Ni ladrillo ni hormigón: las 5 claves sorprendentes de la casa del futuro

De vez en cuando, los resultados de los trabajos de investigación de nuestro grupo tienen una gran repercusión. En algunos artículos anteriores podéis ver un ejemplo de la repercusión del proyecto RESILIFE. En este caso, se trata de una entrevista que me realizó Eduard Muñoz para el programa Un día perfecte. Se trata de un espacio donde se abre una puerta a todas aquellas personas con inquietudes culturales y científicas. Mi agradecimiento.

A continuación, os dejo un resumen de la entrevista. Al final del artículo, podréis escucharla completa. Espero que os resulte interesante.

El acceso a una vivienda digna, asequible y sostenible es uno de los grandes desafíos de nuestra era. Ante la escasez, el aumento de los costes y la necesidad de reducir el impacto medioambiental, buscar soluciones se ha convertido en una urgencia global. A menudo, las respuestas más innovadoras no provienen de las oficinas de las grandes constructoras, sino de la investigación académica. En este caso, un equipo de la Universitat Politècnica de València (UPV), dirigido por el investigador Víctor Yepes y la doctoranda Ximena Luque, ha desarrollado una nueva metodología que cambia nuestra forma de entender la construcción. Sus conclusiones, fruto de un riguroso análisis, desafían muchas de nuestras ideas preconcebidas sobre cómo debe ser la casa del futuro.

Olvida la idea del «barracón»: la prefabricación de alta calidad ya está aquí.

En España, la palabra «prefabricado» suele evocar una imagen de baja calidad, de construcciones temporales o «barracones» poco estéticos. Sin embargo, como explica Yepes, esta percepción está completamente desactualizada. Para desmontar este mito, propone una analogía contundente: las autocaravanas de gran lujo o los yates son elementos industrializados y prefabricados que alcanzan un altísimo nivel de acabado y calidad. El principio es el mismo: fabricar componentes en un entorno de fábrica controlado permite un nivel de precisión y de control de calidad difícil de lograr en una obra a la intemperie. Este nuevo enfoque de construcción industrializada no es una solución de segunda categoría, sino una tendencia en auge en los países nórdicos y en ciudades como Londres, que demuestra que la eficiencia de la fabricación en serie puede ir de la mano de la excelencia y el diseño.

La vivienda más eficiente está hecha de acero ligero.

El proyecto de investigación RESILIFE se centró en un caso de estudio en Perú, un país que se enfrenta a dos grandes desafíos en materia de vivienda: la prevalencia de la autoconstrucción de baja calidad y el alto riesgo sísmico. Tras analizar múltiples alternativas, desde los tradicionales muros de ladrillo y hormigón armado hasta paneles prefabricados, el estudio halló la solución óptima para este contexto específico: un sistema industrializado de acero ligero conocido como light steel frame.

Esta solución resultó ser superior por varias razones clave:

  • Seguridad sísmica: cumple con la estricta normativa de zonas de alto riesgo sísmico.
  • Eficiencia energética: proporciona un alto rendimiento energético, lo que reduce los costes de mantenimiento a largo plazo.
  • Estructura liviana: se basa en paneles prefabricados que conforman una estructura muy ligera.
  • Velocidad de construcción: permite una edificación extraordinariamente rápida, una ventaja crucial en situaciones de emergencia, como demostró China al construir un hospital en 15 días durante la pandemia.

Este caso demuestra que los materiales tradicionales no siempre son la respuesta más inteligente.

«El hormigón y el ladrillo son formas tradicionales de construcción en España, pero no hay que descartar otras posibilidades que, gracias a las nuevas tecnologías de inteligencia artificial, diseño asistido por ordenador, etc., harán que en el futuro sean posiblemente las más rápidas y eficientes».

— Víctor Yepes, investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH).

Reducir el coste de construcción no basta para solucionar la crisis de la vivienda.

Los sistemas industrializados, como el de acero ligero, pueden reducir los costes directos de construcción entre un 15 % y un 20 %, lo cual no es una cifra desdeñable. Sin embargo, este ahorro no es la solución mágica a la crisis de asequibilidad, al menos en España. El investigador señala una realidad estructural del mercado inmobiliario español: el suelo SUELE representa más del 50 % del precio final de una vivienda. Por lo tanto, aunque abaratar la construcción es un paso positivo, la solución fundamental para que los precios bajen pasa por otra vía: es necesario poner más suelo público en el mercado para equilibrar la oferta y la demanda.

La clave no es un tipo de casa, sino una «receta» inteligente para construirla.

Aunque la casa de acero ligero en Perú es un resultado interesante, el verdadero avance de esta investigación no es un producto, sino un proceso. El resultado más importante es la creación de una metodología universal y adaptable, un motor capaz de generar la mejor solución para cualquier lugar del mundo. El equipo ha desarrollado una herramienta objetiva e imparcial que, mediante el uso de inteligencia artificial, puede analizar las condiciones locales y determinar la solución constructiva más adecuada.

Esta metodología tiene en cuenta una gran variedad de factores para tomar la decisión más acertada.

  • Costes locales de energía, electricidad y transporte.
  • La normativa vigente en la zona.
  • Disponibilidad de materiales y mano de obra.
  • Nivel de especialización de los trabajadores locales.

Esto significa que la mejor solución para Perú no tiene por qué serlo para España o el Reino Unido. La verdadera innovación consiste en ofrecer una solución personalizada y optimizada para las circunstancias específicas de cada lugar.

El futuro de la construcción debe ser inteligente, pero también humano.

Este trabajo demuestra que el futuro de la vivienda no depende de aferrarse a un único material, sino de aplicar inteligencia y una visión holística. No obstante, los investigadores advierten contra una solución puramente tecnocrática. Un proceso industrial muy eficiente puede reducir costes, pero si deja de lado a la mano de obra local, simplemente cambia un problema por otro. Por ello, ahora estudian cómo integrar el «factor humano» en su metodología. La casa verdaderamente «inteligente» del futuro también debe tener un impacto social inteligente, equilibrando la eficiencia con el empleo.

El conocimiento para construir mejor ya existe. Como subraya Víctor Yepes, la ciencia y la universidad generan soluciones aplicables a problemas reales. Su llamamiento final es un recordatorio crucial para los responsables políticos y económicos: es hora de escuchar a la investigación y aplicar estos criterios para construir un futuro más sostenible y justo para todos.

Si la ciencia ya nos ofrece las herramientas para construir de forma más inteligente y sostenible, ¿estamos preparados como sociedad para adoptar el cambio?

Os dejo la entrevista completa. Espero que os resulte interesante.

Reproductor de Audio

Referencia

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre el futuro del hormigón

1. ¿Cuál es el problema principal con el hormigón tradicional y por qué es necesaria su transformación?

El hormigón ha sido un pilar fundamental en la construcción de infraestructuras globales gracias a su durabilidad, versatilidad y bajo coste. Sin embargo, su producción tiene un impacto ambiental significativo, ya que la fabricación de cemento, un componente esencial del hormigón, es responsable del 8 % de las emisiones globales de CO₂. Esto se debe principalmente a la calcinación de la piedra caliza para producir clínker, un proceso que libera grandes cantidades de dióxido de carbono. Dada la creciente urbanización, especialmente en regiones en desarrollo, es crucial disponer de un hormigón más sostenible para mitigar el cambio climático y alinear la industria de la construcción con los objetivos globales de sostenibilidad.

2. ¿Cómo se está abordando la reducción de emisiones de CO₂ relacionadas con el clínker en la producción de cemento?

La producción de clínker es el proceso que más emisiones genera dentro de la industria del hormigón. Para reducir sus emisiones, se están implementando varias estrategias:

  • Cemento LC3 (limestone calcined clay cement): Este cemento sustituye hasta el 50 % del clínker por una mezcla de arcilla calcinada y piedra caliza molida, lo que puede reducir las emisiones de CO₂ en un 40 % en comparación con el cemento Portland tradicional.
  • Uso de aditivos: Materiales como las cenizas volantes y la escoria de alto horno pueden mezclarse con el cemento para reducir el contenido de clínker sin comprometer la resistencia del hormigón y promover una economía circular mediante la reutilización de subproductos industriales.
  • Tecnologías de producción avanzadas: Se están investigando hornos de precalentamiento, sistemas de recuperación de calor y combustibles alternativos, como el hidrógeno o la energía solar concentrada, para hacer la producción de clínker más eficiente.

3. ¿Qué alternativas se están explorando para reemplazar los áridos naturales en el hormigón y cuál es su impacto?

Los áridos (arena y grava) constituyen la mayor parte del volumen del hormigón y su extracción natural conlleva impactos ambientales, como la degradación del paisaje y la pérdida de biodiversidad. Por ello, se están buscando alternativas sostenibles.

  • Áridos reciclados: Se obtienen de la trituración de residuos de construcción y demolición, lo que reduce la demanda de áridos vírgenes y la cantidad de residuos que van a parar a los vertederos. Son útiles en aplicaciones no estructurales y, gracias a las mejoras en las técnicas de procesamiento, cada vez lo son más en aplicaciones estructurales.
  • Áridos artificiales: Estos áridos, producidos a partir de subproductos industriales o residuos (como escoria de alto horno o cenizas volantes), pueden tener propiedades superiores y contribuir a la economía circular. La empresa Brimstone, por ejemplo, ha desarrollado áridos a partir de silicatos de calcio que no solo reemplazan a los naturales, sino que también capturan carbono, por lo que el hormigón resultante es «carbono negativo».
  • Áridos de plásticos reciclados: Aunque se encuentra en una etapa inicial, la incorporación de plásticos reciclados puede reducir tanto los residuos plásticos como la extracción de áridos, mejorando incluso la flexibilidad del material.

4. ¿Cómo contribuyen las energías renovables a un hormigón más sostenible?

La producción de cemento requiere mucha energía y la quema de combustibles fósiles es responsable de aproximadamente el 30 % de las emisiones de CO₂ asociadas al hormigón. La transición a energías renovables es clave:

  • Energía solar concentrada: Tecnologías como la desarrollada por Synhelion y Cemex utilizan espejos para enfocar la luz solar y generar el calor necesario para el proceso de calcinación en los hornos de cemento, reduciendo las emisiones y la dependencia de combustibles fósiles.
  • Energía eólica y solar fotovoltaica: Estas fuentes se emplean para alimentar las operaciones auxiliares de las plantas de cemento (trituración, molienda), reduciendo la huella de carbono general.
  • Biomasa y residuos industriales: El uso de residuos agrícolas, forestales e industriales como combustibles alternativos en los hornos de cemento permite reducir significativamente las emisiones de CO₂.
  • Hornos de precalentamiento y sistemas de recuperación de calor: Estas innovaciones mejoran la eficiencia energética al reutilizar el calor generado en el proceso, lo que reduce el consumo de energía primaria hasta en un 20 %.

5. ¿Qué papel juega la captura y almacenamiento de carbono (CCS) en la reducción de emisiones del hormigón?

La CCS es una tecnología prometedora para reducir significativamente las emisiones de CO₂. Consiste en capturar el CO₂ emitido durante la producción de cemento antes de que se libere a la atmósfera y almacenarlo de forma segura en formaciones geológicas subterráneas.

  • Proceso: El CO₂ se puede capturar mediante métodos de postcombustión (después de quemar combustibles), precombustión (antes de la combustión) u oxicombustión (usando oxígeno puro en la combustión).
  • Implantación: La planta que Heidelberg Materials tiene en Brevik (Noruega) es un ejemplo pionero, ya que captura aproximadamente el 90 % de sus emisiones de CO₂ (400 000 toneladas al año) para almacenarlas en el mar del Norte.
  • Beneficios y retos: La CCS puede reducir hasta en un 90 % las emisiones y es compatible con la infraestructura existente. No obstante, los costes de instalación y operación son elevados y el proceso requiere mucha energía, además de necesitar un almacenamiento seguro y permanente.

6. ¿Cómo se introduce el CO₂ directamente en la fabricación o vertido del hormigón para mejorar sus propiedades y reducir su huella de carbono?

Una innovación clave es la introducción de CO₂ capturado directamente en el hormigón fresco durante su mezcla, como lo hace la tecnología CarbonCure.

  • Proceso: El CO₂ se inyecta en la mezcla, donde reacciona con el calcio del cemento para formar carbonato de calcio, un proceso denominado mineralización. Este carbonato de calcio queda fijado de forma permanente en el interior del hormigón.
  • Beneficios: Reduce las emisiones en aproximadamente un 5-7 % por metro cúbico de hormigón y permite disminuir la cantidad de cemento necesaria, lo que a su vez reduce las emisiones de clínker.
  • Mejora de propiedades: El carbonato de calcio contribuye a una microestructura más densa, lo que incrementa la resistencia a la compresión del hormigón (hasta un 10%) y mejora su durabilidad.
  • Implantación: Esta tecnología está siendo adoptada por productores de Norteamérica y Europa en proyectos de construcción, lo que demuestra su viabilidad técnica y ambiental.

7. ¿Qué significa el concepto de «cascading» en el hormigón y cómo se relaciona con la economía circular y el reciclaje?

En el contexto de la economía circular, el aprovechamiento en cascada (en inglés, cascading) se refiere a la reutilización de materiales en diferentes niveles o aplicaciones para maximizar su valor antes de desecharlos definitivamente. En el caso del hormigón:

  • Cascading: Implica el desmontaje y la reutilización directa de piezas de hormigón, por ejemplo, bloques o paneles de un edificio antiguo en un nuevo proyecto, o su reutilización en aplicaciones de menor calidad si no pueden usarse estructuralmente, como áridos reciclados para pavimentos o rellenos. El objetivo es aprovechar el material en diferentes etapas de su ciclo de vida.
  • Reciclaje de hormigón: Este proceso consiste en triturar y procesar el hormigón demolido para convertirlo en áridos reciclados que pueden utilizarse en la producción de nuevos hormigones o como base en carreteras.
  • Relación: Ambos conceptos son complementarios y se enmarcan en la economía circular. El cascading puede ser una primera fase (reutilización directa) y el reciclaje supone un paso posterior para reintroducir los materiales en el ciclo productivo una vez que han llegado al final de su vida útil en la aplicación de mayor valor. El diseño para el desmontaje facilita el aprovechamiento en cascada, ya que permite la deconstrucción en lugar de la demolición para recuperar componentes.

8. ¿Cuáles son los principales desafíos y el futuro del hormigón sostenible?

El camino hacia un hormigón más sostenible implica superar varios desafíos:

  • Costes iniciales: La transición a energías renovables, tecnologías de captura de carbono y la implementación de sistemas de reciclaje implican altas inversiones iniciales.
  • Calidad y homogeneidad: Asegurar la calidad y consistencia de los áridos reciclados o materiales alternativos es un reto constante.
  • Regulación y estándares: Muchos códigos de construcción aún no se han actualizado para permitir el uso amplio de estas nuevas tecnologías y materiales en aplicaciones estructurales.
  • Conciencia y adopción: Es necesario aumentar la conciencia en la industria y facilitar la adopción masiva de estas innovaciones.

El futuro del hormigón pasa por la implementación a gran escala de estas tecnologías. Será crucial un esfuerzo conjunto de la industria, los gobiernos y la academia para superar las barreras técnicas, económicas y regulatorias. La inversión en investigación y desarrollo, junto con políticas de apoyo, permitirá que el hormigón no solo mitigue su impacto ambiental, sino que se posicione como un material clave en un futuro construido sobre principios de sostenibilidad y economía circular, convirtiéndose así en un aliado en la lucha contra el cambio climático.

A continuación os paso un audio que explica bien lo contenido en este artículo.

Reproductor de Audio

Os dejo varios vídeos sobre el futuro del hormigón y la tecnología CarbonCure. Espero que os resulte de interés.

Os paso un artículo al respecto, que espero os sea de interés.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo construir viviendas sociales más baratas y sostenibles y de forma más rápida

A continuación, os paso el contenido de una nota de prensa que ha lanzado la UPV sobre uno de nuestros trabajos de investigación relacionados con el proyecto RESILIFE. También os dejo enlaces a la noticia. Espero que os resulte interesante.

Investigadores de la UPV han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE

Investigadores de la Universitat Politècnica de València (UPV) han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente. El trabajo, liderado por el investigador del Instituto ICITECH Víctor Yepes y la doctoranda Ximena Luque, se ha centrado en Perú, un país con un elevado déficit habitacional, si bien sus resultados podrían aplicarse a otros países con necesidades similares.

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE y analiza cinco sistemas constructivos diferentes —desde métodos tradicionales como el hormigón con ladrillo hasta métodos industrializados como el Light Steel Frame (LSF). Además, evalúa no solo costes de construcción, sino también los de mantenimiento, demolición e impacto ambiental durante todo el ciclo de vida de la vivienda.

“No se trata de solo construir más, sino de construir mejor. Por eso analizamos cada sistema de principio a fin, con el enfoque conocido como desde la cuna hasta la tumba, evaluando tanto el impacto técnico, económico y medioambiental de la construcción. Nuestro estudio no solo se centra en el precio o la velocidad de construcción. También analizó el impacto de cada tipo de vivienda a lo largo de toda su vida útil: desde la extracción de los materiales hasta su demolición”, explica Víctor Yepes

El sistema más eficiente: rápido, limpio y rentable

De los cinco modelos analizados, el sistema LSF —una estructura metálica prefabricada y liviana— es el más eficiente, según el estudio realizado por Víctor Yepes y Ximena Luque. Es el más barato a largo plazo (en construcción, mantenimiento y demolición); el que menos impacto ambiental genera y el que permite construir más rápido, lo que resulta clave para reducir el déficit habitacional en corto tiempo.

“Los sistemas tradicionales, aunque parecen más baratos al inicio, terminan siendo más costosos a largo plazo por sus residuos y su dificultad para ser reciclados. El estudio también señala que ningún sistema es perfecto. Por ejemplo, los paneles sándwich de hormigón son muy rápidos de montar, pero tienen mayores costes e impactos. El sistema convencional, aunque ampliamente empleado, tarda más en construirse y tiene un impacto ambiental alto. Sin embargo, necesita menos mano de obra especializada, lo que también es un factor que debemos considerar. Aun así, en más del 90 % de los escenarios evaluados, el LSF siguió siendo la mejor alternativa”, explica Yepes.

Guía práctica y modelo replicable

Además de identificar el “sistema para construir mejor”, el equipo de la UPV ha desarrollado una guía práctica para programas de vivienda social, planteando una metodología que se puede replicar en otros países en desarrollo.

Nuestro estudio ofrece una herramienta práctica y replicable que puede ayudar a ingenieros, arquitectos y autoridades a tomar decisiones más informadas. Al tener en cuenta todo el ciclo de vida de una vivienda y varios criterios de sostenibilidad, nuestro trabajo pretende contribuir a conseguir hacia soluciones habitacionales más justas, rápidas y respetuosas con el medio ambiente en aquellos países que lo necesitan”, añade Yepes.

Próximos pasos: sumar el factor humano

El equipo de la UPV trabaja ya en la siguiente fase del proyecto, que incorporará el impacto social de cada sistema constructivo, evaluando cómo influyen en la calidad de vida de las personas, el empleo local y la cohesión comunitaria.

“Construir bien, no es solo colocar ladrillos y hormigón. También es considerar a las personas que habitarán ese espacio y cómo la vivienda puede mejorar su bienestar y sus oportunidades”, concluye Víctor Yepes.

Referencia

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Noticia en À Punt:

Entrevistas en RNE y Ser

Reproductor de Audio Reproductor de Audio

Noticia en medios:

La UPV plantea un modelo «replicable» para construir viviendas sociales baratas y sostenibles

https://cadenaser.com/comunitat-valenciana/2025/08/03/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles-y-de-forma-mas-rapida-radio-valencia/

https://www.larazon.es/comunidad-valenciana/mas-baratas-eficientes-upv-tiene-clave-construir-mas-viviendas_20250803688f1efac5e9fd602f666afd.html

https://www.20minutos.es/nacional/estudio-propone-construir-viviendas-sociales-baratas-sostenibles_6233824_0.html

https://valencia.elperiodicodeaqui.com/epda-noticias/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles/374196

https://www.noticiasde.es/comunidad-valenciana/la-upv-ha-propuesto-un-metodo-para-construir-viviendas-sociales-de-forma-mas-economica-sostenible-y-rapida/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Un estudio de la UPV propone cómo construir viviendas sociales “más baratas y sostenibles” y de forma “más rápida”

https://alicanteplaza.es/alicanteplaza/innovacion-alicante/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles

Un estudio de la UPV propone cómo construir viviendas sociales más baratas y sostenibles | Murcia Plaza

https://economia3.com/2025/08/04/701578-upv-impulsa-una-nueva-forma-de-construir-viviendas-sociales-mas-eficientes/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Nou estudi de la UPV revela com construir vivendes socials més econòmiques i sostenibles

 

Preguntas sobre el prefabricado de hormigón: Historia, ventajas y futuro

1. ¿Qué es un elemento prefabricado de hormigón y cómo se diferencia de la construcción con hormigón tradicional?

Un elemento prefabricado de hormigón se define como un producto fabricado con hormigón y elaborado en un lugar distinto al de su ubicación final. Durante su fabricación, está protegido de las condiciones ambientales adversas y se obtiene mediante un proceso industrial con un sistema de control de producción en fábrica. Esto permite acortar los plazos de entrega. En términos prácticos, la prefabricación consiste en aplicar principios industriales a la construcción, como la racionalización de procesos, la búsqueda de la economía de escala y el desarrollo a partir de la repetitividad de tareas cuidadosamente planificadas, ejecutadas en entornos favorables, con medios suficientes y por personal especializado.

La principal diferencia con el hormigón tradicional (o in situ) radica en el lugar y el método de fraguado y control. El hormigón tradicional se concibe como un material fresco que cura libremente en la obra (ejecución in situ), mientras que el prefabricado es un producto terminado que se diseña y fabrica previamente en una planta industrial, con todas sus características adquiridas de forma controlada. Esto le confiere una entidad propia y una serie de cualidades inherentes que lo distinguen, como una mayor precisión dimensional, mejores acabados y la eliminación de incertidumbres en el resultado final, lo que a menudo se traduce en precios más competitivos.

https://www.telecinco.es/noticias/catalunya/20250730/levantan-bloque-vivienda-publica-diez-dias-barcelona_18_016247482.html

2. ¿Cuándo y cómo se originó el concepto de prefabricación aplicado al hormigón?

Aunque el uso del hormigón se remonta al Imperio romano (7000 a. C., según algunos historiadores), el origen de la prefabricación, entendida como la aplicación de procesos industriales a la construcción, se sitúa a mediados del siglo XVIII, con la Revolución Industrial y la aparición de nuevos materiales como el acero y el vidrio. Sin embargo, la combinación específica del material (hormigón) y la técnica (prefabricación) es relativamente reciente, y ha experimentado un desarrollo espectacular a partir de la segunda mitad del siglo XX.

Un hito clave fue la patente concedida en 1824 a Joseph Aspdin para la producción de «cemento Portland». A partir de 1848 y 1849 se registran los primeros elementos prefabricados de hormigón, como la barca de Joseph Louis Lambot y la jardinera de Joseph Monier. No obstante, un hito trascendental fue la patente del hormigón pretensado presentada por Eugène Freyssinet en 1928, que revolucionó la forma de construir al convertir el hormigón en un material activo y duradero, lo que impulsó la creación de las primeras fábricas de elementos prefabricados.

3. ¿Cuáles fueron los hitos más importantes en el desarrollo del hormigón prefabricado entre 1850 y 1970?

El desarrollo del hormigón prefabricado se puede dividir en varias etapas significativas:

  • 1850-1940 (Primera época): Estuvo marcada por la visión de ingenieros que vieron en el hormigón una alternativa a la piedra natural. Los hitos incluyen:
    • Primeros elementos prefabricados como la barca de Lambot (1848) y la jardinera de Monier (1849).
    • El primer edificio con bloques prefabricados de cemento Pórtland, Castle House (1851).
    • La invención del concreto armado por William Wilkinson (1854).
    • La patente de un edificio prefabricado con módulos tridimensionales de Eduard T. Potter (1889).
    • La construcción del primer edificio con estructura prefabricada de hormigón, un molino de harina en Swansea (1897).
    • La invención del hormigón pretensado por Eugene Freyssinet (1928), que transformó el material.
  • 1940-1970 (Segunda época): Influenciada por la necesidad de reconstrucción rápida y económica tras la Segunda Guerra Mundial y el aprovechamiento del tejido industrial bélico.
    • Difusión del pretensado (Francisco Fernández Conde obtuvo las patentes para España y América Latina en 1942).
    • La Unión Soviética adoptó masivamente los paneles prefabricados de hormigón para la construcción de barrios urbanos debido a la reducción de costos y rapidez (1947-1951).
    • Estandarización de sistemas prefabricados en Inglaterra (1960).
    • Diseños icónicos como la cúpula del Palacio de Deportes de Pier Luigi Nervi para los JJ.OO. de Roma (1960) y el complejo de viviendas Habitat 67 de Moshe Safdie en Montreal (1967).
    • Desarrollo de losas alveolares y la escuela francesa de “grandes paneles”.

4. ¿Cómo ha evolucionado el hormigón prefabricado desde el último tercio del siglo XX hasta la actualidad?

Desde finales del siglo XX, la industria del prefabricado ha experimentado una creciente mecanización y un enfoque hacia una prefabricación más «abierta». Los fabricantes pasaron de producir grandes volúmenes de elementos repetitivos a crear soluciones más flexibles y adaptables a diversas obras y demandas. En este periodo, Italia y los países nórdicos destacaron, ya que su clima favorece la construcción industrializada.

Se mejoraron las posibilidades estéticas del prefabricado, como se puso de manifiesto en la Ópera de Sídney, que empleó grandes conchas prefabricadas. Aumentó la demanda de grandes elementos prefabricados para viviendas, escuelas, centros comerciales y estadios, lo que impulsó la mejora de sus propiedades estructurales. En el ámbito de la obra civil, el prefabricado se convirtió en la opción dominante para puentes, canalizaciones, túneles y traviesas ferroviarias.

En la actualidad, la construcción prefabricada es un método con entidad propia que destaca por su capacidad para aplicar técnicas de producción de alto rendimiento con elevados niveles de control, lo que asegura una mayor calidad y precisión dimensional. También se destaca la capacidad de las piezas para ser desmontadas y reutilizadas, lo que contribuye a la sostenibilidad. La evolución informática permite realizar diseños complejos que antes eran inviables. Además, se ha logrado combinar la libertad arquitectónica con la eficiencia constructiva, lo que permite realizar diseños flexibles y adaptables que permiten cambiar el uso de los edificios sin afectar a su estructura.

https://resimart.com/beneficios-prefabricados-de-hormigon/

5. ¿Qué ventajas ofrece la prefabricación de hormigón en comparación con los métodos de construcción tradicionales?

La prefabricación de hormigón ofrece múltiples ventajas significativas:

  • Mayor calidad y precisión dimensional: El proceso industrial en fábrica, bajo sistemas de control de producción, asegura una calidad superior, homogeneidad y precisión dimensional de los elementos, eliminando incertidumbres del resultado final.
  • Ahorro de tiempo y costes: La fabricación en un entorno controlado acelera los plazos de entrega y permite una planificación más detallada, lo que se traduce en mayor productividad, menores costes laborales in situ y, a menudo, un precio final más competitivo.
  • Mayor durabilidad y resistencia: El hormigón prefabricado utiliza materiales de mejores prestaciones y un curado más controlado, lo que contribuye a una mayor durabilidad y resistencia, especialmente evidente tras la invención del pretensado.
  • Sostenibilidad y eficiencia energética: Contribuye a la reducción de residuos en obra, el uso de concretos de mejores prestaciones (mayor durabilidad), y ofrece alta inercia térmica, lo que se traduce en menor consumo de energía y mayor confort para los usuarios. La posibilidad de desmontar y reutilizar las piezas también mejora su impacto ambiental a largo plazo.
  • Versatilidad arquitectónica y estructural: Permite la creación de formas complejas, texturas, relieves, colores y aligeramientos, así como la adaptación a requisitos arquitectónicos cambiantes sin sacrificar la eficiencia. Los diseños flexibles posibilitan cambiar el uso de los edificios sin afectar la estructura.
  • Mejores condiciones laborales: La aplicación del hormigón autocompactante en plantas de prefabricados ha mejorado notablemente las condiciones de trabajo de los operarios al reducir la carga sonora y las vibraciones.

6. ¿Cuáles son los principales campos de aplicación del hormigón prefabricado en la actualidad?

El entorno urbano está lleno de elementos prefabricados de hormigón que forman parte de nuestro paisaje cotidiano y tienen una amplia gama de aplicaciones en edificación y obra civil.

En edificación (arquitectura), el prefabricado se utiliza masivamente para:

  • Viviendas (Habitat 67 es un ejemplo icónico).
  • Escuelas, pabellones, centros comerciales, aparcamientos.
  • Estadios y hospitales.
  • Elementos estructurales y de cerramiento, incluyendo paneles de fachada de grandes dimensiones con mejoras estéticas (colores, texturas, diseños de vanguardia como fachadas translúcidas).
  • Forjados (desde viguetas y bovedillas hasta losas alveolares).

En obra civil (ingeniería), el desarrollo de los prefabricados de hormigón ha sido fundamental para:

  • Puentes (tanto la estructura como las losas que unen las vigas).
  • Canalizaciones y tuberías.
  • Dovelas para túneles.
  • Traviesas para ferrocarril.
  • Mobiliario urbano y pavimentos.

En general, el prefabricado responde satisfactoriamente a todas las exigencias técnicas y funcionales, y se adapta cada vez más a diseños arquitectónicos libres y a la integración de servicios e instalaciones en la estructura prefabricada.

7. ¿Qué mitos persisten sobre el hormigón prefabricado y cómo se están superando?

Aunque la acepción peyorativa del término «prefabricado» está disminuyendo, aún persisten ciertos mitos sin fundamento que impiden un mayor avance de la industria. Estos mitos incluyen la percepción de que los elementos prefabricados son una solución «inferior» o que carecen de versatilidad estética y funcional. Se asocia erróneamente con la necesidad de producir grandes cantidades de elementos muy repetitivos para optimizar costes, una idea que la industria ya ha corregido, pues es capaz de producir elementos a costes razonables para demandas más pequeñas y diferenciadas.

La realidad es que el diseño y la fabricación en un entorno técnico y controlado conducen a elementos y soluciones más precisos y de mayor calidad. Los avances tecnológicos en dosificación, curado, control de calidad, moldes, acabados, nuevos materiales y la introducción de hormigones autocompactantes han superado las limitaciones estéticas y funcionales anteriores. La industria ha sabido dar una respuesta adecuada a las exigencias técnicas, funcionales y estéticas, y ha logrado una mayor libertad arquitectónica sin sacrificar la eficiencia. La difusión de sus ventajas y el éxito en obras emblemáticas están ayudando a disipar estos mitos.

8. ¿Cuáles son los principales retos y vías de innovación para la industria del hormigón prefabricado en los próximos años?

La industria del prefabricado de hormigón se enfrenta a varios retos prometedores para ganar mayor presencia en el mercado:

  • Sostenibilidad: Se trata de un eje fundamental, impulsado por políticas reglamentarias que bonifican las soluciones respetuosas con el medio ambiente. El prefabricado ofrece ventajas como una mayor inercia térmica (que reduce el consumo de energía), una menor generación de residuos y el uso de concretos de mejores prestaciones para aumentar su durabilidad. También se investiga la adición de materia prima para dotar a los elementos de capacidades descontaminantes.
  • Innovación tecnológica: En un entorno competitivo, la innovación es crucial. Se busca la mejora continua a través de la I+D+i en colaboración con centros tecnológicos y universidades. Las innovaciones incluyen el aumento de la resistencia mecánica del hormigón, la ampliación de las formas, texturas, relieves y colores de los elementos vistos, y la mejora de las materias primas (cementos, aditivos, aceros pretensados y fibras) para conseguir dimensiones, ligereza y acabados antes inimaginables.
  • Automatización y digitalización: El progreso tecnológico en la maquinaria permite a las plantas de prefabricados alcanzar altos niveles de automatización, incluyendo impresión 3D, moldes más duraderos, sistemas de vaciado eficientes, cortes guiados por láser y sistemas de curado más efectivos. La integración de sensores en la fabricación para monitorizar parámetros (por ejemplo, la resistencia a la compresión) y el desarrollo de productos conforme a la metodología BIM son también áreas de profundización.
  • Adaptación a nuevas exigencias: El objetivo es mejorar el comportamiento sísmico, rediseñar las piezas estructurales para cubrir un mayor rango dimensional y optimizar las conexiones de los elementos estructurales, con el fin de seguir expandiendo las aplicaciones y la eficiencia del prefabricado.

Creo que estos vídeos os pueden interesar.

Os dejo un artículo que, espero, sea de vuestro interés.

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

RESILIFE: Optimización resiliente de estructuras híbridas en condiciones extremas

En este artículo se explica el proyecto RESILIFE, cuyos investigadores principales son Víctor Yepes y Julián Alcalá, de la Universitat Politècnica de València. Se trata de un proyecto de investigación de carácter internacional en el que también colaboran profesores de Brasil, Chile y China. Además, se están realizando varias tesis doctorales de estudiantes de Cuba, Perú, México y Ecuador, así como de estudiantes españoles. A continuación, se describe brevemente el proyecto y se incluye una comunicación reciente donde se explica con más detalle.

El proyecto RESILIFE se centra en optimizar de forma resiliente el ciclo de vida de estructuras híbridas y modulares para conseguir una alta eficiencia social y medioambiental, especialmente en condiciones extremas. La investigación aborda la necesidad de diseñar, construir y mantener infraestructuras que puedan resistir y recuperarse rápidamente de desastres naturales o provocados por el ser humano, minimizando las pérdidas y el impacto en la sociedad y el medioambiente. Para ello, el estudio propone utilizar inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos en un enfoque multicriterio. El objetivo es mejorar la seguridad, reducir costes y optimizar la recuperación, alineándose con los Objetivos de Desarrollo Sostenible (ODS). La metodología integral incluye el análisis del ciclo de vida, así como la aplicación de lógica neutrosófica y redes bayesianas para la toma de decisiones.

¿Qué problema aborda el proyecto RESILIFE y por qué es urgente?

El proyecto RESILIFE aborda el desafío crítico que supone diseñar y mantener infraestructuras resilientes y sostenibles frente a desastres naturales y provocados por el ser humano. La urgencia es evidente debido a las enormes pérdidas humanas y económicas causadas por estos eventos (más de 1,1 millones de muertes y 1,5 billones de dólares en pérdidas entre 2003 y 2013), lo que subraya la necesidad de estructuras de alto rendimiento que protejan vidas y economías, al tiempo que se alinean con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas. Además, los errores de diseño y construcción, así como la falta de mantenimiento, han demostrado ser causas significativas de colapso estructural, y solo el 50 % de las reparaciones de hormigón resultan efectivas en Europa.

¿Cuál es el objetivo principal de RESILIFE?

El objetivo general del proyecto RESILIFE es optimizar el diseño, el mantenimiento y la reparación de estructuras híbridas y modulares (MMC) de alta eficiencia social y medioambiental para que puedan resistir condiciones extremas. Para ello, se deben abordar problemas complejos de toma de decisiones en los ámbitos público y privado, integrando criterios de sostenibilidad social y medioambiental durante todo el ciclo de vida de las estructuras y teniendo en cuenta la variabilidad e incertidumbre inherentes al mundo real. El objetivo es que estas estructuras sean tan seguras como las tradicionales, pero con una mayor capacidad de recuperación rápida y un menor impacto social y medioambiental.

 

¿Qué tipos de estructuras son el foco de RESILIFE y por qué?

El proyecto se centra en estructuras híbridas (que combinan, por ejemplo, acero y hormigón) y en estructuras basadas en métodos modernos de construcción (MMC), especialmente las modulares. Estas estructuras se han elegido como objeto de estudio debido a su gran potencial para mejorar la resiliencia estructural, la eficiencia en la construcción (al reducir las interrupciones en obra y mejorar el control de calidad) y la sostenibilidad. A pesar de sus ventajas, se han identificado lagunas en la investigación sobre su optimización para eventos extremos y su aplicación en estructuras complejas, aspectos que el proyecto RESILIFE busca subsanar.

¿Qué metodologías innovadoras utiliza RESILIFE para lograr sus objetivos?

RESILIFE emplea un enfoque multidisciplinario e innovador que integra diversas técnicas avanzadas:

¿Cómo aborda RESILIFE la incertidumbre y la variabilidad en el diseño y mantenimiento de estructuras?

El proyecto aborda la incertidumbre y la variabilidad mediante varias estrategias:

  • Análisis de funciones de distribución de eventos extremos: Para el diseño óptimo basado en fiabilidad.
  • Metamodelos y metaheurísticas híbridas basadas en fiabilidad: Permiten manejar la aleatoriedad de los parámetros y asegurar que los proyectos optimizados no sean inviables ante pequeños cambios en las condiciones.
  • Técnicas de decisión multicriterio (lógica neutrosófica y redes bayesianas): Integran aspectos inciertos y criterios subjetivos en la toma de decisiones.
  • Análisis de sensibilidad: De los escenarios presupuestarios y las hipótesis del ciclo de vida para identificar las mejores prácticas.

¿Qué se entiende por “resiliencia” en el contexto de RESILIFE y cómo se cuantifica?

En el contexto de RESILIFE, la resiliencia se define como la capacidad de una estructura para resistir eventos extremos, mantener su funcionalidad o recuperarla rápidamente con reparaciones mínimas tras sufrir daños, y con un bajo coste social y medioambiental. El objetivo es ir más allá de la simple resistencia y centrarse en la capacidad de adaptación y recuperación. El proyecto tiene como objetivo desarrollar procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas, un aspecto que actualmente presenta una laguna en la investigación. Esto incluye tener en cuenta la funcionalidad técnico-socioeconómica y los impactos a lo largo de toda su vida útil.

¿Qué tipo de casos de estudio se aplican en la metodología RESILIFE?

La metodología de RESILIFE se aplica a varios casos de estudio clave:

  • Optimización de pórticos de edificios altos: Con estructura de acero híbrido y hormigón armado, sometidos a un fuerte incremento de temperatura, o ante el fallo completo de soportes para evitar el colapso progresivo.
  • Viviendas sociales prefabricadas en zonas sísmicas: Optimizando su resistencia a acciones extremas y su capacidad de reparación rápida.
  • Mantenimiento y reparación de patologías: Resultantes de eventos extremos en diversas estructuras.
  • Otras estructuras como puentes mixtos y estructuras modulares: Ampliando el alcance más allá de las viviendas. Estos casos de estudio permiten validar la aplicabilidad de las metodologías propuestas en situaciones reales y complejas.

¿Cuáles son las principales contribuciones esperadas de RESILIFE a la ingeniería estructural y la sostenibilidad?

Las principales contribuciones esperadas de RESILIFE son:

  • Desarrollo de soluciones constructivas innovadoras: Como conexiones especiales y estructuras fusibles para aumentar la resiliencia y evitar el colapso progresivo.
  • Formulación de metodologías de participación social: Para integrar criterios objetivos y subjetivos en decisiones multicriterio.
  • Propuesta de técnicas de optimización multiobjetivo avanzadas: Basadas en metaheurísticas híbridas de deep learning, teoría de juegos y fiabilidad.
  • Introducción de nuevas métricas: Que prioricen soluciones resilientes en la frontera de Pareto.
  • Identificación de políticas presupuestarias efectivas: Y definición de buenas prácticas de diseño, reparación y mantenimiento robusto en construcciones MMC y estructuras híbridas.
  • Avances en la modelización y evaluación: De la sostenibilidad a largo plazo y el impacto ambiental de las infraestructuras, contribuyendo a normativas y software de diseño más eficientes.

Reproductor de Audio

Descargar (PDF, 391KB)

Glosario de términos clave

  • Resiliencia (estructural): Capacidad de una estructura para absorber, resistir, adaptarse y recuperarse de un evento extremo, manteniendo o recuperando su funcionalidad rápidamente y con costes mínimos.
  • Estructuras híbridas: Estructuras que combinan dos o más materiales estructurales diferentes, como acero y hormigón, para optimizar sus propiedades y rendimiento.
  • Estructuras modulares: Estructuras compuestas por unidades o módulos prefabricados que se ensamblan en el lugar de la construcción, ofreciendo ventajas en velocidad de construcción y control de calidad.
  • Eventos extremos: Desastres naturales (terremotos, tsunamis, inundaciones) o provocados por humanos (explosiones, impactos) que causan daños significativos a las estructuras y la sociedad.
  • Optimización del ciclo de vida: Proceso de diseño, construcción, mantenimiento y reparación de una estructura, considerando su impacto total (económico, social, ambiental) a lo largo de toda su vida útil.
  • Sostenibilidad: Principio que busca satisfacer las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, integrando aspectos ambientales, sociales y económicos.
  • Inteligencia artificial (IA): Campo de la informática que dota a las máquinas de la capacidad de aprender, razonar y resolver problemas, utilizada aquí para evaluar y mejorar la resiliencia.
  • Metaheurísticas híbridas: Algoritmos de optimización que combinan diferentes técnicas heurísticas o metaheurísticas para encontrar soluciones eficientes a problemas complejos, especialmente en la optimización multiobjetivo.
  • Aprendizaje profundo (Deep Learning – DL): Subcampo del aprendizaje automático que utiliza redes neuronales artificiales con múltiples capas para aprender representaciones de datos, aplicado para mejorar la toma de decisiones y reducir tiempos de cálculo.
  • Teoría de juegos: Rama de las matemáticas que estudia las interacciones estratégicas entre agentes racionales, aplicada en la optimización multiobjetivo para el diseño de estructuras.
  • Lógica neutrosófica: Marco matemático para tratar la indeterminación y la inconsistencia, utilizado en la toma de decisiones multicriterio para manejar la incertidumbre.
  • Redes bayesianas: Modelos gráficos probabilísticos que representan relaciones de dependencia condicional entre variables, empleadas en el análisis multicriterio y la gestión de incertidumbre.
  • Colapso progresivo: Fenómeno en el cual un daño inicial localizado en una estructura se propaga a otras partes, llevando al colapso desproporcionado de una gran porción o de toda la estructura.
  • Modern Methods of Construction (MMC): Métodos de construcción modernos que incluyen tecnologías de prefabricación, construcción modular e impresión 3D, buscando mayor eficiencia y control de calidad.
  • BIM (Building Information Modeling / Modelos de Información en la Construcción): Proceso de creación y gestión de un modelo digital de un edificio o infraestructura, que facilita la integración del proyecto estructural y la toma de decisiones a lo largo del ciclo de vida.
  • Metamodelo (o modelo subrogado): Modelo simplificado de un sistema complejo que permite realizar cálculos más rápidos y eficientes, crucial para reducir los tiempos de computación en la optimización.
  • Diseño óptimo basado en fiabilidad: Enfoque de diseño que considera la probabilidad de fallo y las incertidumbres inherentes para optimizar las estructuras, garantizando un nivel de seguridad predefinido.
  • Frontera de Pareto: Conjunto de soluciones óptimas en problemas de optimización multiobjetivo, donde ninguna de las funciones objetivo puede mejorarse sin degradar al menos otra función objetivo.

Agradecimientos:

Grant PID2023-150003OB-I00 funded by MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund (ERDF), a program of the European Union (EU).

Entornos de aprendizaje emergentes en la educación en ingeniería

La formación en ingeniería está experimentando una transformación profunda, impulsada por desafíos globales como el cambio climático, la revolución digital y la creciente brecha entre la enseñanza académica y las exigencias del mercado laboral. A continuación, analizamos el trabajo de Hadgraft y Kolmos (2020), donde se explora cómo la educación en ingeniería está evolucionando para hacer frente a estos retos mediante cuatro tendencias clave: el aprendizaje centrado en el estudiante, el aprendizaje contextual, la digitalización de la enseñanza y el desarrollo de competencias profesionales. A partir de estas líneas de cambio, se propone que la educación futura debe pasar de un enfoque en disciplinas individuales a currículos integrados que aborden problemas complejos y promuevan trayectorias de aprendizaje personalizadas. En última instancia, se hace hincapié en la necesidad de un cambio sistémico en el diseño curricular para preparar a los ingenieros para un futuro laboral en constante cambio.

La educación en ingeniería se enfrenta a tres desafíos fundamentales: la sostenibilidad y el cambio climático, la Cuarta Revolución Industrial (Industria 4.0) y la empleabilidad de los graduados. Estos desafíos exigen que los ingenieros del futuro posean habilidades transdisciplinares, pensamiento sistémico y contextual, y la capacidad de actuar en situaciones complejas y caóticas. Para responder a estas necesidades, la educación en ingeniería ha evolucionado hacia un enfoque centrado en el estudiante, la integración de la teoría y la práctica, el aprendizaje digital y en línea, y el desarrollo de competencias profesionales. A largo plazo, se tenderá a modelos curriculares más personalizados y centrados en proyectos que permitan a los estudiantes construir sus propias trayectorias de aprendizaje y documentar sus competencias para el aprendizaje a lo largo de la vida.

1. Desafíos clave para la educación en ingeniería

Se identifican tres desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería:

  • Sostenibilidad y cambio climático: la ingeniería es fundamental para abordar los 17 Objetivos de Desarrollo Sostenible (ODS) de la ONU, especialmente en lo que respecta a la pobreza, el hambre, la salud, el agua, la energía, el crecimiento económico y la acción climática. La educación en ingeniería debe preparar a los graduados para responder a estos desafíos humanitarios, sociales y económicos.
  • Cuarta Revolución Industrial (Industria 4.0): Esta revolución implica la integración generalizada de tecnologías como la automatización, el internet de las cosas (IoT), la inteligencia artificial (IA), la robótica y la fabricación aditiva. Tradicionalmente, la ingeniería no se ha enseñado de manera integradora, pero el éxito de la Industria 4.0 depende de la interacción y la integración de estas tecnologías. Esto requiere una mayor colaboración interdisciplinaria entre diferentes programas y disciplinas universitarias, como informática, análisis de datos, robótica, automatización, producción, gestión, electrónica y materiales. La segunda revolución industrial, que está en la agenda política e industrial, implica la integración generalizada de tecnologías como la automatización, el IoT, la IA, la robótica, los materiales avanzados, la fabricación aditiva, la impresión multidimensional, las bio-, nano- y neurotecnologías, y las realidades virtuales y aumentadas.
  • Empleabilidad y competencias de innovación: a pesar de la creciente importancia de habilidades como el emprendimiento y el pensamiento de diseño, aún existe una brecha entre la formación en ingeniería y la preparación para el mundo laboral. La integración de la teoría y la práctica mediante pasantías, proyectos en colaboración con el sector y laboratorios de aprendizaje son soluciones parciales. El aprendizaje basado en problemas o proyectos (PBL) se presenta como un mecanismo para abordar este desafío. La brecha entre la educación en ingeniería y la preparación para el trabajo sigue existiendo, por lo que se deben integrar la teoría y la práctica mediante un enfoque centrado en la empleabilidad y la colaboración con la industria mediante pasantías, proyectos de asociación y laboratorios de aprendizaje.
Desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería

Estos tres desafíos exigen, en conjunto, un mayor énfasis en la responsabilidad social, la integración del contexto social y la interdisciplinariedad, combinados con habilidades digitales y genéricas.

2. Respuestas actuales y tendencias emergentes

La educación en ingeniería ha respondido a estos desafíos con cuatro tendencias principales que se materializarán a corto plazo:

  1. Aprendizaje centrado en el estudiante: Un cambio significativo de la enseñanza tradicional (el profesor da la clase, los estudiantes escuchan) a un currículo más interactivo donde los estudiantes influyen en la dirección de su propio aprendizaje. Esto incluye metodologías como el aprendizaje activo, el aprendizaje colaborativo, el aprendizaje basado en equipos, el aprendizaje basado en el diseño, el aprendizaje basado en la investigación y, en particular, el aprendizaje basado en problemas y proyectos (PBL). El PBL ha demostrado su eficacia para aumentar la motivación, reducir las tasas de abandono y desarrollar competencias, y constituye una respuesta clave a la necesidad de un aprendizaje más complejo. El aprendizaje centrado en el estudiante es un área bien investigada. Los estudios sobre aprendizaje activo, aprendizaje basado en la investigación, aprendizaje basado en el diseño y aprendizaje basado en desafíos muestran efectos positivos en los resultados del aprendizaje. La motivación aumenta cuando los estudiantes inician proyectos, en los que identifican problemas y tienen un alto grado de influencia en la dirección del proyecto.
  2. Aprendizaje contextual y basado en la práctica: Incorporación de elementos curriculares relacionados con situaciones laborales futuras, como pasantías, proyectos de la industria, emprendimiento y centros de innovación. Los proyectos iniciados externamente (por empresas o la comunidad) son particularmente valiosos porque son auténticos y exponen a los estudiantes a la complejidad del mundo real. Junto con la tendencia del aprendizaje centrado en el estudiante, existe una tendencia de aprendizaje contextual y relacionado con la práctica, en la que los estudiantes cuentan con elementos del currículo relacionados con situaciones laborales posteriores, como pasantías, proyectos de la industria, emprendimiento y centros de innovación.
  3. Aprendizaje digital y en línea: Evolución del aprendizaje a distancia a estrategias de aprendizaje combinado (blended learning) que utilizan nuevas tecnologías como la realidad aumentada y la visualización 3D. El modelo del «aula invertida» (flipped classroom) es un ejemplo destacado, en el que los estudiantes se preparan con contenido en línea antes de clase y utilizan el tiempo en el aula para actividades interactivas y resolución de problemas. Este enfoque es una respuesta a la ineficacia de las clases magistrales tradicionales para los niveles superiores de la taxonomía de Bloom y los aspectos complejos del marco Cynefin. En la actualidad, el aprendizaje digital se centra en las estrategias de aprendizaje combinado. La digitalización es más que ofrecer plataformas y entornos de aprendizaje en línea como Blackboard o Moodle; consiste en usar nuevas tecnologías para el aprendizaje, como la realidad aumentada, la visualización 3D, etc. El modelo de «aula invertida», como enfoque centrado en el estudiante, es una respuesta a la metodología de enseñanza y aprendizaje más extendida en la educación en ingeniería, que consiste en un aprendizaje instructivo basado en libros de texto organizado como conferencias, tutoriales y laboratorios, combinado con la resolución de pequeños ejercicios.
  4. Competencias profesionales: Reconocimiento de la creciente importancia de desarrollar competencias profesionales integradas para la empleabilidad en el siglo XXI. Esto incluye el «aprendizaje meta» para que los estudiantes identifiquen y desarrollen sus propias competencias de manera personalizada, a menudo a través de portafolios que les permitan articular su aprendizaje y trayectoria profesional. Se enfatiza la responsabilidad individual en la construcción de la trayectoria de aprendizaje, combinada con la participación en actividades colaborativas. Otro aspecto emergente en la educación en ingeniería es la creciente importancia del aprendizaje integrado de competencias profesionales. Los portafolios desempeñarán un papel fundamental en este proceso, ya que ayudarán a los estudiantes a presentar su aprendizaje a sí mismos, a sus mentores académicos y a futuros empleadores en una entrevista de trabajo.
Respuestas actuales y tendencias en la educación en ingeniería

3. La complejidad y los sistemas en la educación en ingeniería

Los desafíos del futuro requieren que los ingenieros operen en situaciones de complejidad creciente. El marco Cynefin se utiliza para clasificar las situaciones en simples, complicadas, complejas y caóticas, y prescribe diferentes enfoques para cada una:

  • Simple: Comportamiento bien entendido, “mejores prácticas” definidas. Se aplica el método “sentir, categorizar y responder” (ej. fundamentos de ingeniería, problemas de examen tipo fórmula).
  • Complicado: Requiere comportamiento experto, múltiples respuestas correctas. Se aplica “sentir, analizar y responder” (ej. diseño de puentes o teléfonos móviles; proyectos de diseño de estudiantes). La ingeniería de sistemas proporciona un marco estructurado.
  • Complejo: No hay una solución clara o única; surgen soluciones. Se aplica “probar, sentir y responder”. Estos son los “problemas complejos” (wicked problems), caracterizados por no tener una formulación definitiva, no tener una mejor solución única, no tener un punto final claro, y donde cada intento de solución impacta el sistema. El diseño de sistemas de transporte para grandes ciudades es un ejemplo.
  • Caótico: Resultado de desastres, requiere acción inmediata para estabilizar antes de aplicar otros enfoques. No suelen ser el foco directo de un grado de ingeniería, excepto en la ética de la ingeniería, aprendiendo de desastres pasados.

Los currículos de ingeniería deben incluir formación para afrontar situaciones simples, complicadas y, crucialmente, complejas. Se necesitan currículos de ingeniería que incluyan la complejidad y lo complicado. Además, para educar a los estudiantes del futuro, deben tener la posibilidad de aprender tanto disciplinas específicas como la transdisciplinariedad, así como conocimientos y habilidades técnicos simples y complicados, y la complejidad que implica la comprensión del contexto, los sistemas, la sostenibilidad y los valores.

4. Modelos curriculares futuros e integrados

La evolución de las respuestas educativas muestra una transición de lo «dirigido por el profesor» a lo «dirigido por el estudiante» y de «módulos únicos» a «modelos de currículo completo».

  • Cambio a nivel de sistema: Existe una tendencia emergente a diseñar currículos a nivel de sistema, coordinando todos los elementos curriculares en lugar de simplemente agregar o modificar cursos individuales. Este enfoque sistémico es crucial para el aprendizaje de la complejidad. Pero, en términos generales, definitivamente ha habido un cambio de un entorno de aprendizaje dirigido por el profesor a otro mucho más dirigido por el estudiante. Además, está surgiendo la tendencia a desarrollar currículos a nivel de sistema, lo que implica coordinar todos los elementos del currículo.
  • Proyectos como núcleo: Los proyectos constituyen un elemento central en los modelos curriculares emergentes, especialmente aquellos iniciados por entidades externas (industria, comunidad). Estos proyectos permiten el desarrollo de habilidades técnicas, sociales y ambientales (comunicación, trabajo en equipo, ética, sostenibilidad) y de diseño y resolución de problemas (pensamiento de diseño, ingeniería de sistemas). También facilitan la consideración de perspectivas multidisciplinares y la comprensión de problemas en contexto, con múltiples puntos de vista y sistemas de valores.
  • Ejemplos de modelos emergentes:
    • University College London (UCL) – Integrated Engineering Program (IEP): Dedica una semana de cada cinco a un proyecto integrado. Esto permite a los estudiantes ver las conexiones entre diferentes módulos y disciplinas.
    • Charles Sturt University (CSU): Programa radicalmente diferente con tres semestres orientados a proyectos, donde los estudiantes aprenden “justo a tiempo” a través de módulos en línea y pasan la mitad de su tiempo en proyectos. Luego realizan cuatro pasantías de un año.
    • Swinburne University: Enfoque similar al de CSU, con proyectos de seis semanas patrocinados por la industria realizados en la universidad, operando como una empresa de ingeniería.
    • Iron Range Engineering: Los estudiantes trabajan en proyectos de empresa y reflexionan continuamente sobre su aprendizaje.

Estos ejemplos muestran cómo las instituciones combinan el aprendizaje basado en proyectos, el aprendizaje digital/en línea y el uso de portafolios para apoyar las trayectorias de aprendizaje personalizadas.

5. Perspectivas y conclusiones

La educación en ingeniería se dirige hacia un futuro en el que la combinación de trayectorias de aprendizaje personales, competencias profesionales y capacidad de abordar la complejidad será la tendencia dominante. Esto implica lo siguiente:

  • Currículos sistémicos: Es necesario un enfoque más sistémico y holístico en el diseño curricular, en lugar de modificaciones aisladas a nivel de curso. Los modelos tradicionales centrados en cursos individuales a menudo dejan la tarea de integrar el conocimiento al estudiante.
  • Aprendizaje para la complejidad: La educación debe preparar a los estudiantes para manejar problemas complejos, que requieren integrar conocimientos disciplinarios e interdisciplinarios, teoría y práctica, comprensión contextual y abstracta, y construcción de conocimiento individual y colaborativa.
  • Habilidades del Siglo XXI: La automatización de cálculos técnicos significa que los ingenieros futuros necesitarán comprender los requisitos sociales, ambientales y económicos de la tecnología y su aplicación.
  • Aprendizaje a lo largo de la vida: Los ingenieros serán cada vez más responsables de sus propias rutas de aprendizaje personales y necesitarán saber cómo construir su crecimiento individual dentro de comunidades de aprendizaje colaborativas. El acceso al conocimiento en línea (MOOCs) aumentará, pero la clave será cómo los estudiantes desarrollan competencias para el aprendizaje a lo largo de la vida, incluida la reflexión crítica y el pensamiento sistémico, normativo y anticipatorio.

En resumen, la educación en ingeniería debe evolucionar de un enfoque basado en la transmisión de conocimientos técnicos simples a otro que fomente la capacidad de los estudiantes para navegar y resolver problemas complejos, multidisciplinares y contextualizados, preparándolos para ser aprendices activos de por vida en un mundo en constante cambio.

Reproductor de Audio

Referencia:

Hadgraft, R.G.; Kolmos, A. (2020). “Emerging learning environments in engineering education“, Australasian Journal of Engineering Education, 25:1, 3-16, DOI: 10.1080/22054952.2020.1713522

Glosario de términos clave

  • Aprendizaje centrado en el estudiante: Un enfoque pedagógico en el que el estudiante se convierte en el centro del proceso de aprendizaje, con métodos como el aprendizaje activo, colaborativo, basado en problemas y proyectos, donde los estudiantes tienen una influencia significativa en la dirección de su aprendizaje.
  • Aprendizaje contextual y basado en la práctica: Un enfoque de aprendizaje que integra situaciones del mundo real y experiencias prácticas en el currículo, incluyendo pasantías, proyectos industriales y hubs de innovación, para conectar la teoría con la futura situación laboral.
  • Aula invertida (Flipped Classroom): Una metodología de aprendizaje semipresencial donde la instrucción directa se mueve de la clase a un espacio individual (generalmente en línea), y el tiempo en clase se transforma en un entorno de aprendizaje dinámico e interactivo donde el educador guía a los estudiantes a aplicar conceptos.
  • CDIO (Concebir, Diseñar, Implementar, Operar): Un marco curricular para la educación en ingeniería que enfatiza el desarrollo de habilidades profesionales y un enfoque holístico e integrado del currículo, desde la concepción de una idea hasta su operación.
  • Competencias profesionales: Conjunto de conocimientos, habilidades y aptitudes (tanto técnicas como genéricas, como la comunicación, el trabajo en equipo y la ética) que se espera que los ingenieros adquieran para desempeñarse eficazmente en el lugar de trabajo.
  • Complejidad (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto solo puede discernirse en retrospectiva, y las soluciones emergen del sondeo y la experimentación. Se caracteriza por problemas “perversos” sin soluciones únicas o definitivas.
  • Complicado (en el marco Cynefin): Un dominio de situaciones que requieren experiencia y análisis para encontrar múltiples respuestas correctas, pero donde la relación causa-efecto es clara, aunque puede no ser obvia para todos. La resolución de problemas implica “sentir, analizar y responder”.
  • Cuarta Revolución Industrial (Industria 4.0): Un término que describe la tendencia actual de automatización e intercambio de datos en las tecnologías de fabricación, incluyendo sistemas ciberfísicos, el Internet de las Cosas (IoT), la computación en la nube y la inteligencia artificial (IA).
  • Currículo sistémico/integral: Un enfoque de diseño curricular que coordina todos los elementos de un programa educativo a nivel de sistema, en lugar de centrarse solo en módulos o asignaturas individuales, buscando una progresión y coherencia holísticas en los resultados del aprendizaje.
  • Cynefin Framework: Un modelo conceptual creado por Dave Snowden que ayuda a la toma de decisiones al categorizar los problemas en diferentes dominios (simple, complicado, complejo, caótico y desorden) basados en la naturaleza de su relación causa-efecto.
  • Diseño centrado en el usuario (User Experience – UX): Se refiere a la experiencia general que tiene un usuario al interactuar con un producto o sistema. En ingeniería, implica diseñar soluciones que realmente satisfagan los requisitos del cliente, el usuario y la comunidad.
  • Diseño de sistemas (Systems Design): Un enfoque estructurado para el diseño de sistemas complejos que considera las interacciones entre los componentes y el entorno, y busca satisfacer un conjunto de requisitos funcionales y no funcionales.
  • Pensamiento de diseño (Design Thinking): Una metodología de resolución de problemas centrada en el ser humano que implica fases como empatizar, definir, idear, prototipar y probar, común en muchas disciplinas de diseño, incluida la ingeniería.
  • Emergencia: En el contexto de los entornos de aprendizaje, se refiere a cómo las estructuras, patrones y comportamientos de aprendizaje se vuelven visibles a través de las interacciones entre elementos más pequeños, como estudiantes y recursos, indicando posibles direcciones futuras en la educación.
  • Habilidades blandas/genéricas: Habilidades no técnicas pero igualmente importantes, como la comunicación, el trabajo en equipo, la ética, el pensamiento crítico y la resolución de problemas, que son aplicables en una amplia gama de contextos profesionales.
  • Internet de las Cosas (IoT): Una red de objetos físicos equipados con sensores, software y otras tecnologías que les permiten conectarse e intercambiar datos con otros dispositivos y sistemas a través de Internet.
  • PBL (Aprendizaje Basado en Problemas y Proyectos): Un enfoque pedagógico centrado en el estudiante donde los alumnos aprenden sobre un tema trabajando en un problema abierto o un proyecto complejo, desarrollando habilidades de resolución de problemas, trabajo en equipo e investigación.
  • Portafolio: Una colección de trabajos de los estudiantes que demuestra su aprendizaje, habilidades y crecimiento a lo largo del tiempo. En ingeniería, se utiliza para articular las trayectorias de aprendizaje individuales y las competencias profesionales a mentores y futuros empleadores.
  • Simple (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto es obvia para todos, y las “mejores prácticas” pueden aplicarse. La resolución de problemas implica “sentir, categorizar y responder”, como la aplicación de fórmulas fundamentales de ingeniería.
  • Sostenibilidad (ODS): La capacidad de satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades. Los ODS (Objetivos de Desarrollo Sostenible) son una colección de 17 objetivos globales interconectados establecidos por las Naciones Unidas.
  • Sistemas (Pensamiento sistémico): La capacidad de comprender cómo los componentes de un sistema interactúan entre sí y con el entorno para producir un comportamiento determinado, en lugar de analizar los componentes de forma aislada.
  • Trayectorias de aprendizaje personalizadas: Rutas de aprendizaje adaptadas a las necesidades, intereses y aspiraciones profesionales individuales de los estudiantes, permitiéndoles configurar y documentar su propio desarrollo de competencias como parte de una estrategia de aprendizaje a lo largo de toda la vida.

Comunicaciones presentadas al XI Congreso de Innovación Educativa y Docencia en Red INRED 2025

Me complace informar a mis lectores que el XI Congreso de Innovación Educativa y Docencia en Red (INRED) 2025 se celebrará los días 17 y 18 de julio en Valencia. En un contexto en el que las instituciones educativas están experimentando una transformación vertiginosa, la innovación educativa se presenta como una herramienta esencial para renovar los procesos de enseñanza y aprendizaje y adaptarse a los nuevos retos. La Ley Orgánica de Sistema Universitario (LOSU) plantea que la innovación docente es un medio para mejorar la calidad de la educación superior y para fortalecer la capacidad de adaptación a nuevos escenarios formativos. Además, la considera una estrategia esencial para el desarrollo profesional del profesorado.

Desde hace tiempo, las universidades fomentan la participación del profesorado en proyectos de innovación y se ha avanzado notablemente en la forma de diseñar y desarrollar estos proyectos. No obstante, hoy más que nunca es crucial impulsar propuestas de innovación más rigurosas y orientadas a dar respuesta a los grandes retos educativos a los que nos enfrentamos.

Este enfoque nos remite al concepto de scholarship o enfoque académico de la docencia, una perspectiva que se ha consolidado en la educación superior y que propone valorar la enseñanza al mismo nivel que la investigación disciplinar.

Detrás de esta idea se encuentra una forma de innovar basada en tres pilares fundamentales:

  • El análisis sistemático de la enseñanza y sus efectos en el aprendizaje del estudiantado.
  • La comunicación de los conocimientos sobre enseñanza y aprendizaje generados en entornos académicos, como congresos y revistas científicas.
  • La revisión crítica por parte de iguales en comunidades académicas, con el fin de validar o refutar el conocimiento producido.

En esta nueva edición del Congreso INRED 2025, reflexionaremos sobre cómo avanzar desde una innovación basada en la experiencia y con un nivel incipiente de fundamentación empírica hacia una innovación con un enfoque académico. Un enfoque que no solo se apoye en la experimentación y el análisis sistemático de la docencia, sino que también genere evidencia comunicable y susceptible de ser sometida a revisión crítica por parte de la comunidad académica. Además, exploraremos los nuevos desafíos que plantea este modelo desde las perspectivas técnica y ética.

En este congreso, tengo el placer de anunciar que tenemos aceptadas dos comunicaciones:

YEPES, V. (2025). Pensamiento lateral para mejorar la resolución de problemas complejos en estudios de máster. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 – 18 de julio de 2025.

Esta comunicación presenta una metodología innovadora que integra el pensamiento lateral mediante la técnica de los «Seis sombreros para pensar» de Edward de Bono en la enseñanza de la resolución de problemas complejos en ingeniería. El objetivo principal es evaluar la efectividad de esta técnica para desarrollar habilidades críticas y creativas en los estudiantes. La metodología se implementó en un curso de ingeniería, donde los estudiantes trabajaron en grupos para abordar un problema específico utilizando los enfoques que cada sombrero representa. Se realizaron encuestas antes y después de la actividad para medir la mejora en la capacidad de resolución de problemas y colaboración entre los estudiantes. Los resultados indican que la aplicación del pensamiento lateral mejora significativamente la capacidad de los estudiantes para resolver problemas complejos y fomenta un ambiente de aprendizaje colaborativo. Los estudiantes afirmaron haber aumentado su creatividad y disposición para compartir ideas. Esta metodología es exportable a otras titulaciones y niveles educativos, convirtiéndose en una herramienta valiosa para la innovación docente en diversas disciplinas.

YEPES, V.; YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P. (2025). Impacto de la diversidad cultural en la resolución colaborativa de problemas en la docencia universitaria de ingeniería. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 – 18 de julio de 2025.

La globalización y la movilidad académica han transformado las aulas universitarias en entornos multiculturales, donde la diversidad cultural es fundamental para el desarrollo de competencias profesionales. Este trabajo investiga la influencia de la diversidad cultural en la resolución colaborativa de problemas (RCP) en programas en ingeniería. Para ello, se desarrollaron actividades en grupos heterogéneos que promovieron la participación y el desarrollo de habilidades interpersonales mediante una metodología activa y colaborativa. Se aplicó una encuesta a 79 estudiantes para evaluar su percepción sobre la influencia de la diversidad cultural en su aprendizaje y en la dinámica de trabajo en equipo. Los resultados indican que la diversidad cultural no solo enriquece las interacciones y fomenta la creatividad, sino que también mejora la toma de decisiones y la resolución de problemas. Este estudio aporta pruebas empíricas que respaldan la necesidad de gestionar pedagógicamente la diversidad como un recurso estratégico en la educación. Se concluye que una enseñanza inclusiva y consciente de la diversidad potencia la sinergia entre conocimientos técnicos y competencias interculturales, mejorando la calidad educativa en ingeniería.

 

 

 

Discurso de apertura en el evento Innotransfer “Infraestructuras resilientes frente a eventos climáticos extremos”

Os anuncio que el próximo miércoles, 28 de mayo de 2025, tendré la oportunidad de dar el discurso de apertura en el evento, presencial y en línea, InnotransferInfraestructuras resilientes frente a eventos climáticos extremos” centrada en los ámbitos de carreteras, ferrocarriles e infraestructuras hidráulicas, dentro del programa INNOTRANSFER, dedicado a facilitar conexión entre demandantes y oferentes de soluciones innovadoras en la Comunitat Valenciana. Este año, en particular, estamos enfocando estos eventos a necesidades puestas de manifiesto con la DANA.

En los últimos años, la frecuencia e intensidad de los fenómenos meteorológicos extremos han aumentado de manera sostenida. Episodios como lluvias torrenciales, vientos huracanados, tornados, olas de calor y frío o temporales marítimos han provocado un incremento de las catástrofes naturales asociadas, incluyendo inundaciones, destrucción y regresión litoral, incendios forestales y sequías prolongadas.

Esta tendencia, impulsada por el cambio climático, plantea un desafío creciente que exige soluciones innovadoras en el diseño de infraestructuras resilientes. Estas infraestructuras deben abarcar la planificación y construcción de carreterasinfraestructuras hidráulicas y redes de transporte ferroviario, garantizando no solo la resistencia ante situaciones críticas, sino también la capacidad de minimizar daños y asegurar una rápida recuperación.

En la Comunitat Valenciana, esta necesidad es especialmente relevante debido al incremento de fenómenos climáticos extremos como las DANAs (Depresiones Aisladas en Niveles Altos). La jornada tiene como objetivo abordar el desarrollo de infraestructuras urbanas y rurales capaces de adaptarse al clima cambiante, reduciendo el impacto negativo en la población y en los recursos económicos locales.

Esta jornada Innotransfer reunirá a expertos, empresas e instituciones para explorar soluciones innovadoras en infraestructuras resilientes, aprovechando el potencial de la Compra Pública de Innovación como herramienta clave para facilitar su adopción por parte de las Administraciones Públicas. Dichas propuestas han sido identificadas por la Ciudad Politécnica de la Innovación (CPI), parque científico de la Universitat Politècnica de València (UPV).

El objetivo de la jornada es crear oportunidades de colaboración y un networking de alto impacto entre los diferentes actores del ecosistema valenciano de innovación, fomentando el desarrollo conjunto de proyectos de I+D+i de alto impacto.

La participación en el evento es gratuita, y se puede hacer accediendo al siguiente enlace: https://innotransfer.org/evento/infraestructuras-resilientes-frente-a-eventos-climaticos-extremos/

Os dejo el programa, por si os interesa.

Tesis doctoral: Baterías níquel-zinc: equilibrio óptimo entre coste y sostenibilidad

Ignacio Villalba, Ashwani Kumar y Víctor Yepes

Hoy, 6 de mayo de 2025, ha tenido lugar la defensa de la tesis doctoral de D. Ashwani Kumar Malviya, titulada “Optimization of LCA and LCCA for a novel NiZn battery through multi-objective particle swarm optimization (MOPSO) and its application in e-mobility and smart building infrastructure”, dirigida por los profesores Ignacio Villalba Sanchis y Víctor Yepes. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

En el contexto de la urgente transición hacia un sistema eléctrico descarbonizado, el almacenamiento energético se ha convertido en un pilar fundamental para integrar fuentes renovables intermitentes, como la solar y la eólica, en la red eléctrica y en aplicaciones de e-movilidad y edificios inteligentes. La tesis de Ashwani Kumar Malviya explora por primera vez de manera integrada la viabilidad de las baterías recargables de níquel-zinc (RNZB), que combinan materias primas abundantes (níquel y zinc), electrólitos acuosos no inflamables y un proceso de producción simplificado que prescinde de salas blancas. Gracias a recientes innovaciones en la formulación de los electrodos, estas celdas de 10 Ah y 60 Wh/kg alcanzan más de 2000 ciclos al 100 % de profundidad de descarga, superando uno de los principales obstáculos de esta tecnología.

El trabajo se estructura en torno a cinco preguntas clave:

  1. ¿Cuál es el coste total de ciclo de vida (LCC) de una batería de litio de níquel (RNZB), desde la extracción de materia prima hasta su fin de vida, medido tanto en €/kg como en €/kWh entregado?
  2. ¿Qué impacto ambiental (LCA) —evaluado en 18 categorías midpoint y 3 endpoint con ReCiPe 2016— genera la RNZB en comparación con baterías de plomo-ácido, LFP y NMC?
  3. ¿Es posible que un algoritmo multiobjetivo (MOPSO) identifique configuraciones de suministro y reciclaje que minimicen simultáneamente el coste de ciclo de vida (LCC) y el impacto ambiental (LCA)?
  4. ¿Hasta qué punto estas soluciones son resistentes ante variaciones de ±20 % en parámetros críticos, tales como la mezcla eléctrica en uso y la eficiencia del ciclo?
  5. ¿En qué medida las preferencias de un panel de expertos, analizadas mediante el proceso de jerarquía analítica (AHP), coinciden con la clasificación de Pareto generada por el MOPSO?

Esta tesis presenta un modelo estructurado que integra ecuaciones de LCC —que incluyen CAPEX, OPEX y fin de vida en función de la masa de batería y la energía suministrada— con un LCA exhaustivo basado en datos de la base Ecoinvent y OpenLCA. La implementación de MOPSO en MATLAB para optimizar ambos indicadores constituye una innovación metodológica de gran valor, pues genera un frente de Pareto de soluciones no dominadas que equilibra coste y huella ambiental. Además, la comparación efectuada demostró que la RNZB puede ofrecer un coste medio de ciclo de vida de aproximadamente 120 €/kWh, en comparación con los 150 €/kWh de LFP y los 180 €/kWh de plomo-ácido, manteniendo un GWP de 0,24 kg CO₂ eq/kWh —inferior a los 0,30 kg CO₂ eq/kWh del plomo-ácido—, lo que sitúa a la RNZB como la opción económicamente más competitiva sin renunciar a un desempeño ambiental favorable.

El estudio establece un alcance «cradle-to-grave», que comprende la extracción de níquel y zinc, la formulación de electrodos (cátodo de NiOOH con un 11,6 % de peso y ánodo de ZnO con un 7,5 %), el transporte, el ensamblaje de celdas de 10 Ah y 60 Wh/kg, los escenarios de uso con diferentes mezclas eléctricas (0-100 % RES) y el fin de vida, que incluye el reciclaje metalúrgico de metales y la valorización energética de plásticos. Para el LCA, se implementó el enfoque ReCiPe 2016 en 18 categorías midpoint (GWP, ODP, entre otras) y 3 endpoint (salud, ecosistemas, recursos). Para el LCC, se desarrollaron fórmulas validadas mediante el uso de OpenLCA. El MOPSO implementado explora variables de origen de materias primas y rutas de reciclaje, manteniendo un archivo diverso de soluciones no dominadas. Una vez concluido el proceso, se realizó un análisis de sensibilidad, que incluyó la evaluación de la variación del mix eléctrico y la eficiencia del ciclo. Posteriormente, se llevó a cabo una validación AHP con un grupo de doce expertos, quienes contrastaron sus preferencias con el ranking de Pareto obtenido.

Los resultados obtenidos evidencian que, en condiciones de mix eléctrico base (100 % red convencional), la RNZB registra un LCC de 120 €/kWh y un GWP de 0,24 kg CO₂ eq/kWh. El MOPSO ha identificado 10 soluciones óptimas que reducen hasta un 15 % el LCC y un 20 % el GWP respecto a la configuración estándar. Al integrar el 75 % de energía renovable en la fase de uso, el GWP desciende a 0,18 kg CO₂ eq/kWh, lo que resulta en una reducción del CED en un 30 %. El análisis de sensibilidad confirmó que estas ventajas se mantienen con variaciones de hasta ±20 % en mix y eficiencia. Asimismo, la validación AHP mostró un 85 % de coincidencia entre las preferencias de los expertos y el ranking de Pareto.

La tesis confirma que las RNZB ofrecen un equilibrio excepcional entre coste y sostenibilidad para aplicaciones estacionarias (almacenamiento residencial, edificios inteligentes y e-movilidad), especialmente si se combinan con un uso mayoritario de RES y se aplican técnicas de «recuperación verde» en el reciclaje. La simplicidad del proceso acuoso y la ausencia de elementos críticos (cobalto) reducen significativamente los riesgos y los costes de suministro. Sin embargo, la dependencia del níquel sugiere la necesidad de diversificar las fuentes de suministro y establecer circuitos cerrados para la recuperación de metales. Desde una perspectiva metodológica, la integración de LCA, LCC, MOPSO y AHP constituye un marco sólido y adaptable a otros sistemas de ingeniería que requieran optimizar múltiples indicadores de manera simultánea.

Tras el análisis llevado a cabo, esta tesis concluye que la RNZB es la opción de ciclo de vida más económica (con un coste aproximado de 120 €/kWh) y que presenta una huella ambiental competitiva (0,24 kg CO₂ eq/kWh). Asimismo, se ha comprobado que un MOPSO bien configurado puede generar frentes de Pareto robustos que reducen hasta un 20 % el GWP y un 15 % el coste. La validación mediante sensibilidad y AHP garantiza la aplicabilidad práctica de las recomendaciones. Se propone como líneas futuras la incorporación de datos en tiempo real de operación, la exploración de electrodos con menor proporción de níquel y la extensión de la metodología a sistemas híbridos de energía para potenciar la circularidad y la resiliencia del sector.

Referencias:

MALVIYA, A.K.; ZAREHPARAST MALEKZADEH, M.; SANTARREMIGIA, F.E.; MOLERO, G.D.; VILLALBA-SANCHIS, I.; MARTÍNEZ-FERNÁNDEZ, P.; YEPES, V. (2024). Optimization of the Life cycle cost and environmental impact functions of NiZn batteries by using Multi-Objective Particle Swarm Optimization (MOPSO). Sustainability, 16(15):6425. DOI:10.3390/su16156425

MALVIYA, A.K.; ZAREHPARAST MALEKZADEH, M.; LI, J.; LI, B.; SANTARREMIGIA, F.E.; MOLERO, G.D.; VILLALBA-SANCHIS, I.; YEPES, V. (2024). A formulation model for computation to estimate the Life Cycle Environmental Impact of NiZn Batteries. Energies, 17(11):2751. DOI:10.3390/en17112751

MALVIYA, A.K.; ZAREHPARAST MALEKZADEH, M.; SANTARREMIGIA, F.E.; MOLERO, G.D.; VILLALBA-SANCHIS, I.; YEPES, V. (2024). A formulation model for computation to estimate the Life Cycle Cost of NiZn Batteries. Sustainability, 16(5):1965. DOI:10.3390/su16051965

Fazlur Rahman Khan: el ingeniero que reinventó los rascacielos

Fazlur Rahman Khan (1929-1982). https://en.wikipedia.org/wiki/Fazlur_Rahman_Khan

Fazlur Rahman Khan nació el 3 de abril de 1929 en Dhaka, que entonces formaba parte del Raj británico y hoy es la capital de Bangladés. Provenía de una familia bengalí musulmana: su padre, Khan Bahadur Abdur Rahman Khan, destacó como profesor, y su madre, Khadijah Khatun, pertenecía a una familia zamindar. Durante su infancia en una ciudad con construcciones modestas, comenzó a desarrollar una sensibilidad por el entorno construido que marcaría su carrera.

Tras completar sus estudios secundarios en el Armanitola Government High School, se graduó con honores en 1950 en el Bengal Engineering College, que por entonces estaba adscrito a la Universidad de Dhaka. En 1952, gracias a una beca Fulbright y con el apoyo del Gobierno de Pakistán, se trasladó a Estados Unidos para estudiar en la Universidad de Illinois en Urbana-Champaign. En tan solo tres años, obtuvo dos másteres y un doctorado en Ingeniería Estructural, centrando su tesis en el estudio de vigas pretensadas de hormigón.

En 1955 se incorporó a Skidmore, Owings & Merrill (SOM), una de las firmas de arquitectura e ingeniería más prestigiosas de Estados Unidos, con sede en Chicago. Allí entabló una colaboración clave con el arquitecto Bruce Graham. Su ascenso fue rápido: en 1966 fue nombrado socio y en 1970 alcanzó el rango de socio general. Trabajó en SOM durante toda su vida profesional, excepto por una breve interrupción.

John Hancock Center. https://en.wikipedia.org/

En esa etapa, Khan revolucionó el diseño de rascacielos al dejar de depender de las estructuras de acero convencionales. Inspirándose en la resistencia del bambú, ideó el concepto estructural de «tubo», que convertía las fachadas en elementos portantes. Este enfoque aumentó la eficiencia frente a cargas laterales, como el viento o los seísmos, y redujo la necesidad de materiales y el espacio interior necesario. Desarrolló distintas variantes del sistema: el tubo enmarcado, el tubo-en-tubo, el tubo agrupado y el tubo diagonalizado.

El primer edificio en incorporar esta tecnología fue el DeWitt-Chestnut Apartments (actualmente Plaza on DeWitt), en Chicago, concluido en 1963. En 1965, aplicó por primera vez el sistema de tubo con celosía en la estructura del John Hancock Center, logrando reducir notablemente el uso de acero en comparación con edificaciones anteriores, como el Empire State. En 1973, la Willis Tower (anteriormente Sears Tower) llevó su innovación aún más lejos al emplear el sistema de tubos agrupados, con los que se alcanzaron los 442 metros de altura con una estructura compuesta por nueve módulos unidos.

 

Willis Tower. https://en.wikipedia.org/

Además, Khan implementó el sistema tubo-en-tubo en el One Shell Plaza y el sistema de interacción marco-muro cortante en el Brunswick Building. También introdujo estructuras con arriostramientos y vigas de traspaso en edificios como la BHP House y el First Wisconsin Center, que resultan especialmente útiles en edificios de altura media.

Fue pionero en el uso de tecnologías de cálculo estructural por ordenador. Convenció a SOM de invertir en un mainframe y se encargó personalmente de programar tanto los cálculos como los dibujos técnicos, situando a la empresa a la vanguardia del diseño asistido por ordenador. También promovió el uso de prefabricados y hormigón ligero en edificios altos.

Durante los años setenta, su trabajo fue ampliamente reconocido. Recibió la Medalla Wason del American Concrete Institute (1971), el Thomas Middlebrooks Award (1972), el Alfred Lindau Award (1973), la Kimbrough Medal del American Institute of Steel Construction (1973) y la medalla Oscar Faber de la Institution of Structural Engineers de Londres (1973). Ese mismo año ingresó en la Academia Nacional de Ingeniería de Estados Unidos. En 1972, Engineering News-Record lo reconoció como «Hombre del Año» y lo incluyó cinco veces entre las figuras más influyentes del sector. Recibió doctorados honoris causa de las universidades Northwestern, Lehigh y ETH Zúrich.

En 1977 obtuvo el premio Ernest Howard de la Sociedad Americana de Ingenieros Civiles (ASCE). En 1981, diseñó la terminal del Hajj del Aeropuerto Internacional Rey Abdulaziz, en Arabia Saudí, que cuenta con cubiertas tensadas tipo tienda, lo que impulsó el uso de tejidos estructurales. También participó en proyectos como la Universidad Rey Abdulaziz, la Academia de la Fuerza Aérea de EE. UU. en Colorado Springs y el estadio Hubert H. Humphrey Metrodome de Mineápolis.

En sus últimos años desarrolló, junto al ingeniero Mark Fintel, conceptos pioneros para la protección sísmica de edificios mediante mecanismos de absorción de energía, que son el antecedente directo de los actuales sistemas de aislamiento sísmico.

El 27 de marzo de 1982, durante un viaje a Yeda (Arabia Saudí), Khan falleció de un infarto a la edad de 52 años. En ese momento era socio general de SOM. Su cuerpo fue trasladado a Estados Unidos y enterrado en el cementerio Graceland de Chicago. Su muerte supuso una gran pérdida para la ingeniería estructural, pero su legado perdura y sigue creciendo.

Tras su fallecimiento, continuaron los reconocimientos. En 1983 recibió el International Award of Merit in Structural Engineering de la IABSE y el AIA Institute Honor del American Institute of Architects. En 1987 fue galardonado con el John Parmer Award de la Asociación de Ingenieros Estructurales de Illinois y, en 2006, ingresó en el Salón de la Fama de la Ingeniería de Illinois.

El Consejo de Edificios Altos y Habitat Urbano instituyó la Medalla a la Trayectoria Fazlur Khan y estableció la cátedra Fazlur Rahman Khan Endowed Chair en la Universidad de Lehigh, actualmente ocupada por el profesor Dan Frangopol. Estas iniciativas promueven la investigación y la formación en arquitectura e ingeniería estructural.

En 2009, en su discurso en la Universidad de El Cairo, el presidente Barack Obama mencionó a Khan como ejemplo del legado de los ciudadanos musulmanes en Estados Unidos. En 2017, Google le dedicó un Doodle con motivo de su 88.º aniversario. En 2021, la directora Laila Kazmi inició la producción del documental Reaching New Heights: Fazlur Rahman Khan and the Skyscraper, con el apoyo de ITVS y la productora Kazbar Media.

Khan redefinió la forma de concebir los rascacielos. Gracias a su innovación estructural, fue posible construir edificios más altos, seguros, económicos y habitables. Entre sus principales aportaciones técnicas destacan:

  • Tubo enmarcado: estructura perimetral rígida que actúa como un gran tubo vertical anclado en la base. Permite una gran eficiencia ante cargas laterales. Ejemplo: World Trade Center (1973).

  • Tubo-en-tubo: combina un núcleo interno resistente con una estructura perimetral conectada por los forjados. Aumenta la rigidez global.

  • Tubos agrupados: sistema compuesto por varios tubos verticales unidos que forman una única estructura, como la Willis Tower (1975).

  • Tubo diagonalizado: incorpora diagonales visibles en fachada, que refuerzan el conjunto y generan una estética singular. Ejemplo: John Hancock Center (1970).

Más allá de la técnica, Khan fue un pensador ético y humanista. Durante la guerra de independencia de Bangladés en 1971, fundó el Movimiento por la Liberación de su país en Estados Unidos. También fue un puente entre ingeniería y arquitectura, defendiendo un enfoque integral y sensible al contexto.

Su hija, Yasmin Sabina Khan, le rindió homenaje con el libro Engineering Architecture: the Vision of Fazlur R. Khan (2004), un testimonio tanto técnico como humano. Como escribió Engineering News-Record en su obituario: “El consuelo es que sus estructuras seguirán en pie durante años, y sus ideas nunca morirán”.

Khan también hizo importantes contribuciones académicas. Entre sus publicaciones más influyentes figuran:

  • Computer Design of 100-Story John Hancock Center (1966)

  • On Some Special Problems of Analysis and Design of Shear Wall Structures (1966)

  • 100-Story John Hancock Center in Chicago – A Case Study of the Design Process (1972)

  • New Structural Systems for Tall Buildings and their Scale Effects on Cities (1974)

El ingeniero alemán Werner Sobek lo describió como «la vanguardia de la segunda escuela de Chicago», una corriente que integró de forma ejemplar la eficiencia estructural con la expresión arquitectónica.

En definitiva, Fazlur Rahman Khan no solo transformó la forma de construir en altura, sino que también cambió la manera de entender la arquitectura desde la ingeniería. Su vida fue una lección de innovación, compromiso y visión. Sus edificios, en pie en todo el mundo, siguen hablándonos hoy de su genialidad.

Os dejo un vídeo sobre este ilustre ingeniero (en inglés).