Investigación sobre la optimización de las emisiones de carbono en proyectos internacionales de construcción

Acaban de publicarnos un artículo en Scientific Reports, revista indexada en el JCR. El documento enfatiza la importancia de contar con modelos de evaluación sólidos para abordar las emisiones y de carbono en los proyectos internacionales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El trabajo presenta el proyecto del puente marítimo de Suramadu en Indonesia, construido según el modelo EPC por el gobierno chino, y muestra las especificaciones de diseño detalladas y los procesos de construcción. Además, establece un modelo de evaluación de las emisiones de carbono de los proyectos de inversión internacionales, que integra ocho etapas para analizar las fugas de carbono, destacando la importancia de evaluar con precisión las emisiones de carbono en los proyectos internacionales.

De Sakurai Midori – Trabajo propio, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=8028163

El documento contribuye al demostrar la fiabilidad y la naturaleza científica de los datos de evaluación mediante la combinación de la bibliografía, la evaluación y el acoplamiento multidisciplinario de modelos matemáticos, lo que contribuye a la formulación de políticas de emisiones y aranceles al carbono.

Analiza de manera innovadora los complejos efectos de acoplamiento de varios datos e indicadores de incertidumbre en los proyectos internacionales, proporcionando modelos y evaluaciones precisos de los efectos interactivos, algo esencial para los responsables políticos.

Abstract:

Due to the rapid economic development of globalization and the intensification of economic and trade exchanges, cross-international and regional carbon emissions have become increasingly severe. Governments worldwide establish laws and regulations to protect their countries’ environmental impact. Therefore, selecting robustness evaluation models and metrics is an urgent research topic. This article proves the reliability and scientificity of the assessment data through literature coupling evaluation, multidisciplinary coupling, mathematical model, and international engineering case analysis. The innovation of this project’s research lies in the comprehensive analysis of the complex coupling effects of various discrete data and uncertainty indicators on the research model across international projects and how to accurately model and evaluate interactive effects. This article provides scientific measurement standards and data support for governments worldwide to formulate carbon tariffs and carbon emission policies. Case analysis data shows that the carbon emission ratio of exporting and importing countries is 0.577:100; the carbon trading quota ratio is 32.50:100.

Keywords:

Construction industry, Environmental impact, Carbon trading, Model evaluation.

Reference:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

Como el artículo está publicado en abierto, os lo paso para su descarga:

Descargar (PDF, 10.82MB)

El puente de Murillo de Gállego

Figura 1. Antiguo puente de Murillo de Gállego. Imagen: V. Yepes (2024)

Los dos puentes, en la comarca de La Hoya de Huesca, suponen el retrato de cómo un río es capaz de arruinar un puente. Ambas estructuras están ubicadas en las proximidades del pueblo de Murillo de Gállego, en la comarca de La Hoya de Huesca, aunque geográficamente pertenecen a la provincia de Zaragoza. Se accede a ellos a través de la carretera autonómica A-132, que conecta Huesca con Puente la Reina de Jaca. Estas estructuras se sitúan a pocos metros antes de llegar al punto kilométrico 36 en dirección ascendente.

El puente actual, de principios de la década de los años 40 del siglo XX, se alza a pocos metros del antiguo (Figura 2), que debió de inaugurarse sobre el año 1898. Aunque parcialmente intacto, este último aún se erige en algunos tramos, evocando la grandeza y la belleza que alguna vez poseyó. Se construyó en hormigón en masa revestido por una excelente cantería, de talla muy regular. Destacan sus cuatro arcos apuntados u ojivales, que aún se mantienen en pie en su mayoría, con la excepción de un tramo de estructura metálica y plano que conectaba ambas orillas. Fue víctima de una crecida en agosto de 1942, cuando las aguas alcanzaron una altura superior a los 7,5 metros, tres más que la mayor riada registrada en 1900. Se trataba de una estructura mixta. En efecto, en la Figura 2 se puede ver que el vano central del puente se salvaba con una viga metálica en celosía inferior compuesta por barras diagonales entrecruzadas que trazaban una retícula reforzada a su vez por barras verticales, según el sistema Howe, muy aplicado a finales del XIX y principios del XX.

Figura 2. Puente viejo sobre 1940. https://loboquirce.blogspot.com/2016/06/puentes-de-murillo-de-gallego-huesca.html

En aquel entonces, se evaluó el emplazamiento más idóneo para la construcción del puente que lo reemplazaría, apenas a 150 metros río abajo. El puente actual, construido en hormigón y con tablero plano, tiene una longitud aproximada de 64 metros y una anchura de calzada, junto con los pretiles, de 9,60 metros. Está diseñado en una disposición diagonal con respecto al curso del río. Destaca por un gran arco central de tipo parabólico, cuyos tímpanos se aligeran con seis arquillos a cada lado. Además, presenta arcos de medio punto en los extremos (cuatro en el margen derecho y dos en el izquierdo), los cuales se elevan considerablemente sobre el cauce. En cada extremo, se encuentran estribos robustos revestidos de piedra caliza. El pretil, también construido en hormigón y contemporáneo al resto del puente, exhibe una serie continua de huecos cajeados en su frente.

Este nuevo puente, además de soportar un considerable tráfico vehicular, se utiliza para la práctica del puenting, una actividad que se suma al rafting, senderismo y ciclismo de montaña, ofreciendo a la región un paisaje de aventura y emociones. A 1,5 kilómetros del casco urbano de la localidad se encuentra el puente sobre el río Gállego en la carretera A-132, desde donde se realiza un salto de 25 metros de altura hasta casi rozar el agua.

Figura 3. Actual puente de Murillo de Gállego. Imagen: V. Yepes (2024)

Os dejo un vídeo sobre este emplazamiento y otro sobre la actividad de puenting.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

Severino Bello y la Presa de La Peña (Huesca)

Figura 1. Presa de La Peña. Imagen: V. Yepes (2024)

La presa de La Peña fue proyectada por el ingeniero Severino Bello Poëyusan, habiéndose terminado las obras el 24 de julio de 1913. Su tipología es de arco gravedad, con una altura de 61 m desde cimientos, con una longitud de coronación de 111,70 m, siendo la capacidad de las aguas embalsadas de 15 hm³. La presa, que recoge las aguas del río Gállego, se sitúa en la Hoya de Huesca, dentro del término municipal de Las Peñas de Riglos. Este río, después de recoger las aguas del Pirineo en el extenso Valle de Tena, atraviesa el estrecho de Biescas (donde, sesenta años después, se construiría la presa de Búbal) y fluye hacia Sabiñánigo. El vaso del embalse está situado sobre las margas blandas e impermeables. Los cimientos de la presa se anclan en las calizas, que aunque son resistentes, presentan el problema de la karstificación. La presa se encuentra en explotación, siendo su titular el Sindicato de Riegos Pantano La Peña.

Severino Bello (1866 – 1940), nacido en Madrid, fue un destacado ingeniero español. Realizó su bachillerato en las Escuelas Pías de San Fernando y se graduó como Ingeniero de Caminos en 1889. Trabajó en Huesca, donde diseñó un salto hidroeléctrico en el río Gállego, y luego dirigió las obras de la presa de La Peña. En 1913 organizó el Primer Congreso Nacional de Riegos en Zaragoza, recibiendo la Gran Cruz del Mérito Agrícola. Más tarde, en 1915, supervisó los Riegos del Alto Aragón. Se destacó por su labor en el Canal de Isabel II y en proyectos de abastecimiento de agua en Bilbao. Fue presidente del Consejo Nacional de la Energía en 1928. Se casó en 1900 y tuvo siete hijos, uno de ellos Pepín Bello, conocido por su relación con Buñuel, Lorca y Dalí. Jubilado en 1933, su legado técnico y familiar perdura.

Figura 2.
Figura 2. Presa de la Peña, de arco gravedad. Imagen: V. Yepes (2024)

Para mitigar caudales estimados en 2900 m³/s, que elevaban el nivel del río hasta 20 m por encima del nivel normal, Bello implementó medidas adicionales, además de la tradicional galería inferior de limpieza, hoy en desuso. Dispuso dos desagües de fondo, cada uno con capacidad para 16 m³/s, en ambas orillas, junto con cuatro tomas superiores de 4 m³/s cada una, ubicadas en la margen izquierda y agrupadas. Estas últimas se canalizan a través de un túnel hasta un conducto de desagüe escarpado excavado en la roca, que lo dirige hacia la presa, donde el agua cae muy cerca de su base.

Siguiendo las normativas vigentes en ese entonces, se decidió separar el aliviadero del muro principal y ubicarlo en un túnel apartado de la estructura principal. Este sistema consta de diez túneles paralelos, cada uno controlado por compuertas basculantes automáticas de alzas móviles, dispuestas en línea. Cada compuerta tiene la capacidad de desaguar 30 m³/s y se activa conforme sea necesario. En aquel tiempo, la construcción de nueve túneles más pequeños se consideraba más manejable que la de uno o dos de mayor tamaño. La presión del agua, al alcanzar un nivel predefinido, supera la resistencia de los contrapesos, provocando el movimiento de las compuertas. Cada compuerta está equilibrada con contrapesos a ambos lados, conectados mediante bielas de acero, que se distribuyen simétricamente a lo largo de la línea, creando una estructura similar a un rastrillo plateado que se adhiere a la ladera.

Figura 3. Túnel del embalse de La Peña. Imagen: V. Yepes (2024)

La construcción de la presa se llevó a cabo utilizando mampostería revestida de grandes sillares meticulosamente labrados, salvo en áreas críticas como los cierres de las galerías, que se realizaron en hormigón armado recubierto de fundición. Las compuertas, fabricadas en fundición con todas sus partes mecánicas de bronce, aún están en uso, salvo los elementos motrices que fueron reemplazados alrededor de 1998, así como las compuertas automáticas del aliviadero. Las sólidas barandillas de tubo de hierro son un ejemplo representativo de la calidad de los materiales utilizados en la presa, la cual fue diseñada para una operación y mantenimiento cómodos, siguiendo el estilo de las obras hidráulicas realizadas durante esa época en el Canal de Isabel II.

En esta ubicación, destaca el túnel del embalse de La Peña, con una longitud de 47 m, excavado en caliza y datado a principios del siglo XX, siendo construido simultáneamente con el embalse de La Peña, que se inauguró en 1913. Durante gran parte del siglo pasado, este túnel formaba parte de la antigua carretera de Tarragona a San Sebastián (N-240), la vía principal de acceso al Pirineo central aragonés. Al norte del túnel, comienza un puente de celosía metálica que atraviesa el cuerpo del embalse, mientras que al sur se encuentra un pequeño apartadero que permite estacionar y visitar la imponente y antigua presa de tipo arco-gravedad construida con sillares de piedra caliza. Además, al oeste del túnel se sitúan otros diez túneles sobredimensionados, con longitudes entre 220,5 y 244 m, que funcionan como aliviaderos del embalse, con una capacidad sorprendente de 2900 m³/s. Es importante mencionar que el puente, el túnel y el embalse fueron construidos simultáneamente. En la actualidad, estas dos infraestructuras de comunicación se han vuelto estrechas y presentan algunos problemas de circulación.

Figura 4. Puente de celosía metálica del embalse de La Peña. Imagen: V. Yepes (2024)

Referencias:

  • Aguiló, Miguel; 2002. La enjundia de las presas españolas. ACS, Madrid, p.200-202.
  • Bello Poeyusan, Severino; 1914. Coste de las obras hidráulicas en España. En: I Congreso Nacional de Riegos, Zaragoza. 2 al 6 de octubre de 1913. G. Casañal, Zaragoza, 1914: tomo II, L1-L126, p.57L.
  • Noticiero; 1908. Pantano de la Peña: fundación de las ataguías por aire comprimido. Revista de Obras Públicas, 1908, 56, tomo I (1730): 553-555.
  • Noticiero; 1910. Un triunfo de la ingeniería: el pantano de la Peña y Severino Bello. Revista de Obras Públicas, 1910, 58, tomo I (1821): 389-395.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nuestro proyecto de aerogeneradores en el Anuario InfoRUVID 2023

Es un placer compartir la noticia de que uno de mis proyectos ha sido seleccionado para su inclusión en la sección TECNOLOGÍA de nuestro Anuario InfoRUVID 2023, donde se presentan algunas de las noticias de investigación más relevantes que tuvieron lugar durante el año 2023 y que ya fueron recogidas en alguna de las ediciones mensuales del boletín digital InfoRUVID.

Tanto el boletín como el anuario son editados por la Red de Universidades Valencianas para el fomento de la I+D+i (RUVID) para visibilizar y poner en valor el trabajo investigador que se desarrolla en las universidades y el CSIC de la Comunitat Valenciana y del cual nos sentimos muy orgullosos.

Accede a la versión web del Anuario InfoRUVID 2023 en https://bit.ly/AnuarioInfoRUVID2023, donde podrás consultarlo online o descargarlo en pdf, tanto la versión completa como cada una de sus secciones por separado.

Asimismo, te invitamos a que lo compartas con todas aquellas personas a las que consideres que les podría interesar. ¡Difundamos entre todos el talento de nuestras universidades!

Nuevos criterios de ANECA para la acreditación de profesores titulares y catedráticos de universidad

En el día de hoy, 20 de marzo de 2024, ANECA ha publicado los nuevos criterios para la acreditación de profesores titulares y catedráticos de universidad.

Es un tema que me afecta directamente, pues en este momento soy el Secretario de la Comisión 15 Ingeniería Civil. Aunque es difícil acertar con este tipo de criterios, parece ser que son las nuevas reglas de juego. Espero que se mantengan cierto tiempo para no desviar los esfuerzos de la comunidad docente universitaria. Os paso el preámbulo del documento publicado:

La evaluación de méritos y competencias para la acreditación estatal a los cuerpos docentes universitarios se realizará de acuerdo con el Procedimiento desarrollado por ANECA en aplicación del Real Decreto 678/2023, de 18 de julio. Deberá presentarse un currículo abreviado, en el que se reflejarán las aportaciones más relevantes de la actividad investigadora, incluyendo la de transferencia e intercambio del conocimiento, de la actividad docente, y de la actividad profesional, en su caso. Para la acreditación a Catedrática o Catedrático de Universidad (CU) deben reflejarse en el CV, además, los méritos y competencias de liderazgo.

La evaluación se basará en la selección de contribuciones y en la narrativa sobre su calidad, relevancia e impacto aportadas por la persona solicitante. Con la finalidad de ayudar a realizar una autoevaluación a las personas solicitantes, se concretan algunas valoraciones cuantitativas orientativas de los distintos apartados y se explicitan los indicios cualitativos que tomarán en consideración las comisiones para emitir su juicio técnico.

El resultado de la evaluación será favorable o desfavorable. Será favorable cuando el solicitante obtenga la suficiencia, entendida como un mínimo de 50 puntos sobre los 100 posibles, en cada uno de los bloques establecidos: actividad investigadora, de transferencia e intercambio del conocimiento, actividad docente y, para la acreditación a CU, liderazgo. Los mínimos expresados en cada tabla son imprescindibles para poder conseguir la acreditación correspondiente. La suficiencia en actividad profesional referida en el Bloque 4 solo será necesaria para la acreditación en las áreas clínicas de Ciencias de la Salud.

En la acreditación a Profesora o Profesor Titular de Universidad (PTU), para obtener una evaluación favorable será necesario alcanzar la suficiencia investigadora, incluyendo la actividad de transferencia e intercambio del conocimiento, la suficiencia docente y, en el caso de las áreas clínicas de Ciencias de la Salud, la suficiencia en la actividad profesional. En la acreditación a CU, para obtener una evaluación favorable será necesario alcanzar la suficiencia investigadora, incluyendo la actividad de transferencia e intercambio del conocimiento, la suficiencia docente, la suficiencia en liderazgo y, en el caso de las áreas clínicas de Ciencias de la Salud, la suficiencia en la actividad profesional.

Para ambos cuerpos, las personas solicitantes que hayan desarrollado su carrera principalmente en una institución no universitaria dedicada a la investigación, o en una universidad extranjera en la que el cómputo y los instrumentos de medición de la calidad de la actividad docente resulten difíciles de trasladar al sistema español, podrán obtener la acreditación sin necesidad de cumplir con el conjunto de los méritos y competencias de actividad docente siempre que acrediten resultados de investigación excepcionales, esto es, cuando hayan obtenido financiación del Consejo Europeo de Investigación (ERC) en sus programas de excelencia investigadora Starting Grant, Consolidator Grant, Advanced Grant o Synergy Grant, o en otras convocatorias competitivas individuales internacionales de prestigio y tasa de concesión comparables a las de estos programas.

En el caso de Profesoras y Profesores Titulares de Escuela Universitaria, la acreditación a PTU se hará conforme a la disposición adicional tercera del Real Decreto 678/2023, de 18 de julio, entendiéndose que justifican una trayectoria excelente en actividad docente quienes obtengan, en el Bloque 2, 90 puntos o más. Las mismas reglas se aplicarán en el supuesto previsto por la disposición adicional quinta del real decreto para las Profesoras y los Profesores estables o permanentes de los centros de titularidad pública de enseñanza superior (INEF).

Las Comisiones, en la aplicación de estos criterios y como se explicita en los apartados siguientes, se ajustarán en todo caso a lo establecido por la Resolución de la Directora de ANECA, de 28 de febrero de 2024, por la que se hacen públicos los criterios para garantizar que la igualdad, la conciliación y la inclusión sean efectivas en las evaluaciones del profesorado universitario y del personal investigador. Con carácter general, las comisiones tendrán en cuenta y valorarán —cuando se justifiquen adecuadamente— las situaciones especiales que afecten a criterios de evaluación de difícil cumplimiento para personas con discapacidad.

Para aquellos de vosotros que os interese, os dejo el documento para su descarga.

Descargar (PDF, 321KB)

La desaparecida Pasarela de la Exposición de Valencia

Figura 1. Puente de la Exposición Regional Valenciana de 1909. https://es.m.wikipedia.org/wiki/Archivo:Puente_de_la_Exposicion_Regional_Valenciana.jpg

Los antecedentes de la Pasarela de la Exposición hay que buscarlos en el puente de madera desmontable que, cada año, se colocaba cerca de la feria, comunicando el llano del Remedio con la Alameda, por la mitad del paseo. Esta estructura no reuniría las condiciones de seguridad necesarias para la muchedumbre que por ella transitaba.

La Exposición Regional de 1909 hizo necesario un paso formal entre el Gobierno Militar y los alrededores del paso de la Alameda. Se construyó, en solo tres meses, la primera obra de hormigón armado en Valencia, obra del ingeniero José Aubán Amat. La empresa que se encargó de su construcción fue Miró, Trepat y Compañía, siendo el inspector de las obras el ingeniero Luis Dicenta. La obra, con un coste de 143.000 pesetas, se inauguró por Alfonso XIII, el 22 de mayo de 1909, con motivo de la solemne apertura de la Exposición. Sin embargo, faltaban las pruebas de carga, por lo que la circulación no puedo abrirse hasta el 5 de julio.

Figura 2. Pasarela de la Exposición. https://paseandoporvalencia.com/09-puente-de-la-exposicion/

Fue una pasarela adusta y funcional, con una sencilla ornamentación modernista, arcos rebajados que conferían ligereza y una buena composición, destacando sus hermosas farolas sobre los pretiles. Esta obra supuso un gran impulso en la urbanización de la fachada septentrional del paseo de la Alameda, que se materializó en la siguiente década. Su longitud total fue de 166,30 m, con un ancho de tablero de 8,47 m y ocho vanos de 19,25 m de luz. Sin embargo, la estructura no pudo con la embestida de la catastrófica riada de 1957 (Figura 3).

Figura 3. Rotura de la Pasarela de la Exposición por la riada de 1957. https://youvalencia.com/index.html/2015/10/13/hasta-aqui-llego-riada-1957/

La pasarela modernista fue sustituida por una estructura funcional, primero peatonal y luego reformada en los años sesenta para el tráfico rodado, conservando el nombre de “pasarela”. El nuevo puente entró en servicio el 23 de septiembre de 1967, con un presupuesto que ascendió a más de 9 millones de pesetas de la época (Figura 4). El tablero permitía una calzada central de 6,10 m de anchura, con aceras laterales de 2,50 m, dando una anchura total de 11,10 m para una longitud total de 120 m. Tenía siete arcos muy escarzanos, siendo el primero y el último más bajo para formar las rampas de acceso y descenso, siendo los tres centrales de mayor luz, 26 m. Las pilas estaban formadas por un chapado de sillería.

Figura 4. Nueva Pasarela de la Exposición. http://www.jdiezarnal.com/valenciapuentedecalatrava.html

Esta estructura ha sido sustituida por el Puente de la Alameda, de Santiago Calatrava. Pero de este puente ya hablaremos en otro momento.

Referencia:

YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Una aproximación histórica, estética y constructiva a la Valencia foral. Universitat Politècnica de València, 372 pp. Registro de la Propiedad Intelectual 09/2011/643.

Toma de decisiones sobre infraestructuras viarias sostenibles: NSGA-II con operadores de reparación para optimización multiobjetivo

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El trabajo trata sobre la toma de decisiones en infraestructuras viales sostenibles. Para ello se utiliza una variante personalizada de la técnica NSGA-II con operadores de reparación para una optimización multiobjetivo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El documento propone un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad. El estudio evalúa la eficacia de tres operadores de reparación a la hora de optimizar los objetivos económicos, ambientales y sociales, y utiliza algoritmos personalizados y un análisis del ciclo de vida (LCA) para una evaluación precisa. Los resultados muestran que el operador de reparaciones basado en estadísticas ofrece soluciones con un menor impacto en todas las dimensiones y demuestra una variabilidad mínima, lo que lo convierte en el más adecuado para cumplir con los requisitos de diseño del RCPMF.

Las contribuciones más importantes de este trabajo son las siguientes:

  • El documento presenta un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad.
  • El estudio evalúa la eficacia de tres operadores de reparación (basados en estadísticas, aleatorios y de proximidad) a la hora de optimizar los objetivos económicos, ambientales y sociales.
  • El artículo presenta una versión personalizada del algoritmo NSGA-II (NSGA-II) de clasificación no dominada, complementada con un análisis detallado del ciclo de vida (LCA), para facilitar la evaluación precisa de las funciones objetivas.
  • El artículo demuestra el uso de dos técnicas de MCDM, a saber, la ponderación aditiva simple (SAW) y (FUCA), para puntuar y clasificar las soluciones MOO.
  • La investigación proporciona una estrategia clara y metódica para integrar el MOO y el MCDM, formando un marco coherente para la implementación práctica en contextos de ingeniería complejos.
  • El estudio destaca la importancia de tener en cuenta los principios de sostenibilidad desde la fase de diseño y de emplear las técnicas de MOO para encontrar soluciones equilibradas y óptimas en la ingeniería civil.

Abstract:

Integrating sustainability principles into the structural design and decision-making processes for transportation infrastructure, particularly concerning reinforced concrete precast modular frames (RCPMF), is recognized as crucial for ensuring environmentally responsible, economically feasible, and socially beneficial outcomes. In this study, this challenge is addressed, with the significance of sustainable development in modern engineering practices being underscored. A novel approach, which combines multi-objective optimization (MOO) with multi-criteria decision-making (MCDM) techniques, is proposed, tailored specifically for the design and selection of RCPMF. The effectiveness of three repair operators—statistical-based, random, and proximity based—in optimizing economic, environmental, and social objectives is evaluated. Precise evaluation of objective functions is facilitated by a customized Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, complemented by a detailed life cycle analysis (LCA). The utilization of simple additive weighting (SAW) and fair un choix adéquat (FUCA) methods for the scoring and ranking of the MOO solutions has revealed that notable excellence in meeting the RCPMF design requirements is exhibited by the statistical-based repair operator, which offers solutions with lower impacts across all dimensions and demonstrates minimal variability. MCDM techniques produced similar rankings, with slight score variations and a significant correlation of 0.9816, showcasing their consistent evaluation capacity despite distinct operational methodologies.

Keywords:

Multi-objective optimization; multi-criteria decision-making; modular structure; life cycle sustainability; NSGA-II; simple additive weighting; fair un choix adéquat.

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Descargar (PDF, 1.06MB)

Pont de les Arts de Valencia

Figura 1. Vista inferior del Pont de les Arts (Valencia).

El Pont de les Arts, construido en los últimos años del siglo XX, coincide con la transformación del antiguo cauce del Turia en el parque más extenso de Valencia. Les Arts destaca por su singularidad al unir dos zonas históricas e incorporar entre ambas el Institut Valencià d’Art Modern (IVAM). Este puente, que simboliza la modernidad en contraste con los antiguos y próximos puentes de piedra, está formado por dos tableros separados por 20 m, apoyados transversalmente en una única pila que no interfiere con el cercano e histórico Puente de San José. El puente, con una longitud total de 145 m, se compone de cinco vanos distribuidos en segmentos de 20-36-36-36-20 m respectivamente. Su diseño fue cuidadosamente concebido para destacarse como un elemento visual en armonía con el entorno del Jardín del Turia. Presenta un diseño moderno, construido con hormigón, de gran amplitud y longitud, situado a baja altura con respecto al lecho del río. Debajo, a diario, el río cobra vida con numerosos campos deportivos, pistas de atletismo y su carril bici.

Este puente (1993-1998) fue proyectado por Norman Foster en colaboración con la oficina Carlos Fernández Casado, S.L. (Leonardo Fernández, Javier Manterola, Miguel A. Ástiz, José Cuervo y Agustín Sevilla). Su construcción la realizó FCC Fomento de Construcciones y Contratas, con un presupuesto de 2.094 millones de pesetas, con un plazo de ejecución de 18 meses que terminó en junio de 1998. La estructura cruza el Jardín del Turia, conectando los barrios de Tendetes con los de El Carmen y El Botánico. Además, enlaza las calles Pare Ferrís y Mauro Guillén, así como la avenida Menéndez Pidal con el Paseo de la Petxina y las calles Guillem de Castro, Na Jordana y Blanqueria. En el extremo sur del puente se encuentra el IVAM, que da nombre al conjunto de las Arts, y el Centro Cultural la Beneficència, que alberga el Museo Etnológico de Valencia.

Figura 2. Detalle de las pilas del Pont de les Arts (Valencia)

El puente se construyó sobre cimbra, avanzando del cuarto de la luz de un vano al cuarto de la luz del siguiente, conectando las unidades de pretensado en las juntas. La singularidad del proceso residió en ejecutar ambos tableros simultáneamente para equilibrar las cargas en las pilas, y tesar los tableros y la pila al mismo tiempo para que los tres elementos entren en carga a vez. Para lograr este objetivo, el proceso de tensado comienza con una primera fase de tesado de la pila, seguida por el tesado del tablero y, finalmente, se completa el tesado de la pila una vez completado el vano siguiente.

Se compone de dos tableros de hormigón de 20 m de ancho, separados entre sí otros 20 m, unidos por cuatro pilas de doble ménsula sujetas por un único fuste, a modo de candelabro. De esta pila central sobresalen farolas blancas de 15 m de altura. La unión entre el tablero y la pila se caracteriza por su rigidez, pues la intersección forma parte tanto del tablero longitudinal como de la ménsula transversal.

Figura 3. Vista de la calzada del Pont de les Arts (Valencia)

Para evitar que el puente adopte la configuración de un pórtico múltiple, lo que generaría momentos transversales importantes en las pilas que se convertirían en torsión en las ménsulas, se han incorporado apoyos de neopreno entre la pila y la cimentación. Este diseño garantiza que el tablero funcione como una viga continua, eliminando la presencia de momentos transversales en la pila. Además, se ha prestado especial atención a la protección de estos neoprenos para prevenir su deterioro.

Los vanos laterales también se apoyan sobre neoprenos en los cabezales, actuando como estribos tras el muro de piedra. El tablero es una losa continua de canto variable, definida por cuatro superficies. En primer lugar, el trasdós del tablero es una superficie plana definida por la plataforma de la vía. El intradós, en cambio, se compone de tres cilindros de directriz circular. Dos de estos cilindros presentan generatrices paralelas al eje del tablero, intersectándose en una línea paralela a dicho eje, situada en su proyección vertical. Esta disposición genera un prisma de sección triangular con dos superficies cilíndricas y una tercera superficie plana que corresponde al trasdós del tablero. A su vez, este prisma se corta con un tercer cilindro con generatrices horizontales, pero normales a las anteriores. Este tercer cilindro corta al prisma en los vértices inferiores de los extremos del vano, generando la sección triangular del prisma como la sección del tablero en los arranques. En el centro del vano, la sección adquiere la forma de un trapecio con lados no paralelos curvos. Esta geometría genera un tablero con canto variable en el vano principal, presentando canto máximo de 1,50 m en el arranque que tiene forma triangular y canto mínimo de 0,70 m en el centro del vano. Los vanos de compensación, que son ligeramente mayores que la mitad del central, se forman al dividir el vano principal por la mitad y prolongar la sección en clave.

Las pilas, que se proyectan en forma de ménsula, requieren que el tablero sea lo más ligero posible para reducir al mínimo la flexión en estas zonas. Por esta razón, la sección presenta la forma de cajón multicelular en las zonas con mayor canto del tablero. En la parte superior de las pilas, el tablero se ensancha como un balcón, destacando así el efecto de ménsula de las pilas. La base de la pila tiene un ancho de 23,30 m, y se prolonga en ménsulas hacia ambos lados hasta alcanzar un ancho de 60 m; como resultado, los voladizos laterales tienen una longitud de 18,34 m.

Las ménsulas presentan un espesor constante de 1 m y un canto variable, siendo mínimo en el extremo con 0,65 m, y alcanzando su máximo a 7,50 m del eje del puente, donde llega a los 5,50 m. En este punto la ménsula se bifurca en dos elementos: un tirante superior de hormigón que se extiende hasta la pila central, y el diafragma inferior que va reduciendo su canto hasta llegar al pie del mismo pilar central. La configuración resultante de este aligeramiento adopta una forma elíptica, cortada en su eje vertical por el pilar donde se empotran los tirantes.

Los pilares verticales, responsables de sostener los tirantes de hormigón, culminan de manera elegante con farolas de 15 m de altura. Estas estructuras no solo cumplen la función de iluminar ambas plataformas del puente, sino que están resueltas con tubos y chapas metálicas, sirviendo como un remate estilizado para los pilares y contribuyendo a la estética global del puente.

Figura 4. Detalle de las farolas del Pont de les Arts (Valencia)

 

Evaluación del desarrollo sostenible de la industria de la construcción

Nos acaban de publicar en la revista Sustainable Cities and Society (1/68, CONSTRUCTION & BUILDING TECHNOLOGY, primer decil del JCR) un artículo relacionado con la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Se corresponde con la colaboración internacional que mantiene nuestro grupo de investigación con la Hunan University of Science and Engineering, de China. El primer autor, Prof. Zhou, sigue perteneciendo a nuestro grupo de investigación, pues desarrolló con nosotros su tesis doctoral.

Los datos de la investigación muestran que la industria de la construcción en China alcanzará su pico más alto de emisiones, según la evaluación del ciclo de vida en 2030 y tendrá emisiones nocivas entre 2061 y 2098. La evaluación del impacto social indica que se alcanzará su punto máximo en 2048.

Las contribuciones más relevantes de esta investigación son las siguientes:

  • El artículo innova modelos teóricos, como la «ponderación de la sensibilidad de la respuesta estructural», a través de una investigación interdisciplinaria, que aborda las limitaciones de la precisión de la iteración multifactorial, multidiscreta, con múltiples restricciones y con un bajo acoplamiento.
  • La investigación proporciona un sistema integral de teoría de la investigación y estándares de referencia para el cálculo científico y la evaluación precisa del desarrollo sostenible de la industria de la construcción en varios países del mundo.
  • El documento presenta un modelo, el «peso de sensibilidad a la respuesta estructural (SRSW)», que determina de forma precisa e intuitiva los resultados de la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.
  • La investigación incluye estudios de casos para demostrar la solidez del modelo, y muestra el pico de emisiones y las emisiones nocivas más altas de la industria de la construcción en China según la evaluación del ciclo de vida más alto.
  • La investigación contribuye al campo de la investigación sobre sostenibilidad en la industria de la construcción, ya que proporciona información y datos para que los responsables políticos y los profesionales tomen decisiones informadas con respecto al entorno ecológico.

ABSTRACT:

Sustainability research in the construction industry is of great strategic significance to the ecological environment of countries worldwide. This paper innovates theoretical models such as “structural response sensitivity weight” through interdisciplinary research on advanced mathematics, engineering science, computer science, environmental management and economic sociology. The model solves the limitations of multi-factor, multi-discrete, multi-constraint and low coupling iteration accuracy. The article shows the robustness of the model through case studies. The research data shows that the construction industry in China will reach its highest life cycle assessment emission peak of 2.73 GT in 2030 and will have harmful emissions of -2.78 GT between 2061 and 2098. The social impact assessment will peak at 4.26 GT in 2048 and harmful emissions of −3.75 GT per year from 2061 to 2098. This research provides a comprehensive research theory system and reference standards for scientific calculation and accurate assessment of the sustainable development of the construction industry in various countries around the world.

KEYWORDS:

Gross domestic product; Life cycle cost; Life cycle assessment; Social impact assessment; Topology optimization.

REFERENCE:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

La editorial ELSEVIER permite el acceso directo y gratuito a este artículo hasta el 8 de marzo de 2024. El enlace para la descarga es: https://authors.elsevier.com/c/1iRse7sfVZE2dg

 

El Puente de San José sobre el viejo cauce del Turia en Valencia. Una aproximación histórica, estética y constructiva

Puente de San José, en el antiguo cauce del Turia (Valencia). Imagen: V. Yepes

El Puente de San José, conocido también como Pont Nou, de la Santa Cruz o de la Saïdia, tuvo sus antecesores en palancas de madera, sucesivamente arrasadas por la impetuosidad del río Turia a lo largo de los años. El nombre de San José se debe a que en 1628 se estableció el convento carmelita homónimo de las monjas descalzas junto al Portal Nou (Melió, 1997:64). De los cinco puentes construidos en la época foral, es el que está situado más aguas arriba, además de ser el último edificado. Comunica esta estructura el barrio de Roters, por el desaparecido Portal Nou, con el Llano de la Saïdia, Marxalenes, Tendetes y Campanar. En este tramo fluvial se situaba la zona del Cremador inquisitorial, paraje donde eran quemados literalmente los reos. Por cierto, el último ajusticiado por la intolerancia fue el maestro de escuela Cayetano Ripoll, que murió ahorcado junto al puente, el 31 de julio de 1826, quemando sus restos en un barril.

Es muy probable que en época musulmana existiese alguna pasarela que conectase la ciudad con el palacio de la reina Saïdia. Sin embargo, las primeras referencias a esta estructura, del año 1383, se refieren a una pequeña pasarela conocida como “Palanca del Cremador”, rudimentaria y de escaso valor estratégico para las comunicaciones viarias de la ciudad. Apenas salvaría la anchura del cauce del río y sufrió, a lo largo del tiempo, episodios de crecidas que arrasaron, total o parcialmente, su estructura. Rosselló y Esteban (2000:23) indican que la estructura, entonces de madera, se hundiría en 1406. Serra (1994:116) refiere la participación de Joan del Poyo en los trabajos que desarrolló, entre los años 1435 y 1439, en la palanca o puente de madera del Portal Nou. Se documenta que la riada del 28 de octubre de 1487 derribó la palanca del Portal Nou y lo mismo ocurriría el 20 de agosto de 1500. Decididos a terminar con estas vicisitudes, se decidió construir un puente de cantería, pero fue derribado en apenas una hora con ocasión de la furiosa avenida del 27 de septiembre de 1517, día de los santos Cosme y Damián. (Carmona).

Os dejo a continuación el artículo completo.

Referencia:

YEPES, V. (2010). El Puente de San José sobre el viejo cauce del Río Turia en Valencia. Una aproximación histórica, estética y constructiva. Universitat Politècnica de València, 13 pp. DOI:10.13140/RG.2.2.29846.73287

Descargar (PDF, 1.79MB)