La experiencia profesional en la ingeniería y la arquitectura. La necesidad de un cambio en la valoración del profesorado universitario

En España, las Escuelas de Ingeniería y Arquitectura ofrecen títulos universitarios habilitantes para ejercer profesiones reguladas en sectores fundamentales como la arquitectura, la medicina y la ingeniería. Este modelo formativo no solo tiene como objetivo proporcionar una sólida base teórica, sino también formar profesionales competentes para afrontar los retos del mundo laboral. Las Escuelas de Ingenieros de Caminos, Canales y Puertos ejemplifican la estrecha vinculación entre la docencia y la práctica profesional, siendo históricamente referentes gracias a sus catedráticos, quienes han combinado la labor académica con la ejecución de importantes proyectos de infraestructura.

Historia y vínculo con la práctica profesional

Desde sus inicios —como la Escuela de Ingenieros de Caminos de Madrid, fundada en 1802— estas instituciones han contado con profesores de reconocido prestigio internacional que han liderado y gestionado obras de gran envergadura (puentes, presas y puertos, entre otras). La experiencia directa acumulada en el campo aporta un valor añadido incalculable, ya que permite a los egresados no solo dominar la teoría, sino también comprender y aplicar soluciones reales a los desafíos técnicos y constructivos. La integración de la práctica profesional en la enseñanza resalta la inseparabilidad entre ciencia y técnica, base imprescindible para la formación completa del ingeniero.

Limitaciones del modelo universitario actual

El sistema universitario vigente ha privilegiado el desarrollo de la carrera investigadora y académica, orientando a estudiantes brillantes hacia el doctorado, contratos predoctorales, estancias de investigación y la promoción en el escalafón universitario. Si bien este enfoque es fundamental para el avance científico, en el ámbito de la ingeniería ha llevado a descuidar la incorporación de conocimientos derivados de la experiencia práctica de alto nivel. En las últimas décadas, se ha reducido drásticamente la presencia de profesores con una sólida trayectoria profesional en la dirección de grandes obras, lo que genera una desconexión entre el conocimiento teórico y las habilidades prácticas necesarias en el ejercicio profesional.

La figura del profesor asociado

Se ha sugerido que la figura del profesor asociado podría compensar la carencia de profesionales con experiencia práctica en el claustro universitario. No obstante, este modelo presenta áreas de mejora, ya que dichos profesionales, aunque compaginan la actividad práctica con la docencia, tienen contratos que impiden desarrollar, a largo plazo, una carrera académica estable y sólida. Esta situación limita su participación en procesos de investigación y en la toma de decisiones estratégicas a largo plazo, mermando la transferencia directa de conocimientos prácticos a las nuevas generaciones.

La necesidad de integrar la experiencia profesional en la academia

La ausencia de expertos con amplia experiencia en grandes proyectos de ingeniería repercute directamente en la formación de los estudiantes, quienes terminan sus estudios con un conocimiento teórico destacado, pero con habilidades y experiencia práctica mejorables para su incorporación en el mercado laboral. Esta limitación dificulta la transición profesional, pues las empresas y organismos demandan ingenieros capaces de aplicar sus conocimientos en la ejecución y gestión de obras complejas. Ante esta situación, resulta imperativo revisar los criterios de evaluación del profesorado universitario, de manera que la Agencia Nacional de Evaluación de la Calidad y Acreditación (ANECA) reconozca y valore especialmente la experiencia profesional de calidad al evaluar a este tipo de docentes.

Propuesta para la integración de profesionales en el ámbito universitario

Para solventar la brecha entre la formación teórica y la práctica profesional, se plantea la necesidad de crear nuevas vías de incorporación de profesionales con amplia experiencia en el ejercicio de la ingeniería al ámbito académico. Estas nuevas estructuras permitirían a dichos profesionales desarrollar una carrera académica paralela, estable y digna, sin renunciar a su actividad práctica. Resulta fundamental que esta reforma venga acompañada de una modificación en los criterios de evaluación de las instituciones, integrando los méritos derivados de la experiencia profesional junto a la excelencia investigadora. Modelos internacionales —como los desarrollados en Alemania, Canadá y Suiza— demuestran que es factible conciliar la actividad profesional y académica de manera efectiva, facilitando una mayor transferencia de conocimientos prácticos a los estudiantes y mejorando la conexión entre la formación y las necesidades del mercado laboral.

Conclusión y propuesta de acción

España no puede seguir anclada en un modelo educativo que excluya a aquellos profesionales que cuentan con la experiencia práctica necesaria para enriquecer la formación de los ingenieros. Es urgente la realización de una reforma que integre la experiencia profesional en la valoración del profesorado universitario, garantizando así una educación completa que responda a las exigencias del siglo XXI. En este sentido, se debería revisar en profundidad los criterios de evaluación del profesorado en la docencia de las profesiones reguladas y alcanzar un acuerdo que permita la incorporación efectiva de profesionales con trayectoria en la docencia y la investigación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Docencia e inteligencia artificial: nuevas estrategias para educadores

La educación está experimentando una transformación sin precedentes gracias a los avances en inteligencia artificial (IA). La integración de la IA en el ámbito educativo ha traído consigo oportunidades y desafíos que requieren una adaptación rápida por parte de los docentes y los sistemas de enseñanza.

Esta revolución tecnológica ha dado lugar a la automatización de tareas administrativas, la personalización del aprendizaje, la optimización de evaluaciones y el desarrollo de nuevas metodologías de enseñanza que mejoran la eficiencia del aula. Sin embargo, su implementación también genera preocupaciones relacionadas con la equidad, la privacidad de los datos y la ética en la educación.

Este informe explora en profundidad cómo los docentes pueden aprovechar la IA para mejorar sus prácticas pedagógicas y hacer frente a los desafíos emergentes. Se proporcionarán ejemplos detallados, herramientas específicas y estrategias que permitirán a los educadores integrar esta tecnología de manera efectiva y responsable en sus aulas.

1. Inteligencia artificial generativa y su aplicación en la docencia

1.1. Definición y características

La inteligencia artificial generativa es una rama avanzada de la IA que emplea redes neuronales profundas para crear contenido original en formato de texto, imágenes, audio y vídeo. Este tipo de IA puede proporcionar respuestas personalizadas y adaptadas a distintos contextos de aprendizaje, lo que la convierte en una herramienta muy útil en el ámbito educativo.

Algunos ejemplos notables de IA generativa son ChatGPT, que puede generar respuestas detalladas en múltiples idiomas; DALL-E, que crea imágenes a partir de descripciones textuales, y Bard AI, que ofrece información en tiempo real a partir de consultas específicas.

El uso de estas herramientas en la docencia permite mejorar la interacción con los estudiantes, proporcionar materiales personalizados y fomentar un aprendizaje más dinámico. Además, la IA generativa puede ayudar en la corrección de textos, la generación de pruebas automatizadas y la creación de contenidos visuales para reforzar los conceptos enseñados en el aula.

1.2. Aplicaciones en el aula

Las aplicaciones de la inteligencia artificial (IA) generativa en la enseñanza son diversas y pueden utilizarse en diferentes áreas del conocimiento. Entre las más destacadas se encuentran:

  • Creación de material didáctico: la IA permite generar rápidamente presentaciones, resúmenes y documentos de apoyo para los estudiantes. Herramientas como Canva AI o Tome AI facilitan la producción de diapositivas atractivas con contenido relevante.
  • Automatización de respuestas: los docentes pueden utilizar chatbots educativos como PersonalChat para responder de manera inmediata a las dudas recurrentes de los estudiantes.
  • Evaluaciones y retroalimentación: plataformas como Gradescope permiten corregir exámenes de manera automatizada, lo que reduce la carga de trabajo de los docentes y asegura una evaluación más objetiva.
  • Generación de contenido multimedia: con herramientas como Runway AI y Pictory, los docentes pueden crear vídeos educativos personalizados y mejorar la experiencia de aprendizaje.

Un ejemplo concreto de su aplicación es el uso de ChatGPT en universidades para ayudar a los estudiantes en la redacción de ensayos, proporcionando estructuras sugeridas y correcciones gramaticales detalladas. Esto no solo mejora la calidad de los trabajos académicos, sino que también fomenta la autonomía y la autoevaluación de los estudiantes.

2. Personalización del aprendizaje y evaluación con IA

2.1. Aprendizaje adaptativo

Uno de los mayores beneficios de la inteligencia artificial (IA) en la educación es su capacidad para personalizar el aprendizaje en función del nivel y el ritmo de cada estudiante. Gracias al análisis de datos, los algoritmos de IA pueden identificar fortalezas y debilidades de los alumnos y ajustar los contenidos educativos en tiempo real para optimizar su rendimiento académico.

Algunas plataformas que utilizan este enfoque son:

  • Khan Academy con IA ofrece ejercicios personalizados según el nivel de conocimiento del estudiante.
  • Duolingo AI: adapta la dificultad de los ejercicios de idiomas en función del progreso del usuario.
  • Carnegie Learning ofrece tutorías de matemáticas con IA, que adaptan las preguntas al rendimiento del estudiante.

Este enfoque permite que los estudiantes reciban una educación más centrada en sus necesidades individuales, lo que reduce las brechas de aprendizaje y mejora la retención del conocimiento.

2.2. Evaluación automatizada

Otro aspecto crucial de la IA en la educación es la optimización del proceso de evaluación. Tradicionalmente, corregir exámenes y tareas supone un gran esfuerzo para los docentes. Gracias a herramientas como Gradescope y ZipGrade, ahora es posible evaluar pruebas de manera instantánea, proporcionar retroalimentación detallada y reducir el margen de error.

Además de la corrección automatizada, la IA puede utilizarse para analizar el rendimiento de los estudiantes a lo largo del tiempo y predecir posibles dificultades académicas. Por ejemplo, la plataforma Edsight AI recopila datos sobre las respuestas de los alumnos y genera informes personalizados con recomendaciones para mejorar su rendimiento.

A pesar de sus ventajas, la evaluación automatizada debe complementarse con métodos tradicionales para garantizar una comprensión profunda de los conceptos por parte de los estudiantes y evitar depender exclusivamente de algoritmos para medir los conocimientos.

3. Desafíos y consideraciones éticas

3.1. Sesgo en los algoritmos

Uno de los principales desafíos de la IA en la educación es la presencia de sesgos en los modelos de aprendizaje. Dado que las IA se entrenan con grandes volúmenes de datos históricos, pueden reflejar prejuicios existentes en la sociedad, lo que podría afectar negativamente a la equidad de la enseñanza.

Para minimizar estos riesgos, es fundamental que los docentes supervisen el contenido generado por IA y utilicen diversas fuentes para contrastar la información. Además, se recomienda fomentar el pensamiento crítico entre los estudiantes para que evalúen la veracidad y la imparcialidad de los datos proporcionados por estos sistemas.

3.2. Privacidad y seguridad de datos

El uso de la IA en la educación implica la recopilación y el análisis de grandes volúmenes de datos sobre los estudiantes. Para proteger su privacidad, es crucial que las instituciones educativas implementen regulaciones estrictas sobre el almacenamiento y uso de la información personal.

Algunas estrategias recomendadas son:

  • Utilización de plataformas con altos estándares de seguridad, como Microsoft Copilot y Google AI Education.
  • Concienciar sobre la importancia de la privacidad y enseñar a los estudiantes a gestionar sus datos de forma segura en entornos digitales.
  • Cumplimiento de normativas de protección de datos, como el Reglamento General de Protección de Datos (RGPD) en Europa.

Conclusiones

La inteligencia artificial está revolucionando la educación, ya que ofrece nuevas posibilidades para mejorar la enseñanza y el aprendizaje. Sin embargo, su implementación debe realizarse de manera responsable, garantizando el papel central del docente y promoviendo el uso ético de la tecnología.

Para maximizar sus beneficios, es esencial que los educadores se mantengan actualizados sobre las últimas tendencias en IA y adopten herramientas que complementen sus metodologías de enseñanza. La combinación de innovación tecnológica con estrategias pedagógicas efectivas transformará la educación y preparará a los estudiantes para los desafíos del futuro.

Os dejo un documento de la Universidad de Burgos que profundiza en el tema. Espero que os resulte de interés.

Pincha aquí para descargar

Innovación en la enseñanza de la ingeniería: uso de la nomografía y software abierto para la representación gráfica de ecuaciones

Acaban de publicar nuestro artículo en la revista Plos One, del primer cuartil del JCR. El artículo presenta una propuesta innovadora para la enseñanza de la ingeniería mediante la aplicación de la nomografía, una técnica matemática que se utiliza para representar gráficamente ecuaciones complejas. Su principal contribución es la introducción del software Nomogen, una herramienta basada en Python que permite generar nomogramas de tres variables de manera rápida y precisa, sin necesidad de manipular determinantes ni realizar dibujos manuales.

El estudio también demuestra la viabilidad de la nomografía como recurso didáctico en la enseñanza de la ingeniería, ya que facilita la interpretación de ecuaciones multivariables y reduce los errores en cálculos repetitivos. A través de una metodología experimental aplicada a estudiantes de ingeniería de diferentes niveles, los autores confirman que existe un renovado interés en el uso de nomogramas en entornos educativos, puesto que destacan su utilidad como complemento a los métodos digitales convencionales.

Los resultados del estudio revelan que, aunque el 78,4 % de los estudiantes encuestados nunca habían utilizado nomogramas, el 86,5 % reconoció su capacidad para interpretar fenómenos con múltiples variables de manera clara. Esta percepción constituye un argumento sólido a favor de la integración de la nomografía en los programas de ingeniería.

El uso del software Nomogen permitió superar las limitaciones tradicionales de la nomografía, ya que elimina la complejidad matemática inherente a su construcción manual. La posibilidad de generar gráficos precisos y adaptables a diferentes contextos hace que la herramienta sea accesible para estudiantes y docentes.

El análisis de las respuestas de la encuesta también reveló diferencias en la valoración de los nomogramas según el nivel formativo de los estudiantes. Los estudiantes en etapas avanzadas de sus estudios mostraron una mayor valoración de su utilidad en cuanto a la comprensión de fenómenos con múltiples variables.

El estudio abre diversas oportunidades de desarrollo futuro en los campos de la ingeniería y la educación. Algunas áreas que podrían explorarse son:

  1. Ampliación del uso de nomogramas en otras disciplinas: Evaluar su aplicabilidad en áreas como la mecánica de suelos, hidráulica y estructuras, donde la representación gráfica de ecuaciones puede simplificar análisis complejos.
  2. Integración de inteligencia artificial: Incorporar algoritmos de aprendizaje automático para optimizar la generación de nomogramas y mejorar su precisión en función de patrones detectados en bases de datos de ingeniería.
  3. Desarrollo de herramientas interactivas: Explorar la posibilidad de crear versiones digitales interactivas de los nomogramas, que permitan una manipulación dinámica de las variables en tiempo real.
  4. Evaluación longitudinal de su impacto educativo: Realizar estudios a largo plazo para analizar la retención del conocimiento y la eficacia del aprendizaje cuando se incorporan nomogramas en la enseñanza de la ingeniería.
  5. Comparación con otros métodos gráficos: Investigar la efectividad de la nomografía frente a otras técnicas de visualización de datos, como los diagramas de contorno o los gráficos tridimensionales en programas informáticos especializados.

Este artículo representa un avance significativo en la enseñanza de la ingeniería, rescatando una herramienta histórica y adaptándola a las nuevas tecnologías con el objetivo de mejorar la comprensión y aplicación de conceptos matemáticos complejos.

Referencia:

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

Como se ha publicado de forma abierta, os dejo el artículo completo a continuación. Espero que sea de interés para vosotros.

Pincha aquí para descargar

Aprendizaje supervisado en ingeniería civil

En un artículo anterior hablamos del aprendizaje no supervisado aplicado a la ingeniería civil. La otra rama del aprendizaje automático (machine learning) es el aprendizaje supervisado. Se trata de un enfoque que utiliza conjuntos de datos de entrada y sus correspondientes respuestas para entrenar modelos capaces de realizar predicciones sobre datos nuevos. Este método es particularmente útil en contextos donde se dispone de información previa sobre la variable que se desea predecir, lo que permite establecer relaciones y patrones en los datos.

El aprendizaje supervisado emerge como una herramienta muy poderosa en el campo de la ingeniería civil, ya que facilita la toma de decisiones y la optimización de procesos mediante el análisis de datos. Este enfoque se basa en el uso de algoritmos que aprenden a partir de un conjunto de datos etiquetados, lo que les permite realizar predicciones sobre nuevos datos. A continuación, se presentan algunas aplicaciones y beneficios del aprendizaje supervisado en este campo.

Técnicas de aprendizaje supervisado

Las técnicas de aprendizaje supervisado se dividen en dos categorías principales: clasificación y regresión. La clasificación se centra en predecir respuestas discretas, es decir, en asignar una etiqueta a un conjunto de datos. Por ejemplo, en el ámbito del correo electrónico, se puede clasificar un mensaje como genuino o spam. Este tipo de modelos se aplica en diversas áreas, como la imagenología médica, donde se pueden clasificar tumores en diferentes categorías de tamaño, o en el reconocimiento de voz, donde se identifican comandos específicos. La clasificación se basa en la capacidad de los modelos para categorizar datos en grupos definidos, lo que resulta esencial en aplicaciones como la evaluación crediticia, donde se determina la solvencia de una persona.

Por el contrario, la regresión se ocupa de predecir respuestas continuas, lo que implica estimar valores en un rango numérico. Por ejemplo, se puede utilizar la regresión para prever cambios en la temperatura o fluctuaciones en la demanda eléctrica. Este enfoque es aplicable en contextos como la previsión de precios de acciones, donde se busca anticipar el comportamiento del mercado, o en el reconocimiento de escritura a mano, donde se traduce la entrada manual en texto digital. La elección entre clasificación y regresión depende de la naturaleza de los datos y de la pregunta específica que se desea responder.

Selección del algoritmo adecuado.

La selección de un algoritmo de aprendizaje automático es un proceso que requiere un enfoque metódico, ya que hay que encontrar el equilibrio entre diversas características de los algoritmos. Entre estas características se encuentran la velocidad de entrenamiento, el uso de memoria, la precisión predictiva en nuevos datos y la transparencia o interpretabilidad del modelo. La velocidad de entrenamiento se refiere al tiempo que un algoritmo necesita para aprender de los datos, mientras que el uso de memoria se relaciona con la cantidad de recursos computacionales que requiere. La precisión predictiva es crucial, ya que determina la capacidad del modelo para generalizar a datos no vistos. Por último, la interpretabilidad se refiere a la facilidad con la que se pueden entender las decisiones del modelo, lo que es especialmente relevante en aplicaciones donde la confianza en el modelo es esencial.

El uso de conjuntos de datos de entrenamiento más grandes generalmente permite que los modelos generalicen mejor en datos nuevos, lo que se traduce en una mayor precisión en las predicciones. Sin embargo, la selección del algoritmo también puede depender del contexto específico y de las características de los datos disponibles.

Clasificación binaria y multicategoría

Al abordar un problema de clasificación, es fundamental determinar si se trata de un problema binario o multicategórico. En un problema de clasificación binaria, cada instancia se clasifica en una de las dos clases, como ocurre cuando se identifica la autenticidad de los correos electrónicos o su clasificación como spam. Este tipo de clasificación es más sencillo y, por lo general, se puede resolver con algoritmos diseñados específicamente para este propósito. En contraste, un problema de clasificación multicategórica implica más de dos clases, como clasificar imágenes de animales en perros, gatos u otros. Los problemas multicategóricos suelen ser más complejos, ya que requieren modelos más sofisticados que puedan manejar la diversidad de clases y sus interacciones.

Es importante señalar que algunos algoritmos, como la regresión logística, están diseñados específicamente para problemas de clasificación binaria y tienden a ser más eficientes durante el entrenamiento. Sin embargo, existen técnicas que permiten adaptar algoritmos de clasificación binaria para abordar problemas multicategóricos, lo que amplía su aplicabilidad.

Algoritmos de clasificación comunes

Existen diversos varios algoritmos de clasificación ampliamente utilizados en el campo del aprendizaje supervisado.

  • La regresión logística es uno de los métodos más comunes, ya que permite predecir la probabilidad de que una respuesta binaria pertenezca a una de las dos clases. Este algoritmo es valorado por su simplicidad y se emplea frecuentemente como punto de partida en problemas de clasificación binaria. Su capacidad para ofrecer una interpretación clara de los resultados lo convierte en una herramienta muy valiosa en diversas aplicaciones.
  • El algoritmo k-vecinos más cercanos (kNN) clasifica objetos basándose en las clases de sus vecinos más cercanos, utilizando métricas de distancia como la euclidiana o la de Manhattan. Este enfoque es intuitivo y fácil de implementar, aunque puede resultar costoso en términos de cálculo en conjuntos de datos grandes.
  • El soporte vectorial (SVM) es otro algoritmo destacado que clasifica datos al encontrar un límite de decisión lineal que separe las clases. En situaciones en las que los datos no son linealmente separables, se puede aplicar una transformación de kernel para facilitar la clasificación. Este método es especialmente útil en contextos de alta dimensionalidad, donde la complejidad de los datos puede dificultar la clasificación.
  • Las redes neuronales, inspiradas en la estructura del cerebro humano, son útiles para modelar sistemas altamente no lineales. Estas redes se entrenan ajustando las conexiones entre neuronas, lo que permite que el modelo aprenda patrones complejos en los datos. Aunque su interpretación puede ser más complicada, su capacidad para capturar relaciones no lineales las hace valiosas en diversas aplicaciones.
  • El clasificador Naïve Bayes se basa en la suposición de que la presencia de una característica en una clase no depende de la presencia de otras características. Este enfoque permite clasificar nuevos datos en función de la probabilidad máxima de pertenencia a una clase, lo que resulta útil en contextos en los que se requiere una clasificación rápida y eficiente.
  • El análisis discriminante clasifica los datos mediante combinaciones lineales de características, asumiendo que los diferentes conjuntos de datos tienen distribuciones gaussianas. Este método es apreciado por su simplicidad y facilidad de interpretación.
  • Los árboles de decisión permiten predecir respuestas basándose en decisiones tomadas en un árbol estructurado, donde cada rama representa una condición de decisión. Este enfoque es intuitivo y fácil de interpretar, por lo que es una opción popular en diversas aplicaciones.

Algoritmos de regresión comunes

Los algoritmos de regresión son esenciales para predecir valores continuos.

  • La regresión lineal es una técnica que describe una variable de respuesta continua como una función lineal de una o más variables predictoras. Este modelo es fácil de interpretar y se utiliza frecuentemente como referencia para modelos más complejos. Su simplicidad y eficacia en contextos lineales lo convierten en una opción inicial para el análisis de datos.
  • La regresión no lineal se utiliza cuando los datos presentan tendencias no lineales significativas. Este enfoque permite modelar relaciones más complejas que no pueden ser capturadas por modelos lineales, lo que resulta útil en contextos donde las variables interactúan de manera no lineal.
  • El modelo de regresión de procesos gaussianos es un enfoque no paramétrico que se utiliza para predecir valores continuos y es común en el análisis espacial. Este método es especialmente valioso en contextos donde se requiere interpolación y se trabaja con datos que presentan incertidumbre.
  • La regresión SVM, similar a su contraparte de clasificación, busca un modelo que se desvíe de los datos medidos en la menor cantidad posible. Este enfoque es útil en contextos de alta dimensionalidad, donde se espera que haya un gran número de variables predictoras.
  • El modelo lineal generalizado se utiliza cuando las variables de respuesta tienen distribuciones no normales, lo que permite abordar una variedad de situaciones en las que no se cumplen los supuestos de la regresión lineal.
  • Los árboles de regresión son una adaptación de los árboles de decisión que permiten predecir respuestas continuas, por lo que son útiles en contextos donde se requiere una interpretación clara y rápida.

Mejora de modelos

La mejora de un modelo implica aumentar su precisión y capacidad predictiva, así como prevenir el sobreajuste, que ocurre cuando un modelo se ajusta demasiado a los datos de entrenamiento y pierde capacidad de generalización. Este proceso incluye la ingeniería de características, que abarca la selección y transformación de variables, y la optimización de hiperparámetros, que busca identificar el conjunto de parámetros que mejor se ajustan al modelo.

  • La selección de características es un aspecto crítico en el aprendizaje supervisado, especialmente en conjuntos de datos de alta dimensión. Este proceso permite identificar las variables más relevantes para la predicción, lo que no solo mejora la precisión del modelo, sino que también reduce el tiempo de entrenamiento y la complejidad del mismo. Entre las técnicas de selección de características se encuentran la regresión por pasos, que implica agregar o eliminar características de manera secuencial, y la regularización, que utiliza estimadores de reducción para eliminar características redundantes.
  • La transformación de características es otra estrategia importante que busca mejorar la representación de los datos. Técnicas como el análisis de componentes principales (PCA) permiten realizar transformaciones lineales en los datos, que capturan la mayor parte de la varianza en un número reducido de componentes. Esto resulta útil en contextos donde se trabaja con datos de alta dimensionalidad, ya que facilita la visualización y el análisis.
  • La optimización de hiperparámetros es un proceso iterativo que busca encontrar los valores óptimos para los parámetros del modelo. Este proceso puede llevarse a cabo mediante métodos como la optimización bayesiana, la búsqueda en cuadrícula y la optimización basada en gradientes. Un modelo bien ajustado puede superar a un modelo complejo que no ha sido optimizado adecuadamente, lo que subraya la importancia de este proceso en el desarrollo de modelos efectivos.

Aplicaciones del aprendizaje supervisado en ingeniería civil

  • Predicción de fallos estructurales: los modelos de aprendizaje supervisado se utilizan para predecir fallos en estructuras como puentes y edificios. Al analizar datos históricos de inspecciones y condiciones ambientales, es posible identificar patrones que indiquen un posible fallo estructural. Esto permite a los ingenieros realizar mantenimientos preventivos y mejorar la seguridad de las infraestructuras.
  • Optimización de recursos en construcción: en la planificación de proyectos, el aprendizaje supervisado optimiza el uso de recursos como, por ejemplo, materiales y mano de obra. Al predecir la demanda de recursos en función de variables como el clima y la evolución del proyecto, es posible reducir costes y mejorar la eficiencia.
  • Análisis de riesgos: los modelos de aprendizaje supervisado son útiles para evaluar riesgos en proyectos de ingeniería civil. Al analizar datos sobre desastres naturales, como inundaciones y terremotos, se pueden identificar zonas vulnerables y desarrollar estrategias de mitigación eficaces.
  • Control de infraestructuras: la incorporación de sensores en infraestructuras permite la recolección de datos en tiempo real. Los algoritmos de aprendizaje supervisado pueden analizar estos datos para detectar anomalías y prever el mantenimiento necesario, lo que contribuye a la sostenibilidad y durabilidad de las estructuras.

Por tanto, el aprendizaje supervisado se está consolidando como una herramienta esencial en ingeniería civil, ya que ofrece soluciones innovadoras para predecir, optimizar y controlar infraestructuras. Su capacidad para analizar grandes volúmenes de datos y ofrecer información valiosa está transformando la forma en que se gestionan los proyectos en este ámbito.

Os dejo un mapa mental acerca del aprendizaje supervisado.

También os dejo unos vídeos al respecto. Espero que os sean de interés.

Referencias

  1. Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction142, 104532.
  2. Kaveh, A. (2024). Applications of artificial neural networks and machine learning in civil engineering. Studies in computational intelligence1168, 472.
  3. Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in construction: A systematic literature review. Automation in construction129, 103760.
  4. Mostofi, F., & Toğan, V. (2023). A data-driven recommendation system for construction safety risk assessment. Journal of Construction Engineering and Management149(12), 04023139.
  5. Naderpour, H., Mirrashid, M., & Parsa, P. (2021). Failure mode prediction of reinforced concrete columns using machine learning methods. Engineering Structures248, 113263.
  6. Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer‐Aided Civil and Infrastructure Engineering12(4), 295-310.
  7. Thai, H. T. (2022). Machine learning for structural engineering: A state-of-the-art review. In Structures (Vol. 38, pp. 448-491). Elsevier.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería

El artículo presenta un análisis exhaustivo sobre la integración de la realidad aumentada en la enseñanza superior de las ingenierías y de las ciencias de la Tierra. Una de las contribuciones más significativas es la propuesta de una metodología estructurada, denominada SEBAS, que guía la incorporación de esta tecnología enriquecedora en el aula. Esta metodología no solo proporciona un marco claro para el desarrollo de actividades educativas, sino que también fomenta un enfoque activo y participativo en el aprendizaje. La investigación destaca cómo esta tecnología puede transformar la enseñanza tradicional, ya que facilita la visualización de conceptos complejos y abstractos, lo que resulta en una experiencia de aprendizaje más interactiva y efectiva.

Además, el estudio resalta la importancia de la formación docente en el uso de tecnologías emergentes, lo que puede mejorar la calidad de la enseñanza y la preparación del alumnado para afrontar los desafíos del mundo profesional. La inclusión de la realidad aumentada en el currículo de ingeniería civil no solo enriquece el proceso educativo, sino que también responde a las necesidades de una generación de nativos digitales que demanda métodos de enseñanza más dinámicos.

Los resultados de la investigación indican que los estudiantes recibieron positivamente la implantación de esta tecnología en su formación. Se observó un aumento en la comprensión de los contenidos teóricos y una mejora en la motivación y el compromiso con el aprendizaje. La encuesta realizada a los participantes mostró que la mayoría considera que la realidad aumentada es un complemento valioso para las actividades prácticas y teóricas, lo que sugiere que esta herramienta puede ser un recurso eficaz para abordar las limitaciones de la educación tradicional.

Estos hallazgos tienen implicaciones significativas para la práctica profesional en ingeniería civil. La capacidad de visualizar y manipular modelos tridimensionales permite a los futuros profesionales desarrollar habilidades críticas esenciales para su campo. Además, la investigación recomienda que esta tecnología puede utilizarse para simular situaciones reales en el entorno laboral, lo que prepara a los futuros ingenieros para enfrentar desafíos prácticos de manera más efectiva. Este enfoque no solo mejora la formación académica, sino que también aumenta la empleabilidad de los graduados.

A partir de los resultados del artículo, se pueden identificar varias áreas de estudio que merecen una exploración más a fondo. Una posible línea de investigación podría centrarse en evaluar a largo plazo el impacto de la realidad aumentada en el rendimiento y la retención del conocimiento del alumnado de ingeniería civil. Esto permitiría determinar la efectividad de esta tecnología en diferentes contextos educativos y su capacidad para adaptarse a diversas metodologías de enseñanza.

Otra área de interés podría ser el desarrollo de recursos digitales específicos que complementen la enseñanza de otras disciplinas dentro de la ingeniería, como la ingeniería estructural o la ingeniería ambiental. La creación de aplicaciones que aborden temas específicos podría enriquecer aún más el aprendizaje y proporcionar herramientas prácticas a los estudiantes.

Finalmente, se sugiere investigar la percepción y aceptación de la realidad aumentada entre el profesorado, así como su disposición para integrar estas tecnologías en su práctica docente. Comprender las barreras y facilitadores en la adopción de esta herramienta por parte de los docentes puede resultar clave para su implementación exitosa en el aula.

La investigación sobre la realidad aumentada en la enseñanza superior de ingeniería civil ofrece perspectivas valiosas para mejorar el proceso de enseñanza-aprendizaje. La metodología SEBAS y los resultados positivos en la percepción del alumnado ponen de manifiesto el potencial de esta tecnología como herramienta educativa. Las futuras investigaciones en este campo pueden contribuir significativamente al avance del conocimiento y la práctica en esta disciplina, promoviendo una educación más interactiva y adaptada a las necesidades del entorno profesional actual.

Referencia:

DONAIRE-MARDONES, S.; BARRAZA ALONSO, R.; MARTÍNEZ-PAGÁN, P.; YEPES-BELLVER, L.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2024). Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería. En libro de actas: X Congreso de Innovación Educativa y Docencia en Red. Valencia, 11 – 12 de julio de 2024. Doi: https://doi.org/10.4995/INRED2024.2024.18365

A continuación, os dejo el artículo completo, pues se encuentra en acceso libre.

Pincha aquí para descargar
Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aprendizaje no supervisado en la ingeniería civil

El aprendizaje no supervisado es una rama del aprendizaje automático (Machine Learning) que se centra en analizar y estructurar datos sin etiquetas ni categorías predefinidas. A diferencia del aprendizaje supervisado, en el que los modelos se entrenan con datos etiquetados, en el aprendizaje no supervisado los algoritmos deben identificar de manera autónoma patrones, relaciones o estructuras ocultas dentro de los datos. Se trata de una herramienta poderosa para explorar y entender datos complejos sin la necesidad de etiquetas predefinidas, descubriendo patrones y estructuras ocultas que pueden ser de gran valor en diversas aplicaciones prácticas.

El aprendizaje no supervisado permite analizar datos sin un objetivo definido o sin conocimiento previo de su estructura. Este enfoque es ideal para explorar patrones latentes y reducir la dimensionalidad de grandes conjuntos de datos, lo que facilita una mejor comprensión de su estructura. Además, al no depender de etiquetas previamente asignadas, permite adaptarse de manera flexible a diversos tipos de datos, incluidos aquellos cuya estructura subyacente no es evidente. Esta característica lo hace especialmente valioso en ámbitos como la exploración científica y el análisis de datos de mercado, donde los datos pueden ser abundantes, pero carecer de categorías predefinidas.

A pesar de sus ventajas, el aprendizaje no supervisado plantea desafíos como la interpretación de los resultados, ya que sin etiquetas predefinidas puede ser difícil evaluar la precisión de los modelos. Además, la elección del número óptimo de grupos o la validación de las reglas de asociación descubiertas puede requerir la intervención de expertos y métodos adicionales de validación.

El aprendizaje no supervisado incluye diversas técnicas que permiten analizar y extraer patrones de grandes conjuntos de datos sin necesidad de etiquetas. Una de las principales técnicas es el agrupamiento (clustering), que busca dividir los datos en grupos basados en similitudes inherentes. Existen dos tipos de algoritmos de agrupamiento: el agrupamiento duro, que asigna un dato a un único grupo, y el agrupamiento suave, que permite que un dato pertenezca a varios grupos con diferentes grados de pertenencia. Técnicas como k-means y k-medoids se utilizan mucho en este contexto. Mientras que k-means busca minimizar la distancia entre los datos y los centros de los grupos, k-medoids es más robusto frente a valores atípicos y adecuado para datos categóricos. Por otro lado, el agrupamiento jerárquico genera un dendrograma que permite explorar relaciones jerárquicas en los datos. Los mapas autoorganizados, que emplean redes neuronales, se utilizan para reducir la dimensionalidad de los datos sin perder su estructura y facilitar su interpretación en campos como la bioinformática y la economía.

En situaciones donde los datos tienen relaciones difusas, el agrupamiento suave, como el fuzzy c-means, asigna grados de pertenencia a cada dato, lo que resulta útil en áreas como la biomedicina. Los modelos de mezcla gaussiana, que utilizan distribuciones normales multivariadas, también se aplican a problemas complejos como la segmentación de mercado o la detección de anomalías. Además, el aprendizaje no supervisado incluye técnicas de asociación que buscan descubrir relaciones entre variables en grandes bases de datos, como el análisis de la cesta de la compra, donde se identifican productos que suelen comprarse juntos. También se utilizan técnicas de reducción de la dimensionalidad, que simplifican los datos de alta dimensionalidad sin perder mucha variabilidad. El análisis de componentes principales (PCA) es una técnica común en este ámbito, ya que transforma los datos en combinaciones lineales que facilitan su visualización y análisis, especialmente en casos de datos ruidosos, como los procedentes de sensores industriales o dispositivos médicos. Otras técnicas, como el análisis factorial y la factorización matricial no negativa, también se utilizan para reducir la complejidad de los datos y hacerlos más manejables, y son útiles en áreas como la bioinformática, el procesamiento de imágenes y el análisis de textos.

El aprendizaje no supervisado tiene diversas aplicaciones, como el análisis de clientes, que permite identificar segmentos con características o comportamientos similares, lo que optimiza las estrategias de marketing y la personalización de los servicios. También se utiliza en la detección de anomalías, ya que ayuda a identificar datos atípicos que pueden indicar fraudes, fallos en los sistemas o comportamientos inusuales en áreas industriales y financieras; en este campo, el análisis factorial revela dinámicas compartidas entre sectores económicos, lo que mejora la predicción de tendencias de mercado. En el procesamiento de imágenes, facilita tareas como la segmentación, que consiste en agrupar píxeles con características similares para identificar objetos o regiones dentro de una imagen. Además, en el análisis de textos, técnicas como la factorización matricial no negativa permiten descubrir temas latentes en grandes colecciones de documentos, mejorando los sistemas de recomendación y el análisis de sentimientos. En la investigación genómica, el clustering suave ha permitido identificar genes implicados en el desarrollo de enfermedades, lo que ha contribuido a avanzar en la medicina personalizada. Esta capacidad para analizar patrones complejos en datos biológicos ha acelerado el descubrimiento de biomarcadores y posibles dianas terapéuticas. Este enfoque también permite identificar correlaciones entre variables macroeconómicas que de otra manera podrían pasar desapercibidas. Por otro lado, el PCA se ha aplicado con éxito en la monitorización de sistemas industriales, ya que permite predecir fallos y reducir costes operativos mediante el análisis de variaciones en múltiples sensores. En el ámbito de la minería de textos, la factorización no negativa permite descubrir temas latentes, lo que mejora los sistemas de recomendación y análisis de sentimiento. Esto resulta particularmente valioso en aplicaciones de marketing digital, donde la segmentación precisa del contenido puede aumentar la eficacia de las campañas.

El aprendizaje no supervisado ha encontrado diversas aplicaciones en el ámbito de la ingeniería civil, ya que permite optimizar procesos y mejorar la toma de decisiones. A continuación, se destacan algunas de ellas:

  • Clasificación de suelos y materiales de construcción: Mediante técnicas de agrupación (clustering), es posible agrupar muestras de suelo o materiales de construcción según sus propiedades físicas y mecánicas. Esto facilita la selección adecuada de materiales para proyectos específicos y optimiza el diseño de cimentaciones y estructuras.
  • Análisis de patrones de tráfico: El aprendizaje automático permite identificar patrones en los flujos de tráfico, detectando comportamientos anómalos o recurrentes. Esta información es esencial para diseñar infraestructuras viales más eficientes y aplicar medidas de control de tráfico.
  • Monitorización de estructuras: Mediante la reducción dimensional y el análisis de datos procedentes de sensores instalados en puentes, edificios y otras infraestructuras, se pueden detectar anomalías o cambios en el comportamiento estructural. Esto contribuye a la prevención de fallos y al mantenimiento predictivo.
  • Optimización de rutas para maquinaria pesada: En proyectos de construcción a gran escala, el aprendizaje no supervisado ayuda a determinar las rutas más eficientes para la maquinaria, considerando factores como el terreno, el consumo de combustible y la seguridad, lo que se traduce en una mayor productividad y reducción de costes.
  • Segmentación de imágenes por satélite y aéreas: Las técnicas de aprendizaje no supervisado permiten clasificar y segmentar imágenes obtenidas de satélites o drones, identificando áreas urbanas, vegetación, cuerpos de agua y otros elementos. Esto es útil para la planificación urbana y la gestión de recursos naturales.
  • Análisis de datos de sensores en tiempo real: En la construcción de túneles y excavaciones, el análisis en tiempo real de datos de sensores puede realizarse mediante algoritmos no supervisados para detectar condiciones peligrosas, como deslizamientos de tierra o acumulación de gases, lo que mejora la seguridad en las obras.

En conclusión, el aprendizaje no supervisado es una herramienta versátil y potente para abordar problemas complejos y descubrir patrones ocultos en datos sin etiquetar. Su aplicación trasciende sectores, ya que ofrece soluciones prácticas para la investigación, la industria y el análisis de datos. En un mundo impulsado por el crecimiento exponencial de la información, el dominio de estas técnicas se presenta como una ventaja competitiva fundamental. La capacidad para analizar grandes volúmenes de datos y extraer información útil sigue siendo un motor clave de innovación y progreso.

Os dejo un mapa mental acerca del aprendizaje no supervisado.

Para profundizar en este tema, puedes consultar la siguiente conferencia:

Pincha aquí para descargar

Referencia:

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La ingeniería humanitaria potencia la visión integral y empática en estudiantes

Un estudio reciente, titulado «The Impacts of Humanitarian Engineering on Sociotechnical Thinking», liderado por Jeffrey P. Walters y su equipo, explora cómo el contexto de la ingeniería humanitaria (HE) afecta al desarrollo del pensamiento social y técnico en estudiantes de ingeniería.

La investigación se centra en comparar las diferencias en la forma en que los estudiantes afrontan un desafío de diseño, en concreto, el de un muro de contención, en dos contextos distintos: Misisipi (Estados Unidos), un entorno no humanitario, y Bangladés, que representa una situación de ingeniería humanitaria.

 

El contexto del estudio

El estudio parte de la premisa de que la ingeniería no puede entenderse únicamente desde una perspectiva técnica, ya que toda solución de ingeniería implica un impacto social. Este concepto, conocido como «pensamiento sociotécnico», se ha convertido en un aspecto importante en la formación en ingeniería, especialmente debido a las crecientes demandas de la industria de profesionales que no solo dominen la técnica, sino que también comprendan y gestionen las implicaciones sociales y éticas de sus proyectos.

La investigación se basa en un experimento realizado con estudiantes de primer y tercer año de diferentes disciplinas de ingeniería en una universidad de EE. UU. Se les planteó un reto de diseño: construir un muro de contención para prevenir inundaciones, en uno de los dos contextos asignados aleatoriamente. Los estudiantes del grupo de Misisipi (contexto no humanitario) recibieron información centrada en las pérdidas económicas que las inundaciones causaron en la industria y la economía nacional. Por otro lado, los estudiantes asignados al contexto de Bangladés (contexto humanitario) se enfrentaron a un escenario en el que las inundaciones habían desplazado a más de 300 000 personas, la mayoría viviendo por debajo del umbral de pobreza mundial.

Resultados clave y análisis

El estudio reveló diferencias significativas entre ambos grupos en cuanto a la forma en que percibían el problema y las soluciones propuestas. Los estudiantes que trabajaron en el contexto de Bangladés mencionaron un mayor número de factores sociotécnicos que sus compañeros asignados al contexto de Misisipi. Estos factores incluyen consideraciones sobre la capacidad de la comunidad local para construir y mantener la infraestructura, el impacto en la vida cotidiana de las personas afectadas y la importancia de adaptar el proyecto a los recursos limitados disponibles. Además, estos estudiantes mostraron un enfoque más empático, poniendo énfasis en la seguridad y el bienestar de las comunidades.

Por el contrario, los estudiantes que trabajaron en el contexto de Misisipi se centraron principalmente en los aspectos técnicos del diseño, como el coste, los materiales y la estructura física de la pared. Si bien también mencionaron algunos factores sociales y técnicos, su enfoque estuvo más limitado a la funcionalidad técnica y la eficiencia del proyecto.

Implicaciones educativas

Este estudio ofrece una valiosa evidencia de cómo la integración de contextos humanitarios en la enseñanza de la ingeniería puede influir profundamente en la forma en que los estudiantes abordan los problemas de diseño. Los resultados sugieren que el enfoque de ingeniería humanitaria fomenta un pensamiento más holístico y complejo, en el que los futuros ingenieros no solo consideran los aspectos técnicos, sino también las consecuencias sociales de sus decisiones.

Además, el estudio destaca la necesidad de abordar la enseñanza del pensamiento social y técnico con cautela. Si bien los estudiantes que trabajaron en el contexto de Bangladés mostraron mayor empatía, algunos de ellos también presentaron sesgos implícitos al asumir que la comunidad local carecía de las habilidades necesarias para construir o mantener la infraestructura, lo que podría perpetuar estereotipos negativos y enfoques paternalistas en el desarrollo global. El equipo de investigación subraya la necesidad de abordar estos sesgos en la enseñanza para garantizar que los estudiantes no solo aprendan a integrar factores sociales y técnicos, sino que también lo hagan desde una perspectiva ética y culturalmente sensible.

Conclusiones y futuro

Este trabajo subraya la importancia de que los futuros ingenieros desarrollen habilidades sociotécnicas que les permitan pensar más allá de las soluciones técnicas y considerar las complejas interacciones entre la tecnología y la sociedad. En un mundo cada vez más interconectado, con problemas de sostenibilidad y justicia social en aumento, estas competencias serán fundamentales para garantizar que los ingenieros puedan proyectar soluciones que no solo sean eficientes, sino también equitativas y sostenibles.

Los investigadores concluyen que integrar de manera consistente este tipo de desafíos en los programas educativos de ingeniería podría ser una estrategia eficaz para fomentar una mayor conciencia y capacidad de respuesta ante los problemas sociales y éticos en los futuros profesionales. Asimismo, se sugiere que futuras investigaciones profundicen en cómo la exposición a estos contextos, en actividades más prolongadas o en escenarios reales, afecta al desarrollo del pensamiento sociotécnico y la empatía en los estudiantes a lo largo de su formación académica.

Referencia:

Walters, J. P., Frisch, K., Yasuhara, K., & Kaminsky, J. (2025). The Impacts of Humanitarian Engineering Context on Students’ Sociotechnical ThinkingJournal of Civil Engineering Education151(1), 04024006.

​Se pueden consultar los siguientes artículos del blog relacionados con la ingeniería humanitaria:

La ingeniería humanitaria y la teoría del cisne negro: Totalán, DANA, Zaldibar y el coronavirus nos dan las claves

Ingeniería civil humanitaria. Cómo afrontar una emergencia: Lecciones aprendidas de Totalán

 

Los motivos por los que se equivocan estudiantes y profesionales de ingeniería al abordar la resolución de problemas

Resolver problemas en el ámbito universitario o profesional, en áreas tecnológicas, de ingeniería y ciencias, puede plantear una serie de desafíos que pueden conducir a errores. Estos fallos pueden surgir por diversas razones que van desde no comprender el concepto subyacente hasta confiar demasiado en la tecnología.

En un artículo anterior mencioné algunos ejemplos de problemas teóricamente sencillos, pero que marean a nuestros estudiantes. Ahora vamos a analizar detalladamente algunas de estas razones y cómo se relacionan entre sí. También he incluido enlaces a otros artículos del blog donde reflexiono sobre este tipo de cuestiones.

La falta de comprensión del concepto subyacente a un problema es una preocupación fundamental. Esto puede manifestarse de diversas formas, ya sea a través de errores conceptuales, una aplicación incorrecta del concepto o una interpretación errónea del mismo. Esta falta de entendimiento puede empeorar si se carece de experiencia o conocimientos específicos en el campo correspondiente. Cuando un estudiante o profesional se enfrenta a un problema para el que no tiene experiencia previa, puede tener dificultades para aplicar correctamente los principios necesarios para resolverlo.

Los datos son fundamentales para encontrar soluciones, sin embargo, su calidad y disponibilidad pueden ser problemáticos. La falta de datos adecuados, la presencia de información contradictoria o sesgada pueden conducir a conclusiones incorrectas. Asimismo, centrarse excesivamente en utilizar todos los datos disponibles puede distraer de la información realmente importante, al tiempo que validar datos sesgados o inventados puede conducir a conclusiones incorrectas.

El manejo inadecuado de las bases matemáticas también puede ser una fuente de errores (geometría, trigonometría, cálculo o álgebra). Esto puede incluir errores en el cálculo, así como el uso inapropiado de fórmulas o modelos matemáticos. Los problemas reales rara vez tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Además, el uso excesivo de la memoria en lugar de la comprensión de los principios subyacentes puede conducir a errores conceptuales y de selección de modelos de cálculo.

Los aspectos psicológicos también son importantes. El estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración pueden afectar a la capacidad de resolver problemas de manera efectiva. La falta de atención a los detalles, la fatiga y el agotamiento también pueden provocar errores en la resolución de problemas.

Es crucial comprender que los problemas reales pueden ser complejos y no tener necesariamente una solución única. Esto implica la necesidad de tomar decisiones informadas y comprender las limitaciones de los modelos o fórmulas utilizados. Además, la propagación de errores en las operaciones y el uso incorrecto de datos, fórmulas o software pueden dar lugar a resultados erróneos.

La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos una y otra vez. La falta de comunicación o colaboración entre profesionales en entornos de trabajo también puede provocar errores en la resolución de problemas. Confiar ciegamente en la tecnología o en herramientas automatizadas sin comprender en profundidad los principios subyacentes puede ser un problema.

En resumen, resolver problemas en el ámbito universitario o profesional de la ingeniería y las ciencias puede ser un proceso complejo y propenso a errores debido a una variedad de factores interrelacionados. Desde la comprensión del concepto hasta la calidad y disponibilidad de los datos, así como los aspectos psicológicos y técnicos relacionados con la resolución de problemas, es crucial abordar estos desafíos con atención y comprensión para lograr soluciones precisas y efectivas. Desde las universidades debe hacerse todo lo posible para superar este tipo de dificultades y conseguir que nuestros estudiantes adquieran las competencias necesarias para su posterior desarrollo profesional.

Sin querer ser exhaustivo, y sin que estén ordenadas por importancia, aquí os dejo una lista de 30 posibles causas por las cuales nuestros estudiantes en los exámenes o los técnicos en su ámbito profesional, suelen cometer errores al resolver los problemas. Estoy convencido de que hay más causas, pero esto puede ser un buen punto de partida para el debate y la reflexión. En el vídeo que he grabado, me extiendo y explico algo más lo que aquí recojo como una simple lista.

  1. La falta de comprensión del concepto subyacente en un problema puede conducir a errores conceptuales al aplicarlo incorrectamente o interpretarlo de manera errónea.
  2. La inexperiencia o la falta de conocimientos específicos pueden surgir cuando una persona afronta por primera vez un tipo de problema, ya sea durante un examen o en la práctica profesional.
  3. Los problemas relacionados con la disponibilidad de datos pueden presentarse de varias formas, como datos insuficientes, necesarios, innecesarios o contradictorios. A menudo, existe una obsesión por utilizar todos los datos disponibles en el enunciado del problema.
  4. La calidad de los datos también es un factor importante, con la posibilidad de incertidumbre o error en los datos disponibles. Además, dar por válidos datos sesgados, interesados o inventados puede llevar a conclusiones incorrectas. Es necesario un control de calidad de los datos.
  5. Intentar resolver un problema utilizando el enfoque típico visto en clase puede marear a nuestros estudiantes. Los alumnos prefieren resolver un problema típico explicado en clase, a ser posible, con datos parecidos.
  6. El manejo inadecuado de las bases matemáticas, que incluye errores en el cálculo, el uso incorrecto de fórmulas o modelos matemáticos, y la falta de comprensión de los principios subyacentes, puede ser una fuente común de errores. La falta de conocimientos básicos de geometría, trigonometría, álgebra o cálculo básicos son, en ocasiones, escollos. A veces hay dificultades en saber dibujar un esquema para resolver el problema.
  7. Los problemas reales generalmente no tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Esta distinción, que se da claramente entre los estudios de grado y los de máster, es importante tenerla en cuenta.
  8. Los aspectos psicológicos, como el estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración, pueden afectar negativamente la capacidad para resolver problemas de manera efectiva.
  9. La falta de atención o interés, así como la fatiga o el agotamiento, pueden contribuir a errores en la resolución de problemas, al igual que la prisa por resolver el problema.
  10. La complejidad de los problemas puede aumentar cuando se trata de situaciones poco comunes o rebuscadas, lo que requiere un enfoque cuidadoso y creativo para su resolución.
  11. Es crucial comprender la diferencia entre una ley general y una fórmula particular al aplicar normas técnicas que pueden estar basadas en hipótesis o casos específicos.
  12. Utilizar modelos de cálculo inadecuados, ya sean demasiado refinados o demasiado simples para los datos disponibles, puede conducir a soluciones incorrectas.
  13. Carecer de números estimativos para prever el resultado final puede resultar en una falta de comprensión del orden de magnitud del resultado. En este sentido, el uso de nomogramas en la docencia facilita la adquisición de este tipo de habilidad en los estudiantes. Los estudiantes y los profesionales deberían tener un conocimiento del «número gordo» y saber predimensionar.
  14. Es importante ser consciente de la propagación de errores en las operaciones, ya que incluso pequeños errores pueden magnificarse y llevar a resultados incorrectos.
  15. Utilizar fórmulas, datos o tablas en un contexto diferente al que dieron origen puede llevar a interpretaciones incorrectas o a soluciones erróneas.
  16. La extrapolación de resultados a límites no contemplados puede conducir a conclusiones incorrectas o poco realistas.
  17. Utilizar fórmulas empíricas con datos expresados en unidades diferentes a las que funcionan puede generar resultados inconsistentes o incorrectos.
  18. La dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede conducir a errores en la selección de modelos o fórmulas de cálculo.
  19. Errores conceptuales pueden llevar a la selección incorrecta de modelos o fórmulas de cálculo, lo que resulta en soluciones erróneas.
  20. El uso de software defectuoso o poco contrastado, así como la falta de habilidades para calcular manualmente un problema, pueden resultar en resultados incorrectos. A esto se une un uso inapropiado de la inteligencia artificial.
  21. El mal uso de ecuaciones o fórmulas, como cambiar el nombre de una variable sin entender el concepto subyacente, puede conducir a errores en la resolución de problemas.
  22. La falta de competencia o experiencia en una materia determinada puede resultar en una resolución incorrecta del problema.
  23. Repetir la resolución de problemas de un contexto a otro sin pensar en su validez puede conducir a soluciones inapropiadas.
  24. La falta de comprensión del problema, la pregunta o el tipo de resultado esperado puede resultar en soluciones incorrectas debido a la falta de comprensión lectora, capacidad analítica o de síntesis.
  25. La utilización de unidades defectuosas, notaciones o convenciones específicas puede llevar a interpretaciones erróneas o a soluciones incorrectas.
  26. La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez.
  27. La falta de comunicación o colaboración en entornos de trabajo entre profesionales puede contribuir a errores en la resolución de problemas.
  28. La confianza excesiva en la tecnología o herramientas automatizadas puede llevar a la falta de comprensión de los principios subyacentes y a la comisión de errores.
  29. La falta de revisión o verificación de los cálculos realizados por parte de un tercero independiente puede resultar en soluciones incorrectas.
  30. La falta de conocimiento del contexto del problema, incluyendo las restricciones, puede conducir a soluciones subóptimas o incorrectas.

Os paso un vídeo donde he desarrollado las ideas anteriores, con ejemplos, y he dejado algunas de mis reflexiones al respecto. Espero que os guste.

Os dejo un podcast sobre este tema (en inglés), generado por una IA sobre el vídeo.

Aquí tenéis un mapa conceptual que también os puede ayudar.

Artículos relacionados en el blog:

Los ingenieros, los ordenadores y mil un indios

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Cifras significativas y errores de medición

¿Cómo predimensionar un muro sin calculadora?

La inteligencia artificial en la ingeniería civil

Introducción a la toma de decisiones

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Referencias de libros de problemas:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2023). Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras. Ediciones UPCT. Universidad Politécnica de Cartagena, 284 pp. ISBN: 978-84-17853-62-4

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos

Durante los días 10-13 de julio de 2023 tuvo lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Fue una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presentó varias comunicaciones. A continuación os paso una de ellas.

La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Palabras clave:

Nomografía; PyNomo; Nomogen; ingeniería de proyectos; docencia

Agradecimientos:

This research was funded by MCIN/AEI/10.13039/501100011033, grant number PID2020-117056RB-I00 and The APC was funded by ERDF A way of making Europe.

Referencia:

YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 2106-2118. DOI:10.61547/3509

A continuación os dejo un vídeo donde presentamos el trabajo. Espero que os sea de interés.

Os dejo la comunicación completa, pues está publicada en acceso abierto. Espero que os sea de interés.

Pincha aquí para descargar

 

Ideas sobre la docencia de la asignatura de Procedimientos de Construcción

En el prólogo de obras anteriores, mencioné que la enseñanza de “Procedimientos de Construcción” es complicada, ya que implica instruir a futuros ingenieros civiles sobre la realización de obras. Este proceso abarca no solo las fases constructivas, sino también aspectos de gran relevancia, como el manejo de maquinaria y medios auxiliares, la seguridad y salud, el impacto ambiental de las obras, y sobre todo, conocimientos fundamentales en geotecnia, resistencia de materiales, mecánica, cálculo de estructuras, gestión de empresas, planificación de obras y economía. Todo este conjunto de conocimientos es esencial para tomar decisiones acertadas al seleccionar el mejor proceso constructivo para un proyecto específico. Además, debemos abordar toda esta información, considerando que la mayoría de los alumnos tienen poca o nula experiencia práctica en relación con el entorno físico de las obras.

Una dificultad adicional radica en la creación de un conjunto ordenado y coherente de problemas resueltos que no sean meramente teóricos, sino que se acerquen al mundo real de la profesión. Esta tarea resulta compleja en ocasiones, pues los procedimientos constructivos requieren conocimientos que abarcan casi todas las áreas de la ingeniería. En consecuencia, explicar esta asignatura en los primeros cursos de un grado universitario puede parecer arriesgado, debido a la amplia gama de conocimientos necesarios. Sin embargo, los planes de estudio a veces presentan estas incongruencias y desafíos en la enseñanza de esta materia.

Al final ha salido un volumen extenso, con una amplia variedad de problemas resueltos, que intenta abarcar todo el campo de conocimiento de los procedimientos de construcción, incluyendo la maquinaria y los medios auxiliares utilizados tanto en la ingeniería civil como en la edificación, e incluso en algunos casos, en la minería.

Esta colección forma parte del conjunto de materiales, libros y documentación que he elaborado como autor, complementando así el contenido teórico de la asignatura. Por esta razón, recomiendo al lector que acuda a manuales, libros o apuntes para reforzar la parte teórica de los problemas. No obstante, he incluido una extensa bibliografía que espero sea útil para este propósito. Además, me complace recomendar mi blog, que cuenta con
una trayectoria de casi 12 años y ha recopilado cerca de 2.000 artículos relacionados con aspectos de la ingeniería de la construcción. Puedes encontrarlo en el siguiente enlace: https://victoryepes.blogs.upv.es/.

El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.

Por último, y a pesar de que he puesto todo el empeño en resolver y revisar cada uno de los problemas, es posible que existan erratas o errores. Por ello, agradezco de antemano cualquier sugerencia o mejora que pueda ser útil para futuras ediciones. Espero sinceramente que este libro que tiene en sus manos contribuya a mejorar la calidad de la enseñanza de este tipo de asignaturas y que se convierta en una herramienta valiosa tanto para estudiantes como para profesionales. Su éxito en el aprendizaje y aplicación de los procedimientos de construcción es mi mayor deseo.

Valencia, a 25 de julio de 2023

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.