Figura 1. Plataformas petrolíferas en el Mar del Norte. Ambiente muy agresivo para el hormigón.
El hormigón es un material esencial en la construcción, pero su durabilidad se ve comprometida por factores como la carbonatación, la corrosión de las armaduras y la infiltración de agua y agentes agresivos. Las soluciones tradicionales de protección, basadas en recubrimientos superficiales, tienen limitaciones, ya que dependen de la adherencia al sustrato y pueden deteriorarse con el tiempo.
La nanocristalización catalizada surge como una alternativa innovadora que actúa desde el interior del hormigón, modificando su estructura capilar para mejorar sus propiedades mecánicas, aumentar su resistencia química y proporcionar una impermeabilización permanente sin alterar su aspecto.
Nanocristalización catalizada: una transformación desde el interior
El proceso de nanocristalización catalizada se basa en la interacción química entre nanosilicatos y el calcio libre presente en la matriz del hormigón. Para lograr una penetración efectiva, se emplea un procedimiento de nanofiltración que reduce el tamaño de las partículas de silicato a un rango comprendido entre 0,1 y 0,7 nanómetros. Así, el producto penetra profundamente en la red capilar y en los poros más finos del hormigón, donde reacciona con la cal libre para formar una estructura de nanocristales de cuarzo.
Figura 2. Recreación de la red nanocristalina generada en poros y capilares
Este proceso se desarrolla en varias etapas:
Penetración por succión capilar: El nanosilicato, al estar en base acuosa, es absorbido por capilaridad. La magnitud de esta absorción depende del diámetro de los poros y la porosidad del hormigón.
Gelidificación controlada: Se emplea un catalizador mineral que evita la reacción prematura con el calcio libre superficial, lo que permite una distribución homogénea del nanosilicato en el interior del hormigón.
Cristalización interna: Durante un periodo de entre 12 y 15 días, los nanosilicatos reaccionan con la cal presente en el hormigón, formando una malla cristalina que sella los capilares y microfisuras.
Efecto estructural: Al finalizar el proceso, la red de nanocristales aporta características similares a una armadura interna, aumentando la cohesión del material sin afectar su transpirabilidad.
Propiedades y beneficios en la construcción
El tratamiento mediante nanocristalización catalizada modifica significativamente las propiedades del hormigón, mejorando su comportamiento frente a diversas condiciones ambientales y químicas.
Impermeabilización profunda: A diferencia de los recubrimientos superficiales, este sistema genera una barrera cristalina en el interior del hormigón que impide la entrada de agua, pero no la sella por completo, lo que permite la salida de vapor y evita problemas de presión interna.
Incremento de la resistencia mecánica: La conversión de la cal libre en cuarzo aumenta la densidad y compactación del hormigón, y aumenta su resistencia a la compresión en un 32 % según ensayos de laboratorio.
Protección anticorrosiva: La restauración del pH por encima de 11,4 previene la oxidación de las armaduras y detiene la progresión de la carbonatación.
Durabilidad ampliada: Ensayos han demostrado que la vida útil del hormigón tratado puede multiplicarse entre 2,6 y 3 veces, reduciendo la necesidad de intervenciones y mantenimiento.
Sostenibilidad y compatibilidad con normativas: Al ser un tratamiento 100 % mineral, sin compuestos orgánicos volátiles ni disolventes, cumple con las normativas ambientales y de durabilidad estructural.
Aplicaciones en estructuras y proyectos reales
La tecnología de nanocristalización catalizada se ha implementado con éxito en diversos sectores de la construcción, tanto en estructuras nuevas como en rehabilitación de infraestructuras existentes:
Edificación: Se ha utilizado en cimentaciones, sótanos y elementos estructurales para prevenir filtraciones y mejorar la cohesión del hormigón. Los ensayos de penetración realizados en hormigón de 50 años han demostrado una reducción significativa de la permeabilidad al agua.
Puentes y viaductos: Se ha aplicado en tableros y cimentaciones para mitigar los efectos de la carbonatación y proteger las armaduras contra la acción de cloruros y sales de deshielo.
Túneles y muros pantalla: Su capacidad de sellado interno ha permitido eliminar filtraciones sin necesidad de aplicar recubrimientos superficiales.
Infraestructura portuaria: La alta resistencia a los cloruros y ambientes marinos agresivos ha reducido la erosión y el deterioro de los hormigones de muelles y diques, lo que ha minimizado los costes de mantenimiento.
Un cambio de paradigma en la protección del hormigón
El uso de la nanocristalización catalizada supone una evolución en la protección del hormigón, ya que aborda los problemas de degradación desde su origen. A diferencia de los tratamientos superficiales, que pueden desprenderse con el tiempo, esta tecnología modifica la estructura interna del material, lo que ofrece una protección e impermeabilización permanentes.
En un contexto donde la durabilidad y la sostenibilidad son prioridades, la aplicación de esta tecnología en la construcción y rehabilitación de estructuras no solo reduce los costes de mantenimiento, sino que también aumenta la vida útil de las edificaciones, alineándose con los nuevos estándares de calidad y eficiencia en la ingeniería civil.
Os dejo una presentación de la empresa sueca Komsol que os puede resultar de interés.
El artículo presenta un análisis exhaustivo sobre la integración de la realidad aumentada en la enseñanza superior de las ingenierías y de las ciencias de la Tierra. Una de las contribuciones más significativas es la propuesta de una metodología estructurada, denominada SEBAS, que guía la incorporación de esta tecnología enriquecedora en el aula. Esta metodología no solo proporciona un marco claro para el desarrollo de actividades educativas, sino que también fomenta un enfoque activo y participativo en el aprendizaje. La investigación destaca cómo esta tecnología puede transformar la enseñanza tradicional, ya que facilita la visualización de conceptos complejos y abstractos, lo que resulta en una experiencia de aprendizaje más interactiva y efectiva.
Además, el estudio resalta la importancia de la formación docente en el uso de tecnologías emergentes, lo que puede mejorar la calidad de la enseñanza y la preparación del alumnado para afrontar los desafíos del mundo profesional. La inclusión de la realidad aumentada en el currículo de ingeniería civil no solo enriquece el proceso educativo, sino que también responde a las necesidades de una generación de nativos digitales que demanda métodos de enseñanza más dinámicos.
Los resultados de la investigación indican que los estudiantes recibieron positivamente la implantación de esta tecnología en su formación. Se observó un aumento en la comprensión de los contenidos teóricos y una mejora en la motivación y el compromiso con el aprendizaje. La encuesta realizada a los participantes mostró que la mayoría considera que la realidad aumentada es un complemento valioso para las actividades prácticas y teóricas, lo que sugiere que esta herramienta puede ser un recurso eficaz para abordar las limitaciones de la educación tradicional.
Estos hallazgos tienen implicaciones significativas para la práctica profesional en ingeniería civil. La capacidad de visualizar y manipular modelos tridimensionales permite a los futuros profesionales desarrollar habilidades críticas esenciales para su campo. Además, la investigación recomienda que esta tecnología puede utilizarse para simular situaciones reales en el entorno laboral, lo que prepara a los futuros ingenieros para enfrentar desafíos prácticos de manera más efectiva. Este enfoque no solo mejora la formación académica, sino que también aumenta la empleabilidad de los graduados.
A partir de los resultados del artículo, se pueden identificar varias áreas de estudio que merecen una exploración más a fondo. Una posible línea de investigación podría centrarse en evaluar a largo plazo el impacto de la realidad aumentada en el rendimiento y la retención del conocimiento del alumnado de ingeniería civil. Esto permitiría determinar la efectividad de esta tecnología en diferentes contextos educativos y su capacidad para adaptarse a diversas metodologías de enseñanza.
Otra área de interés podría ser el desarrollo de recursos digitales específicos que complementen la enseñanza de otras disciplinas dentro de la ingeniería, como la ingeniería estructural o la ingeniería ambiental. La creación de aplicaciones que aborden temas específicos podría enriquecer aún más el aprendizaje y proporcionar herramientas prácticas a los estudiantes.
Finalmente, se sugiere investigar la percepción y aceptación de la realidad aumentada entre el profesorado, así como su disposición para integrar estas tecnologías en su práctica docente. Comprender las barreras y facilitadores en la adopción de esta herramienta por parte de los docentes puede resultar clave para su implementación exitosa en el aula.
La investigación sobre la realidad aumentada en la enseñanza superior de ingeniería civil ofrece perspectivas valiosas para mejorar el proceso de enseñanza-aprendizaje. La metodología SEBAS y los resultados positivos en la percepción del alumnado ponen de manifiesto el potencial de esta tecnología como herramienta educativa. Las futuras investigaciones en este campo pueden contribuir significativamente al avance del conocimiento y la práctica en esta disciplina, promoviendo una educación más interactiva y adaptada a las necesidades del entorno profesional actual.
La nueva norma ISO 56001, que establece un sistema de gestión de la innovación, ya está disponible. Esta norma es útil tanto para las organizaciones que ya cuentan con la certificación AENOR en gestión de la innovación como para aquellas que inician este proceso. La ISO 56001 facilita la migración desde la norma UNE 166002, con la que comparte más del 90 % de los requisitos, lo que permite una transición fluida. Las organizaciones tienen de plazo hasta enero de 2028 para realizar esta migración.
La certificación ISO 56001 no solo optimiza la gestión de la innovación, sino que también mejora la competitividad, eficiencia y sostenibilidad de las empresas. AENOR ha liderado el desarrollo de esta norma a nivel internacional, habiendo emitido ya más de 700 certificados en varios países.
La norma ISO 56001 introduce un nuevo enfoque respecto a la UNE 166002:2021, especialmente en lo que respecta a la definición y el alcance de la innovación. Mientras que la UNE 166002 abarcaba la I+D+i (Investigación, Desarrollo e Innovación), la ISO 56001 se centra únicamente en la innovación, integrando la investigación y el desarrollo dentro de este concepto.
El nuevo enfoque de innovación se orienta hacia la creación y redistribución de valor, entendido como las ganancias derivadas de la satisfacción de necesidades y expectativas, lo que incluye aspectos como ingresos, ahorros, productividad, sostenibilidad y satisfacción.
La principal novedad del sistema de gestión de la innovación de la ISO 56001 es su enfoque estratégico para planificar los procesos, en lugar de imponer una gran cantidad de requisitos. Las organizaciones deben tener en cuenta aspectos como las cuestiones internas y externas, los requisitos de las partes interesadas y los riesgos y oportunidades al planificar el sistema.
Otra novedad importante es la jerarquía establecida en la ISO 56001 para los niveles de gestión: intención > política > estrategia > objetivos > indicadores, en contraste con la jerarquía de la UNE 166002: visión > estrategia > política > objetivos > indicadores.
La razón de este enfoque es que un sistema de gestión de la innovación opera en tres niveles: estratégico, táctico y operativo. Según los requisitos de la norma ISO 56001, las relaciones entre estos niveles se describen de la siguiente manera:
Intención de innovación (Cláusula 4): En el nivel estratégico, define el alcance del sistema de gestión y establece la base para la estrategia de innovación.
Alcance (Cláusula 4): Determina los límites y la aplicabilidad del sistema de gestión de la innovación.
Política de innovación (Cláusula 5): Proporciona un marco para definir la estrategia y los objetivos de innovación. Esta política puede complementar otras políticas del sistema de gestión de la organización.
Estrategia de innovación (Cláusula 5): Basada en la intención de innovación, está alineada con la política de innovación y establece los objetivos estratégicos, creando el marco para definir los objetivos tácticos y las carteras de innovación.
Objetivos de innovación (Cláusula 6): A nivel táctico, deben ser coherentes con la política y la estrategia de innovación.
Carteras de innovación (Cláusula 6): Alineadas con la estrategia y los objetivos de innovación, consisten en un conjunto de iniciativas de innovación.
Iniciativas de innovación (Cláusula 8): Se desarrollan a nivel operativo.
Procesos de innovación (Cláusula 8): También establecidos a nivel operativo, son flexibles y adaptables para ejecutar las iniciativas de innovación.
Ventajas de implementar la ISO 56001
Las organizaciones que implementen y certifiquen un Sistema de Gestión de la Innovación según la Norma ISO 56001 disfrutarán de numerosos beneficios. A continuación, se detallan las principales ventajas:
Mejora de la capacidad de innovación: La norma ISO 56001 proporciona una estructura clara y procesos definidos que permiten gestionar la innovación de manera sistemática. Esto facilita la flexibilidad y adaptabilidad, y ayuda a las organizaciones a responder rápidamente a los cambios del mercado y a aprovechar nuevas oportunidades.
Aumento de la eficiencia y eficacia: Al implementar esta norma, se optimizan los recursos, ya que se garantiza su uso eficiente y orientado a actividades innovadoras. Además, fomenta la gestión proactiva de la incertidumbre y los riesgos, lo que reduce significativamente las posibilidades de fracaso en proyectos de innovación.
Fomento de una cultura de innovación: La adopción de la ISO 56001 fomenta comportamientos innovadores, como la exploración, la colaboración y la experimentación dentro de la organización. Además, motiva al personal y genera un entorno donde se valoran y apoyan las ideas innovadoras, lo que fortalece el compromiso de los empleados.
Mejora de la competitividad: Al fomentar la innovación, esta norma no solo mejora la competitividad de la organización, sino que también aumenta su capacidad para adaptarse a un entorno en constante cambio. La norma facilita la creación de productos, servicios y procesos innovadores que diferencian a la organización del resto en el mercado, lo que le otorga una ventaja competitiva. También permite adaptarse de manera efectiva a las demandas y tendencias del mercado, lo que garantiza una mejor respuesta a las necesidades de los clientes.
Creación de valor: La implementación de la ISO 56001 contribuye a generar valor financiero y no financiero a través de soluciones innovadoras. Además, garantiza la sostenibilidad a largo plazo de la organización al integrar la innovación en su estrategia empresarial.
Mejora de la gestión del conocimiento: Esta norma fomenta la explotación del conocimiento mediante la utilización de fuentes internas y externas para generar y aprovechar información. Además, establece enfoques efectivos para gestionar el conocimiento necesario para impulsar la innovación.
Integración con otros sistemas de gestión: La norma ISO 56001 es compatible con otros sistemas de gestión, como el de calidad (ISO 9001). Esto facilita una integración coherente y eficiente, y permite una gestión más holística de las operaciones organizativas.
Mejora continua: La norma fomenta la evaluación continua del rendimiento del sistema de gestión de la innovación y promueve la implementación de mejoras basadas en los resultados obtenidos. De este modo, se garantiza un progreso constante hacia la excelencia en innovación.
Certificación y reconocimiento: La certificación conforme a la ISO 56001 otorga credibilidad y reconocimiento, y demuestra el compromiso de la organización con la innovación. Además, aumenta la confianza de clientes, inversores y otras partes interesadas en la capacidad de la organización para innovar de manera efectiva.
En resumen, la ISO 56001 no solo mejora la capacidad de innovación, sino que también fortalece la competitividad, la eficiencia y la cultura de innovación dentro de las organizaciones, garantizando su sostenibilidad y éxito en un mercado dinámico.
9 beneficios de la gestión de la innovación con la ISO 56001. https://revista.aenor.com/408/beneficios-de-la-gestion-de-la-innovacion-con-la-nueva-iso-5.html#msdynttrid=u5uhfJbvbt2_jFR9qdSsTWyES9PhHwzzZA9G0gvVxWY
El presente informe analiza en profundidad la norma UNE-EN ISO 56001:2024, que establece los requisitos para un sistema de gestión de la innovación. A continuación, se desarrolla detalladamente su contenido según sus principales apartados.
Contexto de la organización
La norma exige que la organización comprenda su entorno interno y externo, incluidos los factores políticos, económicos, tecnológicos, sociales, legales y ambientales que puedan afectar a su capacidad para gestionar la innovación. Este análisis implica identificar riesgos, oportunidades y cuestiones relevantes que puedan influir en sus actividades.
Los factores externos incluyen condiciones políticas y legislativas, dinámicas del mercado, desarrollo tecnológico, cambios sociales, impacto ambiental y regulaciones gubernamentales. Una comprensión adecuada permite a la organización anticiparse a tendencias, identificar amenazas y descubrir nuevas oportunidades para innovar. Por ejemplo, cambios en la legislación medioambiental pueden fomentar el desarrollo de productos sostenibles.
En cuanto a los factores internos, se incluyen elementos como la cultura organizativa, la estructura jerárquica, los recursos disponibles, la experiencia acumulada y los procesos internos. La organización debe evaluar sus capacidades y limitaciones para determinar su nivel de preparación para la innovación. Un equipo bien capacitado y una cultura abierta a nuevas ideas son esenciales para facilitar la adopción de innovaciones.
También se subraya la necesidad de comprender las necesidades y expectativas de las partes interesadas, que pueden incluir clientes, empleados, proveedores, socios estratégicos y reguladores. Identificar sus intereses permite diseñar soluciones que generen valor y fortalezcan las relaciones comerciales.
Determinar el propósito de la innovación implica establecer metas claras sobre lo que se espera lograr a través de actividades innovadoras. Este propósito debe reflejarse en una declaración estratégica y estar respaldado por la alta dirección.
Por último, definir el alcance del sistema de gestión de la innovación implica delimitar las áreas de aplicación. Esto incluye identificar los procesos, productos, servicios y ubicaciones relevantes. El alcance debe documentarse formalmente y revisarse periódicamente para garantizar su pertinencia y alineación con los objetivos de la organización.
Liderazgo
La alta dirección debe demostrar liderazgo y compromiso mediante la definición de una política de innovación clara y alineada con la estrategia empresarial. Este compromiso incluye establecer una visión y objetivos estratégicos de innovación, garantizar recursos adecuados y fomentar una cultura organizativa que valore la innovación.
La alta dirección es responsable de integrar los requisitos del sistema de gestión de la innovación en todos los procesos de la organización. Debe establecer estructuras organizativas que permitan la colaboración, la toma de decisiones efectiva y el desarrollo de capacidades clave. El liderazgo implica delegar responsabilidades y empoderar a equipos y personas clave para desarrollar y gestionar iniciativas de innovación.
La comunicación efectiva es un aspecto esencial. La alta dirección debe comunicar la importancia de la innovación a todos los niveles de la organización y garantizar que los empleados comprendan los objetivos, la estrategia y su contribución individual. Esto incluye promover la transparencia, compartir información relevante y establecer mecanismos de retroalimentación.
Además, el liderazgo incluye la gestión del cambio. La alta dirección debe preparar a la organización para adaptarse a cambios internos y externos, fomentando la flexibilidad y la resiliencia. Debe fomentar un entorno que valore la toma de riesgos calculados y la experimentación controlada.
La promoción de una cultura de innovación es otro aspecto fundamental. Esto implica desarrollar valores organizativos que apoyen la creatividad, la apertura al cambio y el aprendizaje continuo. Se espera que la alta dirección actúe como modelo a seguir, demostrando un compromiso visible con la innovación mediante su participación activa en proyectos clave y la asignación de incentivos y reconocimientos adecuados.
Por último, se debe establecer una política de innovación formal que exprese claramente el compromiso de la organización con el desarrollo de nuevas ideas, la mejora continua y el cumplimiento de los requisitos legales y reglamentarios aplicables. Esta política debe estar documentada, comunicada y revisada periódicamente para garantizar su relevancia y eficacia.
Planificación
La planificación es un pilar fundamental para implementar un sistema de gestión de la innovación eficaz. Implica identificar riesgos y oportunidades, establecer objetivos claros y definir estrategias para alcanzarlos.
Identificación y gestión de riesgos y oportunidades: La organización debe realizar un análisis en profundidad de los riesgos y oportunidades relacionados con la innovación. Esto incluye factores internos, como los recursos disponibles y las capacidades técnicas, y factores externos, como los cambios en el mercado, las regulaciones y los avances tecnológicos. La gestión proactiva permite mitigar riesgos potenciales y aprovechar oportunidades emergentes.
Establecimiento de objetivos de innovación: Los objetivos deben ser específicos, medibles, alcanzables, relevantes y con plazos definidos (SMART). Deben alinearse con la estrategia general de la organización y abarcar todos los niveles funcionales. Los objetivos estratégicos marcan la dirección general, mientras que los tácticos y operativos detallan acciones específicas.
Desarrollo de estrategias y planes de acción: Para cada objetivo, la organización debe desarrollar planes detallados que incluyan los recursos necesarios, los responsables, los plazos y las métricas de éxito. Es crucial establecer indicadores clave de rendimiento (KPI) para hacer un seguimiento del progreso. Los planes deben ser flexibles y adaptables a cambios en el entorno.
Gestión de carteras de innovación: La gestión de carteras permite priorizar proyectos en función de criterios como la viabilidad técnica, el impacto potencial, el coste y la alineación estratégica. El portafolio debe ser equilibrado y considerar proyectos a corto, medio y largo plazo, con distintos niveles de riesgo e innovación disruptiva.
Apoyo
El éxito del sistema de gestión de la innovación depende de la provisión adecuada de recursos y del apoyo continuo por parte de la organización. Este apartado detalla los elementos clave que deben estar disponibles para garantizar el funcionamiento eficaz del sistema.
Recursos humanos: Para gestionar la innovación de manera efectiva, es necesario contar con un equipo cualificado y capacitado. La organización debe proporcionar formación continua para desarrollar habilidades técnicas, creativas y de gestión. El personal debe estar motivado y comprometido con políticas de incentivos, reconocimiento y planes de carrera.
Infraestructura y tecnología: Es indispensable contar con instalaciones físicas adecuadas y plataformas tecnológicas avanzadas que permitan desarrollar, implementar y gestionar iniciativas innovadoras. Esto incluye laboratorios, oficinas creativas y herramientas de gestión de proyectos.
Financiación y recursos económicos: Es fundamental contar con financiación acorde con los objetivos estratégicos de innovación. La financiación debe estar garantizada y ser acorde con los objetivos estratégicos de innovación. La asignación presupuestaria debe cubrir la investigación, el desarrollo, las pruebas y la comercialización de productos o servicios innovadores.
Gestión del conocimiento: La creación, el almacenamiento y la difusión del conocimiento son esenciales. Deben crearse sistemas para capturar lecciones aprendidas y buenas prácticas. El uso de plataformas digitales facilita la gestión de la información crítica.
Propiedad intelectual y cumplimiento legal: Es imprescindible proteger los derechos de propiedad intelectual mediante patentes, marcas y derechos de autor. La organización debe garantizar el cumplimiento de todas las normativas legales aplicables para evitar riesgos jurídicos.
Operación
Este apartado se centra en la ejecución de los procesos relacionados con la gestión de la innovación, que abarca desde la generación de ideas hasta la implementación de soluciones.
Gestión de iniciativas: Las iniciativas de innovación deben gestionarse mediante proyectos estructurados de manera adecuada. Esto implica definir objetivos claros, asignar recursos adecuados y establecer responsables para cada tarea.
Procesos de innovación: Los procesos de innovación incluyen la identificación de oportunidades, el desarrollo de conceptos, la validación de soluciones y su posterior implementación. Cada etapa debe estar documentada y ser objeto de un seguimiento constante.
Desarrollo y pruebas: Las soluciones innovadoras deben pasar por fases de desarrollo técnico y pruebas piloto para garantizar su viabilidad antes de implementarse por completo. Para ello, se realizan simulaciones, se crean prototipos y se ejecutan ensayos controlados.
Comercialización y lanzamiento: El proceso de innovación culmina con la comercialización de productos o servicios desarrollados. La estrategia de lanzamiento debe incluir análisis de mercado, marketing y distribución para maximizar su impacto.
Control: El rendimiento de las iniciativas debe controlarse de manera continua mediante indicadores clave de rendimiento (KPI). Así se pueden realizar ajustes y mejorar los resultados obtenidos.
Evaluación del rendimiento
La evaluación del rendimiento es un componente esencial para garantizar la sostenibilidad y la eficacia del sistema de gestión de la innovación. Implica medir, analizar y revisar los resultados obtenidos.
Auditorías internas: Las auditorías internas deben realizarse periódicamente para verificar el cumplimiento de los requisitos de la norma. Esto incluye revisar procesos, proyectos y resultados obtenidos, identificando desviaciones y proponiendo acciones correctivas.
Indicadores clave de rendimiento: Para evaluar el rendimiento de las iniciativas de innovación, es necesario definir y utilizar indicadores clave. Entre estos indicadores se incluyen el número de proyectos completados, la tasa de éxito de los lanzamientos, el retorno de la inversión (ROI) y la satisfacción de los clientes.
Revisión por parte de la alta dirección: La alta dirección debe llevar a cabo revisiones periódicas para analizar los avances del sistema de gestión de la innovación. Esto implica evaluar el cumplimiento de los objetivos estratégicos, identificar áreas de mejora y redefinir políticas y estrategias en función de los resultados obtenidos.
Análisis de resultados y mejoras continuas: Los resultados deben analizarse de manera integral, teniendo en cuenta tanto los éxitos como los fracasos. Las lecciones aprendidas deben documentarse para optimizar futuros procesos. La mejora continua debe ser un principio rector que guíe la evolución del sistema.
Mejora
Según la norma UNE-EN ISO 56001:2024, el proceso de mejora constituye un pilar central en la gestión de la innovación. Este proceso implica una revisión constante y sistemática de los procesos, los resultados y las estrategias implementadas. Su objetivo es incrementar la efectividad, adaptarse a nuevas condiciones del entorno y potenciar la capacidad innovadora de la organización.
Identificación de áreas de mejora: Para ello, la organización debe realizar un análisis continuo de sus procesos y resultados para identificar posibles áreas de mejora. Este análisis incluye el seguimiento de indicadores clave de rendimiento, la revisión de proyectos concluidos y la retroalimentación de las partes interesadas. Además, las auditorías internas y externas son fundamentales para detectar debilidades y oportunidades de crecimiento.
Gestión de no conformidades: La gestión de no conformidades se centra en la identificación, el registro y el tratamiento de desviaciones respecto a los estándares establecidos. La gestión de no conformidades consiste en identificar, registrar y tratar las desviaciones respecto a los estándares establecidos. Para ello, la organización debe contar con procedimientos que permitan analizar las causas raíz de las no conformidades, establecer acciones correctivas y prevenir su recurrencia.
Acciones correctivas y preventivas: Es fundamental implementar acciones correctivas para abordar los problemas identificados y minimizar su impacto negativo. Del mismo modo, las acciones preventivas buscan anticiparse a posibles problemas antes de que ocurran. Ambas deben estar documentadas, asignadas a responsables específicos y sujetas a plazos de ejecución para garantizar su cumplimiento y efectividad.
Evaluación de la eficacia de las mejoras: Es fundamental evaluar la eficacia de las mejoras implementadas. Para ello, la organización debe establecer métricas y realizar un seguimiento periódico para verificar si las acciones han logrado los resultados esperados. Esto permite ajustar estrategias y tomar decisiones informadas para futuras mejoras.
Revisión de la alta dirección: La alta dirección debe revisar regularmente el sistema de gestión de la innovación, considerando los resultados de auditorías, análisis de indicadores y retroalimentación de las partes interesadas. Esta revisión debe incluir la definición de nuevas metas, la reasignación de recursos y la actualización de políticas y procedimientos.
Innovación continua: La mejora debe ser entendida como un proceso continuo e integrado en la cultura organizacional. Esto implica fomentar un entorno donde la innovación sea un valor compartido y promover una actitud proactiva hacia el cambio y la búsqueda constante de soluciones creativas.
Lecciones aprendidas y gestión del conocimiento: Es esencial registrar y analizar las lecciones aprendidas de cada proyecto de innovación. La gestión del conocimiento permite capitalizar estas experiencias y aplicarlas a futuras iniciativas, reduciendo errores y potenciando el éxito en nuevos desarrollos.
Impulso de una cultura de mejora: Para lograr una mejora sostenida, la organización debe promover una cultura donde todos los niveles estén comprometidos con el aprendizaje continuo y la optimización de procesos. Esto incluye programas de formación, talleres de creatividad y espacios de intercambio de ideas.
Conclusión
La norma UNE-EN ISO 56001:2024 establece un enfoque integral para la gestión de la mejora en el contexto de la innovación. Su correcta aplicación permite a las organizaciones adaptarse a un entorno dinámico, ser más competitivas y generar valor sostenible a largo plazo.
Os paso un par de vídeos sobre los beneficios de la innovación con la nueva ISO 56001.
Me llena de alegría y gratitud compartir con ustedes que este año soy finalista al Premio a la Divulgación Científica de la Universitat Politècnica de València en la edición de los Premios de Investigación de 2023. Este reconocimiento es muy especial para mí, ya que en mi labor de divulgación busco acercar el fascinante mundo de la ingeniería y la construcción a un público cada vez más amplio y curioso.
El año pasado, tuve el privilegio de recibir dos de los máximos galardones de la UPV: el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación. Estos premios, que reconocen no solo el trabajo en investigación, sino también el impacto y el compromiso de una carrera dedicada a la ingeniería, se otorgan una sola vez cada 5 años. Esto ha supuesto un gran alivio al saber que, aunque fui nominado este año de nuevo, no soy finalista en ambas categorías al haber recibido ya estos honores en la edición anterior. Además, en 2023 también fui galardonado con el Premio Excelencia Docente del Consejo Social de la Universidad Politécnica de Valencia, un premio que igualmente solo se puede recibir una vez en la trayectoria profesional.
La entrega de premios de este año tendrá lugar el próximo 12 de noviembre a las 18:00 horas en el edificio Nexus del campus de Vera, y la gala estará repleta de ciencia, música y teatro, un evento con el inconfundible sello de la UPV. Desde aquí quiero felicitar a todos los finalistas de este año por su destacada labor en investigación y divulgación.
Aprovecho para agradecer a cada uno de ustedes, quienes han hecho posible que esta labor de divulgación científica sea una realidad. ¡Nos vemos en el camino, y gracias por su apoyo constante!
Los nominados a este premio en esta edición han sido los siguientes 18 investigadores:
• COS GAYÓN, Fernando
• ESCOBAR RAMÓN, Santiago
• ESTEBAN GONZÁLEZ, Héctor
• GARCÍA MARTÍNEZ, Antonio
• GARCÍA SEGOVIA, Purificación
• HERNÁNDEZ FRANCO, Carlos
• HOYAS CALVO, Sergio
• LÓPEZ PÉREZ, Miguel
• MONSORIU SERRA, Juan Antonio
• MULET SALORT, José Miguel
• PEDROCHE Sánchez, Francisco
• PINILLA CIENFUEGOS, Elena
• PORCEL ROLDÁN, Rosa
• REMIRO BUENAMAÑANA, Sonia
• ROJAS BRIALES, Eduardo
• SERRANO CRUZ, José Ramón
• SOLER ALEIXANDRE, Salvador
• YEPES PIQUERAS, Víctor
De entre los nominados, tengo el gran honor de compartir ser finalista con dos grandes en el mundo de la divulgación científica. Para que os hagáis una idea del calibre, tanto de José Miguel Mulet como de Rosa Porcel, os dejo un breve resumen de sus méritos en el ámbito de la divulgación. Este año estoy más que satisfecho de saber que me he rodeado de compañeros de esta relevancia. Para mí es mi mayor premio estar con ellos.
José Miguel Mulet Salort: destacado divulgador científico en el ámbito nacional, ha publicado nueve libros en los últimos 12 años. Este curso ha participado en numerosas charlas y jornadas de divulgación y ha sido invitado al Parlamento Europeo y por el gobierno de México para hablar sobre nuevas herramientas de edición genética. Su labor se extiende a una activa presencia en redes sociales y colaboraciones constantes con medios de comunicación, como su columna de ciencia en El País. Además, es miembro del comité de asesoramiento científico de Mercadona.
Rosa Porcel Roldán: divulgadora especializada en biotecnología vegetal desde 2011 y autora del blog La Ciencia de Amara. Su ensayo Eso no estaba en mi libro de Botánica fue galardonado con el Premio Prismas en 2021 al mejor libro de divulgación científica editado. Recientemente, publicó su segundo libro, Plantas que nos ayudan. Ganadora del Premio Antama de Divulgación Científica, este año ha organizado y participado en diversas conferencias y eventos de divulgación científica, como la Noche Europea de la Investigación, el proyecto Mednight y el Día Internacional de la Mujer y la Niña en la Ciencia.
Víctor Yepes Piqueras: su blog, enfocado en la ingeniería de la construcción, es un referente en el sector tanto en España como en Latinoamérica. Creado en 2012, ha alcanzado casi dos millones de visitas solo en el último año. Cuenta con aproximadamente 34,000 seguidores en X y más de 22,000 en LinkedIn. Su labor divulgativa también incluye colaboraciones en medios de comunicación. Durante el curso 2023/24, ha participado en iniciativas como el podcast UPV Revisado por pares y ha publicado en medios como TechXplore, Apunt, Valencia Plaza y El Confidencial, entre otros.
Puerto deportivo Marina del Este. Imagen: R. Martín
Un estudio innovador, titulado «Valuation of landscape intangibles: Influence on the marina management» recientemente publicado en la prestigiosa revista Ocean and Coastal Management, aborda un tema de gran relevancia en la gestión de los puertos deportivos: la valoración económica de los intangibles paisajísticos, un factor clave pero a menudo subestimado en la planificación y sostenibilidad de las infraestructuras costeras.
La investigación, liderada por Ricardo Martín y Víctor Yepes, de la Universidad Politécnica de Valencia, emplea un enfoque innovador para cuantificar cómo las características no tangibles del paisaje, como las vistas al mar, la tranquilidad y la exclusividad, influyen en el valor económico de los puertos deportivos y su entorno.
Contexto de la investigación
Las áreas costeras albergan una interacción compleja entre los elementos naturales y las actividades humanas, generando paisajes únicos que combinan belleza escénica y oportunidades económicas, particularmente en sectores como el turismo náutico. Los puertos deportivos, además de ofrecer servicios para embarcaciones, actúan como puntos de entrada para descubrir el entorno costero, lo que convierte el paisaje en un activo fundamental para su gestión y rentabilidad. Sin embargo, hasta ahora no existía una metodología clara para poner en valor los elementos intangibles del paisaje, como las vistas o la serenidad de una ubicación, que no se transaccionan directamente en el mercado.
El propósito de esta investigación es llenar ese vacío, proporcionando un enfoque cuantitativo para medir estos intangibles paisajísticos y su impacto en el valor global de los puertos deportivos. Este trabajo se desarrolla en la Marina del Este, en La Herradura (Granada), un enclave que combina el atractivo natural del Mediterráneo con una ubicación estratégica entre montañas y el mar.
Metodología empleada
La investigación utilizó el método de precios hedónicos (HPM, por sus siglas en inglés) para estimar el valor económico de los elementos paisajísticos intangibles de la Marina del Este. Los precios hedónicos permiten desglosar el valor de una propiedad en función de atributos específicos, tanto estructurales (número de habitaciones, tamaño de la terraza, presencia de aire acondicionado) como intangibles (proximidad a la playa, vistas panorámicas al mar o a las montañas). Se recopilaron datos sobre las transacciones inmobiliarias de la zona durante el año 2023, analizando un total de 97 propiedades.
Además de las características físicas de las viviendas, se tuvieron en cuenta factores como la distancia al mar, la tranquilidad del entorno y la exclusividad de la zona. Estos factores, aunque no se comercializan directamente, influyen en las decisiones de compra y en el valor percibido de las propiedades.
Puerto deportivo Marina del Este. Imagen: R. Martín
Resultados
Los resultados del estudio indican que los elementos intangibles del paisaje, como las vistas al mar y la cercanía a la playa, son factores determinantes a la hora de valorar las propiedades costeras. Los compradores valoran altamente estas características, lo que incrementa notablemente el precio de las viviendas que cuentan con ellas. Por ejemplo, la proximidad a la playa puede aumentar el precio de una vivienda en un 0,21 % por cada 1 % que se reduce la distancia, y las vistas amplias al mar pueden incrementar su valor hasta en un 14 %.
El análisis reveló que los activos intangibles paisajísticos representan más de 2,4 millones de euros, lo que equivale al 7,91 % del valor total de la marina. Este valor destaca la importancia económica de elementos intangibles que a menudo se pasan por alto en la gestión tradicional de infraestructuras costeras.
Implicaciones
Esta investigación tiene importantes implicaciones tanto para los gestores de los puertos deportivos como para los responsables de políticas paisajísticas. Los gestores pueden utilizar esta metodología para cuantificar el valor de los elementos intangibles del paisaje en sus decisiones de planificación y desarrollo. Si no se preservan adecuadamente, estos elementos pueden provocar una disminución en el valor del puerto deportivo, lo que afectaría tanto a su atractivo como a sus posibles ingresos.
Por otro lado, los responsables de las políticas paisajísticas y urbanísticas tienen en este estudio una herramienta clave para medir el impacto económico de sus decisiones sobre el entorno costero. La conservación de los paisajes y sus características intangibles no solo es esencial para preservar el atractivo turístico y el bienestar de los residentes, sino también para impulsar el desarrollo económico sostenible de las zonas costeras.
En conclusión, este estudio aporta una perspectiva novedosa sobre la importancia de los intangibles paisajísticos en la valoración y gestión de los puertos deportivos. Al demostrar que estos factores influyen de manera significativa en el valor económico de estas infraestructuras, abre nuevas vías para integrar la sostenibilidad y la valoración del paisaje en la toma de decisiones en el ámbito costero.
Un estudio reciente, titulado «Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment» ha sido publicado en el Journal of Building Engineering, una de las revistas de mayor prestigio en el ámbito de la ingeniería civil. Desarrollado en el marco del proyecto RESILIFE, investiga la sostenibilidad del mantenimiento preventivo de estructuras de hormigón armado en entornos agresivos, como las zonas costeras, donde la corrosión por cloruros representa una amenaza constante.
El trabajo se centra en aplicar métodos modernos de construcción (MMC) para optimizar el impacto ambiental, económico y social de las estructuras a lo largo de su ciclo de vida.
Contexto del estudio
La industria de la construcción es una de las mayores consumidoras de recursos no renovables y genera un impacto significativo en el medio ambiente. En la Unión Europea, el sector es responsable de más del 40 % del consumo energético y de un 36 % de las emisiones de CO₂. Ante este escenario, iniciativas como el Green Deal Europeo buscan mitigar estos impactos y alcanzar la neutralidad de carbono para 2050. En este contexto, los métodos de construcción sostenibles y eficientes han adquirido una gran relevancia. En este contexto, los MMC emergen como una alternativa innovadora que combina materiales convencionales con técnicas constructivas no convencionales, enfocadas en mejorar la eficiencia y reducir el impacto ambiental.
El objetivo de la investigación fue aplicar estos métodos a la construcción de estructuras de hormigón en áreas costeras, específicamente un edificio residencial público situado frente al mar en Sancti Petri (Cádiz). En el estudio se analizaron diez opciones de diseño para las losas de hormigón armado, considerando factores como la economía, el impacto ambiental y social, y los ciclos de mantenimiento preventivo que cada opción requeriría durante la vida útil del edificio, estimada en 50 años.
Metodología y opciones de diseño
El estudio se centró en evaluar la durabilidad y sostenibilidad de diferentes alternativas de diseño en condiciones adversas, como la exposición constante a cloruros, que aceleran la corrosión del refuerzo de acero en el hormigón. Para ello, se evaluaron varias técnicas, entre ellas la adición de humo de sílice al 5 %, cenizas volantes, el uso de cemento sulforresistente o el incremento de la capa de recubrimiento del hormigón. También se consideraron medidas como la protección catódica y el uso de inhibidores de corrosión hidrofóbicos, con el fin de minimizar los ciclos de mantenimiento necesarios para preservar la estructura.
Resultados más relevantes
Los resultados indicaron que el empleo de hormigón con un 5 % de humo de sílice fue la opción más sostenible en términos económicos y ambientales, ya que redujo significativamente los ciclos de mantenimiento. Este material mostró una excelente resistencia a la corrosión, por lo que se redujeron las reparaciones necesarias durante los 50 años de vida útil del edificio. Además, la impregnación hidrofóbica resultó eficaz para reducir los impactos sociales, puesto que requiere menos intervenciones durante la fase de mantenimiento, lo que reduce los riesgos laborales y los costes sociales asociados.
El estudio también subraya la importancia de adoptar un enfoque holístico en la evaluación de la sostenibilidad. En lugar de centrarse solo en los aspectos económicos o ambientales, los autores emplearon un método de toma de decisiones multicriterio que integra estos factores junto con el impacto social. De hecho, la investigación reveló que una opción basada en el uso de cemento sulforresistente logró un aumento del 86 % en su calificación de sostenibilidad en comparación con el diseño de referencia.
Implicaciones y conclusiones
Este trabajo tiene importantes implicaciones para el diseño y el mantenimiento de infraestructuras en entornos expuestos a condiciones agresivas. Los autores sugieren que el enfoque tradicional, que a menudo se centra en minimizar los costes iniciales de construcción, debe reorientarse hacia una estrategia a largo plazo que considere todo el ciclo de vida de la estructura. De este modo, no solo se puede garantizar la viabilidad económica, sino también la reducción del impacto ambiental y social de las construcciones.
Además, el estudio pone de relieve la necesidad de promover políticas y normativas que incentiven el uso de materiales duraderos y métodos de mantenimiento preventivo, especialmente en zonas costeras, donde los edificios son particularmente vulnerables a la corrosión. El uso de métodos modernos de construcción (MMC) y la evaluación integral del ciclo de vida podrían ser claves para cumplir con los objetivos de sostenibilidad globales y garantizar la durabilidad de las infraestructuras frente a los desafíos ambientales futuros.
Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo sobre el mantenimiento preventivo y sostenible de los métodos modernos de construcción en entornos hostiles. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
La industria de la construcción desempeña un papel significativo en la presión medioambiental, atribuido principalmente a su importante consumo de recursos, impulsado sobre todo por el auge de la construcción residencial. Los Métodos Modernos de Construcción (MMC) presentan un paradigma innovador para diseñar y construir infraestructuras y edificios de forma más eficiente, utilizando materiales convencionales con técnicas no convencionales. El artículo pretende aplicar este enfoque a una estructura de edificación basada en MMC, minimizando el impacto de su ciclo de vida mediante la optimización del consumo de materiales de construcción, con especial atención a los efectos de la fase de mantenimiento desde un punto de vista preventivo. Este estudio se centra en la evaluación de la sostenibilidad de los forjados planos de hormigón armado que emplean un sistema de cuerpo estructural hueco, haciendo hincapié explícitamente en los factores de agresividad ambiental que contribuyen a la corrosión, como la carbonatación y los cloruros. La investigación explora diez opciones de diseño para un edificio residencial público frente al mar, examinando su impacto en la economía, el medio ambiente e incluso la sociedad en lo que respecta a los ciclos de mantenimiento necesarios a lo largo de la vida útil de la estructura, en función de la estrategia preventiva empleada para cada diseño. Para evaluar la sostenibilidad de estas opciones, los investigadores emplearon una combinación del método del mejor-peor (BWM) y la técnica VIKOR, teniendo en cuenta nueve criterios relacionados con la sostenibilidad. El estudio concluyó que el hormigón con un 5% de humo de sílice es la opción más rentable y respetuosa con el medio ambiente, y que la impregnación hidrófoba reduce el impacto social. Sin embargo, en comparación con las evaluaciones unidimensionales y bidimensionales, el estudio demuestra la importancia de considerar simultáneamente los impactos económicos, medioambientales y sociales del ciclo de vida de un diseño para lograr la sostenibilidad en el mantenimiento con una visión holística. Este enfoque condujo a una calificación de sostenibilidad un 86% más alta para un diseño que utilizaba cemento sulforresistente en la mezcla de hormigón que la opción de partida.
Aspectos destacables:
El estudio evalúa el impacto en el ciclo de vida de diez opciones de diseño mejoradas para un módulo hotelero de tres pisos en un entorno costero, con el objetivo de mejorar la durabilidad y reducir las necesidades de mantenimiento a lo largo de la vida útil de la estructura.
Los resultados óptimos se obtienen del intervalo de mantenimiento preventivo, lo que hace hincapié en la importancia de las estrategias de mantenimiento proactivo para mejorar la sostenibilidad y la longevidad de las estructuras de construcción de hormigón basadas en MMC.
El documento proporciona evaluaciones exhaustivas del ciclo de vida según las normas ISO 14040, que abordan las tres dimensiones simultáneamente, ofreciendo una visión holística del desempeño en materia de sostenibilidad en los proyectos de construcción.
Al centrarse en el mantenimiento preventivo, la investigación destaca el potencial de obtener beneficios ambientales y económicos a largo de un período de 50 años, ya que contribuyen a la sostenibilidad general de las estructuras de los edificios en entornos hostiles.
Al incorporar las opiniones de expertos a través del método de toma de decisiones multicriterio de BMW, el estudio proporciona un análisis completo de varios aspectos de la sostenibilidad en los proyectos de construcción, promoviendo prácticas de toma de decisiones sostenibles en la industria.
Los resultados subrayan la importancia de la toma de decisiones sostenibles en la construcción, en consonancia con los esfuerzos mundiales para reducir el impacto ambiental y promover prácticas ecológicas en la industria.
La investigación hace hincapié en la importancia de las estrategias de mantenimiento preventivo sostenibles para mejorar la longevidad y la sostenibilidad de las estructuras de construcción de hormigón basadas en el MMC, y destaca los beneficios de los enfoques de mantenimiento proactivo.
Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:
The construction industry plays a significant role in environmental strain, attributed mainly to its substantial resource consumption, primarily driven by the surge in residential construction. Modern Methods of Construction (MMC) presents an innovative paradigm for designing and constructing infrastructure and buildings more efficiently, using conventional materials with unconventional techniques. The article aims to apply this approach to an MMC-based building structure, minimizing its life cycle impact by optimizing the consumption of building materials, with particular attention to the effects of the maintenance phase from a preventive point of view. This study focuses on assessing the sustainability of reinforced concrete flat slabs, employing a hollow structural body system, explicitly emphasizing environmental aggressiveness factors contributing to corrosion, such as carbonation and chlorides. The research explores ten design options for a waterfront public residential building, examining their impact on the economy, the environment, and even society, regarding the maintenance cycles required over the structure’s lifetime, depending on the preventive strategy employed for each design. In assessing the sustainability of these options, researchers employed a combination of the best-worst method (BWM) and the VIKOR technique, considering nine criteria related to sustainability. The study found that 5% silica fume concrete is the most cost-effective and environmentally friendly option, with hydrophobic impregnation reducing social impacts. However, compared to one— and two-dimensional evaluations, the study demonstrates the importance of simultaneously considering a design’s life cycle’s economic, environmental, and social impacts to achieve sustainability in maintenance with a holistic view. This approach led to an 86% higher sustainability rating for a design using sulforesistant cement in the concrete mix than the baseline.
Keywords:
Modern Methods of Construction; Life Cycle Assessment; Sustainable design; Multi-criteria Decision-making; Preventive maintenance; Corrosion
Paola Villalba (Universidad Central del Ecuador) y Víctor Yepes (Universitat Politècnica de València)
Es muy agradable ver cómo desde la Universitat Politècnica de València se ponen en marcha iniciativas para divulgar el trabajo que realizan los que trabajamos en ella. En este caso, la iniciativa se llama “Revisado por pares”, dirigido por el periodista Luis Zurano, que presenta también con Celia Marín. Este espacio cuenta con la colaboración de la Fundación Española para la Ciencia y la Tecnología (FECYT) del Ministerio de Ciencia e Innovación. Se trata de una serie de podcasts que realiza nuestra universidad, donde:
“Queremos conocer al personal investigador de la UPV: sus trayectorias profesionales, qué les decantó por la ciencia y la investigación, los entresijos de la carrera científica… Dale al play y conoce, de dos en dos, a un investigador y una investigadora de la UPV“.
Esta nueva entrega de Revisado por pares tiene como protagonistas a Víctor Yepes y Paola Villalba. Víctor es catedrático de la UPV e investigador del Instituto ICITECH y uno de los científicos de referencia en nuestro país de la ingeniería civil. Mientras, Paloma es doctoranda de la UPV también en el ICITECH, donde llegó procedente de la Universidad Central del Ecuador.
En este podcast, descubrimos un poco de su lado más personal, viajando a Formentera y Florencia y hablando también de los Beatles o de Fundación de Isaac Asimov, entre otras muchas cuestiones. Hablamos también de su trayectoria, de profesores y profesoras que les marcaron. Y abordamos los retos y desafíos de la ingeniería civil y las claves para dedicarse al “apasionante” mundo de la investigación.
De vez en cuando se recibe una buena noticia que marca un punto de inflexión en la investigación. Es un honor para mí pertenecer al Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y a la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia. En este contexto, el equipo del catedrático José Miguel Adam ha logrado un hito al publicar un artículo en la revista de mayor impacto por excelencia: NATURE. No solo eso, sino que, además, es portada de dicha revista. Mi más sincera enhorabuena a José Miguel y a su equipo. Os paso la noticia completa.
Un equipo del Instituto ICITECH de la Universitat Politècnica de València (UPV) ha publicado en Nature los últimos resultados de su “radical” propuesta para conseguir edificios ultrarresistentes, que sean capaces de aguantar situaciones extremas causadas por desastres naturales –riadas, inundaciones, deslizamiento de laderas…- explosiones, su propio envejecimiento, o un mantenimiento y conservación inadecuados. Esta propuesta añade al diseño de la estructura de los edificios una última línea de defensa para evitar colapsos catastróficos.
El nuevo método se inspira en cómo los lagartos se protegen de los depredadores al liberar sus colas cuando son atacados.
Los métodos de diseño actuales se basan en mejorar la conectividad entre los componentes de la estructura. En el caso de que algún componente falle, esta conectividad permite que las cargas que soportaban los componentes que fallan se redistribuyan al resto del sistema estructural. Aunque estos métodos resultan eficaces en el caso de pequeños fallos iniciales, pueden aumentar el riesgo de colapso progresivo tras grandes fallos iniciales, conduciendo así a colapsos completos o de gran magnitud. Así sucedió, por ejemplo, en las Champlain Towers y en el derrumbe de un edificio en Peñíscola en 2021, o en la ciudad iraní de Abadan en 2022. Y esto es lo que evita la propuesta surgida del ICITECH de la UPV.
“Nuestro novedoso método de diseño proporciona una solución para superar esta alarmante limitación y conseguir edificios más resilientes, capaces de aislar el colapso a solo la parte de la estructura que ha sufrido el fallo inicial, y salvaguardar el resto del edificio. El nuevo método de diseño ha sido verificado con un ensayo sobre un edificio real. Por tanto, se trata de la primera solución contra la propagación de colapsos en edificios tras grandes fallos iniciales que ha sido probado y verificado a escala real. Con la aplicación del nuevo método de diseño se conseguirá prevenir colapsos catastróficos, protegiendo así vidas humanas y minimizando los costes materiales que supondría un colapso completo de la estructura”, destaca José M. Adam, coautor de la publicación con Nirvan Makoond, Andri Setiawan y Manuel Buitrago; todos ellos miembros del ICITECH de la UPV.
Unos “fusibles” evitan el colapso total
La clave del método ideado por el equipo de la UPV reside en usar el concepto de fusible estructural, que permite aislar las partes dañadas de un edificio con el fin de evitar la propagación de grandes fallos a toda la construcción.
“Esta nueva filosofía es parecida a la forma en que las redes eléctricas se protegen frente a sobrecargas, al conectar diferentes segmentos de la red mediante fusibles eléctricos. Con nuestros diseños, el edificio presenta continuidad estructural bajo condiciones normales de funcionamiento, pero se segmenta cuando la propagación de un fallo es inevitable, reduciendo así el alcance del colapso y evitando el derrumbe total”, apunta Nirvan Makoond.
“La implementación del método repercutirá levemente, o incluso de forma despreciable, en el coste de la estructura, ya que utiliza detalles constructivos y materiales convencionales”, señala Andri Setiawan.
En su estado de desarrollo actual, el nuevo diseño de estos investigadores se puede aplicar a prácticamente cualquier edificio de nueva construcción. “Su eficacia ha sido verificada y demostrada para edificios con estructura prefabricada de hormigón. Actualmente, trabajamos en la aplicación de la metodología a edificios ejecutados con hormigón in situ y a edificios con estructura de acero”, concluye Manuel Buitrago.
Validado en un ensayo pionero a nivel mundial
El desarrollo de este nuevo método de diseño es uno de los resultados más destacados hasta la fecha del proyecto Endure, financiado por el European Research Council – ERC (Consejo Europeo de Investigación) con una ayuda Consolidator Grant de más de 2,5 millones de euros. Fue precisamente en el marco de este proyecto donde se llevó a cabo, en junio del año pasado, un ensayo pionero a nivel mundial que permitió validar sus prestaciones. Las pruebas se hicieron con un edificio completo, a escala real, en el que un gran fallo inicial en la estructura se aisló en una parte del edificio, evitando su propagación a toda la estructura. Cabe resaltar que la investigación se lleva a cabo al 100% en la UPV, siendo los cuatro autores de la publicación investigadores también de la UPV.
Portada de Nature
Nature ha publicado el trabajo del equipo del Instituto ICITECH de la UPV en la portada de su número de hoy. Además, es la primera vez que la revista publica un artículo de investigación en el campo del diseño y construcción de edificios.
Primeros pasos gracias a un proyecto financiado por la Fundación BBVA
El germen de este proyecto surgió de una Beca Leonardo que en 2017 otorgó la Fundación BBVA a José M. Adam. Ahora, siete años más tarde, el investigador del ICITECH – UPV continua con este proyecto revolucionario, de la mano del Consejo Europeo de Investigación, que permitirá levantar edificios más seguros y salvar vidas humanas.
Endure se desarrollará hasta 2026 en el laboratorio de estructuras del ICITECH de la Universitat Politècnica de València, uno de los mayores de Europa para el ensayo de grandes elementos estructurales.
Referencia
Makoond, N., Setiawan, A., Buitrago, M. et al. Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). https://doi.org/10.1038/s41586-024-07268-5
Os dejo el vídeo y el artículo completo, pues está publicado en abierto.
Sustainability (ISSN: 2071-1050) is an international, peer-reviewed, open-access journal on environmental, cultural, economic, and social sustainability of human beings, published semimonthly online by MDPI.
Rapid Publication: manuscripts are peer-reviewed, and a first decision is provided to authors approximately 18.8 days after submission; acceptance to publication is undertaken in 3.6 days (median values for papers published in this journal in the second half of 2023).
Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal in appreciation of the work done.
Construction Engineering Department, Universitat Politècnica de València, 46022 Valencia, Spain Interests: multi-objective optimization; structure optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty Special Issues, Collections and Topics in MDPI journals
Prof. Lorena Yepes-Bellver E-MailWebsite Guest Editor
Mechanics of Continuous Media and Theory of Structures Department, Universitat Politècnica de València, 46022 Valencia, Spain Interests: multi-objective optimization; structure optimization; lifecycle assessment; social sustainability of infrastructures; metamodels
Special Issue Information
Dear Colleagues:
The Special Issue “Energy Efficiency and Innovative Material Application in Sustainable Buildings” focuses on advancing energy-efficient practices and novel materials in construction, crucial for global sustainability. Buildings account for significant energy use and carbon emissions, necessitating innovations to enhance efficiency and reduce environmental impact. This Special Issue aims to facilitate interdisciplinary dialogue and to highlight cutting-edge research in sustainable architecture and engineering. Aligned with the journal’s scope, it seeks to inspire professionals while promoting sustainable design and construction excellence. Key themes include energy-efficient design, innovative materials, intelligent building technologies, lifecycle assessment, and case studies illustrating best practices. Through these avenues, this Special Issue aims to contribute to a more sustainable and resilient built environment, addressing critical challenges and fostering progress towards a greener future.
In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:
Energy-Efficient Building Design and Retrofitting;
Nanotechnology Applications for Energy-Efficient Building Materials;
Integration of Renewable Energy Systems in Urban Buildings;
Sustainable Concrete Solutions for Green Construction;
Emerging Trends in Energy-Efficient HVAC Systems;
Smart Building Systems and Technologies ;
Circular Economy Approaches in Building Material Management;
The Role of Artificial Intelligence in Optimizing Building Energy Performance;
Innovations in Daylighting and Natural Ventilation Strategies;
Net-Zero Energy Building Case Studies: Lessons Learned and Future Directions;
Case Studies and Best Practices;
Regenerative Design in Architecture and Construction.
We look forward to receiving your contributions.
Prof. Dr. Víctor Yepes
Prof. Lorena Yepes-Bellver
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open-access semimonthly journal published by MDPI.