 = 20 – 10 – 5 = 5

Holgura libre: E5 – E3 – t35 = 17 – 10 – 5 = 2

Holgura interferente: L5 – E5 = 20 – 17 = 3

Holgura independiente: E5 – L3 – t35 = 17 – 12 – 5 = 0

Holgura condicionada: L5 – L2 – t35 = 20 – 12 – 5 = 3

Referencias:

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Técnicas de planificación y control de obras. Editorial de la Universitat Politècnica de València. Ref. 189. Valencia, 94 pp. Depósito Legal: V-423-2012.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Errores que se comenten en el cálculo de holguras con los diagramas de precedencias

Figura 1. Programación de proyectos

Las técnicas de programación de proyectos basadas en el cálculo de redes se explican normalmente en los grados de ingeniería civil. Los estudiantes automatizan el cálculo de estas redes de forma sencilla, tanto en el caso de las redes de flechas como en el de las redes de precedencias. Sin embargo, muchas veces no comprenden o les resulta confuso la idea de holgura de un suceso o de una actividad. Incluso en algunos libros de texto confunden los conceptos. Quiero en este artículo aclarar mediante un ejemplo dónde están los problemas asociados al cálculo de las holguras.

Por cierto, podéis repasar en cálculo de una red de flechas o una red de precedencias en alguno de los artículos y vídeos que grabé en su momento. Basta que pulséis el enlace correspondiente.

Sea un proyecto compuesto por seis actividades cuyas relaciones de precedencia y duración se muestran en la Tabla 1. En dicha tabla, una actividad situada en una línea precede a la actividad de una columna si la casilla se encuentra marcada. Así, por ejemplo, la actividad A precede tanto a la actividad B como a la C. Para simplificar, las relaciones son final-principio, es decir, la actividad subsecuente no puede iniciarse hasta que se hayan terminado las actividades que le preceden.

Tabla 1. Relación de precedencias entre las actividades.

Es fácil representar y calcular el diagrama de flechas correspondiente. Este proyecto tiene un plazo de 35 etapas, siendo el camino crítico el representado por las actividades A, B, D y F (ver Figura 2).

Figura 2. Representación y cálculo del diagrama de flechas

Este mismo proyecto se podría haber calculado usando un diagrama de precedencias, cuya resolución puede verse en la Figura 3. Observe que las fechas más tempranas de inicio de cada actividad tienen un color azul, mientras que las más tardías están en verde. Estas fechas se pueden ver también en la Figura 2.

Figura 3. Representación y cálculo del diagrama de precedencias

Si representamos el proyecto en un diagrama de barras, se obtiene la Figura 4. Se observa que en este diagrama se ha representado el inicio de cada actividad lo antes posible. Además, se han dibujado la holgura total y libre, separadas ambas por una línea vertical. La actividad C no tiene holgura libre, mientras que en la actividad E, la holgura total y libre coinciden.

Figura 4. Diagrama de barras o de Gantt, con las actividades empezando lo antes posible

Pues veamos ahora dónde están los problemas con las holguras. Previamente, vamos a definir la holgura de una actividad como la diferencia entre el tiempo disponible para realizarla y su duración.

Las holguras se definen en función de los nodos de entrada y salida de la actividad, según se representa en la Figura 5. Existen cinco tipos de holgura: total, libre, independiente, condicional e interferente. Esta última es la diferencia entre la holgura total y la holgura libre.

Figura 5. Definición de los tiempos disponibles de una actividad

El primer error conceptual que se comete es definir las fechas de los nodos de entrada y salida de una actividad como las fechas más tempranas y tardías de inicio o terminación de dicha actividad. Solo Ei y Lj son la fecha más temprana de inicio y la más tardía de finalización de la actividad. Las fechas Li y Ej corresponden a los nodos correspondientes. En efecto, la fecha más tardía de inicio sería Lj -tij; mientras que la fecha más temprana de terminación sería Ei+tij. Se pueden ver ambas fechas en las barras verdes de la Figura 5. Únicamente en el caso de las fechas representadas dentro de la caja de la actividad de un diagrama de precedencias, tenemos las fechas más tempranas y tardías de inicio y terminación de la actividad correspondiente (Figura 6).

Figura 6. Notación y forma de representación de una actividad en un diagrama de precedencias

El segundo error conceptual está en algunos libros cuando dicen lo siguiente “El concepto y cálculo de las holguras usando el diagrama de precedencias en nada difiere del introducido para el diagrama de flechas“. En sí misma, esta frase es correcta. El error viene cuando se confunde el comienzo más tardío de la actividad con Li y el final más temprano de la actividad con Ej.

Es por todo lo anterior que, en el caso del cálculo de la holgura total, no hay ningún problema en su cálculo con el diagrama de flechas o de precedencias. Pero el resto de holguras puede ser erróneo si utilizamos un diagrama de precedencias. Veamos qué ocurre con la actividad C de este proyecto.

Holgura total: L4 – E2 – t24 = 20 – 5 – 5 = 10

Holgura libre: E4 – E2 – t24 = 10 – 5 -5 = 0

Holgura independiente: E4 – L2 – t24 = 10 – 5 – 5 = 0

Holgura condicionada: L4 – L2 – t24 = 20 – 5 – 5 = 10

Fíjese que el comienzo más tardío de la actividad C sería 15, que es un valor diferente a L2 = 5. En este caso, la terminación más temprana de la actividad C sería 10, que coincide en este caso con E4 = 10.

Conclusión: Si se usa el diagrama de precedencias, hay que tener mucho cuidado en calcular holguras de una actividad, excepto para el caso de la holgura total. En el diagrama de flechas no existe ningún problema. No confundir las fechas de comienzo más tardío y final más temprano de una actividad con los correspondientes a los nodos de entrada y salida de dicha actividad.

Referencias:

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Técnicas de planificación y control de obras. Editorial de la Universitat Politècnica de València. Ref. 189. Valencia, 94 pp. Depósito Legal: V-423-2012.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Método de la Dirección General de Carreteras para la determinación del tiempo disponible para el trabajo

Figura 1. Isolíneas de coeficientes de reducción de los días de trabajo (MOP, 1964).

En todo proyecto constructivo suele aparecer un anejo que trata del Plan de Obra donde se planifica la duración de cada una de las actividades que se van a desarrollar en una obra. Para ello, además de conocer las mediciones y los rendimientos de los equipos, es necesario establecer el número de días que son útiles para el trabajo, considerando tanto los datos climáticos como el calendario laboral del lugar.

La previsión de los días trabajables en función de la climatología, se puede estimar de acuerdo con las recomendaciones de la publicación “Isolíneas de coeficientes de reducción de los días de trabajo”, editada por la División de Construcción de la Dirección General de Carreteras del M.O.P.T., actual Ministerio de Fomento. Los datos climáticos necesarios para su redacción se pueden obtener de la publicación “Datos climáticos para Carreteras”, editado asimismo por la División de Construcción de la Dirección general de M.O.P.T. (1964). Según este método, para calcular el tiempo disponible en las distintas clases de obra, se establecen unos coeficientes de reducción aplicables al número de días laborables de cada mes.

Figura 2. Portada de la publicación “Datos climáticos para Carreteras” (MOP, 1964)

No obstante, si se dispone de datos recientes de los regímenes de precipitaciones y temperaturas de estaciones meteorológicas suficientemente próximas a las obras, deben utilizarse dichos datos. Se trata de dar un orden de magnitud, pues en la práctica, durante la ejecución de las obras, la evolución del tiempo atmosférico en cada momento es impredecible. Sin embargo, con los resultados de este cálculo se podrá elaborar un plan de obra lo más ajustado posible, de forma que se reduzcan las desviaciones de plazo.

En la Figura 3 se muestra cómo los condicionantes climatológicos y los imprevistos influyen en el plazo de obra. También es necesario conocer el desglose de las actividades, sus mediciones y el rendimiento de los equipos elegidos.

Figura 3. Condicionantes para determinar el plazo de una obra.

Días aprovechables en la ejecución de las obras

Para estimar el número de días hábiles en la jornada laboral, se analizan los datos climáticos históricos registrados por estaciones meteorológicas cercanas al área de trabajo.

Condiciones límite

Para cada clase de obra, se entiende por día útil de trabajo, en cuanto a la climatología se refiere, el día en que la precipitación y la temperatura del ambiente sean inferior y superior, respectivamente, a los límites que se definen a continuación.

No se consideran las altas del ambiente que impidan la puesta en obra del hormigón, tanto por el número inapreciable de días que se dan como por caer dentro del microclima de una zona reducida.

Los límites que se dan a continuación son los correspondientes al método del MOP (1964). No obstante, se deberían adaptar a los condicionantes de las distintas disposiciones técnicas vigentes, así como lo que el propio proyecto pudiese considerar.

Temperatura límite para la ejecución de unidades bituminosas: Es aquella por debajo de la cual no se pueden ejecutar riegos, tratamientos superficiales o por penetración, y mezclas bituminosas. Normalmente, se considera 10 °C para tratamientos superficiales o por penetración y 5 ºC para mezclas bituminosas.

Temperatura límite para la manipulación de materiales húmedos: Se determina en 0 °C la temperatura límite del ambiente para la manipulación de materiales naturales húmedos.

Precipitación límite diaria: Se definen dos valores: 1 mm/día, que limita el trabajo en ciertas unidades sensibles a la lluvia ligera; y 10 mm/día para el resto de los trabajos. Se considera que, con 10 mm de precipitación al día, es necesaria una protección especial para realizar cualquier trabajo.

Coeficientes de reducción por condiciones climáticas durante los trabajos

El número total de días hábiles disponibles para cada tipo de trabajo se calcula multiplicando el número de días laborables del mes por sus respectivos coeficientes reductores. A continuación, se enumeran dichos coeficientes:

Cálculo de los días utilizables para cada clase de obra en la fase constructiva

Para obtener los coeficientes de reducción promedio para cada tipo de trabajo y su ubicación, se asocia un factor meteorológico que afecta a la obra, tal y como se representa en la Tabla 1.

Tabla 1. Factores climáticos

Suponiendo que estos sucesos son independientes entre sí, como el trabajo debe cancelarse cuando ocurra una de las condiciones adversas, los coeficientes de reducción se aplican de forma reiterada. La Tabla 2 indica el coeficiente de reducción de los días laborables que afecta a cada clase de obra.

Tabla 2. Coeficientes reductores

Tras aplicar las fórmulas anteriores, se obtienen los valores correspondientes a cada mes y a cada coeficiente para un determinado lugar y año.

Para determinar los días utilizables netos de cada mes se contemplan dos factores de reducción; uno, el de los días de climatología adversa, cuyo coeficiente de reducción coincide con cm, para cada clase de obra y, otro, el de los días no laborables cf y que dependen de los días festivos que varían según el año, la localidad y los convenios laborales. El coeficiente cf es el cociente entre los días laborables y los totales del mes correspondiente.

Dado que los días festivos también pueden ser de climatología adversa, se puede adoptar el criterio propuesto en la publicación de la Dirección General de Carreteras. En ese caso (1-cm) representa la probabilidad de que un día cualquiera del mes presente climatología adversa para dicha clase de obra; y (1-cmcf, la probabilidad de que un día laborable presente una climatología adversa.

El coeficiente de reducción total será, por tanto:Para obtener una mayor precisión que la obtenida en el coeficiente de reducción arriba indicado, se podría emplear la fórmula siguiente:que representa la probabilidad de que un día del mes presente climatología favorable (cm) y que sea laborable (cf).

En la Figura 4 se recoge el número de días aprovechables del 2015 para la ejecución de las principales de obra para Ourense, tal y como figura en el “Proyecto de Trazado. Autovía A-76 Ponferrada-Ourense. Tramo: A Veiga de Cascallá-O Barco de Valdeorras”, elaborado por INECO.

Figura 4. Días aprovechables del 2015 para la ejecución de las principales de obra para Ourense. “Proyecto de Trazado. Autovía A-76 Ponferrada-Ourense. Tramo: A Veiga de Cascallá-O Barco de Valdeorras”, elaborado por INECO

Referencias:

MINISTERIO DE OBRAS PÚBLICAS (1964). Datos Climáticos para Carreteras. Dirección General de Carreteras.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

ESRA, un software educativo para introducir a los estudiantes de ingeniería civil en la programación de proyectos estocástica

https://www.piqsels.com/es/public-domain-photo-sucqz

Las técnicas clásicas de programación son herramientas comúnmente empleadas en las escuelas de ingeniería civil de todo el mundo para la enseñanza de la planificación y gestión de proyectos. Técnicas como el método del camino crítico (CPM), el método del diagrama de precedencias (PDM), el diagrama de Gantt o la técnica de evaluación y revisión de programas (PERT) presentan la ventaja de su sencillez, facilidad de comprensión y que se implementan en los programas informáticos de gestión de proyectos más aceptados, como Ms Project o Primavera P6. Sin embargo, estas técnicas de programación presentan importantes limitaciones a la hora de tratar la incertidumbre inherente a la gestión de proyectos de construcción. Por un lado, el enfoque determinista del CPM para el aprendizaje de la planificación del proyecto reduce la sensibilidad y la comprensión de los factores que alteran y desafían significativamente el éxito de un proyecto, y por otro lado, el CPM no es capaz de gestionar la incertidumbre. y desafían el éxito de un proyecto, mientras que, por otro lado, el PERT muestra unas capacidades demasiado limitadas en modelización de la incertidumbre y subestima la desviación estándar de la duración del proyecto.

El Análisis de Riesgo de Programación (SRA) es un método estocástico idóneo para promover que los estudiantes empiecen a gestionar proyectos de forma más eficaz y eficiente. En este trabajo, empleamos un software educativo de SRA (ESRA) para ayudar a los estudiantes a entender el supuesto subyacente de la programación estocástica, así como para hacer explícitas las ventajas de la programación estocástica en comparación con los métodos clásicos como CPM o PERT. ESRA permite modelar tanto la incertidumbre en la duración de las actividades, como la relación entre estas incertidumbres, ampliando la gama de problemas de planificación, que los estudiantes pueden ahora evaluar. Esta investigación se llevó a cabo en cuatro etapas a través de un taller. En primer lugar, se introdujeron los fundamentos teóricos de la simulación de Montecarlo, el método en el que se basan la mayoría de los métodos de evaluación de la incertidumbre. En segundo lugar, los estudiantes emplearon el ESRA para ver cómo funciona este método. En tercer lugar, los alumnos trabajaron en torno a un caso práctico de gestión de proyectos de construcción y analizaron los resultados, comparando los de la evaluación estocástica con los de la evaluación determinista. Por último, se les pidió que respondieran a un cuestionario en el que debían abordar la toma de decisiones en el mundo real en relación con la programación de proyectos que requería tener en cuenta las incertidumbres del proyecto.

Referencia:

SALAS, J.; SIERRA, L.; YEPES, V. (2021). ESRA, an educational software for introducing stochastic scheduling to civil engineering students. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 5788-5798, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 694KB)

 

 

 

Discretización de metaheurísticas continuas a través de un operador KNN

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este caso hemos abordado la binarización de metaheurísticas continuas. Se trata de una estrategia muy útil para el caso de la optimización de estructuras, puesto que éstas suelen presentar variables discretas para favoreces su constructabilidad. El trabajo entra dentro de la estrecha colaboración internacional de nuestro grupo de investigación, en este caso, con investigaciones chilenos.

En este trabajo se propone un operador de perturbación que utiliza la técnica de k-vecinos más cercanos, y se estudia con el objetivo de mejorar las propiedades de diversificación e intensificación de los algoritmos metaheurísticos en su versión binaria. Se diseñan operadores aleatorios para estudiar la contribución del operador de perturbación. Para verificar la propuesta, se estudian grandes instancias del conocido problema de cobertura de conjuntos. Se utilizan gráficos de caja, gráficos de convergencia y la prueba estadística de Wilcoxon para determinar la contribución del operador. Además, se realiza una comparación con técnicas metaheurísticas que utilizan mecanismos generales de binarización como las funciones de transferencia o el db-scan como métodos de binarización. Los resultados obtenidos indican que el operador de perturbación KNN mejora significativamente los resultados.

ABSTRACT:

The optimization methods and, in particular, metaheuristics must be constantly improved to reduce execution times, improve the results, and thus be able to address broader instances. In particular, addressing combinatorial optimization problems is critical in the areas of operational research and engineering. In this work, a perturbation operator is proposed which uses the k-nearest neighbors technique, and this is studied with the aim of improving the diversification and intensification properties of metaheuristic algorithms in their binary version. Random operators are designed to study the contribution of the perturbation operator. To verify the proposal, large instances of the well-known set covering problem are studied. Box plots, convergence charts, and the Wilcoxon statistical test are used to determine the operator contribution. Furthermore, a comparison is made using metaheuristic techniques that use general binarization mechanisms such as transfer functions or db-scan as binarization methods. The results obtained indicate that the KNN perturbation operator improves significantly the results.

KEYWORDS:

Combinatorial optimization; machine learning; KNN; metaheuristics; transfer functions

REFERENCE:

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

Descargar (PDF, 1.02MB)

 

Octave: software libre equivalente a Matlab

En entradas anteriores os he dejado algunos consejos para utilizar Matlab.

Este software es muy potente para nuestros usos en ingeniería y dentro de nuestro grupo de investigación. Sin embargo, a veces me encuentro con algunos estudiantes o profesionales que me preguntan por alguna alternativa que pudiese servir con software libre.

Afortunadamente, Octave es una alternativa con un aspecto y unos comandos de uso iguales y que no presenta problemas de instalación. Se trata de un lenguaje interpretado de alto nivel. Lo puedes descargar desde su página oficial completamente gratis. Aquí tienes el enlace de descarga.

Pero además, puedes utilizar una versión en línea desde tu móvil en el caso de que no tengas a mano tu ordenador. Esta versión la tienes aquí: Octave online.

Os paso el siguiente vídeo de Marcelo Pardo que describe, de forma sencilla, cómo instalar Octave más el plugin de symbolic, que es muy útil.

También os dejo un enlace a su página web donde describe Octave, deja vídeos tutoriales y explica alguna de las aplicaciones, especialmente en el ámbito del hormigón armado y el análisis matricial: https://marcelopardo.com/octave/

Además, la Universidad Politécnica de Madrid ha elaborado un curso gratuito MOOC sobre “Matlab y Octave para ingenieros y científicos” que os puede ser de muchísima utilidad: https://www.youtube.com/watch?v=VF97VH8QIAo&list=PL8bSwVy8_IcNTBBRzsKyE8PojViLIJ4RA

Os dejo a continuación la presentación del curso:

El aprendizaje profundo (deep learning) en la optimización de estructuras

Figura 1. Relación de pertenencia entre la inteligencia artificial, el aprendizaje automático y el aprendizaje profundo

En este artículo vamos a esbozar las posibilidades de la inteligencia artificial en la optimización de estructuras, en particular, el uso del aprendizaje profundo. El aprendizaje profundo (deep learning, DL) constituye un subconjunto del aprendizaje automático (machine learning, ML), que a su vez lo es de la inteligencia artificial (ver Figura 1). Si la inteligencia artificial empezó sobre los años 50, el aprendizaje automático surgió sobre los 80, mientras que el aprendizaje profundo nació en este siglo XXI, a partir del 2010, con la aparición de grandes superordenadores y por el aumento de los datos accesibles. Como curiosidad, uno de los grandes hitos del DL se produjo en 2012, cuando Google fue capaz de reconocer un gato entre los más de 10 millones de vídeos de Youtube, utilizando para ello 16000 ordenadores. Ahora serían necesarios muchos menos medios.

En cualquiera de estos tres casos, estamos hablando de sistemas informáticos capaces de analizar grandes cantidades de datos (big data), identificar patrones y tendencias y, por tanto, predecir de forma automática, rápida y precisa. De la inteligencia artificial y su aplicabilidad a la ingeniería civil ya hablamos en un artículo anterior.

Figura 2. Cronología en la aparición de los distintos tipos de algoritmos de inteligencia artificial. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Si pensamos en el cálculo estructural, utilizamos modelos, más o menos sofistificados, que permiten, si se conocen con suficiente precisión las acciones, averiguar los esfuerzos a los que se encuentran sometidos cada uno de los elementos en los que hemos dividido una estructura. Con dichos esfuerzos se identifican una serie de estados límite, que son un conjunto de situaciones potencialmente peligrosas para la estructura y comparar si la capacidad estructural del elemento analizado, dependiente de las propiedades geométricas y de sus materiales constituyentes, supera el valor último de la solicitación a la que, bajo cierta probabilidad, puede llegar a alcanzar el elemento estructural analizado.

Estos métodos tradicionales emplean desde hipótesis de elasticidad y comportamiento lineal, a otros modelos con comportamiento plástico o no lineales más complejos. Suele utilizarse, con mayor o menos sofisticación, el método de los elementos finitos (MEF) y el método matricial de la rigidez. En definitiva, en determinados casos, suelen emplearse los ordenadores para resolver de forma aproximada, ecuaciones diferenciales parciales muy complejas, habituales en la ingeniería estructural, pero también en otros campos de la ingeniería y la física. Para que estos sistemas de cálculo resulten precisos, es necesario alimentar los modelos con datos sobre materiales, condiciones de contorno, acciones, etc., lo más reales posibles. Para eso se comprueban y calibran estos modelos en ensayos reales de laboratorio (Friswell y Mottershead, 1995). De alguna forma, estamos retroalimentando de información al modelo, y por tanto “aprende”.

Figura 2. Malla 2D de elementos finitos, más densa alrededor de la zona de mayor interés. Wikipedia.

Si analizamos bien lo que hacemos, estamos utilizando un modelo, más o menos complicado, para predecir cómo se va a comportar la estructura. Pues bien, si tuviésemos una cantidad suficiente de datos procedentes de laboratorio y de casos reales, un sistema inteligente extraería información y sería capaz de predecir el resultado final. Mientras que la inteligencia artificial debería alimentarse de una ingente cantidad de datos (big data), el método de los elementos finitos precisa menor cantidad de información bruta (smart data), pues ha habido una labor previa muy concienzuda y rigurosa, para intentar comprender el fenómeno subyacente y modelizarlo adecuadamente. Pero, en definitiva, son dos procedimientos diferentes que nos llevan a un mismo objetivo: diseñar estructuras seguras. Otro tema será si éstas estructuras son óptimas desde algún punto de vista (economía, sostenibilidad, etc.).

La optimización de las estructuras constituye un campo científico donde se ha trabajado intensamente en las últimas décadas. Debido a que los problemas reales requieren un número elevado de variables, la resolución exacta del problema de optimización asociado es inabordable. Se trata de problemas NP-hard, de elevada complejidad computacional, que requiere de metaheurísticas para llegar a soluciones satisfactorias en tiempos de cálculo razonables.

Una de las características de la optimización mediante metaheurísticas es el elevado número de iteraciones en el espacio de soluciones, lo cual permite generar una inmensa cantidad de datos para el conjunto de estructuras visitadas. Es el campo ideal para la inteligencia artificial, pues permite extraer información para acelerar y afinar la búsqueda de la solución óptima. Un ejemplo de este tipo es nuestro trabajo (García-Segura et al., 2017) de optimización multiobjetivo de puentes cajón, donde una red neuronal aprendía de los datos intermedios de la búsqueda y luego predecía con una extraordinaria exactitud el cálculo del puente, sin necesidad de calcularlo. Ello permitía reducir considerablemente el tiempo final de computación.

Sin embargo, este tipo de aplicación es muy sencilla, pues solo ha reducido el tiempo de cálculo (cada comprobación completa de un puente por el método de los elementos finitos es mucho más lenta que una predicción con una red neuronal). Se trata ahora de dar un paso más allá. Se trata de que la metaheurística sea capaz de aprender de los datos recogidos utilizando la inteligencia artificial para ser mucho más efectiva, y no solo más rápida.

Tanto la inteligencia artificial como el aprendizaje automático no son una ciencia nueva. El problema es que sus aplicaciones eran limitadas por la falta de datos y de tecnologías para procesarlas de forma rápida y eficiente. Hoy en día se ha dado un salto cualitativo y se puede utilizar el DL, que como ya hemos dicho es una parte del ML, pero que utiliza algoritmos más sofisticados, construidos a partir del principio de las redes neuronales. Digamos que el DL (redes neuronales) utiliza algoritmos distintos al ML (algoritmos de regresión, árboles de decisión, entre otros). En ambos casos, los algoritmos pueden aprender de forma supervisada o no supervisada. En las no supervisadas se facilitan los datos de entrada, no los de salida. La razón por la que se llama aprendizaje profundo hace referencia a las redes neuronales profundas, que utilizan un número elevado de capas en la red, digamos, por ejemplo, 1000 capas. De hecho, el DL también se le conoce a menudo como “redes neuronales profundas”. Esta técnica de redes artificiales de neuronas es una de las técnicas más comunes del DL.

Figura. Esquema explicativo de diferencia entre ML y DL. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Una de las redes neuronales utilizadas en DL son las redes neuronales convolucionales, que es una variación del perceptrón multicapa, pero donde su aplicación se realiza en matrices bidimensionales, y por tanto, son muy efectivas en las tareas de visión artificial, como en la clasificación y segmentación de imágenes. En ingeniería, por ejemplo, se puede utilizar para la monitorización de la condición estructural, por ejemplo, para el análisis del deterioro. Habría que imaginar hasta dónde se podría llegar grabando en imágenes digitales la rotura en laboratorio de estructuras de hormigón y ver la capacidad predictiva de este tipo de herramientas si contaran con suficiente cantidad de datos. Todo se andará. Aquí os dejo una aplicación tradicional típica (Antoni Cladera, de la Universitat de les Illes Balears), donde se explica el modelo de rotura de una viga a flexión en la pizarra y luego se rompe la viga en el laboratorio. ¡Cuántos datos estamos perdiendo en la grabación! Un ejemplo muy reciente del uso del DL y Digital Image Correlation (DIC) aplicado a roturas de probetas en laboratorio es el trabajo de Gulgec et al. (2020).

Sin embargo, aquí nos interesa detenernos en la exploración de la integración específica del DL en las metaheurísticas con el objeto de mejorar la calidad de las soluciones o los tiempos de convergencia cuando se trata de optimizar estructuras. Un ejemplo de este camino novedoso en la investigación es la aplicabilidad de algoritmos que hibriden DL y metaheurísticas. Ya hemos publicado algunos artículos en este sentido aplicados a la optimización de muros de contrafuertes (Yepes et al., 2020; García et al., 2020a, 2020b). Además, hemos propuesto como editor invitado, un número especial en la revista Mathematics (indexada en el primer decil del JCR) denominado “Deep learning and hybrid-metaheuristics: novel engineering applications“.

Dejo a continuación un pequeño vídeo explicativo de las diferencias entre la inteligencia artificial, machine learning y deep learning.

Referencias:

FRISWELL, M.; MOTTERSHEAD, J. E. (1995). Finite element model updating in structural dynamics (Vol. 38). Dordrecht, Netherlands: Springer Science & Business Media.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020a). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862. https://doi.org/10.3390/math8060862

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020b). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0

GULGEC, N.S.; TAKAC, M., PAKZAD S.N. (2020). Uncertainty quantification in digital image correlation for experimental evaluation of deep learning based damage diagnostic. Structure and Infrastructure Engineering, https://doi.org/10.1080/15732479.2020.1815224

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767. DOI:10.3390/su12072767

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El profesor José Antonio García Conejeros de estancia con nosotros en la Universitat Politècnica de València

Dr. José Antonio García Conejeros

Nuestro grupo de investigación está muy orgulloso y es muy afortunado de contar con visitas y estancias de otros profesores, de gran prestigio internacional, que vienen a trabajar y compartir experiencias en la Universitat Politècnica de València. Si en entradas anteriores hablé de la estancia del profesor Dan M. Frangopol, de la visita del profesor Gizo Parskhaladze, y de la estancia de investigación del profesor Moacir Kripka , ahora me toca hablar de la estancia que ha tenido con nosotros el profesor José Antonio García Conejeros en el ICITECH. Estuvo con nosotros durante su “verano” austral, y se fue justo antes de que se declarara el estado de alarma en España por el coronavirus.

Tuve la ocasión de conocer a José Antonio con motivo de mi visita a la Pontificia Universidad Católica de Valparaíso (Chile), en mayo de 2019. Allí tuve la ocasión de impartir varias conferencias sobre optimización y toma de decisiones en puentes e infraestructuras viarias.  Fruto de esta colaboración, a parte de los relacionados con la investigación, se extienden al futuro intercambio de estudiantes y profesorado entre nuestras respectivas universidades y en la participación conjunta en proyectos de investigación y de transferencia tecnológica. En las referencias os dejo tres artículos que hemos publicado como consecuencia de su estancia. Seguro que vendrán muchos más. Todo un verdadero placer.

También os dejo parte de la entrevista que le hicieron en su universidad con motivo de la estancia. La entrevista completa la tenéis aquí: http://icc.pucv.cl/noticias/profesor-jose-antonio-garcia-realiza-estadia-de-investigacion-en-espana

¿Cuáles fueron los motivos de su estadía académica en la ciudad de Valencia?

El principal motivo fue realizar una colaboración con el equipo de investigación de Ingeniero de Caminos, Canales y Puertos, de la Universidad Politécnica de Valencia. Este equipo encabezado por el Dr. Víctor Yepes, tiene una gran experiencia en todo lo que es estructuras de caminos, canales y puentes. Y por mi lado yo tengo una experiencia académica e industrial en el área de inteligencia artificial. Entonces el objetivo es integrar ambos mundos, para resolver un problema complejo.

¿Podría detallarnos las actividades académicas o de investigación realizadas allá?

Las actividades académicas en la primera semana fueron de reuniones donde definimos un problema a trabajar. Posteriormente yo realicé una propuesta de cómo utilizar métodos de optimización para abordar un problema de sustentabilidad. Las semanas siguientes fueron de trabajo técnico donde se resolvió el problema obtuve los resultados y los discutimos par ver la calidad y la pertinencia de publicarlos.

¿De qué manera continuará el trabajo realizado allá?

El trabajo continúa en dos líneas. La primera es generar publicaciones en conjunto, la escuela de ingeniería en construcción PUCV y el grupo de Víctor. La segunda es potenciar el capital Humano avanzado, tanto con académicos o alumnos de allá que vengan a realizar estadías acá, y alumnos de la PUCV que vayan a potencias sus capacidades al grupo de Víctor.

¿Algo más que desee agregar?

La estadía fue bastante constructiva ya que me permitió entrar en una nueva línea de investigación en sustentabilidad y también decir que nos aprobaron el articulo de investigación “Black hole algorithm for sustainable design of counterfort retaining walls.” en Sustainability, que es una revista ISI-SCIE.

Referencias:

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862. https://doi.org/10.3390/math8060862

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767. DOI:10.3390/su12072767