La diversidad cultural en ingeniería: multiplica la creatividad y mejora la resolución de problemas

En el mundo profesional, la diversidad de los equipos a menudo se percibe como un desafío de gestión: un complejo puzle de estilos de comunicación y normas culturales que deben ensamblarse cuidadosamente para evitar fricciones. Esta visión, aunque comprensible, pasa por alto una verdad fundamental.

En lugar de ser un obstáculo que superar, la diversidad cultural es, en realidad, un «superpoder» para la innovación y la resolución de problemas complejos. Esto es especialmente cierto en campos técnicos como la ingeniería, donde la convergencia de múltiples perspectivas puede revelar soluciones que un grupo homogéneo nunca encontraría.

Un estudio reciente con 79 estudiantes de grado y de máster en ingeniería, muchos de ellos internacionales, arroja luz sobre este fenómeno y revela algunas verdades sorprendentes sobre cómo funcionan realmente los equipos multiculturales. Este artículo resume los hallazgos más importantes de dicha investigación.

La diversidad no solo enriquece: mejora activamente la capacidad de resolver problemas

El primer gran hallazgo del estudio es contundente. Lo sorprendente no es que la diversidad sea valorada, sino el consenso casi absoluto que genera en un campo que a menudo se estereotipa como puramente técnico e individualista. Según el estudio, los estudiantes de ingeniería perciben de forma abrumadora que la diversidad cultural no solo enriquece las interacciones y fomenta la creatividad, sino que también mejora directamente la capacidad de decisión y la capacidad del equipo para resolver problemas.

El dato que lo respalda es rotundo: la afirmación «La diversidad cultural y las experiencias previas de los estudiantes mejoran la dinámica de aprendizaje, así como la capacidad para resolver problemas en equipo» obtuvo una puntuación media de 4,19 sobre 5. Desde una perspectiva pedagógica, este dato es crucial, ya que no se trata de una teoría abstracta, sino de la percepción directa de las personas que experimentan sus beneficios en tareas colaborativas complejas.

Las mujeres lo ven aún más claro

Al profundizar en los datos, el estudio halló una diferencia estadísticamente significativa en la percepción entre hombres y mujeres. Las estudiantes encuestadas mostraron un grado de acuerdo «significativamente mayor» que el de sus compañeros varones respecto a la idea de que la diversidad mejora la resolución de problemas en equipo. El análisis de los intervalos de confianza del 95 % para las medias no se solapa, lo que indica que esta diferencia no es casual.

Lo que esto sugiere es fascinante. Este hallazgo podría reflejar una mayor sintonía con la dinámica de grupo o una valoración más acentuada de los beneficios de la colaboración y la comunicación, competencias que la diversidad pone de manifiesto. Este resultado abre una interesante línea de investigación sobre cómo diferentes grupos experimentan y valoran la dinámica colaborativa.

El valor de la diversidad se aprecia más cuando se experimenta de primera mano

El estudio comparó las respuestas de grupos de máster, compuestos casi en su totalidad por estudiantes internacionales, con las de un grupo de grado, en el que el 70 % de los encuestados eran españoles. El resultado fue revelador: el grupo de grado, más homogéneo, valoró en menor medida el impacto positivo de la diversidad. La conclusión del estudio es directa y contundente: queda claro que cuanto mayor es la diversidad, más se valora.

Esto no significa que los grupos homogéneos rechacen la diversidad. Más bien, subraya un principio fundamental del aprendizaje intercultural: la apreciación de la diversidad no es un ejercicio teórico, sino una competencia que se desarrolla mediante la inmersión y la experiencia directa. Para valorar plenamente sus beneficios, primero hay que experimentarlos.

No es un beneficio mágico, sino el resultado de dos factores clave

Quizás la aportación más poderosa del estudio es desmitificar el proceso. Si bien muchas investigaciones confirman que la diversidad es beneficiosa, este estudio indaga en el porqué y traslada la conversación del «qué» al «cómo». Mediante un análisis estadístico, los investigadores identificaron los dos mecanismos principales que explican esta percepción positiva.

Esta habilidad se basa en dos factores específicos y medibles:

  1. Desarrollo de habilidades interpersonales: Trabajar en equipos diversos impulsa a sus miembros a mejorar sus habilidades de comunicación y negociación, lo que facilita directamente la colaboración técnica.
  2. Un entorno de ideación más rico: La diversidad cultural en el aula crea un ambiente más dinámico que fomenta un mayor intercambio de ideas, lo que enriquece la comprensión global de los problemas.

Estos dos factores, por sí solos, explican el 63,3 % de la percepción positiva, lo que demuestra que los beneficios de la diversidad no son abstractos, sino que se traducen en una mejora tangible de la comunicación y de la generación de ideas.

Conclusión: De la convivencia a la estrategia

Los resultados de este estudio reafirman una idea fundamental: la diversidad cultural no es una obligación social, sino un recurso estratégico para la innovación. Hemos pasado de intuir que se trata de un «superpoder» a comprender la mecánica que lo activa: fomenta mejores habilidades de comunicación y genera un ecosistema de ideas más rico.

Aunque puedan existir pequeños desafíos de integración, reflejados en la puntuación más baja en el ítem sobre las dificultades para unificar ideas, los beneficios en la creatividad, la toma de decisiones y el desarrollo de competencias son mucho mayores. No aprovechar este motor de forma deliberada es una enorme oportunidad perdida.

Así pues, nos queda una última pregunta: si la diversidad es un motor tan potente de la innovación y ya sabemos cómo funciona, ¿estamos haciendo lo suficiente para fomentarla estratégicamente en nuestros equipos y organizaciones?

En este audio os dejo una conversación sobre este tema.

Por otra parte, en este vídeo, podéis ver las cuestiones más interesantes planteadas.

Referencia:

Yepes, V.; Yepes-Bellver, L. y Martínez-Pagán, P. (2025). Impacto de la diversidad cultural en la resolución colaborativa de problemas en la docencia universitaria de ingeniería. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 y 18 de julio de 2025. Doi: https://doi.org/10.4995/InRed2025.2025.20606

También les dejo el artículo completo.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El diagrama causa-efecto: herramienta fundamental para entender y mejorar procesos

Un diagrama de causa y efecto es una representación visual compuesta por líneas y símbolos que muestra claramente la relación entre un efecto (o problema) y sus posibles causas. A este tipo de representación también se le conoce como diagrama de Ishikawa o diagrama de espina de pescado, debido a su semejanza con el esqueleto lateral de un pez. El efecto se coloca a la derecha (como la «cabeza» del pez), mientras que las causas principales se disponen a la izquierda, ramificándose desde un eje central y subdividiéndose en causas menores.

Origen y fundamento

El primer diagrama fue desarrollado en 1943 por Kaoru Ishikawa, un químico industrial japonés y profesor de la Universidad de Tokio, pionero del control de calidad en Japón. Aunque el concepto básico existía desde los años veinte, Ishikawa lo perfeccionó, sistematizó y popularizó como una de las siete herramientas básicas de control de calidad.

Propósito y funcionamiento

La utilidad principal del diagrama es investigar efectos —ya sean «malos», para corregirlos, o «buenos», para entender qué causas los propician—, reconociendo que un efecto puede provenir de múltiples causas a distintos niveles de profundidad. Generalmente, se organiza en categorías como métodos de trabajo, materiales, medición, personal, ambiente y, a veces, administración o mantenimiento, de donde surgen causas secundarias (por ejemplo, subcategorías bajo «métodos» como capacitación o características físicas del personal).

Paso a paso para elaborarlo

  1. Definir el efecto o problema de calidad y colocarlo a la derecha del pliego o en la «cabeza» del diagrama.
  2. Dibujar el eje principal (espina) y, de sus costados, los huesos principales que representan categorías de causas (p. ej., 6 M: método, máquina, mano de obra, materiales, medición, medio ambiente).
  3. Identificar causas secundarias mediante una sesión de lluvia de ideas (brainstorming) en equipo, aprovechando el pensamiento creativo y evitando juicios prematuros.
  4. Subdividir cada causa principal en causas menores (a partir de preguntas como «¿por qué?», «¿qué?», o «¿quién?»).
  5. Cuando se agotan las ideas, se inicia una sesión de evaluación, donde cada miembro vota por las causas menores más probables; las más votadas se destacan y se priorizan (normalmente cuatro o cinco).
  6. Se proponen soluciones, evaluadas según criterios como costo, factibilidad o resistencia al cambio; una vez acordadas, se implementan, se prueban y el diagrama se actualiza y coloca en lugares visibles para consulta continua.

Claves para hacer más eficaz la lluvia de ideas

  • Asegurar una participación equitativa: cada miembro recomienda ideas por turno; si alguien no tiene, pasa, pero puede retomarlas después.
  • Promover cantidad sobre calidad: las ideas «tontas» pueden desencadenar las mejores soluciones.
  • Evitar las críticas durante la generación de ideas y hacer una evaluación posterior.
  • Utilizar un papel grande (por ejemplo, de 60 x 90 cm), visible y pegado en la pared para fomentar la participación.
  • Fomentar una atmósfera enfocada en soluciones, no en quejas; el líder guía con preguntas clave.
  • Dejar incubar las ideas (por ejemplo, una noche) y luego retomarlas con más estímulos creativos.

Aplicación y beneficios estratégicos

El diagrama tiene aplicaciones casi ilimitadas, desde la fabricación, la investigación y las ventas hasta las oficinas, la educación, la sanidad, etc. Entre sus principales usos destacan:

  1. Mejorar la calidad del producto o servicio, optimizar recursos y reducir costos.
  2. Detectar y eliminar causas de no conformidades o quejas del cliente.
  3. Estandarizar procesos actuales y propuestos.
  4. Formar y entrenar al personal en toma de decisiones y acciones correctivas.

Tipos de diagramas relacionados

Además del tipo más común (enumeración de causas), existen variantes como:

  • Diagrama de dispersión: se trabaja completamente una rama antes de pasar a otra, para investigar la variabilidad.
  • Diagrama de proceso: cada paso del proceso (como carga, corte, ensamblado) se usa como causa principal, útil para procesos operativos o continuos.

Conclusión

El diagrama causa-efecto o diagrama de Ishikawa es una herramienta visual muy potente para representar y comprender cómo múltiples causas contribuyen a un efecto determinado. Su valor reside en su estructura clara, su enfoque sistemático, su aplicación colaborativa y su versatilidad. Su eficacia depende de una elaboración rigurosa, que incluye desde la definición precisa del problema hasta la evaluación participativa y la implementación de soluciones, pasando por el uso estratégico de la lluvia de ideas. Todo ello, junto con su capacidad de adaptación a diferentes contextos, lo convierte en una metodología viva y útil para la enseñanza, la industria y la gestión.

Os dejo varios vídeos de esta técnica.

Referencias:

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los motivos por los que se equivocan estudiantes y profesionales de ingeniería al abordar la resolución de problemas

Resolver problemas en el ámbito universitario o profesional, en áreas tecnológicas, de ingeniería y ciencias, puede plantear una serie de desafíos que pueden conducir a errores. Estos fallos pueden surgir por diversas razones que van desde no comprender el concepto subyacente hasta confiar demasiado en la tecnología.

En un artículo anterior mencioné algunos ejemplos de problemas teóricamente sencillos, pero que marean a nuestros estudiantes. Ahora vamos a analizar detalladamente algunas de estas razones y cómo se relacionan entre sí. También he incluido enlaces a otros artículos del blog donde reflexiono sobre este tipo de cuestiones.

La falta de comprensión del concepto subyacente a un problema es una preocupación fundamental. Esto puede manifestarse de diversas formas, ya sea a través de errores conceptuales, una aplicación incorrecta del concepto o una interpretación errónea del mismo. Esta falta de entendimiento puede empeorar si se carece de experiencia o conocimientos específicos en el campo correspondiente. Cuando un estudiante o profesional se enfrenta a un problema para el que no tiene experiencia previa, puede tener dificultades para aplicar correctamente los principios necesarios para resolverlo.

Los datos son fundamentales para encontrar soluciones, sin embargo, su calidad y disponibilidad pueden ser problemáticos. La falta de datos adecuados, la presencia de información contradictoria o sesgada pueden conducir a conclusiones incorrectas. Asimismo, centrarse excesivamente en utilizar todos los datos disponibles puede distraer de la información realmente importante, al tiempo que validar datos sesgados o inventados puede conducir a conclusiones incorrectas.

El manejo inadecuado de las bases matemáticas también puede ser una fuente de errores (geometría, trigonometría, cálculo o álgebra). Esto puede incluir errores en el cálculo, así como el uso inapropiado de fórmulas o modelos matemáticos. Los problemas reales rara vez tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Además, el uso excesivo de la memoria en lugar de la comprensión de los principios subyacentes puede conducir a errores conceptuales y de selección de modelos de cálculo.

Los aspectos psicológicos también son importantes. El estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración pueden afectar a la capacidad de resolver problemas de manera efectiva. La falta de atención a los detalles, la fatiga y el agotamiento también pueden provocar errores en la resolución de problemas.

Es crucial comprender que los problemas reales pueden ser complejos y no tener necesariamente una solución única. Esto implica la necesidad de tomar decisiones informadas y comprender las limitaciones de los modelos o fórmulas utilizados. Además, la propagación de errores en las operaciones y el uso incorrecto de datos, fórmulas o software pueden dar lugar a resultados erróneos.

La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos una y otra vez. La falta de comunicación o colaboración entre profesionales en entornos de trabajo también puede provocar errores en la resolución de problemas. Confiar ciegamente en la tecnología o en herramientas automatizadas sin comprender en profundidad los principios subyacentes puede ser un problema.

En resumen, resolver problemas en el ámbito universitario o profesional de la ingeniería y las ciencias puede ser un proceso complejo y propenso a errores debido a una variedad de factores interrelacionados. Desde la comprensión del concepto hasta la calidad y disponibilidad de los datos, así como los aspectos psicológicos y técnicos relacionados con la resolución de problemas, es crucial abordar estos desafíos con atención y comprensión para lograr soluciones precisas y efectivas. Desde las universidades debe hacerse todo lo posible para superar este tipo de dificultades y conseguir que nuestros estudiantes adquieran las competencias necesarias para su posterior desarrollo profesional.

Sin querer ser exhaustivo, y sin que estén ordenadas por importancia, aquí os dejo una lista de 30 posibles causas por las cuales nuestros estudiantes en los exámenes o los técnicos en su ámbito profesional, suelen cometer errores al resolver los problemas. Estoy convencido de que hay más causas, pero esto puede ser un buen punto de partida para el debate y la reflexión. En el vídeo que he grabado, me extiendo y explico algo más lo que aquí recojo como una simple lista.

  1. La falta de comprensión del concepto subyacente en un problema puede conducir a errores conceptuales al aplicarlo incorrectamente o interpretarlo de manera errónea.
  2. La inexperiencia o la falta de conocimientos específicos pueden surgir cuando una persona afronta por primera vez un tipo de problema, ya sea durante un examen o en la práctica profesional.
  3. Los problemas relacionados con la disponibilidad de datos pueden presentarse de varias formas, como datos insuficientes, necesarios, innecesarios o contradictorios. A menudo, existe una obsesión por utilizar todos los datos disponibles en el enunciado del problema.
  4. La calidad de los datos también es un factor importante, con la posibilidad de incertidumbre o error en los datos disponibles. Además, dar por válidos datos sesgados, interesados o inventados puede llevar a conclusiones incorrectas. Es necesario un control de calidad de los datos.
  5. Intentar resolver un problema utilizando el enfoque típico visto en clase puede marear a nuestros estudiantes. Los alumnos prefieren resolver un problema típico explicado en clase, a ser posible, con datos parecidos.
  6. El manejo inadecuado de las bases matemáticas, que incluye errores en el cálculo, el uso incorrecto de fórmulas o modelos matemáticos, y la falta de comprensión de los principios subyacentes, puede ser una fuente común de errores. La falta de conocimientos básicos de geometría, trigonometría, álgebra o cálculo básicos son, en ocasiones, escollos. A veces hay dificultades en saber dibujar un esquema para resolver el problema.
  7. Los problemas reales generalmente no tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Esta distinción, que se da claramente entre los estudios de grado y los de máster, es importante tenerla en cuenta.
  8. Los aspectos psicológicos, como el estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración, pueden afectar negativamente la capacidad para resolver problemas de manera efectiva.
  9. La falta de atención o interés, así como la fatiga o el agotamiento, pueden contribuir a errores en la resolución de problemas, al igual que la prisa por resolver el problema.
  10. La complejidad de los problemas puede aumentar cuando se trata de situaciones poco comunes o rebuscadas, lo que requiere un enfoque cuidadoso y creativo para su resolución.
  11. Es crucial comprender la diferencia entre una ley general y una fórmula particular al aplicar normas técnicas que pueden estar basadas en hipótesis o casos específicos.
  12. Utilizar modelos de cálculo inadecuados, ya sean demasiado refinados o demasiado simples para los datos disponibles, puede conducir a soluciones incorrectas.
  13. Carecer de números estimativos para prever el resultado final puede resultar en una falta de comprensión del orden de magnitud del resultado. En este sentido, el uso de nomogramas en la docencia facilita la adquisición de este tipo de habilidad en los estudiantes. Los estudiantes y los profesionales deberían tener un conocimiento del «número gordo» y saber predimensionar.
  14. Es importante ser consciente de la propagación de errores en las operaciones, ya que incluso pequeños errores pueden magnificarse y llevar a resultados incorrectos.
  15. Utilizar fórmulas, datos o tablas en un contexto diferente al que dieron origen puede llevar a interpretaciones incorrectas o a soluciones erróneas.
  16. La extrapolación de resultados a límites no contemplados puede conducir a conclusiones incorrectas o poco realistas.
  17. Utilizar fórmulas empíricas con datos expresados en unidades diferentes a las que funcionan puede generar resultados inconsistentes o incorrectos.
  18. La dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede conducir a errores en la selección de modelos o fórmulas de cálculo.
  19. Errores conceptuales pueden llevar a la selección incorrecta de modelos o fórmulas de cálculo, lo que resulta en soluciones erróneas.
  20. El uso de software defectuoso o poco contrastado, así como la falta de habilidades para calcular manualmente un problema, pueden resultar en resultados incorrectos. A esto se une un uso inapropiado de la inteligencia artificial.
  21. El mal uso de ecuaciones o fórmulas, como cambiar el nombre de una variable sin entender el concepto subyacente, puede conducir a errores en la resolución de problemas.
  22. La falta de competencia o experiencia en una materia determinada puede resultar en una resolución incorrecta del problema.
  23. Repetir la resolución de problemas de un contexto a otro sin pensar en su validez puede conducir a soluciones inapropiadas.
  24. La falta de comprensión del problema, la pregunta o el tipo de resultado esperado puede resultar en soluciones incorrectas debido a la falta de comprensión lectora, capacidad analítica o de síntesis.
  25. La utilización de unidades defectuosas, notaciones o convenciones específicas puede llevar a interpretaciones erróneas o a soluciones incorrectas.
  26. La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez.
  27. La falta de comunicación o colaboración en entornos de trabajo entre profesionales puede contribuir a errores en la resolución de problemas.
  28. La confianza excesiva en la tecnología o herramientas automatizadas puede llevar a la falta de comprensión de los principios subyacentes y a la comisión de errores.
  29. La falta de revisión o verificación de los cálculos realizados por parte de un tercero independiente puede resultar en soluciones incorrectas.
  30. La falta de conocimiento del contexto del problema, incluyendo las restricciones, puede conducir a soluciones subóptimas o incorrectas.

Os paso un vídeo donde he desarrollado las ideas anteriores, con ejemplos, y he dejado algunas de mis reflexiones al respecto. Espero que os guste.

Os dejo un podcast sobre este tema (en inglés), generado por una IA sobre el vídeo.

Aquí tenéis un mapa conceptual que también os puede ayudar.

Artículos relacionados en el blog:

Los ingenieros, los ordenadores y mil un indios

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Cifras significativas y errores de medición

¿Cómo predimensionar un muro sin calculadora?

La inteligencia artificial en la ingeniería civil

Introducción a la toma de decisiones

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Referencias de libros de problemas:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2023). Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras. Ediciones UPCT. Universidad Politécnica de Cartagena, 284 pp. ISBN: 978-84-17853-62-4

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ideas sobre la docencia de la asignatura de Procedimientos de Construcción

En el prólogo de obras anteriores, mencioné que la enseñanza de “Procedimientos de Construcción” es complicada, ya que implica instruir a futuros ingenieros civiles sobre la realización de obras. Este proceso abarca no solo las fases constructivas, sino también aspectos de gran relevancia, como el manejo de maquinaria y medios auxiliares, la seguridad y salud, el impacto ambiental de las obras, y sobre todo, conocimientos fundamentales en geotecnia, resistencia de materiales, mecánica, cálculo de estructuras, gestión de empresas, planificación de obras y economía. Todo este conjunto de conocimientos es esencial para tomar decisiones acertadas al seleccionar el mejor proceso constructivo para un proyecto específico. Además, debemos abordar toda esta información, considerando que la mayoría de los alumnos tienen poca o nula experiencia práctica en relación con el entorno físico de las obras.

Una dificultad adicional radica en la creación de un conjunto ordenado y coherente de problemas resueltos que no sean meramente teóricos, sino que se acerquen al mundo real de la profesión. Esta tarea resulta compleja en ocasiones, pues los procedimientos constructivos requieren conocimientos que abarcan casi todas las áreas de la ingeniería. En consecuencia, explicar esta asignatura en los primeros cursos de un grado universitario puede parecer arriesgado, debido a la amplia gama de conocimientos necesarios. Sin embargo, los planes de estudio a veces presentan estas incongruencias y desafíos en la enseñanza de esta materia.

Al final ha salido un volumen extenso, con una amplia variedad de problemas resueltos, que intenta abarcar todo el campo de conocimiento de los procedimientos de construcción, incluyendo la maquinaria y los medios auxiliares utilizados tanto en la ingeniería civil como en la edificación, e incluso en algunos casos, en la minería.

Esta colección forma parte del conjunto de materiales, libros y documentación que he elaborado como autor, complementando así el contenido teórico de la asignatura. Por esta razón, recomiendo al lector que acuda a manuales, libros o apuntes para reforzar la parte teórica de los problemas. No obstante, he incluido una extensa bibliografía que espero sea útil para este propósito. Además, me complace recomendar mi blog, que cuenta con
una trayectoria de casi 12 años y ha recopilado cerca de 2.000 artículos relacionados con aspectos de la ingeniería de la construcción. Puedes encontrarlo en el siguiente enlace: https://victoryepes.blogs.upv.es/.

El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.

Por último, y a pesar de que he puesto todo el empeño en resolver y revisar cada uno de los problemas, es posible que existan erratas o errores. Por ello, agradezco de antemano cualquier sugerencia o mejora que pueda ser útil para futuras ediciones. Espero sinceramente que este libro que tiene en sus manos contribuya a mejorar la calidad de la enseñanza de este tipo de asignaturas y que se convierta en una herramienta valiosa tanto para estudiantes como para profesionales. Su éxito en el aprendizaje y aplicación de los procedimientos de construcción es mi mayor deseo.

Valencia, a 25 de julio de 2023

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Pincha aquí para descargar

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Cuando llevas casi 28 años impartiendo una asignatura, examen tras examen, llega un momento que te falta cierta imaginación para no repetir los problemas. Con toda la buena intención del mundo, propones un ejercicio que crees sencillo de resolver y luego te das cuenta que es más difícil de lo que habías planeado.

Si analizas las posibles causas te das cuenta que no suele fallar lo que se explica en clase, sino ciertos conceptos muy básicos que deberían haberse adquirido en Bachiller, o incluso en Secundaria. Mi impresión es que algunos estudiantes prefieren aprender un método o forma de solucionar un problema antes de pensar un poco e intentar resolverlo. Voy a poner algún ejemplo de estos problemas, con su solución para que veáis de qué estoy hablando.

Pincha aquí para descargar

Referencias:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3