Ralph B. Peck: Una vida dedicada a la ingeniería geotécnica

Ralph B. Peck (1912 – 2008). https://www.ngi.no/en/about-ngi/ngis-historical-libraries/peck/

Ralph Brazelton Peck (23 de junio de 1912 – 18 de febrero de 2008) fue uno de los ingenieros civiles más influyentes del siglo XX. Su legado en el campo de la geotecnia se forjó a lo largo de décadas de investigación, enseñanza y práctica profesional. Nacido en Winnipeg (Canadá), creció en un ambiente técnico, ya que su padre, Orwin K. Peck, era ingeniero estructural especializado en obras ferroviarias. Esa influencia temprana marcó su destino profesional.

Aunque de niño soñaba con ser operador de tranvías, su padre lo persuadió para que estudiara ingeniería. A los 18 años rechazó becas de la Universidad de Colorado y de la Escuela de Minas de Colorado y se matriculó en el Instituto Tecnológico de Rensselaer (RPI) de Nueva York en 1930. Ese verano trabajó en la Denver & Rio Grande Railroad, donde comenzó su experiencia práctica en el mundo ferroviario. Durante sus estudios en RPI, diseñó su primer puente ferroviario, un puente con vigas de 20 m sobre el río Ánimas en Nuevo México, construido durante sus vacaciones de invierno de 1930, aunque más tarde fue destruido por una crecida del río.

En 1934, se graduó en Ingeniería Civil, pero como no encontró trabajo a causa de la Gran Depresión, aceptó una beca para cursar estudios de posgrado en estructuras, geología y matemáticas. En 1937 se doctoró en ingeniería civil con una tesis sobre rigidez en puentes colgantes, revisada por el reconocido ingeniero David Barnard Steinman.

Ese verano trabajó en la American Bridge Company, pero perdió su empleo al cabo de unos meses debido a la falta de proyectos. En marzo de 1938, cuando aún no había recibido ofertas de trabajo, tomó una decisión trascendental: pidió un préstamo de 5000 dólares a su suegro para estudiar mecánica de suelos en la Universidad de Harvard, bajo la tutela de Arthur Casagrande. Esta formación definiría el rumbo de su carrera profesional. Pocos días después, rechazó una oferta de trabajo como diseñador de puentes en la empresa Waddell & Hardesty, en Nueva York, para dedicarse a la geotecnia.

Casagrande lo aceptó en sus clases, primero como oyente y luego como ayudante de laboratorio. También colaboró con Ralph E. Fadum en el campo. Pronto, Peck comenzó a relacionarse con algunas de las figuras más destacadas del ámbito geotécnico: además de Casagrande, conoció y trabajó con Albert E. Cummings —pionero en cimentaciones con pilotes, quien más tarde le legó su biblioteca técnica—, Laurits Bjerrum, Alec W. Skempton y, especialmente, Karl Terzaghi, con quien forjaría una profunda amistad y colaboración profesional.

En enero de 1939, Terzaghi lo eligió como su representante en la obra del metro de Chicago, proyecto en el que había sido contratado como consultor. Peck asumió un papel central, manteniendo correspondencia constante con Terzaghi, a quien entregaba datos, informes y observaciones. También recibió la guía de Ray Knapp, jefe de inspección de obras del metro, a quien Peck consideró una influencia igual de formativa que Terzaghi por enseñarle a desenvolverse con eficacia en organizaciones complejas. Otra figura relevante en esta etapa fue Ralph Burke, ingeniero jefe de varios grandes proyectos en Chicago, con quien colaboró más adelante como consultor.

Su trabajo en el metro de Chicago fue clave en su desarrollo profesional. Allí aplicó, junto a Terzaghi, métodos avanzados de muestreo, medición de deformaciones e interpretación de suelos. Esta experiencia se materializó en el libro Soil Mechanics in Engineering Practice, publicado en 1948, escrito conjuntamente con Terzaghi y basado en gran medida en su experiencia conjunta. En esta obra se introdujo por primera vez el término «prueba de penetración estándar» (SPT), un concepto desarrollado a partir de un instrumento creado por Charley Gow en Boston. Terzaghi elogió públicamente la ética, el carácter y la rigurosidad de Peck durante el proceso de redacción.

En 1942, Peck se incorporó como profesor asistente de investigación en la Universidad de Illinois, donde impartió clases durante 32 años, hasta 1974. Aunque inicialmente dictaba cursos de estructuras, pronto se dedicó por completo a la geotecnia. En 1945, Terzaghi se unió como profesor visitante y su colaboración continuó en los años siguientes.

En 1953, Peck publicó junto con Thomas H. Thornburn y Walter E. Hanson el libro Foundation Engineering, que fue adoptado como texto en más de 50 universidades, consolidando aún más su influencia educativa. Su dedicación a la formación de ingenieros fue incuestionable y muchos de sus alumnos se convirtieron en figuras destacadas en el campo de la geotecnia.

Tras jubilarse, Peck mantuvo una intensa actividad como consultor, participando en más de mil proyectos en cuarenta y cuatro estados de EE. UU. y veintiocho países de cinco continentes. Su experiencia fue requerida en presas como la de Itezhi-Tezhi, en Zambia, y la de Saluda, en Carolina del Sur; en proyectos de transporte como el BART de San Francisco y los metros de Washington, Los Ángeles y Baltimore; así como en la cimentación del puente Rion-Antirion, en Grecia, y el oleoducto Trans-Alaska.

Entre 1969 y 1973, fue presidente de la Sociedad Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones. A lo largo de su carrera publicó más de 200 artículos y fue ampliamente galardonado:

  • 1944: Medalla Norman de la ASCE

  • 1965: Premio Wellington de la ASCE

  • 1969: Premio Karl Terzaghi

  • 1975: Medalla Nacional de Ciencia, otorgada por el presidente Gerald Ford

  • 1988: Medalla John Fritz

  • 1999: La ASCE estableció el Ralph B. Peck Award, que premia contribuciones destacadas al desarrollo profesional de la ingeniería geotécnica mediante estudios de caso e innovaciones en metodología de diseño.

En 2009, el Instituto Geotécnico Noruego inauguró la Biblioteca Ralph B. Peck, junto a la Biblioteca Karl Terzaghi, en Oslo. En ella se conserva correspondencia entre ambos ingenieros, documentos históricos, diarios técnicos y informes que dan fe de su legado compartido.

Ralph Peck también influyó en figuras como Karl Terzaghi, quien lo consideró no solo un colega brillante, sino también un ejemplo de integridad profesional. Su enfoque metódico, su respeto por la observación cuidadosa y su compromiso con la excelencia lo convierten en una figura clave en la historia de la geotecnia.

Se casó con Marjorie E. Truby en 1937 y tuvo dos hijos. Falleció el 18 de febrero de 2008 a los 95 años, víctima de una insuficiencia cardíaca. Su vida representa una combinación única de rigor científico, habilidad práctica y vocación docente. Hoy, su legado perdura en cada estructura que ayudó a construir y en cada ingeniero al que inspiró.

Una de las frases que más me impactaron a nivel profesional es la que figura en mi blog. Dice lo siguiente:

En mi opinión, nadie puede ser un buen proyectista, un buen investigador, un buen líder en la profesión de la ingeniería civil, a menos que entienda los métodos y los problemas de los constructores

(Ralph B. Peck, 1912-2008)

Os dejo algunos vídeos de este insigne ingeniero.

El Puente entre la Guerra y la Ingeniería: James B. Eads

James Buchanan Eads (1820-1887). https://es.wikipedia.org/wiki/James_Buchanan_Eads

James Buchanan Eads (23 de mayo de 1820 – 8 de marzo de 1887) fue un ingeniero e inventor estadounidense de renombre mundial, cuya vida estuvo marcada por la autodisciplina, la innovación técnica y una profunda comprensión del río Misisipi. Obtuvo más de 50 patentes y fue reconocido a nivel internacional. Diseñó y construyó el Puente Eads sobre el río Misisipi en San Luis, el cual fue declarado Monumento Histórico Nacional.

Primeros años y formación autodidacta

Eads nació en Lawrenceburg, Indiana, en 1820. Su segundo nombre, Buchanan, se lo pusieron en honor a James Buchanan, primo de su madre y congresista por Pensilvania y futuro presidente de Estados Unidos. La infancia de Eads fue nómada y difícil. La inestabilidad económica de su padre, involucrado en negocios poco exitosos, obligó a la familia a trasladarse repetidamente: primero a Cincinnati (Ohio), luego a Louisville (Kentucky) y, por último, a St. Louis (Misuri).

A los 13 años, Eads tuvo que dejar la escuela para ayudar a la familia. Uno de sus primeros empleos fue en Williams & Dühring, una tienda de comestibles en St. Louis. Su jefe, Barrett Williams, notó su inquietud intelectual y le permitió acceder libremente a su biblioteca personal, ubicada sobre la tienda. En su tiempo libre, el joven James devoraba libros de física, mecánica, maquinaria e ingeniería, convirtiéndose así en un ingeniero autodidacta.

Inicios en el río y éxito empresarial

A los 18 años, Eads se embarcó como sobrecargo en un barco de vapor que recorría el Misisipi, donde se familiarizó con los riesgos y desafíos de la navegación fluvial. Al observar la gran cantidad de naufragios y la pérdida de mercancías valiosas, comenzó a imaginar métodos para recuperar cargamentos hundidos.

A los 22 años, inventó un barco de salvamento revolucionario al que denominó «submarino». Aunque no era una nave sumergible en sí, permitía que Eads descendiera al fondo del río mediante una campana de buceo construida con un barril de whisky de cuarenta galones, adaptado con una manguera para el suministro de aire desde la superficie. Gracias a este invento, podía caminar por el fondo del río y recuperar objetos de valor, como lingotes de plomo y hierro. En una ocasión, incluso extrajo un tarro de mantequilla en buen estado de conservación.

Durante los doce años que estuvo al frente de su empresa de salvamento en el río Misisipi, esta prosperó tanto que, en 1857, Eads se retiró temporalmente con una considerable fortuna. Incursionó brevemente en la industria del vidrio, fundando la primera fábrica de vidrio en el oeste de EE. UU., pero este proyecto se vio interrumpido por la Guerra con México, por lo que volvió al negocio de salvamento en 1848. Con el tiempo, su flota alcanzó las diez embarcaciones y uno de sus barcos más avanzados logró bombear el agua y reflotar cascos hundidos desde el lecho del río.

Guerra Civil: la revolución de los ironclads

Con el estallido de la Guerra Civil en 1861, Eads fue convocado a Washington por el fiscal general Edward Bates, quien le había recomendado a causa de su amistad, para ofrecer su experiencia en la defensa fluvial del Misisipi. El gobierno federal aceptó finalmente su propuesta de construir una flotilla de buques acorazados con poco calado, propulsados por vapor y adecuados para los ríos del interior.

Eads fue contratado para construir una serie de ironclads y, en tan solo cinco meses, entregó siete embarcaciones. Además, transformó el vapor fluvial New Era en el acorazado Essex, que se convirtió en una pieza clave de la flota de la Unión. Atendió a las observaciones de los oficiales de la Flotilla Occidental e incorporó mejoras en cada iteración. A lo largo de la guerra, construyó más de 30 acorazados fluviales que participaron en batallas clave como las de Forts Henry y Donelson, Memphis, Vicksburg, Isla n.º 10 y Mobile Bay. Estas embarcaciones fueron los primeros acorazados en combatir en América y, junto con el famoso duelo del Monitor y el Merrimack, marcaron un hito en la historia naval.

El Puente Eads: obra maestra de la ingeniería

Tras la guerra, Eads fue seleccionado para liderar uno de los proyectos de ingeniería más ambiciosos de su tiempo: el primer puente ferroviario y de carretera que cruzaría el río Misisipi en San Luis. Las obras comenzaron el 20 de agosto de 1867 y se enfrentaron a numerosos desafíos técnicos y políticos.

El Puente Eads, concluido en 1874, fue el primero de gran tamaño construido con acero estructural y el más largo del mundo en su momento. Eads fue también pionero en emplear el sistema de vigas en voladizo (cantilever), lo que permitió mantener la navegación fluvial durante su construcción. Para cimentar sus tres arcos de acero de más de 500 pies cada uno, se excavó hasta el lecho rocoso a más de 30 metros bajo el río. Esto obligó a trabajar con cámaras de aire comprimido, lo que provocó casos de enfermedad por descompresión. Eads respondió instalando una clínica flotante, mejorando la alimentación del personal, aplicando una descompresión gradual y construyendo un elevador de acceso.

La calidad del acero también fue objeto de una supervisión estricta. Su proveedor, Andrew Carnegie, tuvo que volver a laminar algunas partidas hasta en tres ocasiones por no cumplir con la resistencia mínima exigida de 60 000 psi (414 MPa). Durante la construcción del arco central, una ola de calor deformó temporalmente la estructura, por lo que Eads tuvo que implementar su solución alternativa: un tapón roscado de hierro forjado que permitió ajustar y cerrar con precisión el último tramo del arco, tarea que se completó el 17 de septiembre de 1873. El puente se inauguró oficialmente el 4 de julio de 1874 y sigue en funcionamiento hasta hoy.

Puente Eads. https://es.wikipedia.org/wiki/James_Buchanan_Eads

El Puente Eads fue designado Monumento Histórico Nacional por el Departamento del Interior en 1964 y el 21 de octubre de 1974 fue inscrito como Monumento Histórico Nacional de Ingeniería Civil por la Sociedad Americana de Ingenieros Civiles. También recibió un Premio Especial de Reconocimiento del Instituto Americano de Construcción en Acero en 1974, en el centenario de su puesta en servicio. Eads también diseñó los diques del paso sur del río Misisipi, que fueron declarados Monumentos Históricos Nacionales de Ingeniería Civil en 1982.

Espigones en Nueva Orleans y nuevos proyectos

Posteriormente, el Gobierno le solicitó ayuda para resolver otro problema crítico: garantizar un canal navegable permanente en Nueva Orleans. Eads propuso construir una serie de espigones para alterar el comportamiento sedimentario del río. El proyecto fue financiado inicialmente por Eads, bajo la condición de recibir el pago solo si tenía éxito. En menos de cinco años, en 1879, había creado un canal estable y profundo que facilitaba el comercio marítimo durante todo el año.

Inspirado por este logro, Eads presentó una alternativa al canal de Panamá: un ferrocarril interoceánico en Tehuantepec (México) que transportaría barcos sobre plataformas móviles. Sin embargo, pese a sus esfuerzos, el Congreso de EE. UU. rechazó dos proyectos de ley para financiar la obra.

Reconocimientos y últimos años

James B. Eads fue el primer ingeniero estadounidense en recibir la Medalla Albert de la Royal Society of Arts de Londres. También trabajó como consultor en obras de infraestructura en Liverpool (Inglaterra), Toronto (Canadá), Veracruz y Tampico (México). Se casó en dos ocasiones y tuvo dos hijas biológicas y tres hijastras.

Eads falleció el 8 de marzo de 1887 en Nassau (Bahamas), dejando tras de sí un legado que combinaba genialidad técnica, profundo conocimiento práctico e incansable espíritu innovador. Su vida y su obra continúan siendo referentes en la historia de la ingeniería civil y naval.

En 1920, Eads fue incluido en el Pabellón de la Fama de los Grandes Americanos, ubicado en los terrenos del Bronx Community College en Nueva York. Cada año, la Academia de Ciencias de St. Louis otorga el Premio James B. Eads para reconocer a una persona distinguida por sus logros sobresalientes en ciencia y tecnología. En 1927, los decanos de las facultades de ingeniería de Estados Unidos votaron a Eads como uno de los cinco mejores ingenieros de todos los tiempos, un honor que compartió con Leonardo da Vinci, James Watt, Ferdinand de Lesseps y Thomas A. Edison.

Os dejo unos vídeos de su figura.

Valentín Vallhonrat: ingeniería estructural y modernidad técnica en los inicios del hormigón armado en España

https://www.aperos.es/2018/12/valentin-vallhonrat-y-gomez-ingeniero-y.html

A comienzos del siglo XX, el desarrollo del hormigón armado en España transformó de forma decisiva las técnicas constructivas, dando lugar a nuevas formas de proyectar y ejecutar edificios e infraestructuras. En este contexto, surgieron figuras que, aunque no siempre fueron reconocidas en el discurso oficial de la ingeniería o la arquitectura, desempeñaron un papel esencial en la consolidación del hormigón armado como material estructural preferente. Entre ellas destaca Valentín Vallhonrat y Gómez, ingeniero de formación y constructor por vocación, cuya obra anticipó muchos de los principios que rigen el diseño estructural moderno en la actualidad.

Examinamos brevemente la trayectoria técnica y profesional de Vallhonrat, poniendo énfasis en su capacidad para integrar innovación, funcionalidad y colaboración interdisciplinaria en una época de escasa estandarización normativa. Al revisar sus principales proyectos, métodos constructivos y decisiones técnicas, se pone de manifiesto que su enfoque no solo contribuyó a resolver los desafíos de su tiempo, sino también a sentar las bases de una ingeniería estructural más precisa, eficiente y adaptada a las necesidades arquitectónicas contemporáneas.

Desde sus primeros años, Vallhonrat demostró ser una persona con un talento especial para el estudio. Nacido en Almodóvar del Campo (Ciudad Real) en 1884, finalizó sus estudios de Ingeniería de Minas en 1906 como primero de su promoción. Este dato, además de reflejar su capacidad intelectual, pone de manifiesto la fuerte vocación por el conocimiento técnico de la persona que se esconde detrás del ingeniero.

Tras finalizar sus estudios, ingresó de manera inmediata en la Sociedad Hidroeléctrica Ibérica, donde inició su especialización en construcciones de hormigón, que derivó más adelante en la fundación de su propia empresa constructora. En este ámbito, desempeñó un papel destacado como uno de los introductores de esta tecnología constructiva en el panorama técnico español. El empleo del hormigón, un material que por entonces estaba surgiendo, le permitió incorporarse al sector de las grandes presas de embalse, infraestructuras estratégicas para el aprovechamiento de la energía hidráulica. En el desarrollo de estas obras, sustituyó progresivamente a los especialistas alemanes que hasta entonces monopolizaban este tipo de intervenciones y alcanzó el cargo de jefe de explotación, como señala Urrutia y Llano.

Entre las contribuciones técnicas más relevantes, destaca su papel como introductor del uso pionero del hormigón armado en varios ámbitos: estructuras en altura, rehabilitación de patrimonio histórico, edificación industrial y obras hidráulicas. Fue responsable de la ejecución de algunas de las primeras cimentaciones especiales con hormigón armado en suelos blandos, como en el edificio del Banco Pastor, y de naves industriales de gran luz, como las de Babcock & Wilcox. Asimismo, introdujo en España el hormigón seco (sand-cement) colocado por bombeo en la presa de Ordunte, lo que supuso un salto tecnológico equivalente al que se vivía en Estados Unidos en el mismo periodo.

En paralelo, impulsó sistemas constructivos propios y desarrolló patentes como la de forjados con cielo raso plano, que se aplicaron en obras emblemáticas como el hotel Nacional. Este enfoque proyectista, alejado de una ejecución meramente repetitiva, lo sitúa como un verdadero ingeniero de diseño estructural, capaz de desarrollar soluciones adaptadas al contexto y a las necesidades arquitectónicas.

Su colaboración con arquitectos como Modesto López Otero, Luis Gutiérrez Soto y Antonio Tenreiro demuestra que Vallhonrat asumía un papel activo en la definición estructural del proyecto, integrando criterios técnicos y formales, anticipando así el perfil del ingeniero contemporáneo. Así, participó en la creación de algunos de los edificios más emblemáticos de su época, como el cine Callao o el edificio de la Unión y el Fénix, ambos en Madrid.

Anuncio publicitario. Autor desconocido. 1917. Arquitectura y construcción, (1917),
p. 394

En términos empresariales, su compañía, Valentín Vallhonrat S. A., operó durante más de tres décadas, ejecutando tanto proyectos privados como grandes contratos de obra pública, incluyendo tramos ferroviarios y presas. Su capacidad para organizar equipos técnicos multidisciplinares y licitar proyectos de gran escala revela también un avanzado perfil empresarial para la época.

La obra de Valentín Vallhonrat es un conjunto coherente de soluciones técnicas adelantadas a su tiempo. No solo fue un constructor de éxito, sino también un profesional que intervino directamente en el desarrollo y aplicación de técnicas estructurales innovadoras en contextos muy diversos. El análisis de sus obras permite detectar líneas de continuidad en su método: racionalización de procesos, atención a los condicionantes del terreno, adaptación al diseño arquitectónico y mejora de la eficiencia constructiva.

En la construcción del Banco Pastor en A Coruña (1920-1922), Vallhonrat no solo resolvió con éxito la cimentación profunda en un terreno de baja capacidad portante, sino que además lo hizo con un ritmo de ejecución que evidencia una planificación rigurosa: una planta completa cada dos semanas y media. Este dato, unido a la precisión técnica de la ejecución, proyecta una imagen de modernidad organizativa muy poco común en ese momento.

Otro ejemplo significativo es la ejecución del cine Callao, donde se utilizaron vigas tipo Vierendeel con luces de hasta 22 metros. Gracias a esta solución, se pudo prescindir de diagonales estructurales, lo que permitió crear un espacio escénico libre y adaptable. Aquí, como en otras obras, se observa cómo la estructura no impone restricciones a la arquitectura, sino que la hace posible.

La rehabilitación del Palacio de Carlos V, dentro del conjunto de la Alhambra, es un caso singular. El uso de hormigón armado en un edificio renacentista evidencia una mentalidad integradora que entendía los materiales modernos como medios para recuperar condiciones de seguridad y usos sin alterar la autenticidad formal del patrimonio. Este tipo de intervenciones, que hoy son ampliamente aceptadas, eran poco frecuentes en el momento y requerían una visión técnica sensible al contexto.

El caso de la presa de Ordunte demuestra un salto técnico y logístico. La automatización parcial del proceso de producción del hormigón y su colocación mediante bombeo, junto con el uso de materiales in situ, indican un dominio avanzado del ciclo constructivo. El empleo de 220 000 m³ de hormigón, la ejecución de un túnel hidráulico de 6000 l/s de capacidad y una conducción ovoide de más de 30 km en un contexto tecnológico limitado posicionan esta obra como un hito de la ingeniería civil española de la época.

Su biografía se completa con su posterior retorno al servicio público y la docencia tras la disolución de su empresa en 1950. Como profesor de hidráulica en la Escuela de Minas de Madrid y posteriormente como presidente del Consejo de la Minería, Vallhonrat continuó ligado a la ingeniería desde una perspectiva institucional. En un contexto marcado por los efectos de la Guerra Civil y la transformación del Estado, esta trayectoria da cuenta de una figura que, más allá de sus realizaciones, encarnó una concepción amplia de la profesión.

La obra de Valentín Vallhonrat y Gómez articula una síntesis entre conocimiento técnico, capacidad ejecutiva e innovación formal que resultó determinante para el desarrollo del hormigón armado en España y anticipó prácticas y perfiles profesionales contemporáneos. Su legado no solo perdura en las estructuras que ha dejado, sino también en la manera en que enfrentó los desafíos constructivos: con un enfoque integrador, sistemático y técnicamente solvente.

Vallhonrat se posiciona como un agente clave en la transición hacia una construcción moderna en España. Desde una perspectiva contemporánea, su figura aporta también elementos valiosos para la formación de los estudiantes de ingeniería civil: capacidad crítica, rigor técnico, apertura a la innovación y voluntad de colaborar con otras disciplinas. Reivindicar a Valentín Vallhonrat no es solo un acto de memoria profesional, sino también una oportunidad para reflexionar sobre el papel del conocimiento técnico en la construcción de nuestras ciudades y territorios.

Os dejo a continuación un par de artículo que permiten profundizar en la figura de este ingeniero. Espero que os resulten de interés.

Descargar (PDF, 1.3MB)

Descargar (PDF, 39KB)

Descargar (PDF, 2.54MB)

Benoît-Pierre-Émile Clapeyron: Contribuciones fundamentales a la teoría de estructuras y a la termodinámica

Benoit Paul Émile Clapeyron (1799-1864).

Benoît-Pierre-Émile Clapeyron (París, 26 de enero de 1799-París, 28 de enero de 1864) fue una figura clave en la ingeniería y la física del siglo XIX, cuyas contribuciones fundamentales abarcan desde el análisis estructural hasta los cimientos de la termodinámica moderna.

Nacido el séptimo día del mes Pluvioso del calendario revolucionario francés, Clapeyron cursó estudios en la École Polytechnique, de la que se graduó en 1818. Posteriormente, continuó su formación en la École des Mines, donde coincidió con su amigo y futuro colaborador, Gabriel Lamé. En 1820, ambos se trasladaron a Rusia como parte de un esfuerzo promovido por el zar Alejandro I para modernizar las infraestructuras del imperio, formando ingenieros de caminos y puentes. En San Petersburgo, Clapeyron y Lamé se incorporaron como profesores a la École des Travaux Publics, donde enseñaron matemáticas puras y aplicadas, y al mismo tiempo participaron activamente como ingenieros consultores en proyectos emblemáticos, como la Catedral de San Isaac, la Columna de Alejandro, puentes colgantes y las esclusas de Schlüsselburg.

Durante su década en Rusia, además de su labor docente y técnica, ambos publicaron investigaciones conjuntas sobre temas matemáticos e ingenieriles en revistas científicas. Sin embargo, tras la Revolución de Julio de 1830, sus convicciones políticas les hicieron sentirse incómodos en el clima zarista, por lo que regresaron a Francia. En este contexto, cuando el ferrocarril apenas comenzaba a desarrollarse y aún se consideraba una empresa de dudosa rentabilidad, Clapeyron intuyó su gran potencial y promovió la construcción de una línea férrea entre París y Saint-Germain-en-Laye. Aunque inicialmente no obtuvo financiación, fue nombrado catedrático en la Escuela de Minas de Saint-Étienne. Finalmente, en 1835, se autorizó la construcción de dicha línea y tanto Clapeyron como Lamé fueron designados responsables del proyecto. Poco después, Lamé aceptó una cátedra en la Escuela Politécnica y dejó a Clapeyron a cargo exclusivo de la obra.

En 1836, Clapeyron viajó a Inglaterra para gestionar la fabricación de locomotoras de vapor especializadas. Intentó primero colaborar con George Stephenson, quien rechazó sus diseños por su complejidad. Después se puso en contacto con la empresa Sharp, Roberts and Company, pionera en la fabricación de locomotoras con piezas intercambiables, y con la que logró avanzar en sus planes. De regreso en Francia, amplió su trabajo hacia el diseño de puentes metálicos, integrando sus conocimientos en estructuras relacionadas con el desarrollo ferroviario.

Su trayectoria académica alcanzó un nuevo hito en 1844, cuando fue nombrado profesor de construcción de máquinas de vapor en la École des Ponts et Chaussées. En 1848 fue elegido miembro de la Academia de las Ciencias de París, donde participó activamente en múltiples comités, entre ellos el encargado de evaluar el proyecto del canal de Suez y el que analizaba la incorporación de motores de vapor en la marina.

En el ámbito científico, Clapeyron es reconocido por haber reformulado las ideas de Sadi Carnot en 1834, mediante su célebre artículo La puissance motrice de la chaleur. En este texto, presentó el ciclo de Carnot con una claridad analítica inédita, valiéndose de representaciones gráficas —como el diagrama presión-volumen, conocido hoy como diagrama de Clapeyron— y proporcionando una formulación matemática rigurosa. Esta obra rescató del olvido los conceptos termodinámicos de Carnot, influyendo profundamente en científicos como William Thomson (Lord Kelvin) y Rudolf Clausius, y sentando las bases para el establecimiento de la segunda ley de la termodinámica.

En 1843, Clapeyron amplió el concepto de proceso reversible y formuló con precisión el principio de Carnot. A partir de estas bases, desarrolló más adelante, junto con Clausius, la conocida ecuación diferencial, relación de Clausius-Clapeyron, que describe las condiciones de equilibrio en las transiciones de fase de la materia. También abordó problemas que hoy se conocen como problemas de Stefan. Un nomograma para el cálculo de la ecuación de Clapeyron de los gases ideales lo podéis descargar en este enlace.

En paralelo, realizó importantes aportes en el campo de la mecánica de sólidos. Sus trabajos incluyen el Mémoire sur la stabilité des voûtes (1823), Mémoire sur la construction des polygones funiculaires (1828), y la Note sur un théorème de mécanique (1833). En 1833 también publicó el Mémoire sur l’équilibre intérieur des corps solides homogènes. Su experiencia en construcción se cristalizó en su Mémoire sur le calcul d’une poutre élastique reposant librement sur des appuis inégalement espacés (1857), donde introdujo el teorema de los tres momentos, herramienta clave en el cálculo de vigas continuas hiperestáticas. Un año más tarde, en 1858, presentó el Mémoire sur le travail des forces élastiques dans un corps solide élastique déformé par l’action de forces extérieures, en el que formuló su célebre teorema de Clapeyron, principio fundamental en la teoría de la elasticidad.

Clapeyron falleció el 28 de enero de 1864 en París. Su legado en los campos de la ingeniería estructural y la física teórica constituye uno de los pilares sobre los que se cimentó la ciencia moderna del siglo XIX.

Os dejo un vídeo relacionado con el teorema de Clapeyron.

Squire Whipple, padre de la construcción de puentes de hierro en Estados Unidos

Squire Whipple (1804-1888). https://es.wikipedia.org/wiki/Squire_Whipple

Squire Whipple (16 de septiembre de 1804, Hardwick, Massachusetts; 15 de marzo de 1888, Albany, Nueva York) fue una figura esencial en el desarrollo de la ingeniería estructural en Estados Unidos y es reconocido como el «padre de la construcción de puentes de hierro» en dicho país.

Nacido en el seno de una familia campesina, su primer contacto con la ingeniería se produjo a temprana edad, cuando su padre diseñó, construyó y operó una hilandería de algodón cerca de Greenwich, Massachusetts, entre 1811 y 1817. En 1817, cuando Whipple tenía trece años, su familia se trasladó al estado de Nueva York y se estableció en el condado de Otsego, donde su padre retomó las labores agrícolas.

Durante su adolescencia, Whipple recibió educación secundaria en la Fairfield Academy, en Herkimer, y también asistió a la Hartwick Academy. Gracias a su aptitud académica, pudo ingresar y graduarse en el Union College de Schenectady (Nueva York) en solo un año, en 1830. En la década siguiente, trabajó en distintos proyectos ferroviarios y de canales, y en los periodos de desempleo fabricaba y vendía instrumentos matemáticos de su propia elaboración.

Su participación en la ampliación del Canal Erie resultó decisiva para su desarrollo profesional. Al comprobar que los puentes de madera existentes no eran adecuados para el nuevo trazado ensanchado del canal, concluyó que era necesario utilizar hierro. En 1841 obtuvo la patente de una celosía de arco tensado (bowstring truss), que combinaba hierro forjado para los elementos sometidos a tracción y hierro fundido para los elementos a compresión, estableciendo una clara distinción funcional entre ambos materiales. Ese mismo año, construyó el primer puente con este sistema sobre el Canal Erie en Utica, y en los años siguientes se edificaron al menos seis estructuras similares en los estados de Nueva York y Erie. Sus diseños, especialmente los de vigas de celosía y puentes de arco tensado prefabricados, se adoptaron como estándar para los cruces del canal.

En 1847, publicó A Work on Bridge Building, una obra fundamental en la que presentó la teoría de celosías trianguladas mediante métodos gráficos y trigonométricos, una innovación que marcó el inicio de la independencia teórica de la ingeniería estructural estadounidense respecto del modelo europeo. En este tratado formuló una ecuación empírica para dimensionar montantes de hierro fundido, describió el comportamiento elástico-plástico de las vigas de ese material y realizó un análisis preliminar del fenómeno de fatiga, aunque sin emplear este término. Estos aportes sentaron las bases de la teoría de estructuras en Estados Unidos durante su etapa fundacional (1850-1875). A lo largo de su carrera, publicó otras obras relevantes, como Apéndice a la obra de Whipple sobre construcción de puentes (1869) y Tratado elemental y práctico sobre construcción de puentes (1873), que consolidaron su legado teórico.

Puente de arco tesado Whipple, construido entre 1867 y 1869 sobre el Normans Kill en Albany. https://es.wikipedia.org/wiki/Squire_Whipple

Entre los ejemplos más destacados de su obra construida se encuentra el puente de arco tensado de hierro forjado y fundido sobre el arroyo Normans Kill, en Albany (Nueva York), construido entre 1867 y 1869 por S. DeGraff, de Syracuse. Este puente, muy bien conservado, permaneció en uso continuo y sin restricciones de carga hasta su cierre al tráfico rodado en enero de 1990. Su elegante diseño ha llevado a muchos usuarios a creer erróneamente que se trata de una estructura moderna. Durante décadas, la autopista de peaje de Delaware atravesaba el puente hasta que, en 1929, fue reemplazado por una estructura nueva, más alta, larga y ancha. A pesar de ello, el puente original de Whipple aún se conserva como patrimonio histórico. Otro ejemplo notable se halla en el campus del Union College, donde hoy se utiliza como pasarela peatonal.

Asimismo, el puente Shaw es una pieza singular: es el único puente de arco tesado Whipple que se conserva en su ubicación original y la única estructura doble de este tipo que se conoce. Compuesto por dos tramos idénticos que comparten un pilar común, se le ha descrito como «una estructura de gran importancia para la historia de la ingeniería y la tecnología del transporte en Estados Unidos». A estos ejemplos se suman al menos cuatro puentes similares más que aún se conservan en el centro del estado de Nueva York y otro más en Newark (Ohio), lo que evidencia la amplia adopción de sus diseños.

Squire Whipple falleció el 15 de marzo de 1888 en su residencia de Albany. Fue sepultado en el Cementerio Rural de Albany, en Menands (Nueva York). Su legado, tanto teórico como práctico, perdura como un pilar fundamental en la historia de la ingeniería estructural y del diseño de puentes en América.

Jules Arthur Vierendeel: trayectoria, contribuciones y legado en la ingeniería estructural

Jules Arthur Vierendeel (1852-1940). https://www.flickr.com/

Jules Arthur Vierendeel (Lovaina, Bélgica, 10 de abril de 1852 – Uccle, Bélgica, 8 de noviembre de 1940) fue un ingeniero civil belga cuya innovación en el diseño estructural, la viga reticulada sin diagonales que lleva su nombre, marcó un punto de inflexión en la teoría de estructuras. Su trayectoria combina una sólida formación académica, una destacada carrera profesional y una profunda influencia en el desarrollo de métodos analíticos avanzados.

Nacido con el apellido Meunier, lo cambió por el de Vierendeel tras el segundo matrimonio de su madre con Pierre Vierendeel. Pasó su infancia y juventud en Geraardsbergen y, en 1874, se licenció en ingeniería civil y de minas en la Universidad Católica de Lovaina. Inmediatamente después, inició su carrera como ingeniero en la empresa Nicaise et Delcuve, en La Louvière.

En 1876 alcanzó notoriedad al ganar el concurso para diseñar el Royal Circus de Bruselas, una de las estructuras metálicas más ambiciosas de la época en Bélgica. Su diseño, excepcionalmente liviano, provocó un amplio debate público, que puso de manifiesto su enfoque audaz en materia estructural.

En 1885 fue nombrado director del servicio técnico del Ministerio de Obras Públicas de Flandes Occidental, cargo que desempeñó hasta 1927. Ese mismo año comenzó a impartir clases en la Universidad Católica de Lovaina, donde fue profesor de Construcción, Resistencia de Materiales, Ingeniería Estructural e Historia de la Técnica. Su influencia académica perduró hasta su jubilación, momento en el que fue distinguido con el título de profesor emérito en 1935.

Entre sus contribuciones más significativas, destaca el desarrollo de la llamada viga Vierendeel, una viga reticulada sin diagonales concebida en 1895. Con motivo de la Exposición Universal de Bruselas de 1897, financió y construyó personalmente un puente experimental de 31,5 metros de luz, que sometió a cargas hasta su colapso con el objetivo de validar empíricamente sus cálculos estructurales. Este experimento no solo confirmó la viabilidad del diseño, sino que consolidó su aceptación tanto en Bélgica —donde fue ampliamente utilizado por los Ferrocarriles del Estado— como en el extranjero; el primer puente Vierendeel en Estados Unidos se construyó ya en el año 1900.

Puente Hafe vu Léck. https://es.wikipedia.org/wiki/Puente_Vierendeel

El primer puente definitivo que empleó su sistema fue el puente de Waterhoek, construido en 1902 sobre el río Escalda, en la localidad de Avelgem. Esta estructura alcanzó relevancia cultural al ser mencionada en la novela De teleurgang van den Waterhoek, de Stijn Streuvels.

La viga Vierendeel planteó importantes desafíos teóricos, especialmente en una época en la que predominaban los métodos analíticos aplicables a estructuras trianguladas. En 1912, la revista Der Eisenbau publicó un debate técnico sobre las ventajas y limitaciones del sistema, lo que estimuló el desarrollo de nuevos enfoques analíticos, como el método de desplazamientos. Su legado técnico sigue vigente en aplicaciones modernas como el puente Qian Lin Xi, en China (1989), o las vigas estructurales del edificio sede del Commerzbank, en Fráncfort (1996).

Vierendeel fue también un prolífico autor. Entre sus obras más relevantes se encuentran Cours de stabilité des constructions (1889), L’architecture du Fer et de l’Acier (1897), Théorie générale des poutres Vierendeel (1900), La construction architectureale en fonte, fer et acier (1901), Der Vierendeelträger im Brückenbau (1911), Einige Betrachtungen über das Wesen des Vierendeelträgers (1912) y Breves reseñas de historia de la técnica y Cálculo de estructuras metálicas. Su producción bibliográfica constituye una referencia esencial en la historia de la ingeniería estructural.

Arthur Vierendeel se retiró en 1927 y falleció trece años después, en 1940. Su legado permanece como testimonio del equilibrio entre audacia ingenieril, rigor analítico y visión académica.

Joseph Louis Lagrange: El arte de la matemática aplicada a la mecánica

Joseph-Louis Lagrange (1736-1813). https://es.wikipedia.org/wiki/Joseph-Louis_Lagrange

Joseph-Louis Lagrange, inscrito al nacer como Giuseppe Lodovico Lagrangia, nació en Turín el 25 de enero de 1736, en el entonces Reino de Cerdeña. Fue un matemático, físico y astrónomo que desarrolló la mayor parte de su carrera en Prusia y Francia. Falleció en París el 10 de abril de 1813. Lagrange fue una de las mentes más brillantes del siglo XVIII en el ámbito de las matemáticas y la mecánica. Su legado, aún vigente en numerosos campos de la ingeniería y la ciencia, lo sitúa como una figura clave en la historia de la mecánica teórica. Es considerado uno de los científicos más influyentes de todos los tiempos gracias a la profundidad y el volumen de sus contribuciones.

Provenía de una familia de origen parisino asentada en Turín. Su padre era tesorero del Departamento de Obras Públicas y Fortificaciones, pero su afición al juego arruinó la fortuna familiar. Esto le impidió seguir una carrera militar. Estudió en la Universidad de Turín y no mostró interés por las matemáticas hasta los 17 años, cuando la lectura de un ensayo de Edmund Halley despertó su vocación científica.

Con tan solo 19 años, en 1755, se convirtió en profesor de la Escuela Real de Artillería de Turín. Ese mismo año publicó sus primeros trabajos matemáticos independientes, en los que introdujo innovaciones basadas en las teorías de Robins y Euler. No obstante, su enfoque teórico y abstracto fue criticado por su escasa conexión con la práctica militar.

Poco después, en 1757, fundó junto a un grupo de estudiantes la Academia de Ciencias de Turín. El primer volumen de sus Mémoires, publicado en 1759, contenía artículos que ya le situaban entre los grandes científicos del siglo XVIII. Uno de sus alumnos más destacados fue François Daviet de Foncenex, quien se especializó más adelante en análisis dimensional. Durante estos primeros años, centró su trabajo en el estudio de ecuaciones diferenciales, el cálculo de variaciones y sus aplicaciones a la mecánica celeste.

La fama de Lagrange creció rápidamente. En 1757 fue admitido como miembro correspondiente de la Academia de Ciencias de Berlín, gracias a la recomendación de Leonhard Euler. En 1766, tras la marcha de Euler a San Petersburgo, el rey Federico II de Prusia, animado por Jean le Rond d’Alembert, lo invitó a ocupar su lugar. A sus 30 años, Lagrange se instaló en Berlín, donde permaneció dos décadas.

Durante su estancia en Prusia, escribió más de cincuenta tratados sobre matemáticas, mecánica y astronomía. Entre sus avances más notables se encuentran sus contribuciones a la teoría de pandeo en estructuras (Sur la figure des colonnes, 1770–1773), desarrollando la teoría de la estabilidad iniciada por Euler y determinando los modos propios del segundo caso de Euler. Su obra magna, Mécanique analytique, empezó a tomar forma durante este periodo. También dirigió la Academia de Ciencias de Berlín, sucediendo al propio Euler.

La muerte de Federico II en 1786 y el nuevo clima poco favorable a la ciencia le llevaron a aceptar la invitación de Luis XVI para trasladarse a París en 1787 e integrarse en la Academia de Ciencias de Francia. Instalado en el Louvre, continuó su labor científica a pesar de un nuevo episodio depresivo que le llevó a ignorar la publicación de su Mécanique analytique, que había terminado en Berlín y que vio la luz en 1788 gracias a la ayuda de Adrien-Marie Legendre. Esta obra supuso una revolución en la forma de entender la mecánica, ya que Lagrange logró derivar toda la teoría a partir de un único principio: el de las velocidades virtuales.

Curiosamente, la publicación de esta obra coincidió con un periodo de agotamiento personal. Afectado por lo que hoy denominaríamos síndrome de burnout, Lagrange ni siquiera abrió los ejemplares impresos cuando llegaron. Durante un tiempo, se refugió en la teología y la filosofía.

Durante la Revolución Francesa, que marcó un punto de inflexión en su vida, Lagrange permaneció en París. Participó activamente en la reforma del sistema de pesos y medidas, siendo clave en la adopción del sistema métrico decimal en 1799. Fue nombrado profesor de la École Normale en 1795 y, en 1797, pasó a formar parte del claustro de la recién fundada École Polytechnique, donde impartió clases de cálculo diferencial e integral. Sus clases dieron origen a importantes obras como Théorie des fonctions analytiques (1797) y Leçons sur le calcul des fonctions (1799), aunque no logró dotar al análisis matemático de una base plenamente axiomática.

Lagrange llevó una vida metódica y discreta, y siempre evitó la polémica. Era reservado y tímido, y su frágil salud mental le acompañó durante toda su vida, alternando períodos de intensa actividad intelectual con episodios de melancolía.

A pesar de su timidez, su matrimonio en 1792 con una joven que simpatizaba con su carácter reservado marcó un período de estabilidad personal. Recibió numerosos reconocimientos, entre ellos la Gran Cruz de la Orden Imperial de la Reunión, que le concedió Napoleón Bonaparte dos días antes de su muerte.

Joseph Louis Lagrange falleció en París el 10 de abril de 1813. Tres días después fue enterrado en el Panteón, junto a otras grandes figuras de la historia de Francia. En su elogio fúnebre, Pierre-Simon Laplace destacó que, al igual que Newton, Lagrange poseía “el más alto grado de maestría en la medida más afortunada, lo que le permitió descubrir los principios generales que constituyen la verdadera esencia de la ciencia”.

Sus escritos, especialmente Mécanique analytique y sus estudios sobre estructuras y cálculo de variaciones, considerados clásicos de las matemáticas y de la mecánica teórica, siguen siendo valorados no solo por su profundidad conceptual, sino también por su elegancia formal. En palabras del matemático Hamel, su estilo es “profundo, transparente, prudente, puro, claro, encantador, e incluso elegante”: una muestra de lo que puede ser la auténtica belleza matemática.

Principales aportaciones a la teoría de estructuras y la mecánica:

  • Sur la figure des colonnes (1770–1773): desarrollo de la teoría del pandeo.

  • Mécanique analytique (1788): reformulación de la mecánica clásica desde principios variacionales.

  • Analytische Mechanik (edición póstuma de 1887): versión alemana con gran influencia posterior.

Os dejo un enlace a un vídeo sobre este personaje.

https://www.youtube.com/watch?v=av5WgKdOAd8

Fazlur Rahman Khan: el ingeniero que reinventó los rascacielos

Fazlur Rahman Khan (1929-1982). https://en.wikipedia.org/wiki/Fazlur_Rahman_Khan

Fazlur Rahman Khan nació el 3 de abril de 1929 en Dhaka, que entonces formaba parte del Raj británico y hoy es la capital de Bangladés. Provenía de una familia bengalí musulmana: su padre, Khan Bahadur Abdur Rahman Khan, destacó como profesor, y su madre, Khadijah Khatun, pertenecía a una familia zamindar. Durante su infancia en una ciudad con construcciones modestas, comenzó a desarrollar una sensibilidad por el entorno construido que marcaría su carrera.

Tras completar sus estudios secundarios en el Armanitola Government High School, se graduó con honores en 1950 en el Bengal Engineering College, que por entonces estaba adscrito a la Universidad de Dhaka. En 1952, gracias a una beca Fulbright y con el apoyo del Gobierno de Pakistán, se trasladó a Estados Unidos para estudiar en la Universidad de Illinois en Urbana-Champaign. En tan solo tres años, obtuvo dos másteres y un doctorado en Ingeniería Estructural, centrando su tesis en el estudio de vigas pretensadas de hormigón.

En 1955 se incorporó a Skidmore, Owings & Merrill (SOM), una de las firmas de arquitectura e ingeniería más prestigiosas de Estados Unidos, con sede en Chicago. Allí entabló una colaboración clave con el arquitecto Bruce Graham. Su ascenso fue rápido: en 1966 fue nombrado socio y en 1970 alcanzó el rango de socio general. Trabajó en SOM durante toda su vida profesional, excepto por una breve interrupción.

John Hancock Center. https://en.wikipedia.org/

En esa etapa, Khan revolucionó el diseño de rascacielos al dejar de depender de las estructuras de acero convencionales. Inspirándose en la resistencia del bambú, ideó el concepto estructural de «tubo», que convertía las fachadas en elementos portantes. Este enfoque aumentó la eficiencia frente a cargas laterales, como el viento o los seísmos, y redujo la necesidad de materiales y el espacio interior necesario. Desarrolló distintas variantes del sistema: el tubo enmarcado, el tubo-en-tubo, el tubo agrupado y el tubo diagonalizado.

El primer edificio en incorporar esta tecnología fue el DeWitt-Chestnut Apartments (actualmente Plaza on DeWitt), en Chicago, concluido en 1963. En 1965, aplicó por primera vez el sistema de tubo con celosía en la estructura del John Hancock Center, logrando reducir notablemente el uso de acero en comparación con edificaciones anteriores, como el Empire State. En 1973, la Willis Tower (anteriormente Sears Tower) llevó su innovación aún más lejos al emplear el sistema de tubos agrupados, con los que se alcanzaron los 442 metros de altura con una estructura compuesta por nueve módulos unidos.

 

Willis Tower. https://en.wikipedia.org/

Además, Khan implementó el sistema tubo-en-tubo en el One Shell Plaza y el sistema de interacción marco-muro cortante en el Brunswick Building. También introdujo estructuras con arriostramientos y vigas de traspaso en edificios como la BHP House y el First Wisconsin Center, que resultan especialmente útiles en edificios de altura media.

Fue pionero en el uso de tecnologías de cálculo estructural por ordenador. Convenció a SOM de invertir en un mainframe y se encargó personalmente de programar tanto los cálculos como los dibujos técnicos, situando a la empresa a la vanguardia del diseño asistido por ordenador. También promovió el uso de prefabricados y hormigón ligero en edificios altos.

Durante los años setenta, su trabajo fue ampliamente reconocido. Recibió la Medalla Wason del American Concrete Institute (1971), el Thomas Middlebrooks Award (1972), el Alfred Lindau Award (1973), la Kimbrough Medal del American Institute of Steel Construction (1973) y la medalla Oscar Faber de la Institution of Structural Engineers de Londres (1973). Ese mismo año ingresó en la Academia Nacional de Ingeniería de Estados Unidos. En 1972, Engineering News-Record lo reconoció como «Hombre del Año» y lo incluyó cinco veces entre las figuras más influyentes del sector. Recibió doctorados honoris causa de las universidades Northwestern, Lehigh y ETH Zúrich.

En 1977 obtuvo el premio Ernest Howard de la Sociedad Americana de Ingenieros Civiles (ASCE). En 1981, diseñó la terminal del Hajj del Aeropuerto Internacional Rey Abdulaziz, en Arabia Saudí, que cuenta con cubiertas tensadas tipo tienda, lo que impulsó el uso de tejidos estructurales. También participó en proyectos como la Universidad Rey Abdulaziz, la Academia de la Fuerza Aérea de EE. UU. en Colorado Springs y el estadio Hubert H. Humphrey Metrodome de Mineápolis.

En sus últimos años desarrolló, junto al ingeniero Mark Fintel, conceptos pioneros para la protección sísmica de edificios mediante mecanismos de absorción de energía, que son el antecedente directo de los actuales sistemas de aislamiento sísmico.

El 27 de marzo de 1982, durante un viaje a Yeda (Arabia Saudí), Khan falleció de un infarto a la edad de 52 años. En ese momento era socio general de SOM. Su cuerpo fue trasladado a Estados Unidos y enterrado en el cementerio Graceland de Chicago. Su muerte supuso una gran pérdida para la ingeniería estructural, pero su legado perdura y sigue creciendo.

Tras su fallecimiento, continuaron los reconocimientos. En 1983 recibió el International Award of Merit in Structural Engineering de la IABSE y el AIA Institute Honor del American Institute of Architects. En 1987 fue galardonado con el John Parmer Award de la Asociación de Ingenieros Estructurales de Illinois y, en 2006, ingresó en el Salón de la Fama de la Ingeniería de Illinois.

El Consejo de Edificios Altos y Habitat Urbano instituyó la Medalla a la Trayectoria Fazlur Khan y estableció la cátedra Fazlur Rahman Khan Endowed Chair en la Universidad de Lehigh, actualmente ocupada por el profesor Dan Frangopol. Estas iniciativas promueven la investigación y la formación en arquitectura e ingeniería estructural.

En 2009, en su discurso en la Universidad de El Cairo, el presidente Barack Obama mencionó a Khan como ejemplo del legado de los ciudadanos musulmanes en Estados Unidos. En 2017, Google le dedicó un Doodle con motivo de su 88.º aniversario. En 2021, la directora Laila Kazmi inició la producción del documental Reaching New Heights: Fazlur Rahman Khan and the Skyscraper, con el apoyo de ITVS y la productora Kazbar Media.

Khan redefinió la forma de concebir los rascacielos. Gracias a su innovación estructural, fue posible construir edificios más altos, seguros, económicos y habitables. Entre sus principales aportaciones técnicas destacan:

  • Tubo enmarcado: estructura perimetral rígida que actúa como un gran tubo vertical anclado en la base. Permite una gran eficiencia ante cargas laterales. Ejemplo: World Trade Center (1973).

  • Tubo-en-tubo: combina un núcleo interno resistente con una estructura perimetral conectada por los forjados. Aumenta la rigidez global.

  • Tubos agrupados: sistema compuesto por varios tubos verticales unidos que forman una única estructura, como la Willis Tower (1975).

  • Tubo diagonalizado: incorpora diagonales visibles en fachada, que refuerzan el conjunto y generan una estética singular. Ejemplo: John Hancock Center (1970).

Más allá de la técnica, Khan fue un pensador ético y humanista. Durante la guerra de independencia de Bangladés en 1971, fundó el Movimiento por la Liberación de su país en Estados Unidos. También fue un puente entre ingeniería y arquitectura, defendiendo un enfoque integral y sensible al contexto.

Su hija, Yasmin Sabina Khan, le rindió homenaje con el libro Engineering Architecture: the Vision of Fazlur R. Khan (2004), un testimonio tanto técnico como humano. Como escribió Engineering News-Record en su obituario: “El consuelo es que sus estructuras seguirán en pie durante años, y sus ideas nunca morirán”.

Khan también hizo importantes contribuciones académicas. Entre sus publicaciones más influyentes figuran:

  • Computer Design of 100-Story John Hancock Center (1966)

  • On Some Special Problems of Analysis and Design of Shear Wall Structures (1966)

  • 100-Story John Hancock Center in Chicago – A Case Study of the Design Process (1972)

  • New Structural Systems for Tall Buildings and their Scale Effects on Cities (1974)

El ingeniero alemán Werner Sobek lo describió como «la vanguardia de la segunda escuela de Chicago», una corriente que integró de forma ejemplar la eficiencia estructural con la expresión arquitectónica.

En definitiva, Fazlur Rahman Khan no solo transformó la forma de construir en altura, sino que también cambió la manera de entender la arquitectura desde la ingeniería. Su vida fue una lección de innovación, compromiso y visión. Sus edificios, en pie en todo el mundo, siguen hablándonos hoy de su genialidad.

Os dejo un vídeo sobre este ilustre ingeniero (en inglés).

Josef Melan: trayectoria y contribuciones a la ingeniería de puentes

Josef Melan (1854–1941). https://jam.jihlava.cz/en/architect/3-josef-melan

Josef Melan fue un ingeniero austríaco ampliamente reconocido por su destacado papel en el desarrollo de la construcción de puentes de hormigón armado a finales del siglo XIX. Se le acredita la invención del Sistema Melan, un método innovador para la construcción de puentes reforzados. A diferencia de los enfoques previos, su sistema no incorporaba barras de hierro dentro de la estructura de hormigón armado, sino que empleaba arcos de celosía rígidos de hierro como elemento de refuerzo.

En 1898, Melan alcanzó un reconocimiento significativo tras la construcción de un puente de 42,4 m de luz en Steyr, caracterizado por un arco de altura reducida. En su momento, esta obra representó el mayor puente de hormigón armado a nivel mundial. Entre sus proyectos más notables se encuentra el Puente del Dragón en Liubliana, una de las primeras estructuras de gran escala en emplear su innovador sistema constructivo.

Nacido el 18 de noviembre de 1853 en Viena, entonces parte del Imperio austrohúngaro, Melan falleció el 6 de febrero de 1941 en Praga, en la anterior Checoslovaquia. Inició sus estudios de ingeniería civil en la Universidad Técnica de Viena en 1869 y los completó en 1874. Posteriormente, tras su graduación, se desempeñó como asistente de Emil Winkler en la cátedra de Ingeniería Ferroviaria y Construcción de Puentes, marcando así el inicio de su destacada trayectoria académica y profesional.

En 1880, presentó su tesis de habilitación sobre la teoría de puentes y ferrocarriles en la misma universidad, donde ejerció como docente hasta 1886. Durante este período, además de su labor académica, desarrolló actividades profesionales en los departamentos de diseño de la empresa de construcción de puentes Ignaz Gridl y junto al contratista Gaertner, ambos con sede en Viena. En 1880, fue nombrado profesor asociado de mecánica estructural y estática gráfica en la Universidad Técnica Alemana de Brno, y en 1890 ascendió a catedrático en la misma especialidad. Posteriormente, en 1895, asumió la Cátedra de Construcción de Puentes, y en 1902 pasó a ocupar el mismo cargo en la Universidad Técnica Alemana de Praga (fundada en 1717), donde trabajó hasta su jubilación en 1923.

Durante su estancia en Viena, Melan inició el desarrollo de cálculos relacionados con la deformación estática en grandes puentes colgantes, con el propósito de optimizar su diseño y reducir costes. En 1888, Melan publicó los resultados de sus investigaciones, lo que atrajo la atención de su antiguo compañero de estudios, Gustav Lindenthal, quien le encargó la revisión estructural del Williamsburg Bridge de Nueva York, el puente colgante más grande del mundo en aquella época.

Paralelamente, ese mismo año, el ingeniero Victor Brausewetter, en colaboración con el fabricante de cemento Adolf Pittel, fundó la empresa Pittel & Brausewetter y promovió la creación de una asociación dedicada a la realización de ensayos comparativos de carga sobre estructuras abovedadas. Estos ensayos abarcaban desde bóvedas de fábrica en hormigón simple hasta elementos de hormigón armado. Desde 1886, la empresa de Gustav Adolf Waysse ya había construido estructuras basadas en la patente de Joseph Monier, con refuerzo de malla de acero en ambas direcciones. No obstante, tras un exhaustivo análisis de los ensayos mencionados, Melan expresó su escepticismo respecto al sistema, manifestando reservas en cuanto a la resistencia de los alambres empleados.

En 1892, presentó su propio y revolucionario sistema estructural, basado en un refuerzo longitudinal rígido para bóvedas, que sentó las bases de la arquitectura moderna. Para estructuras de menor luz, se utilizaron vigas en L dobladas, mientras que para las de mayor envergadura se emplearon cerchas metálicas. Gracias a su mayor capacidad portante, este método fue rápidamente adoptado en la construcción de techos en almacenes, fábricas y grandes naves industriales. Una innovación notable fue la posibilidad de suspender el encofrado del propio refuerzo y hormigonar los arcos sin necesidad de cimbras de anillos. Pittel & Brausewetter realizó pruebas de este sistema entre 1893 y 1895 en edificaciones de menor escala, aunque lamentablemente ninguna de ellas ha perdurado hasta nuestros días.

Uno de sus discípulos, Fritz Emperger, desempeñó un papel fundamental en la difusión del método de Melan. En 1893, fundó en la ciudad de Nueva York la Melan Arch Construction Company, que en 1894 se encargó del diseño y la construcción de dos puentes en Rock Rapids (Iowa) y Cincinnati (Ohio). Antes de que finalizara el siglo, su empresa había construido veintisiete puentes más, entre ellos el puente sobre el río Kansas en Topeka (Kansas), edificado entre 1896 y 1897, con cinco arcos de 30 metros de luz cada uno.

A pesar del éxito de su sistema en Estados Unidos, la comunidad técnica europea mantuvo una actitud escéptica hasta que Melan diseñó en 1896 un puente en Steyr, construido bajo la supervisión de Victor Brausewetter en 1898. Esta estructura, ubicada en la ciudad de Steyr, Alta Austria, cruzaba un brazo del río homónimo mediante un arco de tres vanos, con una luz máxima de 42,4 m y una flecha extremadamente reducida de 1:16. Ese mismo año, Melan diseñó lo que probablemente sea el puente de hormigón armado más antiguo de las tierras checas, ubicado en Veveří, cuyo diseño se inspiró en el puente medieval original que cruzaba el foso del castillo. En 1901 se finalizó la construcción del Puente del Dragón de Liubliana, cuya estructura de hormigón visto combinada con revestimientos de bronce fue diseñada por el arquitecto dálmata Jurij Zaninović.

Puente del Dragón, en Liubliana. Imagen: V. Yepes (2018)

Simultáneamente, Melan resultó adjudicatario de un concurso público para el diseño de un puente vial en Lausana, destinado a conectar los distritos de Chauderon y Montbenon. Posteriormente, en 1912, Melan proyectó un puente de hormigón armado en Le Sépey, ubicado en el sur de Suiza.

Su labor académica en Praga tuvo un impacto significativo en el desarrollo de la oficina técnica de Pittel & Brausewetter, que se convirtió en un centro de formación para sus estudiantes. Entre 1908 y 1912, Konrad Kluge (1878-1945), uno de sus alumnos más distinguidos, diseñó varios puentes con arcos rígidos reforzados con vigas en L, ubicados en Debrny, Jihlava, Přísečnice (hoy desaparecida), česká Třebová y Oloví.

En 1920, recibió el título de doctor honoris causa de la Escuela Técnica Superior de Aquisgrán en reconocimiento a su labor como profesor y científico en el campo de la ingeniería de puentes, así como por sus avances como inventor de un nuevo tipo de puente de hormigón armado.

A pesar de su avanzada edad, Melan mantuvo una constante actividad profesional. En julio de 1928, Melan diseñó un puente de arco metálico en Ústí nad Labem, basado en una propuesta de Ernst Krob, director de la Autoridad de Construcción de la ciudad. La construcción de la obra se llevó a cabo entre 1934 y 1936, consolidando de este modo su legado en el ámbito de la ingeniería estructural.

Melan se erigió como una de las figuras más influyentes en la teoría y práctica de la construcción de puentes en Austria durante la transición desde la fase de formación disciplinar hasta el período de consolidación de la teoría de estructuras. Su innovación más destacada, el Sistema Melan, introdujo una metodología pionera que combinaba de manera innovadora acero y hormigón en la construcción de puentes. A partir de la década de 1890, este sistema fue ampliamente aceptado en Europa y Estados Unidos, posicionándose como una de las soluciones constructivas más avanzadas de su época. Su impacto fue reconocido con la medalla de oro en la Exposición Universal de París en 1900.

En 1893, Melan publicó sus estudios sobre arcos de hormigón reforzado con estructuras de hierro, lo que marcó un hito en la construcción mixta. Su prestigio internacional experimentó un notable incremento en 1898, con la construcción de un puente de 42,4 m de luz en Steyr, considerado el puente de hormigón armado más extenso de su época. En este caso, el arco metálico inicial se ejecutó mediante voladizos sucesivos con un atirantamiento provisional.

Más allá de sus aportes en la construcción mixta, Melan dejó una huella indeleble en la ingeniería de puentes metálicos. En 1888, Melan fue pionero en cuantificar los efectos de la teoría de segundo orden, un avance crucial en la modelización estructural. Sus tratados sobre puentes recibieron un reconocimiento internacional destacado, y en 1913, su obra sobre puentes en arco y colgantes fue traducida al inglés por el ingeniero estadounidense David B. Steinman.

Además de su labor teórica, Melan ejerció una influencia decisiva en el desarrollo de la ingeniería de grandes puentes en Estados Unidos. Colaboró con el Departamento de Puentes de Nueva York en la verificación de los cálculos del Williams Bridge y en la evaluación del Hell Gate Bridge, diseñado por la oficina del ingeniero Gustav Lindenthal. Su impacto en la construcción de puentes en Estados Unidos durante las dos primeras décadas del siglo XX fue sin precedentes.

Principales contribuciones a la teoría de estructuras

Josef Melan realizó importantes aportaciones a la teoría de estructuras a lo largo de su carrera, plasmadas en diversas publicaciones de referencia. Entre sus primeros trabajos destacan Beitrag zur Berechnung eiserner Hallen-Gespärre (1883), en el que abordó el cálculo de cerchas metálicas en naves industriales, y Ueber den Einfluss der Wärme auf elastische Systeme (1883), donde analizó los efectos térmicos en sistemas elásticos. Posteriormente, en Beitrag zur Berechnung statisch unbestimmter Stabsysteme (1884), se centró en la resolución de sistemas de barras estáticamente indeterminados.

Su obra Theorie der eisernen Bogenbrücken und der Hängebrücken (1888) estableció las bases para el diseño de puentes en arco de hierro y puentes colgantes, consolidando su prestigio en la ingeniería estructural. Años más tarde, en Theorie des Gewölbes und des Eisenbetongewölbes im besonderen (1908), amplió su estudio al análisis de bóvedas, con especial énfasis en las estructuras de hormigón armado.

Durante su etapa en la Universidad Técnica Alemana de Praga, Melan publicó Der Brückenbau, una serie de volúmenes basados en sus conferencias impartidas entre 1910 y 1917. Su influencia trascendió el ámbito europeo con la publicación en inglés de Theory of Arches and Suspension Bridges (1913) y Plain and Reinforced Concrete Arches (1915), obras que consolidaron su impacto en la ingeniería de puentes a nivel internacional.

Carlo Alberto Castigliano

Carlo Alberto Castigliano (1847-1884) https://commons.wikimedia.org/w/index.php?curid=4911407

Carlo Alberto Castigliano (Asti, 8 de noviembre de 1847 – Milán, 25 de octubre de 1884) fue un destacado ingeniero y matemático italiano, cuya labor se centró en la teoría matemática de la elasticidad y la mecánica de estructuras deformables. Su legado más reconocido son los teoremas que llevan su nombre, los cuales establecen una relación fundamental entre la fuerza aplicada y el desplazamiento experimentado por los cuerpos elásticos. Estos teoremas han sido pilares esenciales en el desarrollo de la teoría de estructuras y se utilizan ampliamente en el análisis y diseño de sistemas estructurales.

Nació en el seno de una familia de escasos recursos, siendo hijo de Giovanni Castigliano y Orsola Cerrato. Su padrastro respaldó su vocación académica al reconocer las excepcionales aptitudes del joven, y lo matriculó en el cuarto curso del Instituto Industrial de Turín. Sin embargo, debido a las difíciles circunstancias económicas familiares, Castigliano tuvo que compaginar sus estudios con trabajos esporádicos para ayudar con los ingresos del hogar. En julio de 1866, tras obtener el título de perito mecánico, realizó un curso en el Real Museo Industrial de Turín, lo que le permitió obtener la habilitación como profesor. El 10 de diciembre de ese mismo año fue nombrado profesor de construcción y mecánica aplicada en el Real Instituto Técnico de Terni, en la región de Umbría. Durante los cuatro años que permaneció en dicho cargo, se dedicó de manera incansable al estudio autodidacta de las matemáticas.

Tras obtener una excedencia en su puesto docente, Castigliano regresó a Turín en 1870, donde aprobó con distinción el examen de ingreso en la Facultad de Ciencias Matemáticas, Físicas y Naturales de la Universidad de Turín. Apenas se matriculó, escribió al rector de la universidad para solicitarle permiso para presentarse a todos los exámenes de la carrera de Matemáticas al finalizar el primer año. En marzo de 1871, recibió una respuesta favorable por parte del Ministerio de Educación y, en pocos meses, superó con éxito todos los exámenes.

Una vez licenciado, en noviembre de 1871 solicitó su inscripción en la Escuela de Aplicación para Ingenieros, actualmente conocida como Politécnico de Turín. En 1873, a pesar de las dificultades que atravesaba en su vida personal, se graduó con honores en ingeniería civil con una tesis titulada Intorno ai sistemi elastici (sobre sistemas elásticos), en la que demostraba el principio de elasticidad o teorema del trabajo mínimo, previamente enunciado por el general Luigi Federico Menabrea (1809–1896) en 1858. Durante una disputa legal con Menabrea, provocada por su tesis, Castigliano publicó en la Academia de Ciencias de Turín su memoria Nuova teoria intorno all’equilibrio dei sistemi elastici (1875), en la que formuló los teoremas sobre las derivadas del trabajo de deformación, hoy conocidos como teoremas de Castigliano, los cuales constituyen principios fundamentales de la estática estructural. Más tarde, este ensayo se convertiría en el núcleo de su principal obra Théorie de l’Équilibre des Systèmes Élastiques et ses Applications (1879).

Después de finalizar sus estudios, fue contratado como ingeniero por la compañía de ferrocarriles del norte de Italia, Strade Ferrate Alta Italia (S.F.A.I.), donde desarrolló toda su carrera profesional. Inicialmente destinado a Alba, en 1874 fue trasladado a la oficina de proyectos en Turín, y en febrero de 1875 fue designado a la sede central de la empresa en Milán. Allí se encargó del diseño y la supervisión técnica de las principales obras de la red ferroviaria del norte de Italia. Como miembro de la junta directiva, reorganizó el fondo de pensiones de la empresa. Lamentablemente, no pudo culminar su ambicioso proyecto de un Manuale pratico per gli ingegneri (manual práctico para ingenieros) antes de su prematura muerte.

Los últimos años de su vida fueron especialmente dolorosos. Tras la muerte de dos de sus hijos —Carlo en 1883, a los pocos meses de nacer, y Emilia en 1884, a los tres años—, Castigliano contrajo una neumonía de la que falleció en octubre de 1884.

Además de su obra Manuale pratico per gli ingegneri, que dejó incompleta y fue publicada parcialmente de manera póstuma (en cuatro volúmenes, entre 1882 y 1888), sus contribuciones más significativas fueron sus trabajos sobre el equilibrio de las estructuras elásticas. En 1879 y 1880, publicó los dos volúmenes de su estudio fundamental sobre este tema: Théorie de l’équilibre des systèmes élastiques et ses applications.

Poco después de su fallecimiento, Emil Winkler rindió homenaje a Castigliano en una presentación en la Sociedad de Arquitectos de Berlín (1884), donde destacó la relevancia del segundo teorema de Castigliano para los fundamentos de la teoría de estructuras. Este teorema sería, años más tarde, el centro de una controversia académica entre Mohr y Müller-Breslau.

Principales contribuciones a la teoría de estructuras:

  • Intorno ai sistemi elastici [1875/1]
  • Intorno all’equilibrio dei sistemi elastici [1875/2]
  • Nuova teoria intorno all’equilibrio dei sistemi elastici [1875/3]
  • Théorie de l’Équilibre des Systèmes Élastiques et ses Applications [1879]
  • Intorno ad una proprietà dei sistemi elastici [1882]
  • Theorie des Gleichgewichtes elastischer Systeme und deren Anwendung [1886]
  • The Theory of Equilibrium of Elastic Systems and its Applications [1966]

Os dejo un par de vídeos sobre el teorema de Castigliano. Espero que os sea de interés.