Unidades VSM (Vertical Shaft Sinking Machine) para perforación de pozos

Figura 1. Simulación de la Vertical Shaft Sinking Machine (VSM) de Herrenknetch trabajando con el pozo inundado a través de un terreno blando (cortesía de Herrenknetch).

Las unidades VSM (Vertical Shaft Sinking Machine) son equipos mecanizados diseñados para la construcción de pozos verticales en condiciones difíciles, como terrenos blandos intercalados con materiales más estables, suelos con resistencias a la compresión de hasta 140 MPa, presencia de aguas subterráneas o espacios confinados. Se utilizan en proyectos de túneles, accesos subterráneos, minería y soluciones urbanas, como aparcamientos subterráneos.

La VSM fue desarrollada por fabricantes como Herrenknecht a mediados de la década de 2000 y su uso se ha extendido internacionalmente debido a las ventajas en materia de seguridad y productividad que ofrece frente a los métodos convencionales. Su diseño modular le permite adaptarse a diferentes diámetros y profundidades, y su capacidad para operar en entornos urbanos y espacios confinados ha sido fundamental en proyectos como el sistema de túneles de Singapur y el metro de Nápoles.

 

Componentes principales:

Una unidad VSM se compone de:

  1. La VSM propiamente dicha, que incluye el bastidor, el cabezal de corte o tambor rozador equipado con picas y el brazo giratorio telescópico con capacidad de extensión de aproximadamente 1 m, que permite la excavación por «rebanadas» mediante un giro de 360°.
  2. Elementos auxiliares externos, encargados de controlar el descenso y la estabilidad, como zapatas de apoyo, winches y sistemas de control.

Estas máquinas suelen ser modulares y se adaptan al diámetro y a la profundidad requeridos. También pueden incorporar sistemas de monitorización digital para controlar el par de corte, el consumo de energía y las propiedades del lodo durante la excavación. Además, algunos modelos incluyen sensores avanzados que permiten predecir el desgaste de las picas y optimizar el rendimiento energético, lo que incrementa la eficiencia en obras de gran profundidad.

Figura 2. Elementos principales del Vertical Shaft Sinking Machine (VSM) de Herrenknetch (cortesía de Herrenknetch).

Proceso constructivo

El procedimiento de excavación y construcción con VSM consta de varias fases:

  • Inicio y excavación: la máquina se instala en el pozo de ataque y se fija a las paredes mediante brazos estabilizadores. El tambor rozador excava justo por debajo del anillo inferior metálico, facilitando el descenso de la estructura de hormigón.
  • Evacuación del material: el material excavado (detritos) se mezcla con agua para formar lodos, que son extraídos mediante bombas sumergibles de 200–400 m³/h. Posteriormente, los lodos se conducen a una planta de tratamiento externa, donde se separa el agua y se acondiciona el material sobrante para su gestión. En proyectos recientes, se ha implementado un sistema de reciclaje de lodos que reduce el consumo de agua hasta en un 40 %.
  • Estructura del pozo: el anillo inferior es de acero biselado, permitiendo que los anillos de hormigón se deslicen a medida que avanza la excavación. Los anillos prefabricados de hormigón se añaden desde la superficie y son empujados por cilindros hidráulicos (3 o 4 unidades habituales), conectados a través de cables de acero que soportan el peso total de la estructura.
  • Coordinación excavación-anillado: la excavación, el bombeo de ripios y el montaje de anillos deben sincronizarse cuidadosamente para evitar paradas prolongadas que comprometan la estabilidad del pozo. En obras internacionales, se ha documentado la integración de software de control automatizado que permite coordinar en tiempo real la excavación, el bombeo y el anillado, lo que aumenta la seguridad y reduce los retrasos.

Rendimientos y capacidades

  • Diámetros: las VSM pueden construir pozos de entre 4,5 y 19 m, en función del modelo y de las condiciones de la obra.
  • Profundidad: habitualmente alcanzan profundidades de hasta 85 m en terrenos heterogéneos, con registros documentados en proyectos internacionales.
  • Avance: la tasa de excavación varía entre 1 y 5 m/día, en función de la geología, el diámetro y el estado hidrogeológico. En terrenos blandos o con alta presencia de agua, el avance puede ser menor debido al mayor control de lodos requerido.

Gestión de lodos y sellado

Durante la excavación, el pozo permanece inundado con lodos bentoníticos, que garantizan la presión hidrostática y evitan derrumbes. Una vez alcanzada la profundidad final, se extrae el lodo y se procede a la instalación de la tubería.

  • El fondo del pozo se sella con un tapón de hormigón mientras permanece inundado.
  • El espacio anular se rellena con lechada de cemento.
  • Finalmente, se evacúa el lodo residual para dejar el pozo listo para su uso. Algunos proyectos incorporan sensores que monitorizan la presión y la composición del lodo durante la instalación del tapón para garantizar la integridad estructural.

Comparativa y ventajas

Frente a otros métodos de excavación vertical, como las Shaft Boring Machines (SBM), la VSM destaca por:

  • Montaje compacto y aplicabilidad en entornos urbanos.
  • Mayor seguridad al reducir la intervención manual en el frente.
  • Alta productividad en diámetros medianos y grandes con suelos blandos o saturados.

No obstante, la elección entre VSM y otras tecnologías depende de parámetros como el diámetro requerido, la profundidad y las condiciones geológicas.

Conclusión

Las VSM son una solución mecanizada, eficiente y segura para la construcción de pozos de gran diámetro en condiciones complejas. Su modularidad, su capacidad para operar en suelos saturados y la posibilidad de integrar tecnologías digitales de control las convierten en una herramienta esencial en proyectos de infraestructuras, minería y entornos urbanos. El uso de sensores avanzados y sistemas de control automatizado permite optimizar el rendimiento, aumentar la seguridad y reducir el impacto medioambiental de los proyectos a gran escala.

Os dejo algunos vídeos al respecto de esta máquina:

Referencias

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Félix Candela: Maestro de las estructuras laminares

Félix Candela Outeriño (1910-1997).  https://www.biografiasyvidas.com/biografia/c/candela.htm

Félix Candela Outeriño nació el 27 de enero de 1910 en la calle Mayor de Madrid, cerca del Ayuntamiento, en el corazón del Madrid de los Austrias. Aunque su apellido es de origen siciliano, la familia Candela procedía de la costa levantina. Su madre, Julia Outeriño Echeverría, era gallega, hija de un sargento de alabarderos, y su padre, Félix Candela Magro, era un comerciante valenciano que heredó la representación en Madrid del negocio familiar de derivados del cáñamo, especializado en alfombras y alpargatas. Félix era el mayor de tres hermanos, seguido de Antonio y Julia. Tras la muerte de su padre en 1929 a causa de la tuberculosis, la familia vendió la zapatería y vivió de las rentas mientras Candela estudiaba arquitectura.

Desde pequeño, Candela compaginó sus estudios con una intensa actividad deportiva, en la que destacó en esquí, rugby y atletismo. En 1927, ingresó en la Escuela Técnica Superior de Arquitectura de Madrid de la Universidad Politécnica de Madrid y terminó la carrera en 1935. Durante sus estudios, sobresalió en asignaturas técnicas como Geometría Descriptiva y Cálculo de Estructuras. Paralelamente, estudió en la Real Academia de Bellas Artes de San Fernando, donde coincidió con Eduardo Robles Piquer y Fernando Ramírez de Dampierre, y conoció a Eduardo Torroja y sus técnicas de cubiertas de hormigón. En 1936, recibió la beca Conde de Cartagena para ampliar estudios en Alemania con una tesis doctoral, y contó con cartas de presentación para los ingenieros Franz Dischinger y Ulrich Finsterwalder. Sin embargo, la guerra civil española truncó sus planes. Se alistó en el Ejército Popular de la República como capitán de ingenieros.

Tras la retirada de Cataluña, Candela pasó por los campos de concentración de Saint-Cyprien y Le Barcarés, cerca de Perpiñán (Francia), hasta febrero de 1939, cuando embarcó rumbo a México en el buque Sinaia, llegando a Veracruz el 13 de junio del mismo año. Durante sus primeras semanas en México, sobrevivió con la ayuda del Servicio de Evacuación de los Republicanos Españoles (SERE). Su primer trabajo fue en la colonia Santa Clara, ubicada a unos 100 km al norte de Chihuahua, donde participó en la construcción de un pequeño poblado denominado Ojos Azules. En 1940, logró traer desde España a su novia, Eladia Martín, con quien se casó en Ciudad de México. Vivieron brevemente en Ojos Azules antes de regresar a la capital. Posteriormente, se asoció con el contratista español González Bringas en obras de Acapulco y, el 20 de octubre de 1941, obtuvo la ciudadanía mexicana.

Trabajó dos años en Acapulco, lo que le permitió adquirir experiencia local y estabilidad económica. Durante ese tiempo, trajo a México a su madre, a su hermana Julia y, por último, a su hermano Antonio, que llegó en 1946. Candela y su familia realizaron algunos encargos profesionales, entre ellos un edificio de apartamentos en la calle de Gorostiza y el Hotel Catedral, en Donceles (Ciudad de México). Con el premio que su hermano Antonio ganó en la Lotería Nacional en 1948, viajaron por Europa y visitaron Londres, Ámsterdam, Róterdam, París y La Haya.

En 1949, Candela se interesó por las láminas cilíndricas de hormigón armado que construía su amigo Raúl Fernández y, en 1950, fundó junto con los hermanos Fernández Rangel la empresa Cubiertas Ala, S. A., especializada en arquitectura industrial y estructuras laminares de hormigón armado, conocidas mundialmente como «cascarones» o «paraboloides hiperbólicos». Esta empresa marcó el inicio de su etapa de madurez profesional y creatividad, sustentada en estudios autodidactas y literatura técnica especializada. Entre sus primeros proyectos se encuentran experimentos con bóvedas catenarias y escuelas rurales, y en 1951 Candela construyó su primer paraboloide hiperbólico (hypar) de 15 mm de hormigón armado para el Pabellón de Rayos Cósmicos de la UNAM.

Pabellón de Rayos Cósmicos, en colaboración con Jorge González ReynaUNAM– Por Mario Yaír TS – Trabajo propio, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=151093076

Durante la década de los cincuenta, desarrolló numerosas obras de este tipo: almacenes para las Aduanas de México (1953), un paraguas modular de planta cuadrada para cubiertas industriales y la iglesia de la Virgen de la Medalla Milagrosa (1953-1955) en la colonia Narvarte de Ciudad de México. En 1955, colaboró con Fernando López Carmona y Enrique de la Mora en la construcción de la cubierta de la Bolsa de Valores de México, para la que utilizó paraboloides hiperbólicos con borde curvo y sin refuerzos perimetrales. A partir de entonces, inició una serie de obras religiosas y civiles muy fructífera: la capilla de Nuestra Señora de la Soledad (1955), las iglesias de San Vicente de Paúl y San José Obrero (ambas de 1959), la iglesia de San Antonio de las Huertas (1956), la cubierta del cabaret La Jacaranda (1957), la capilla de Lomas de Cuernavaca (1958-1959) y el icónico restaurante Los Manantiales (1957-1958). Entre las obras más importantes destacan la planta embotelladora de Bacardí (1960), la iglesia de Santa Mónica (1960) y la iglesia de Nuestra Señora de Guadalupe en Madrid (1963), en la que Candela participó como calculista. Durante esta década, Cubiertas Ala construyó 395 obras, la mayoría de ellas industriales.

El propio Candela resumía su filosofía arquitectónica y estructural con estas palabras:

«Toda obra de arte es una interpretación del mundo, de lo que estás contemplando; una determinación de la percepción que crea e intenta un mundo distinto. Al fin y al cabo, una obra de arte no es sino una ofrenda al arte.»

L’Oceanogràfic (El Oceanográfico), Ciudad de las Artes y las CienciasValenciaEspaña. Por Felipe Gabaldón, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=12532971

Candela es considerado uno de los arquitectos estructuristas más importantes del siglo XX, y destacó por su capacidad para replantear el papel del arquitecto frente a los problemas estructurales de la arquitectura basándose en la economía, la sencillez de cálculo y la flexibilidad, y siempre mostrando una sensibilidad única a la hora de proyectar espacios. Desde sus inicios, difundió sus ideas enviando artículos al American Concrete Institute (ACI) y participando en congresos internacionales, alcanzando la fama mundial a partir de los años cincuenta.

Candela también alcanzó reconocimiento internacional: presidió las Charles Eliot Norton Lectures en Harvard (1961-1962), recibió el Premio Auguste Perret (1961), la medalla de oro de The Institution of Structural Engineers y homenajes de la colonia de refugiados españoles. En 1964, tras el fallecimiento de su primera esposa, Eladia, y después de 25 años de actividad en México, recibió oficialmente la cédula de arquitecto mexicano. En 1967 se casó con Dorothy Davies. En 1968, proyectó junto a Antonio Peyrí y Enrique Castañeda el Palacio de los Deportes para los Juegos Olímpicos, que destacó por su gran cúpula de cobre conocida como el «palacio de los cien soles».

En 1969 regresó a España para participar en el Congreso de la IASS y fue nombrado profesor honorario de la Escuela Técnica Superior de Arquitectura de Madrid. En 1971 se trasladó a Estados Unidos y residió en Nueva York y, posteriormente, en Chicago, donde obtuvo la ciudadanía estadounidense y ocupó una cátedra en la Universidad de Illinois hasta 1978. Posteriormente, trabajó asociado al IDEA Center en Toronto, Grecia, Arabia Saudita y París, hasta la disolución de la oficina en 1979. Durante este período, Candela participó en proyectos internacionales como la Ciudad Deportiva de Kuwait, el Estadio Santiago Bernabéu, el Idea Center de Riad y Yanbú, el Centro Cultural Islámico de Madrid, una torre de oficinas en Riad, un aeropuerto en Murcia, la Feria de Muestras de Marbella, la Legislatura de Veracruz, el Máster Plan de la Universidad Islámica y la Procuraduría de Xalapa.

En sus últimos años residió entre Nueva York y Madrid, donde colaboró con Fernando Higueras y Typsa. Recibió numerosos reconocimientos: entre ellos, la medalla de oro del Consejo Superior de Colegios de Arquitectos de España (1981), el I Premio Antonio Camuñas (1985), la publicación de En defensa del formalismo y otros escritos (1985) y el doctorado honoris causa por la Universidad Politécnica de Madrid (1994). En 1995, los colegios de arquitectos e ingenieros de caminos de Madrid le rindieron un homenaje conjunto.

Candela falleció el 7 de diciembre de 1997 en el Hospital Duke de Durham (Carolina del Norte) a causa de complicaciones derivadas de una dolencia cardíaca que padecía desde hacía años. Su obra, caracterizada por el uso del paraboloide hiperbólico, ha influido en generaciones posteriores de arquitectos, entre los que se encuentra Javier Senosiain. Entre sus publicaciones destacan: Simple Concrete Shell Structures (1951), Hacia una nueva filosofía de las estructuras (1952), Una pequeña demostración práctica de la validez de la teoría de la membrana en superficies alabeadas (1952), Estéreo-estructuras (1953), The shell as space closer (1955), Fórmulas generales para el cálculo de esfuerzos en cascarones parabólico-hiperbólicos (1960) y En defensa del formalismo y otros escritos (1985).

Os dejo algunos vídeos sobre Candela.

Dejo también un artículo de Antonio Tomás y Tomás Martí con motivo del centenario de su nacimiento.

Pincha aquí para descargar

Preguntas frecuentes sobre entibaciones

Figura 1. Detalle de cajones de blindaje Robust BOX. Fuente: www.atenko.com

1. ¿Qué es una entibación y cuándo es necesaria en construcción?

Una entibación es un sistema provisional de contención de tierras compuesto por elementos (metálicos o de madera) que se apuntalan entre sí. Su función principal es evitar el derrumbe de las paredes verticales en excavaciones como zanjas, minas, galerías subterráneas o pozos. Se utiliza cuando no es posible crear un talud estable que impida los desprendimientos o restrinja los movimientos del terreno. También es crucial cuando la profundidad de la zanja supone un peligro para los trabajadores, en concreto a partir de 1,30 m en terrenos cohesivos y 0,80 m en terrenos no cohesivos, siempre que no haya otras solicitaciones adicionales. No sería necesaria una entibación si la excavación presenta taludes estables (45° en suelos no cohesivos, 60° en suelos cohesivos o 80° en suelos rocosos), pero factores desfavorables, como vibraciones fuertes o rellenos mal compactados, pueden hacerla indispensable. Además, es fundamental para evitar sifonamientos en suelos no cohesivos por debajo del nivel freático.

2. ¿Cuáles son los principales tipos de entibaciones de madera y sus aplicaciones?

Las entibaciones de madera se clasifican principalmente en dos tipos, según la disposición de sus tablas y el tipo de terreno:

  • Entibaciones con tablas horizontales: Se usan en terrenos cohesivos y autoestables durante la excavación. La excavación y la entibación se van alternando cada 0,80-1,30 m, apuntalando las tablas de lado a lado con codales o rollizos hasta alcanzar la profundidad total.
  • Entibaciones con tablas verticales: Ideales para terrenos sin cohesión, como arenas sueltas o lodazales. Las tablas verticales con punta se hincan con una maza antes de excavar y pueden alcanzar hasta 2 m de profundidad. A medida que se hincan, se colocan las correas o cabeceros y se apuntalan.
Figura 2. Entibación de madera. http://www.generadordeprecios.info/rehabilitacion/Acondicionamiento_del_terreno/Recalces/Entibaciones/

Además, las entibaciones de madera se clasifican según el porcentaje de superficie de excavación que cubren:

  • Entibación cuajada: Cubre el 100 % de las paredes, con tablones contiguos, y se utiliza en gravas, arenas sueltas, limos y arcillas blandas de escasa consistencia.
  • Entibación semicuajada: Cubre el 50 % de las paredes, con tablones separados unos 0,75 m, y se emplea en terrenos suficientemente compactos.
  • Entibación ligera: Cubre menos del 50 %, sin tableros, solo cabeceros apuntalados por codales separados entre 1,5 y 2 m. Se emplea también en terrenos compactos.

Aunque han sido reemplazadas en gran medida por sistemas metálicos por razones económicas y de velocidad, las entibaciones de madera siguen siendo útiles en zanjas con muchas tuberías transversales o cuando el transporte de otros sistemas no es posible.

3. ¿Qué es un muro berlinés y en qué situaciones se recomienda su uso?

Un muro berlinés es un sistema de entibación temporal que consiste en perfiles metálicos hincados verticalmente en el terreno y separados entre sí, de modo que se pueden insertar tablones de madera para contener las tierras. Es una técnica segura y económica para excavaciones de poca o media profundidad (normalmente de 3 a 8 metros) en terrenos poco estables, como suelos arenosos o finos.

Se clasifica como un muro flexible y «abierto», lo que significa que no impide el paso del agua subterránea, por lo que es necesario agotar el nivel freático de forma simultánea durante la excavación. No se recomienda su uso cerca de cimentaciones existentes ni en caso de presencia de nivel freático. Su proceso constructivo consiste en hincar perfiles de doble T a intervalos regulares y, a medida que se excava, colocar los tablones de madera entre las alas de los perfiles. La colocación de los perfiles en perforaciones preejecutadas minimiza los ruidos y las vibraciones en zonas urbanas, y la fácil manipulación de los tablones permite dejar espacios para las instalaciones existentes.

Figura 3. Muro berlinés

4. ¿Cuáles son las principales ventajas de las entibaciones metálicas frente a las de madera?

Las entibaciones metálicas, que a menudo están prefabricadas y están compuestas por paneles de aluminio o acero, presentan varias ventajas significativas con respecto a las de madera:

  • Rentabilidad y productividad: Son más económicas y rápidas de instalar debido a su ligereza, sencillez de colocación y menor necesidad de mano de obra.
  • Seguridad: Se montan y desmontan desde el exterior de la excavación con maquinaria, lo que reduce el riesgo para los operarios.
  • Reutilización y durabilidad: Pueden reutilizarse en numerosas ocasiones, con un mínimo mantenimiento y una larga vida útil.
  • Versatilidad: Permiten excavar zanjas de diversas anchuras y profundidades, independientemente de la longitud de la tubería que se vaya a instalar.
  • Eficiencia: El ritmo de colocación de tuberías es alto, ya que la excavación y la entibación se realizan simultáneamente.
  • Minimización de alteraciones: El extremo inferior de las entibaciones no llega al fondo de la excavación, por lo que no se alteran los rellenos laterales de los tubos al extraerlas y se mantiene la homogeneidad y compactación de los rellenos.
  • Extracción sencilla: En suelos expansivos, se puede regular la separación entre los paneles para relajar las presiones del suelo antes de la extracción y facilitar el proceso.

5. ¿Qué tipos de entibaciones con paneles metálicos existen y para qué profundidades son adecuadas?

Existen dos grandes familias de entibaciones con paneles metálicos, adecuadas para diferentes profundidades:

  • Sistemas de cajones de entibación (blindajes o escudos): Se recomiendan para profundidades máximas de 4 metros. Estos cajones están formados por dos paneles unidos por codales de longitud regulable y se utilizan no solo para el sostenimiento, sino también para proteger a los trabajadores. Se ensamblan en obra y pueden usarse en terrenos no cohesivos. Para profundidades mayores, su extracción se vuelve difícil y puede causar descompensaciones del terreno.
  • Sistemas con guías deslizantes (paneles con guías deslizantes): Ideales para profundidades superiores a 4 metros. Están formados por paneles de acero que se deslizan a lo largo de unas guías laterales unidas por codales. Son especialmente ventajosos en terrenos no cohesivos y permiten alcanzar mayores profundidades con dimensiones variables. Su diseño garantiza un deslizamiento suave y mantiene el paralelismo entre las planchas, lo que elimina los problemas de asentamiento.

También se menciona la entibación ligera con paneles de aluminio para suelos cohesivos, que no debe superar los 2,40 m de profundidad y que se utiliza comúnmente como blindaje del borde de zanjas de hasta 1,75 m para proteger aceras y calzadas en zonas urbanas. También se describe el sistema de entibación por presión hidráulica, con una profundidad recomendada de hasta 7 m. Este sistema es ideal para reparar conductos o instalar tuberías y es adecuado para trabajos arqueológicos, ya que no transmite vibraciones.

Figura 4. Entibadora hidráulica Pressbox Serie 800. Cortesía SBH Tiefbautechnick

6. ¿Cuáles son las medidas de seguridad más importantes a la hora de trabajar con entibaciones metálicas?

La seguridad es primordial al utilizarlas. Entre las medidas de prevención comunes y esenciales se incluyen:

  • Certificación y cumplimiento: Se deben emplear sistemas certificados que sigan estrictamente las instrucciones del fabricante, y verificar que las condiciones reales de la obra coincidan con el proyecto y las cargas admisibles.
  • Manipulación segura: Al manipular los paneles, el enganche debe realizarse en los cuatro puntos designados, utilizando eslingas y cadenas en perfecto estado y con marcado CE.
  • Protección completa de la excavación: Las entibaciones deben proteger toda la superficie excavada y sobresalir al menos 15 cm de la coronación de la zanja o pozo para evitar desplomes del frente de la excavación.
  • Orden de instalación y desinstalación: La entibación se ejecuta de arriba hacia abajo, mientras que el desentibado se realiza en orden inverso, de abajo hacia arriba, manteniendo la estabilidad de la excavación y rellenando y compactando simultáneamente.
  • Distancias de protección: Se deben respetar distancias de protección de al menos 0,60 m alrededor de la entibación, incluida la maquinaria.
  • Acceso seguro: Se deben disponer escaleras aseguradas para acceder a las zanjas, que deben sobrepasar al menos un metro del borde. Queda estrictamente prohibido subir y bajar por los codales.

7. ¿En qué se diferencia el método de descenso directo del método de descenso escalonado para la instalación de cajones de entibación?

Ambos métodos consisten en la instalación de cajones de blindaje o escudos, pero se aplican en condiciones del terreno diferentes:

  • Método de descenso directo (o de ajuste): En este método, la entibación se introduce completa hasta el fondo de una zanja ya excavada. Es adecuado para paredes de excavación estables y verticales, y cuando la zanja tiene la misma anchura que la entibación. El espacio entre la cara exterior del blindaje y el frente de excavación debe ser mínimo y rellenarse para evitar movimientos laterales del cajón. La instalación se realiza con maquinaria sencilla, como una retroexcavadora o una pequeña grúa.
  • Método de descenso escalonado (o de «corte y bajada»): Este método se utiliza para cajones provistos de bordes cortantes y es más adecuado para terrenos menos estables. Consiste en empujar cada panel con la cuchara de una pala excavadora, alternando el descenso con la excavación y la retirada del suelo. El avance en el descenso no debe exceder los 0,50 m del borde inferior de la plancha, lo que permite un control más gradual y seguro en condiciones en las que la zanja no puede permanecer abierta sin soporte.

8. ¿Qué papel juega el tipo de terreno en la selección de un sistema de entibación?

El tipo de terreno es un factor determinante a la hora de elegir el sistema de entibación más adecuado, ya que influye directamente en su estabilidad y en el empuje que ejercerá sobre las estructuras de contención.

  • Terrenos cohesivos (arcillas, limos firmes): Pueden ser autoestables durante periodos cortos. Las entibaciones con tablas horizontales son útiles para excavaciones alternas. Para entibaciones metálicas ligeras, los sistemas de cabeceros verticales son adecuados para suelos estables. En general, se requiere menos cobertura (entibación ligera o semicuajada) si son suficientemente compactos, pero a mayor profundidad o con solicitaciones externas (vial, cimentación), se necesitarán entibaciones más robustas (semicuajadas o cuajadas).
  • Terrenos no cohesivos o blandos (arenas sueltas, gravas, lodazales): Son inestables y propensos al desplome inmediato. Requieren entibaciones que cubran la totalidad de las paredes (entibación cuajada de madera) o sistemas de contención continua. Para las entibaciones de madera se emplean tablas verticales que se hincan antes de excavar. Las entibaciones metálicas con guías deslizantes son muy recomendables a partir de los 4 m de profundidad en terrenos flojos y no cohesivos, al igual que los cajones de blindaje para profundidades máximas de 4 m.
  • Terrenos con nivel freático: La presencia de agua subterránea añade complejidad. Las entibaciones «abiertas», como el muro berlinés, requieren un agotamiento simultáneo del nivel freático. En suelos no cohesivos por debajo del nivel freático, es esencial utilizar una entibación para evitar el peligro de sifonamiento.

La Norma Tecnológica NTE-ADZ establece recomendaciones específicas sobre los tipos de entibaciones de madera (ligera, semicuajada y cuajada) en función del tipo de terreno, solicitación (sin solicitación, vial o de cimentación) y profundidad de corte, y hace hincapié en la necesidad de realizar estudios pertinentes en caso de duda.

Os dejo un vídeo y un audio que resume este tema:

Glosario de términos clave

  • Acodalado: Se refiere a elementos estructurales que están soportados o apuntalados lateralmente por codales o puntales, proporcionando estabilidad contra movimientos horizontales.
  • Andamios: Estructuras auxiliares provisionales que sirven para elevar materiales y permitir el acceso de los trabajadores a distintos puntos de una obra.
  • Apeos: Estructuras provisionales diseñadas para sostener una parte de una edificación o terreno que se encuentra en riesgo de colapso, descargando el peso sobre elementos más estables.
  • Berma: Plataforma horizontal o escalón que se forma en el talud de una excavación o terraplén para mejorar su estabilidad, reducir la altura de la entibación o facilitar el acceso.
  • Cimbra: Estructura provisional de apoyo utilizada para sostener un arco, bóveda o losa de hormigón durante su construcción, hasta que adquiere la resistencia necesaria.
  • Codal: Elemento horizontal, generalmente un puntal o rollizo, que se coloca entre las paredes de una zanja o entre los paneles de una entibación para mantener su separación y resistir el empuje del terreno.
  • Cohesivo (terreno): Tipo de suelo que posee cohesión entre sus partículas (como las arcillas o limos), lo que le permite mantener una forma sin desmoronarse fácilmente.
  • Encofrado: Estructura temporal que moldea el hormigón fresco hasta que este fragua y adquiere su forma y resistencia definitiva.
  • Entibación: Sistema de contención provisional de tierras, compuesto por elementos de madera o metálicos, acodalados entre sí, para evitar el desplome de las paredes de excavaciones.
  • Entibación cuajada: Entibación de madera que cubre la totalidad de las paredes de la excavación, con los tablones situados uno a continuación del otro. Se usa en terrenos de muy escasa consistencia.
  • Entibación ligera: Entibación de madera que cubre menos del 50% de las paredes de la excavación, utilizando principalmente cabeceros apuntalados por codales. Se aplica en terrenos compactos.
  • Entibación semicuajada: Entibación de madera donde los cabeceros se unen con tablas verticales que cubren el 50% de las paredes de la excavación, con tablones separados aproximadamente 0,75 m. Se usa en terrenos compactos.
  • Nivel freático: Nivel superior de la capa de agua subterránea que satura el suelo. Su presencia afecta la estabilidad del terreno y la necesidad de entibaciones impermeables o sistemas de agotamiento.
  • No cohesivo (terreno): Tipo de suelo cuyas partículas no tienen cohesión entre sí (como las arenas o gravas), lo que lo hace propenso a desmoronarse si no se contiene.
  • Muro berlinés: Entibación temporal formada por perfiles metálicos (generalmente doble T) hincados verticalmente, entre los cuales se insertan tablones de madera para contener el terreno. Es de tipo flexible y «abierto» al agua subterránea.
  • Panel metálico: Componente prefabricado, generalmente de aluminio o acero, utilizado en sistemas de entibación moderna. Ofrecen ligereza, rapidez de instalación y alta resistencia.
  • Rollizo: Tronco de árbol sin labrar o descortezar, utilizado comúnmente como codal o puntal en entibaciones de madera.
  • Sifona miento: Fenómeno que ocurre en suelos no cohesivos bajo el nivel freático, donde el flujo de agua ascendente puede arrastrar partículas de suelo, provocando la pérdida de estabilidad y posibles desplomes.
  • Tablas (de madera): Elementos planos de madera, de un espesor determinado, utilizados para conformar las paredes de las entibaciones de madera, ya sea en disposición horizontal o vertical.
  • Tablestacas: Elementos prefabricados, generalmente metálicos o de hormigón, que se hincan en el terreno para formar una pantalla continua de contención, a menudo utilizada en entibaciones o muros pantalla.
  • Talud: Inclinación o pendiente de una superficie de terreno. En excavaciones, un talud estable es aquel que no requiere entibación para evitar el desplome.
  • Zanja: Excavación alargada y estrecha realizada en el terreno, generalmente para la instalación de tuberías, cables o cimentaciones.

 Referencias:

  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • GONZÁLEZ CABALLERO, M. (2001). El terreno. Edicions UPC, Barcelona, 309 pp.
  • IZQUIERDO, F.A. (2001). Cuestiones de geotecnia y cimientos. Editorial Universidad Politécnica de Valencia, 227 pp.
  • LAMBE, T.W.; WHITMAN, R.V. (1996). Mecánica de suelos. Limusa, México, D.F., 582 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MINISTERIO DE LA VIVIENDA (2006). Código Técnico de la Edificación
  • TERZAGHI, K.; PECK, R. (1967). Soil Mechanics in Engineering Practice. 2nd Edition, John Wiley, New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El diagrama causa-efecto: herramienta fundamental para entender y mejorar procesos

Un diagrama de causa y efecto es una representación visual compuesta por líneas y símbolos que muestra claramente la relación entre un efecto (o problema) y sus posibles causas. A este tipo de representación también se le conoce como diagrama de Ishikawa o diagrama de espina de pescado, debido a su semejanza con el esqueleto lateral de un pez. El efecto se coloca a la derecha (como la «cabeza» del pez), mientras que las causas principales se disponen a la izquierda, ramificándose desde un eje central y subdividiéndose en causas menores.

Origen y fundamento

El primer diagrama fue desarrollado en 1943 por Kaoru Ishikawa, un químico industrial japonés y profesor de la Universidad de Tokio, pionero del control de calidad en Japón. Aunque el concepto básico existía desde los años veinte, Ishikawa lo perfeccionó, sistematizó y popularizó como una de las siete herramientas básicas de control de calidad.

Propósito y funcionamiento

La utilidad principal del diagrama es investigar efectos —ya sean «malos», para corregirlos, o «buenos», para entender qué causas los propician—, reconociendo que un efecto puede provenir de múltiples causas a distintos niveles de profundidad. Generalmente, se organiza en categorías como métodos de trabajo, materiales, medición, personal, ambiente y, a veces, administración o mantenimiento, de donde surgen causas secundarias (por ejemplo, subcategorías bajo «métodos» como capacitación o características físicas del personal).

Paso a paso para elaborarlo

  1. Definir el efecto o problema de calidad y colocarlo a la derecha del pliego o en la «cabeza» del diagrama.
  2. Dibujar el eje principal (espina) y, de sus costados, los huesos principales que representan categorías de causas (p. ej., 6 M: método, máquina, mano de obra, materiales, medición, medio ambiente).
  3. Identificar causas secundarias mediante una sesión de lluvia de ideas (brainstorming) en equipo, aprovechando el pensamiento creativo y evitando juicios prematuros.
  4. Subdividir cada causa principal en causas menores (a partir de preguntas como «¿por qué?», «¿qué?», o «¿quién?»).
  5. Cuando se agotan las ideas, se inicia una sesión de evaluación, donde cada miembro vota por las causas menores más probables; las más votadas se destacan y se priorizan (normalmente cuatro o cinco).
  6. Se proponen soluciones, evaluadas según criterios como costo, factibilidad o resistencia al cambio; una vez acordadas, se implementan, se prueban y el diagrama se actualiza y coloca en lugares visibles para consulta continua.

Claves para hacer más eficaz la lluvia de ideas

  • Asegurar una participación equitativa: cada miembro recomienda ideas por turno; si alguien no tiene, pasa, pero puede retomarlas después.
  • Promover cantidad sobre calidad: las ideas «tontas» pueden desencadenar las mejores soluciones.
  • Evitar las críticas durante la generación de ideas y hacer una evaluación posterior.
  • Utilizar un papel grande (por ejemplo, de 60 x 90 cm), visible y pegado en la pared para fomentar la participación.
  • Fomentar una atmósfera enfocada en soluciones, no en quejas; el líder guía con preguntas clave.
  • Dejar incubar las ideas (por ejemplo, una noche) y luego retomarlas con más estímulos creativos.

Aplicación y beneficios estratégicos

El diagrama tiene aplicaciones casi ilimitadas, desde la fabricación, la investigación y las ventas hasta las oficinas, la educación, la sanidad, etc. Entre sus principales usos destacan:

  1. Mejorar la calidad del producto o servicio, optimizar recursos y reducir costos.
  2. Detectar y eliminar causas de no conformidades o quejas del cliente.
  3. Estandarizar procesos actuales y propuestos.
  4. Formar y entrenar al personal en toma de decisiones y acciones correctivas.

Tipos de diagramas relacionados

Además del tipo más común (enumeración de causas), existen variantes como:

  • Diagrama de dispersión: se trabaja completamente una rama antes de pasar a otra, para investigar la variabilidad.
  • Diagrama de proceso: cada paso del proceso (como carga, corte, ensamblado) se usa como causa principal, útil para procesos operativos o continuos.

Conclusión

El diagrama causa-efecto o diagrama de Ishikawa es una herramienta visual muy potente para representar y comprender cómo múltiples causas contribuyen a un efecto determinado. Su valor reside en su estructura clara, su enfoque sistemático, su aplicación colaborativa y su versatilidad. Su eficacia depende de una elaboración rigurosa, que incluye desde la definición precisa del problema hasta la evaluación participativa y la implementación de soluciones, pasando por el uso estratégico de la lluvia de ideas. Todo ello, junto con su capacidad de adaptación a diferentes contextos, lo convierte en una metodología viva y útil para la enseñanza, la industria y la gestión.

Os dejo varios vídeos de esta técnica.

Referencias:

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas sobre ciclos de trabajo y producción de la maquinaria de construcción

Figura 1. Pala sobre neumáticos cargando dúmper. Imagen: V. Yepes

1. ¿Qué es un ciclo de trabajo y cuáles son sus componentes principales?

Un ciclo de trabajo se define como la secuencia de operaciones elementales necesarias para completar una tarea. El tiempo total necesario para realizar estas operaciones se denomina «tiempo del ciclo». Se descompone en tres tipos principales:

  1. Tiempo fijo: Duración de operaciones que requieren un tiempo determinado, como la carga, la descarga y las maniobras.
  2. Tiempo variable: Duración de las operaciones que dependen de las condiciones de trabajo, como la distancia en un ciclo de transporte.
  3. Tiempo muerto de inactividad: Tiempo de espera de una máquina mientras otra está realizando una operación en un equipo coordinado.
Figura 2. Esquema de los ciclos acoplados de máquinas trabajando en equipo. Tiempo muerto en la máquina principal

2. ¿Cómo se calcula la producción de un equipo por unidad de tiempo y qué factores la afectan?

La producción por unidad de tiempo o rendimiento de un equipo se calcula multiplicando la capacidad de producción en un ciclo por el número de ciclos realizados en ese período.

La producción de una máquina o conjunto de máquinas está influenciada por múltiples factores, como el clima, la dureza del trabajo, los turnos, el estado de las máquinas, el dimensionamiento de los equipos, la habilidad del operador y la existencia de incentivos. Para estimar la producción real a partir de la producción teórica, hay que multiplicar la producción teórica por una serie de factores de producción.

3. ¿Qué es el «cuello de botella» en un equipo de máquinas y por qué es importante identificarlo?

El «cuello de botella» es el recurso o máquina que limita la producción total del equipo. Identificarlo es fundamental porque cualquier cambio en su funcionamiento afectará directamente a la capacidad de producción de todo el equipo. Por ejemplo, en un sistema de cargadora y camiones, si la cargadora espera a los camiones, estos son el cuello de botella. Si los camiones esperan a la cargadora, entonces la cargadora es el cuello de botella.

4. ¿Qué es el factor de acoplamiento (match factor) y cuál es su valor óptimo para el coste de producción?

El factor de acoplamiento es la relación entre la producción máxima posible de los equipos auxiliares y la producción máxima posible de los equipos principales, suponiendo que no hay tiempos de espera. El coste de producción más bajo se logra con factores de acoplamiento cercanos a la unidad, pero ligeramente por debajo de ella. Esto se debe a las variaciones estadísticas en los ciclos de trabajo, por lo que, incluso con un equipo bien dimensionado y un factor de acoplamiento de uno, siempre habrá tiempos de espera.

5. ¿Cómo se determina el número de máquinas principales y auxiliares necesarias para un trabajo concreto?

Este número se puede estimar conociendo los tiempos de ciclo de cada tipo de máquina. En una unidad de tiempo (por ejemplo, una hora), el número total de ciclos realizados por las máquinas principales debe ser igual al número total de ciclos realizados por las máquinas auxiliares. Esta relación se puede generalizar para múltiples tipos de máquinas.

6. ¿Cuáles son los tiempos improductivos necesarios para operar una máquina?

Se trata de tiempos imprescindibles para el desarrollo normal de un trabajo, aunque no contribuyen directamente a la producción. Incluyen:

  • Tiempo preparativo-conclusivo: Revisión, arranque, traslado y protección de la máquina.
  • Tiempo de interrupciones tecnológicas: Necesidades de la tecnología implicada, como el cambio de posición de una cuchilla.
  • Tiempo de servicio: Mantenimiento y atención diaria del equipo durante la jornada.
  • Tiempo de descanso y necesidades personales: Tiempo para prevenir la fatiga del operador y atender sus necesidades básicas.

7. ¿Qué es la «producción tipo» y cómo se relaciona con la producción real?

La «producción tipo» es la producción obtenida durante 54 minutos ininterrumpidos de trabajo, siguiendo un método específico, en condiciones determinadas y con una habilidad media del operador. Se utilizan 54 minutos por hora para estimar las pérdidas de tiempo ajenas al trabajo. En esencia, se trata de una producción teórica en condiciones específicas.

Para estimar la producción real a partir de la producción tipo, se multiplica la producción tipo por una serie de factores de producción que tienen en cuenta las condiciones reales. La producción por hora de trabajo productivo en una obra concreta se relaciona con la producción tipo mediante el factor de eficacia.

Figura 3. Determinación del tiempo tipo de un trabajo

8. ¿Cuáles son los principales factores que modifican la producción tipo y de qué depende?

Los principales factores que modifican la producción tipo para estimar la producción real son los siguientes:

  • Factor de disponibilidad: Relación entre el tiempo disponible y el tiempo laborable real. Depende de la máquina y del equipo de mantenimiento.
  • Factor de utilización: Vincula el tiempo de utilización con el de disposición. Indica la calidad de la organización y planificación de la obra.
  • Eficiencia horaria, factor de eficacia o factor operacional: Cociente entre la producción media por hora de utilización y la producción tipo. Considera tiempos no productivos como traslados y preparación. Depende de la selección del personal y el método de trabajo.

Es importante señalar que solo el factor de disponibilidad depende directamente de la máquina; los demás están vinculados a la organización de la obra, la selección del personal y el método de trabajo.

Os dejo un audio que recoge estas ideas. Espero que os sea interesante.

También un vídeo explicativo del contenido.

Glosario de términos clave

  • Ciclo de trabajo: Serie completa de operaciones elementales necesarias para realizar una tarea o labor.
  • Tiempo del ciclo: Duración total invertida en completar un ciclo de trabajo.
  • Tiempo fijo: Parte del tiempo del ciclo que corresponde a operaciones de duración constante, independientemente de las condiciones de trabajo (ej., carga, descarga).
  • Tiempo variable: Parte del tiempo del ciclo que depende de las condiciones específicas de la operación (ej., distancia de transporte).
  • Tiempo muerto de inactividad: Período de espera de una máquina, usualmente debido a la necesidad de sincronización con otra máquina en una operación conjunta.
  • Cuello de botella: El recurso dentro de un equipo de trabajo que limita la producción total del conjunto.
  • Factor de acoplamiento (Match Factor): Relación entre la máxima producción posible de los equipos auxiliares y la máxima producción posible de los equipos principales, idealmente sin tiempos de espera.
  • Producción: La transformación de elementos para obtener productos terminados o resultados útiles, a menudo asociados a unidades de obra en construcción.
  • Capacidad de producción: Cantidad de producto generado en un solo ciclo de trabajo.
  • Rendimiento: Producción por unidad de tiempo de un equipo.
  • Producción teórica: La producción esperada de un equipo bajo condiciones ideales o de diseño.
  • Producción real: La producción efectiva de un equipo, considerando las condiciones y factores operativos reales en una obra.
  • Factores de producción: Coeficientes utilizados para ajustar la producción teórica y obtener una estimación más precisa de la producción real, considerando diversas variables de la obra.
  • Tiempo productivo: Tiempo en el que el equipo trabaja directamente en la ejecución de una operación, ya sea principal o auxiliar.
  • Tiempos improductivos necesarios: Tiempos no productivos, pero esenciales para el desarrollo normal del trabajo (ej., preparativo-conclusivo, interrupciones tecnológicas, servicio, descanso).
  • Producción tipo: Producción obtenida en 54 minutos ininterrumpidos de trabajo bajo un método y condiciones específicas, con un operador de habilidad media. (Referencia a la hora reducida de 54 minutos útiles).
  • Factor de disponibilidad: Relación entre el tiempo que una máquina está disponible para trabajar y el tiempo laborable real. Refleja el estado mecánico y de mantenimiento.
  • Factor de utilización: Relación entre el tiempo que una máquina es utilizada efectivamente y el tiempo que está disponible. Refleja la organización y planificación de la obra.
  • Eficiencia horaria / Factor de eficacia: Cociente entre la producción media por hora de utilización y la producción tipo. Considera los tiempos de trabajo no productivo dedicados a tareas auxiliares y la habilidad del personal.
  • Producción media por hora laborable real: La producción promedio de un equipo durante una hora efectiva de trabajo, considerando todos los factores de corrección.
  • Índice de paralizaciones: Relación entre las interrupciones debidas a la organización, mal acoplamiento o averías de otras máquinas, y el tiempo laborable real.
  • Factor de aprovechamiento: Cociente entre el tiempo de utilización de una máquina y el tiempo laborable real. Es el producto del factor de disponibilidad y el factor de utilización.
  • Equipo en cadena: Un conjunto de máquinas donde la producción de una está ligada al trabajo de la que le precede, y la paralización de una detiene toda la cadena.
  • Equipo en paralelo: Un conjunto de máquinas iguales que trabajan simultáneamente, y la producción total es la suma de las producciones individuales o la probabilidad de que un cierto número de ellas esté activa.
  • Disponibilidad intrínseca: La disponibilidad de una máquina individual en un conjunto paralelo, sin considerar las interrupciones por organización.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rehabilitación sostenible de edificios costeros de hormigón: ¿cómo optimizar el mantenimiento?

Acaban de publicar un artículo nuestro en Environmental Impact Assessment Review, una de las revistas con mayor impacto científico, dentro del primer decil del JCR. En este trabajo se aborda, desde un enfoque innovador, la optimización de los intervalos de mantenimiento reactivo en edificios costeros construidos con métodos modernos de construcción (MMC). La investigación se enmarca dentro del proyecto RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se muestra un resumen del trabajo e información de contexto.

Quienes trabajamos en ingeniería de la construcción sabemos que los entornos costeros son un auténtico reto. La combinación de humedad, salinidad y vientos cargados de cloruros acelera la corrosión de las armaduras en el hormigón armado. Como consecuencia, estructuras tan comunes como hoteles de playa, bloques residenciales o edificios públicos junto al mar sufren un deterioro prematuro que reduce su vida útil, incrementa los costes de reparación y pone en riesgo la seguridad estructural.

Tradicionalmente, la industria de la construcción ha centrado sus esfuerzos en reducir el impacto ambiental de los materiales y de la fase inicial de obra, dejando en segundo plano la importancia del mantenimiento y la rehabilitación. Sin embargo, cada vez está más claro que prolongar la vida útil mediante estrategias de conservación es clave para lograr ciudades sostenibles.

La pregunta de partida

El equipo investigador se planteó la siguiente cuestión central: ¿qué combinación de diseño preventivo y mantenimiento reactivo permite alargar la vida útil de un edificio costero de hormigón armado de la forma más sostenible, equilibrando costes, impacto ambiental y repercusiones sociales?

Para responderla, compararon doce alternativas de diseño que mejoran la durabilidad frente a los cloruros y analizaron distintas estrategias de reparación en función del nivel de deterioro.

La aportación más destacada

Lo más novedoso del trabajo es la integración de un análisis del ciclo de vida (LCA) con un modelo de ayuda a la decisión basado en FUCOM-TOPSIS. Este enfoque híbrido no solo cuantifica los costes de construcción y mantenimiento, sino también los impactos ambientales (emisiones, recursos y salud humana) y sociales (seguridad de los trabajadores, generación de empleo, molestias a usuarios y a la comunidad local).

En otras palabras, el modelo permite determinar qué intervalos de mantenimiento reactivo son óptimos para cada diseño año tras año y compararlos desde una perspectiva de sostenibilidad global.

Cómo se ha llevado a cabo

  • Caso de estudio: un módulo de hotel en Sancti Petri (Cádiz), construido con losas aligeradas tipo Unidome mediante MMC.

  • Diseños preventivos analizados: desde adiciones (humo de sílice, cenizas volantes), cementos resistentes a sulfatos, reducción de la relación agua/cemento o mayor recubrimiento, hasta soluciones más avanzadas como aceros galvanizados o inoxidables.

  • Estrategias de mantenimiento: cuatro niveles de intervención, desde reparaciones superficiales hasta sustitución de armaduras corroídas.

  • Modelización: se aplicó el modelo de corrosión de Tuutti para estimar periodos de iniciación y propagación del daño.

  • Criterios de evaluación: ocho en total (dos económicos, dos ambientales y cuatro sociales), ponderados mediante FUCOM y evaluados con TOPSIS.

Resultados principales

Los resultados son muy ilustrativos para la práctica profesional.

  • Las soluciones más sostenibles combinaban cemento multirresistente, tratamientos hidrofóbicos anticorrosión y adiciones minerales, como el humo de sílice. Estas alcanzaron una mejora de la sostenibilidad de hasta el 86 % respecto al diseño base.
  • El cemento sulforresistente (SRC) se presentó como la alternativa más equilibrada, con un ciclo de mantenimiento cada 53 años y un ahorro del 65 % en comparación con el caso de referencia.
  • El acero inoxidable prácticamente elimina el mantenimiento durante 100 años, pero su impacto económico y medioambiental inicial lo convierte en una opción poco competitiva.
  • El acero galvanizado ofrece un buen compromiso, ya que es más duradero que el hormigón convencional y su coste es razonable, aunque su impacto ambiental es superior al de otras soluciones.
  • No siempre «menos mantenimiento» significa más sostenibilidad: la clave es intervenir en el momento adecuado para reducir costes y emisiones acumuladas a lo largo de todo el ciclo de vida.

Aplicaciones prácticas en la ingeniería

Este estudio aporta varias lecciones que se pueden aplicar directamente a la práctica:

  1. Planificación a largo plazo: las decisiones de diseño inicial deben ir acompañadas de una estrategia de mantenimiento clara, no solo de criterios de durabilidad normativa.

  2. Visión integral: al evaluar alternativas, no basta con comparar costes iniciales. También hay que tener en cuenta el impacto ambiental y social de cada opción.

  3. Aplicabilidad amplia: aunque el caso analizado es un hotel costero, la metodología es válida para puentes, puertos, depuradoras y cualquier otra estructura de hormigón expuesta a ambientes marinos.

  4. Alineación con la normativa europea: este tipo de enfoques encaja con las estrategias de descarbonización y economía circular de la UE, que exigen evaluar todo el ciclo de vida de las infraestructuras.

En definitiva, este trabajo nos recuerda que la sostenibilidad en la construcción no solo depende de lo que hacemos al levantar un edificio, sino también de cómo lo mantenemos a lo largo de su vida útil. Y, sobre todo, que la ingeniería ya cuenta con herramientas sólidas para planificar esas decisiones de manera objetiva, transparente y alineada con los Objetivos de Desarrollo Sostenible.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Optimizing reactive maintenance intervals for the sustainable rehabilitation of chloride-exposed coastal buildings with MMC-based concrete structure. Environmental Impact Assessment Review, 116, 108110. DOI:10.1016/j.eiar.2025.108110

Como el artículo está publicado en abierto, os lo dejo para su descarga:

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas preguntas sobre los muros pantalla

Figura 1. Cuchara bivalva para construir pantallas. Por GK Bloemsma – Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/

1. ¿Qué es un muro pantalla y qué funciones principales tiene en el campo de la cimentación?

Un muro pantalla es una técnica de cimentación profunda que se empezó a desarrollar en la década de 1950. Su principal característica es que se trata de una contención flexible que también cumple una función de cimentación. Las funciones principales de los muros pantalla son las siguientes:

  • Contención de tierras: Especialmente útil en situaciones donde la estabilidad de la excavación es difícil y existe preocupación por la seguridad de edificios colindantes.
  • Cimentación profunda: Proporciona una base sólida para estructuras.
  • Impermeabilización: Existen pantallas diseñadas específicamente, a menudo con cemento-bentonita, para evitar la filtración de agua.
  • Combinaciones de las anteriores: Muchos proyectos requieren una combinación de estas funciones para abordar desafíos complejos del terreno y la construcción.

Los cambios de forma y los movimientos de flexión que experimentan los muros pantalla influyen significativamente en la distribución y magnitud de los empujes del suelo, así como en las resistencias y acciones mutuas entre el suelo y la estructura.

2. ¿Cómo se clasifican los muros pantalla según su trabajo estructural y su función?

Los muros pantalla se clasifican de diversas maneras para adaptarse a distintas necesidades constructivas y geológicas.

Según su trabajo estructural, se pueden clasificar de la siguiente forma:

  • Pantallas en voladizo: Se introducen en el terreno a una profundidad suficiente para asegurar su fijación, aprovechando la resistencia pasiva del suelo.
  • Pantallas ancladas: Se utilizan cuando la profundidad de excavación es considerable (generalmente > 7-8m). Su estabilidad se confía a la resistencia pasiva de la parte enterrada y a uno o varios niveles de anclajes. Se subdividen en:
    • De soporte libre (o articuladas): El empotramiento es mínimo, comportándose como una viga doblemente apoyada.
    • De soporte fijo (o empotradas): El empotramiento es suficiente para que el movimiento en su base sea insignificante, actuando como una viga apoyada-empotrada.
  • Pantallas arriostradas: Sustituyen los anclajes por estampidores (puntales).
  • Pantallas acodaladas (entibaciones): Utilizan elementos de arriostramiento para la contención.
  • Pantallas atirantadas: Similares a las ancladas, pero el término puede implicar una mayor rigidez o elementos de tracción más permanentes.
  • Pantallas con contrafuertes: Refuerzos estructurales que aumentan su rigidez y capacidad de contención.

Según su función, se distinguen:

  • Pantallas de impermeabilización: Diseñadas para crear una barrera contra el flujo de agua (ej. con cemento-bentonita).
  • Pantallas de contención de tierras: Su propósito principal es retener el suelo.
  • Pantallas de cimentación (cimentación profunda): Actúan como elementos de apoyo para la estructura.
  • Pantallas combinaciones de las anteriores: Lo más común, buscando una solución multifuncional.

3. ¿Cuáles son los métodos de excavación de bataches para la construcción de muros pantalla y cuándo se utiliza cada uno?

La excavación de los bataches (paneles que conforman el muro pantalla) es un paso crítico que se lleva a cabo mediante dos métodos principales:

  • Medios convencionales (cuchara al cable o hidráulica). Estos métodos se utilizan en condiciones de terreno normales y profundidades típicas:
    • Cuchara de cable: El cierre es mecánico. Su ventaja es que la grúa excavadora puede usarse como auxiliar para hormigonado e izado de armaduras.
    • Cuchara hidráulica: El cierre y el giro son hidráulicos. Son más fáciles de manejar y producen menos excesos de hormigón que las de cable, aunque requieren una grúa auxiliar para armadura y hormigonado.
  • Hidrofresa. Este método se emplea en situaciones más exigentes debido a sus características de precisión y capacidad. Se utiliza cuando:
    • La dureza del terreno es excesiva.
    • Se requiere una verticalidad estricta (por debajo del 0,5 %).
    • Se alcanzan grandes profundidades (superiores a 45 metros).

Antes de la excavación, es necesario construir muretes guía que dirijan la herramienta, aseguren la verticalidad de los paneles y sirvan de soporte estable para la extracción de las juntas. Durante la excavación, puede ser necesario utilizar lodos tixotrópicos (bentoníticos) o polímeros para mantener la estabilidad de las paredes.

Figura 2. Vista de murete guía. http://www.estructurasmaqueda.com

4. ¿Qué función cumplen los lodos tixotrópicos (bentoníticos) y los polímeros en la construcción de las pantallas y en qué se diferencian?

Los lodos tixotrópicos (principalmente bentoníticos) y los polímeros son fundamentales para el sostenimiento de las excavaciones de muros pantalla, sobre todo cuando la estabilidad del terreno lo requiere.

Lodos tixotrópicos (bentoníticos):

  • Funciones: Mantener las paredes de la excavación (evitando derrumbes), mantener los sólidos en suspensión y lubricar la herramienta de perforación.
  • Mecanismo de acción: Forman una «torta» (cake) impermeable en la pared de la excavación. Esta película permite que la presión hidrostática de la columna de lodo actúe contra las paredes, estabilizándolas. Para que el «cake» se forme, es necesaria cierta filtración del lodo, por lo que son efectivos en suelos permeables (arenas) pero inútiles en arcillas.
  • Propiedades: Son fluidos no newtonianos cuya viscosidad aumenta al dejarlos en reposo (tixotropía), manteniendo los sólidos en suspensión gracias a un esfuerzo umbral (yield point).
  • Contaminación: Si se contaminan, floculan y pierden su funcionalidad. Se puede añadir polímero celulósico para protegerlos y aumentar su yield point sin incrementar excesivamente la viscosidad (útil en gravas).

Polímeros:

  • Alternativa a la bentonita: Pueden sustituir total o parcialmente a los lodos bentoníticos en condiciones particulares.
  • Ventajas medioambientales: Son biodegradables con el tiempo o se pueden destruir rápidamente con agentes oxidantes (lejía, agua oxigenada) o bacterias específicas.
  • Mecanismo de acción: A diferencia de la bentonita, no forman un «cake» externo efectivo. Las largas cadenas poliméricas se infiltran en el terreno y unen sus partículas por tracción iónica, creando un «cake» interno. Esto permite que la presión hidrostática del lodo actúe contra el terreno cohesionado.
  • Limitaciones: Carecen de un «yield-point» efectivo (salvo excepciones), por lo que solo se pueden emplear en terrenos de baja permeabilidad (10-5 a 10-6 m/seg).
  • Otras características: No necesitan desarenadores, ya que los sólidos en suspensión decantan rápidamente. Se dividen en polares (aniónicos y catiónicos) y apolares, siendo estos últimos más resistentes a ataques químicos.

En resumen, los lodos bentoníticos dependen de la formación de una «torta» externa y son adecuados para suelos permeables, mientras que los polímeros actúan por infiltración y cohesión interna, siendo idóneos para suelos de baja permeabilidad y ofreciendo ventajas medioambientales.

5. ¿Cuáles son los pasos clave en la ejecución convencional de muros pantalla después de la excavación y qué consideraciones son importantes en cada uno?

Una vez completada la excavación del batache y, si es necesario, sostenida con lodos, los siguientes pasos en la ejecución convencional de muros pantalla son los siguientes:

  • Desarenado de los lodos: Si se utilizaron lodos y su contenido de arena supera el 5 %, es imprescindible desarenarlos mediante centrifugado en hidrociclones. De no hacerlo, la arena decantaría sobre el hormigón, formando bolsas que comprometerían la calidad del muro.
  • Colocación de la armadura: La armadura debe atender a varias consideraciones:
    • Debe tener un esqueleto suficientemente rígido para mantener su forma durante la manipulación.
    • Para armaduras de gran longitud, se debe eslingar por distintos puntos a lo largo de su alzado; para las cortas, disponer de asas de izado.
    • Debe dejar espacio suficiente para la tubería tremie que se usará para el hormigonado.
    • Se deben colocar separadores (metálicos o de hormigón) para asegurar el recubrimiento mínimo de 75 mm según la normativa UNE.
  • Hormigonado de las pantallas: Se utiliza la técnica del hormigón sumergido, necesaria cuando no es posible vibrar el hormigón (como ocurre bajo lodos).
    • El hormigón se introduce a través de una tubería tremie que debe permanecer introducida 5m en el hormigón (o 3m en seco), subiéndose a medida que el hormigonado avanza.
    • Para paneles de más de 5 m de longitud, se usan dos tuberías tremie.
    • Los lodos se van evacuando a medida que el hormigón asciende.
    • La duración total del hormigonado debe ser inferior al 70 % del tiempo de inicio de fraguado.
    • Se utiliza un hormigón de consistencia líquida (cono 16-20 NTE o 18-21 UNE-EN-1538).
    • El hormigón debe subir lo más horizontal posible dentro del panel.
  • Extracción de la junta: Existen diferentes tipos de juntas para asegurar la continuidad entre paneles:
    • Junta trapezoidal: No necesita retirarse antes del fraguado del hormigón. Se extrae con un cabestrante o gatos.
    • Junta circular y tricilíndrica (Stein): Deben extraerse durante el fraguado del hormigón, en el momento justo en que este ha endurecido lo suficiente para mantenerse, pero no tanto que impida la extracción. Se retiran con gatos hidráulicos.

El cumplimiento de las tolerancias establecidas en normativas como la UNE o el PG-3 es fundamental en cada una de estas etapas para garantizar la calidad y funcionalidad del muro pantalla.

6. ¿Qué son los anclajes en cimentaciones, cómo se clasifican y cuáles son sus principales aplicaciones?

Los anclajes son elementos de sujeción de estructuras al suelo, diseñados para colaborar en la estabilidad del conjunto suelo-estructura y que trabajan fundamentalmente a tracción.

Clasificación de los anclajes:

  • Según su forma de actuar:
    • Pasivos: Entran en tracción automáticamente cuando las cargas o fuerzas externas actúan, oponiéndose al movimiento del terreno y la estructura.
    • Activos (pretensados): Se pretensan hasta una carga admisible una vez instalados, comprimiendo el terreno entre el anclaje y la estructura. Esto evita el movimiento de la cabeza del anclaje hasta que se supere el esfuerzo de pretensado.
    • Mixtos: Se pretensan con una carga inferior a la admisible, dejando un margen para absorber movimientos imprevistos.
  • Según el tiempo de servicio previsto:
    • Provisionales: Diseñados para un uso temporal durante la fase de construcción.
    • Permanentes: Diseñados para permanecer en servicio durante toda la vida útil de la estructura.
  • Según el tipo de inyección:
    • Inyección única (IU): Inyección global del bulbo.
    • Inyección repetitiva (IR): Inyecciones a lo largo del bulbo en varias etapas.
    • Inyección repetitiva y selectiva (IRS): Inyecciones repetitivas en puntos específicos del bulbo.

Principales campos de aplicación:

  • Estabilización del terreno: Comprimir el terreno y coser diaclasas (fracturas).
  • Aumentar la resistencia al corte en taludes: Mejorar la estabilidad de laderas.
  • Sujeción de bóvedas de túneles y paredes de excavación: Proporcionar soporte en obras subterráneas o de contención.
  • Refuerzo de estructuras: Postesado de elementos estructurales, atirantado de bóvedas y arcos.
  • Arriostramiento de estructuras de contención: Estabilizar muros pantalla, tablestacados, etc.
  • Absorber esfuerzos en la cimentación de estructuras: Contrarrestar la subpresión en soleras bajo el nivel freático.
  • Anclaje de estructuras esbeltas y complejas: Proporcionar estabilidad a elementos con alta esbeltez.

Los anclajes inyectados constan de tres partes: la zona de anclaje (bulbo inyectado al terreno), la zona libre (cables protegidos por una vaina) y la cabeza y la placa de apoyo, que fijan el anclaje a la estructura.

Figura 3. Anclaje de un muro. Vía http://chuscmc.blogspot.com

7. ¿Cuáles son los principales estados límite que hay que considerar en el dimensionamiento de elementos de contención, como los muros pantalla, según la normativa española (CTE)?

Según esta normativa, el dimensionamiento de los elementos de contención debe verificar una serie de estados límite para garantizar la seguridad y funcionalidad de la estructura. Estos se dividen en estados límite últimos y estados límite de servicio.

Estados Límite Últimos (ELU): Se refieren a la capacidad portante y la estabilidad global, evitando la rotura o colapso.

  • Estabilidad:
    • Deslizamiento: La estructura se desliza sobre su base o una superficie de falla.
    • Hundimiento: El terreno bajo la cimentación de la estructura falla.
    • Vuelco: La estructura gira alrededor de su base.
  • Capacidad estructural: Fallo del material constitutivo de la pantalla (hormigón, acero).
  • Fallo combinado del terreno y del elemento estructural: Una combinación de los anteriores.

Para pantallas flexibles, se deben verificar además:

  • Estabilidad global: Del conjunto suelo-pantalla-anclajes-sobrecargas.
  • Estabilidad del fondo de la excavación: Evitar levantamiento o sifonamiento.
  • Estabilidad de la propia pantalla: Rotura por rotación o traslación, o por hundimiento.
  • Estabilidad de los elementos de sujeción: (Anclajes, puntales).
  • Estabilidad en las edificaciones próximas: No causar daños a estructuras adyacentes.
  • Estabilidad de las zanjas: Durante la excavación de la propia pantalla.

Estados Límite de Servicio (ELS): Se refieren a las condiciones de uso de la estructura, evitando movimientos o infiltraciones excesivas.

  • Movimientos o deformaciones: Excesivos de la estructura de contención o de sus elementos de sujeción, que afecten a la propia pantalla o a estructuras próximas.
  • Infiltración de agua no admisible: Problemas de estanqueidad.
  • Afección a la situación del agua freática en el entorno: Con posibles repercusiones a estructuras próximas.

En el cálculo se deben considerar acciones como los empujes activos y pasivos de las tierras, los empujes horizontales del agua freática, las sobrecargas y las acciones instantáneas o alternantes (terremotos, impactos). También se tienen en cuenta las propiedades del suelo, los coeficientes de empuje (de Rankine y de Coulomb) y la deformabilidad de la pantalla, que influye significativamente en la distribución de los empujes.

8. ¿Qué es el sifonamiento en excavaciones y cómo se puede prevenir?

El sifonamiento es un fenómeno de inestabilidad del terreno que se produce en excavaciones, especialmente cuando el nivel freático (NF) se halla por encima del fondo de la excavación y es preciso agotar el agua del interior. Se produce una filtración de agua a través del fondo o de las paredes de la excavación. Si la presión intersticial del agua (es decir, la presión en los poros del suelo) crece hasta igualar la presión total del terreno, la tensión efectiva del suelo se anula (σ’ = σ – u = 0), lo que provoca una pérdida de resistencia y un flujo ascendente de partículas finas del suelo. Este fenómeno se alcanza para un «gradiente crítico».

Figura 4. Longitud de empotramiento para evitar el sifonamiento

Los principales problemas que causa el sifonamiento son:

  • Inestabilidad del fondo de excavación: Pérdida de capacidad portante del suelo.
  • Reducción de la presión efectiva en el intradós de la pantalla: Disminuye el efecto positivo del empuje pasivo, comprometiendo gravemente la estabilidad del muro pantalla.
  • Tubificación o entubamiento: Si se dan sifonamientos localizados, se inicia una erosión interna que forma conductos por donde el agua arrastra material, pudiendo causar un colapso brusco.

Soluciones principales para prevenir el sifonamiento:

  • Dimensionar un correcto sistema de bombeo: Para liberar las presiones intersticiales, ya sea durante la excavación (agotamiento) o de forma permanente mediante soleras drenadas. Los sistemas pueden ser bombeo desde arquetas (para excavaciones pequeñas sin finos), pozos filtrantes o lanzas de drenaje (well point).
  • Incrementar la clava de la pantalla: Aumentar la profundidad de empotramiento del muro pantalla (∆l) incrementa el recorrido del agua, reduciendo el gradiente hidráulico. La clava real puede ser un 20% mayor que la profundidad del punto de rotación.
  • «Clavar» las pantallas en un sustrato impermeable: Si es posible, extender la pantalla hasta una capa de suelo con muy baja permeabilidad (k) para cortar el flujo de agua.
  • Disminuir la permeabilidad de la capa filtrante y aumentar su peso específico aparente (γ’): Esto se puede lograr mediante un tapón de Jet-grouting, que también puede actuar como un codal natural.
  • Aumentar el efecto ataguía de la clava de las pantallas: Mediante un «peine» de inyecciones que reduce la permeabilidad del suelo bajo el muro.
  • Congelación del nivel freático: En casos extremos, se puede congelar el agua del terreno para crear una barrera impermeable.

A continuación os dejo un audio que resume bien el contenido de estos temas. Espero que os sea de interés.

Glosario de términos clave

  • Muro pantalla: Técnica de cimentación profunda y contención flexible que se desarrolla a principios de los años 50, aúna ambas funciones, especialmente en excavaciones difíciles o cerca de edificios.
  • Contención flexible: Cualidad de los muros pantalla que permite cambios de forma y movimientos de flexión, influenciando la distribución de empujes y la interacción suelo-estructura.
  • Empotramiento: Profundidad a la que se introduce la pantalla en el terreno por debajo del nivel de excavación para asegurar su fijación y estabilidad.
  • Empujes activos: Presiones horizontales mínimas que ejerce el terreno sobre una estructura de contención cuando este se deforma alejándose de la estructura (descompresión horizontal).
  • Empujes pasivos: Presiones horizontales máximas que ejerce el terreno sobre una estructura de contención cuando este se deforma empujando hacia el terreno (compresión horizontal).
  • Empuje al reposo: Presión horizontal que ejerce el terreno cuando no hay deformación lateral de la estructura de contención.
  • Muretes-guía: Estructuras temporales previas a la excavación de bataches, que dirigen la herramienta de excavación, aseguran la verticalidad de los paneles y sirven de soporte.
  • Batache: Segmento o panel individual que conforma el muro pantalla continuo, excavado y posteriormente hormigonado.
  • Cuchara al cable/hidráulica: Herramientas de excavación utilizadas para la formación de los bataches en medios convencionales.
  • Hidrofresa: Máquina de excavación especializada para bataches, usada en terrenos muy duros, cuando se requiere verticalidad estricta o a grandes profundidades.
  • Lodos tixotrópicos (bentoníticos): Suspensiones de arcilla (bentonita) en agua, utilizadas para sostener las paredes de la excavación mediante la formación de un «cake» y presión hidrostática, además de lubricar la herramienta. Son fluidos no newtonianos.
  • Lodos poliméricos: Soluciones de polímeros en agua que sustituyen o complementan a los lodos bentoníticos, formando un «cake» interno y uniendo partículas del terreno por tracción iónica. Son biodegradables.
  • Cake: Película impermeable que se forma en las paredes de la excavación de un muro pantalla debido a la filtración del lodo bentonítico, esencial para el sostenimiento por presión hidrostática.
  • Yield point (esfuerzo umbral): Esfuerzo mínimo necesario para que un fluido tixotrópico comience a fluir; por debajo de él, el lodo se comporta como un sólido.
  • Floculación: Proceso por el cual las partículas de lodo se agrupan, perdiendo su estabilidad y funcionalidad, generalmente por contaminación.
  • Tubería tremie: Tubería utilizada para el hormigonado sumergido de los muros pantalla, asegurando que el hormigón se deposite por debajo de la superficie del lodo sin contaminarse.
  • Junta (en pantallas): Dispositivo o técnica utilizada para asegurar la continuidad y estanqueidad entre bataches adyacentes (circular, trapezoidal, tricilíndrica o Stein).
  • Desarenado: Proceso de separación de arena de los lodos bentoníticos, realizado con hidrociclones, necesario para evitar la decantación de arena en el hormigón.
  • Pantalla en voladizo: Muro pantalla que se introduce en el terreno a una profundidad suficiente para que se fije como un elemento estructural en voladizo, aprovechando la resistencia pasiva.
  • Pantalla anclada: Muro pantalla cuya estabilidad se confía a la resistencia pasiva de la parte enterrada y al apoyo de uno o varios niveles de anclajes, usado en excavaciones profundas.
  • Pantalla de soporte libre (articulada): Pantalla anclada con una profundidad de empotramiento pequeña, que permite movimientos significativos en su base y se comporta como una viga doblemente apoyada.
  • Pantalla de soporte fijo (empotrada): Pantalla anclada con una longitud de empotramiento suficiente para que el movimiento en su base sea insignificante, comportándose como una viga apoyada-empotrada.
  • Efecto arco: Fenómeno que ocurre en pantallas flexibles, donde las cargas se concentran en las zonas más rígidas (como anclajes o fondo de excavación) y hay una descarga en las zonas de mayor movimiento.
  • Sifonamiento: Fenómeno en excavaciones con nivel freático alto, donde la presión intersticial en el fondo iguala la presión total, anulando la tensión efectiva del terreno y causando inestabilidad.
  • Gradiente crítico: Valor del gradiente hidráulico a partir del cual se produce el sifonamiento del terreno.
  • Tubificación (entubamiento): Erosión interna del terreno causada por sifonamientos localizados, formando conductos en el suelo.
  • Pozos filtrantes: Sistema de drenaje que utiliza bombas lapicero dentro de pozos para abatir el nivel freático.
  • Sistema de agujas filtrantes (well-point): Drenaje basado en la hinca de minipozos alrededor de una excavación, utilizando bombas de vacío para aspirar aire y agua, adecuado para terrenos arenosos.
  • Anclaje: Elemento de sujeción que transmite cargas de una estructura al terreno, generalmente trabajando a tracción.
  • Bulbo de inyección (zona de anclaje): Parte del anclaje inyectado que se fija al terreno, donde se desarrolla la transferencia de carga.
  • Zona libre: Parte del anclaje (cables o torones) que se encuentra protegida y no está en contacto directo con el terreno, permitiendo el pretensado sin fricción.
  • Cabeza y placa de apoyo: Elementos del anclaje que lo fijan a la estructura y mediante cuñas inmovilizan los torones.
  • Método de Kranz: Método de cálculo para anclajes que evalúa la estabilidad global frente al deslizamiento de la cuña de terreno soportada por los anclajes.
  • Entibación: Conjunto de elementos (tablestacas, puntales, codales) que se utilizan para contener las paredes de una excavación, evitando su colapso.
  • Método berlinés: Tipo de entibación donde se hincan perfiles metálicos aislados antes de excavar, y luego se va entibando progresivamente con elementos de contención y puntales.
  • Levantamiento de fondo: Problema de inestabilidad característico de excavaciones entibadas en suelos arcillosos blandos, donde el fondo de la excavación asciende debido a la presión del terreno.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, n.º 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and applications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

John Loudon McAdam: vida y legado del ingeniero que revolucionó las carreteras

John Loudon McAdam (1756 – 1836). https://ca.wikipedia.org/wiki/

John Loudon McAdam (1756-1836) fue un ingeniero escocés que transformó para siempre la construcción de carreteras. Su método, conocido como macadamización, o simplemente «macadán», supuso un hito en la ingeniería civil, permitió el auge del transporte moderno en el siglo XIX y sentó las bases de la pavimentación contemporánea. Nació el 21 de septiembre de 1756 en Ayr, capital del condado histórico de Ayrshire (Escocia), en la casa de lady Cathcart. Pertenecía a la baja nobleza local y era el menor de los diez hijos de James McAdam y Susanna Cochrane, sobrina del séptimo conde de Dundonald.

En 1760, la familia se mudó al castillo de Lagwyne, en Carsphairn, y más tarde al castillo de Whitefoord. Su padre, James, llevaba un estilo de vida elevado y gestionó de manera deficiente el negocio familiar, el Banco de Ayr, lo que provocó grandes pérdidas económicas. Finalmente, se vio obligado a vender la finca ancestral de la familia, Waterhead, y quedó prácticamente arruinado.

John estudió en la escuela del señor Doick, en Maybole, hasta 1770. Ese mismo año, con tan solo 14 años, murió su padre tras la bancarrota del banco familiar. Con la familia en la ruina, John fue enviado a Nueva York para vivir con su tío William McAdam, un próspero comerciante, y con su tía Ann Dey, hija de Dirck Dey, otro neoyorquino. William McAdam era propietario de la empresa McAdam & Co. y poseía más de 30 000 acres en Middlesex, conocidos como Kilby Grant. En este entorno, John se formó como mercader y contable, y estableció relaciones comerciales con personas como Robert Gilmore, de Northfork.

Durante la guerra de la Independencia de las Trece Colonias (1775-1783), John apoyó la causa británica desde el principio. Se convirtió en un mercader de éxito y contratista del Gobierno, y amasó una considerable fortuna. Fue socio propietario del barco privado General Mathew y actuó como agente de premios de guerra: revendía las mercancías y materiales capturados a los rebeldes, lo que le reportó importantes beneficios personales. Se casó con Gloriana Nicoll, hija de William Nicoll de Suffolk, descendiente del coronel Nicoll, en Nueva York. El matrimonio heredó un tercio de las propiedades de West Neck, en Shelter Island, así como terrenos en Blue Point (Islip).

Sin embargo, en 1783, tras la derrota británica, él y su familia sufrieron las consecuencias de haber sido realistas. El nuevo gobierno estadounidense confiscó sus propiedades y activos en América, y él, su esposa y sus dos hijos fueron obligados a regresar a Escocia. Una vez en Escocia, McAdam aún conservaba suficiente capital como para comprar una finca en Sauchrie, cerca de Maybole. Gracias a sus lazos familiares, se asoció con el almirante lord Cochrane y con el conde de Dundonald en negocios de hierro y alquitrán. Estos productos, derivados del carbón, eran fundamentales para sellar los barcos de vela. Sin embargo, la introducción del cobre en los cascos redujo la demanda de alquitrán, lo que debilitó la industria en la que John había invertido.

Con el tiempo, McAdam se volcó en una nueva actividad que marcaría su vida: la construcción de carreteras. Empezó haciendo pruebas con piedras en caminos cercanos a su finca y acabó construyendo una carretera que conectaba Alloway con Maybole, que seguía en uso en 1936. En 1787 fue nombrado administrador de carreteras y, durante los siguientes quince años, ejerció como vicealmirante de Ayrshire, consolidando su experiencia en este campo. En 1798, gracias a un nombramiento oficial, se trasladó a Falmouth (Inglaterra) y, en 1801, con 45 años, fue designado inspector de carreteras de Bristol. Allí perfeccionó sus ideas y puso en práctica un sistema radicalmente distinto al habitual.

El método de MacAdam consistía en lo siguiente:

  • Carreteras de unos seis metros de ancho, con la parte central elevada ocho centímetros sobre los bordes para facilitar el drenaje del agua.
  • Cunetas laterales para evacuar el agua de lluvia y evitar encharcamientos.
  • Tres capas: la más profunda, de tierra compactada; una intermedia, de piedras grandes y regulares; y una superior, de piedra triturada, que quedaba perfectamente compactada con el paso de los carruajes.

El resultado era una superficie lisa, dura, resistente y barata, mucho más duradera y menos proclive a embarrarse que los caminos de tierra o los adoquinados.

Construcción de la primera carretera de macadán en Estados Unidos de América (1823).  https://es.wikipedia.org/wiki/Macad%C3%A1n

McAdam recogió sus ideas en dos tratados fundamentales, en los que defendía la importancia de elevar las carreteras respecto al suelo circundante, asegurar un buen drenaje y emplear materiales seleccionados en capas sistemáticas:

  • Remarks on the Present System of Road-Making (1816)
  • Practical Essay on the Scientific Repair and Preservation of Roads (1819)

El prestigio de McAdam creció rápidamente. En 1815 fue nombrado inspector del Bristol Turnpike Trust y, en la década de 1820, alrededor de 70 patronatos de carreteras lo contrataron como consultor. En 1819, un comité parlamentario elogió públicamente su trabajo. En 1823, el Parlamento británico encargó un estudio sobre el deficiente estado de las carreteras del país, que estaban obsoletas para una nación en plena industrialización. Como resultado, McAdam fue nombrado inspector general de carreteras metropolitanas de Gran Bretaña. Desde este cargo, su método se estandarizó y extendió rápidamente no solo en el Reino Unido, sino también en Europa y Norteamérica. El impacto fue inmediato: gracias a la suavidad y durabilidad de las carreteras macadamizadas, el transporte en diligencia experimentó un auge sin precedentes. Poco tiempo después de su fallecimiento, en Inglaterra ya existían 35 000 kilómetros de carreteras construidas con su método.

Aunque McAdam recibió subvenciones del Parlamento (2000 libras para gastos en 1820 y 5000 libras por su trabajo en Bristol), nunca fue plenamente recompensado. Se le ofreció un título de caballero, pero lo rechazó por su avanzada edad. El macadán supuso el mayor avance en la construcción de carreteras desde el Imperio romano. Con el tiempo, su sistema dio origen a mejoras posteriores. La más significativa se produjo en 1901, cuando Edgar Purnell Hooley patentó el uso del alquitrán para ligar los áridos, creando el tarmac o tarmacadam, antecesor del asfalto moderno. Es curioso que McAdam, a pesar de haber sido propietario de una fábrica de alquitrán de hulla, nunca aplicara este material a su método. Desde la perspectiva actual, puede resultar llamativo, pero en su época su innovación ya era revolucionaria. Hoy en día, aunque las carreteras modernas emplean asfaltos derivados del petróleo sobre bases de hormigón armado, el uso de capas de piedra triturada sigue siendo heredero directo de la innovación de McAdam.

En sus últimos años, McAdam permaneció activo en el ámbito de la ingeniería viaria junto a sus hijos, quienes abandonaron sus ocupaciones en Escocia para ayudarle en Inglaterra. Finalmente, John Loudon McAdam murió el 20 de noviembre de 1836 en Moffat, un balneario del consejo de Dumfries y Galloway, a los 80 años. Fue enterrado en el cementerio local. Su apellido quedó inmortalizado en el lenguaje técnico y en la historia de la ingeniería civil.

Os dejo algunos vídeos de este ingeniero.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El diagrama de Pareto en ingeniería: teoría, aplicaciones y ejemplos prácticos

Figura 1. Diagrama de Pareto

1. Introducción.

En el ámbito de la ingeniería y la gestión de la calidad, el diagrama de Pareto se ha consolidado como una herramienta esencial para la toma de decisiones y la mejora continua. Permite identificar los problemas más importantes, priorizar acciones y optimizar el uso de recursos.

La idea central se basa en la observación de que unos pocos factores tienen un impacto desproporcionado en los resultados, lo que se conoce como el principio 80/20. Por ejemplo, en una obra de construcción, unos pocos materiales concentran la mayor parte del coste, mientras que, en logística, unos pocos clientes generan la mayoría de las ventas.

Figura 2. Vilfredo Pareto (1848-1923). https://es.wikipedia.org/

2. Origen histórico

El concepto fue acuñado por el economista italiano Vilfredo Pareto (1848-1923), quien observó que aproximadamente el 80 % de la riqueza en Europa estaba en manos del 20 % de la población.

Décadas más tarde, el ingeniero y consultor de calidad Joseph M. Juran reconoció la aplicabilidad universal de esta distribución y acuñó la expresión «los pocos vitales y los muchos triviales (o útiles)», extendiendo su uso a la gestión empresarial y de calidad.

3. ¿Qué es un diagrama de Pareto?

Es un gráfico de barras en el que los datos se clasifican de mayor a menor importancia, de izquierda a derecha. Cada barra representa una categoría (por ejemplo, defectos, causas de fallo o tipos de no conformidades).

A menudo, se añade una línea de porcentaje acumulado que muestra qué porcentaje del problema total explican las categorías principales.

La diferencia con respecto a un histograma es clara: en el diagrama de Pareto, el eje horizontal representa categorías, mientras que en el histograma representa intervalos numéricos.

Figura 3. Diagrama de Pareto – Defectos en prefabricados de hormigón

4. Construcción paso a paso.

El procedimiento clásico consta de seis pasos:

  1. Determinar cómo clasificar los datos (problemas, causas, defectos, costes, etc.).
  2. Definir la métrica (frecuencia, valor monetario o frecuencia ponderada).
  3. Recolectar datos en un periodo adecuado.
  4. Agrupar y ordenar las categorías en orden descendente.
  5. Calcular el porcentaje acumulado.
  6. Dibujar el diagrama y distinguir cuáles son los pocos vitales.

Cuando se emplea el porcentaje acumulado, este debe coincidir con la escala principal para que el 100 % se sitúe a la misma altura que la suma de frecuencias o valores.

5. Importancia en la mejora continua.

El diagrama de Pareto no es un análisis estático, sino un proceso cíclico.

  • En la primera iteración, se identifican las categorías más críticas.
  • Tras actuar sobre ellas, un nuevo análisis muestra otras prioridades.
  • El ciclo se repite hasta que los problemas se vuelven residuales o insignificantes.

Este enfoque garantiza que los recursos se destinen a lo que realmente afecta a la calidad, la productividad o los costes.

6. Aplicaciones prácticas

Ingeniería civil: defectos en prefabricados de hormigón.

En una planta de prefabricados, se recopilaron datos sobre los defectos.

  • Fisuras: 120
  • Huecos: 80
  • Desconchados: 45
  • Dimensiones incorrectas: 30
  • Color defectuoso: 25
  • Otros: 20

El análisis de la Figura 3 muestra que las fisuras y los huecos representan más del 65 % de los defectos totales, por lo que constituyen los «puntos vitales» en los que hay que centrarse para mejorar.

Logística: gestión de inventarios en obra (análisis ABC).

En el suministro de materiales de construcción, el análisis Pareto se traduce en el método ABC (Figura 4).

Para ello se clasifican según su valor de uso anual (podría ser cualquier otro periodo), agrupándolos de acuerdo con el coste de su gasto anual: cantidad utilizada (consumida, vendida, empleada, etc.) coste unitario (o precio unitario). Para ello se dividen los elementos en tres grupos:

  • Grupo A: Suponen un porcentaje alto de la inversión total, de forma que, controlando este grupo, se tiene controlado casi todo el almacén. Representa generalmente el 10 % de los artículos, estando su valor de uso entre el 60 % y el 80 % del total.
  • Grupo C: Son aquellos cuyo control es poco interesante, pues siendo muy numeroso, su valor es pequeño. Suele ser el 50-70 % del total de artículos, significando solo entre el 5-10 % del valor total de uso
  • Grupo B: Tienen una importancia en relación con el número de unidades del almacén parecida a la que tienen con referencia al valor total de la inversión del inventario. Abarca generalmente al 25 % de los artículos, y representa entre el 15-30 % del valor total de uso.
Figura 4. Método ABC para gestionar los inventarios

Por ejemplo:

  • Acero estructural: 40 000 €
  • Cemento: 30 000 €
  • Tuberías PVC: 12 000 €
  • Pintura: 6 000 €
  • Clavos y tornillería: 2 000 €
  • Otros: 1 000 €

La Figura 5 muestra que el acero y el cemento (el 20 % de los artículos) representan el 70 % del valor total. Estos materiales requieren un control de inventario estricto, mientras que los de bajo impacto se gestionan de manera más flexible.

Figura 5. Diagrama de Pareto – Inventario en obra

6.3 Otras aplicaciones destacadas.

  • Quejas de clientes: un pequeño grupo de problemas genera la mayoría de las reclamaciones.
  • Procesos productivos: unos pocos defectos causan la mayor parte de los reprocesos.
  • Mantenimiento: unas pocas averías originan la mayor parte del tiempo de inactividad.
  • Ventas: unos pocos clientes concentran la mayor parte de los ingresos.

7. Conclusión

El diagrama de Pareto es sencillo de apariencia, pero potente en resultados.

  • Facilita la visualización de las prioridades.
  • Permite concentrar los recursos en lo más importante.
  • Puede aplicarse en ingeniería civil, logística, producción, calidad, marketing y gestión empresarial.

La clave está en identificar los aspectos vitales y no dispersar esfuerzos en los triviales.

Os dejo algunos vídeos al respecto.

Referencias:

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre pantallas de contención de agua subterránea

Figura 1. Cuchara para excavar pantalla. https://www.geo-solutions.com/resource-category/slurry-walls-equipment/

1. ¿Qué son las pantallas impermeables de bentonita-cemento y cuándo se utilizan?

Las pantallas impermeables de bentonita-cemento, también denominadas pantallas blandas, plásticas o de lodo autoendurecible, son barreras que impiden el paso del agua subterránea. Su construcción es similar a la de los muros pantalla, pero su función principal es impermeabilizante, sin responsabilidad estructural significativa. Su uso se inició en la década de 1960. Son ideales cuando el objetivo es detener el flujo de agua y no se prevé una excavación o un vaciado anexos. Entre sus ventajas destacan su impermeabilidad, la ausencia de juntas, su capacidad de adaptación a grandes deformaciones por cambios en el nivel freático y su bajo coste, debido al bajo consumo de materiales y a la simplificación de la construcción.

2. ¿Cómo se construye una pantalla de bentonita-cemento y qué materiales se utilizan?

La construcción de una pantalla de este tipo implica la excavación de una zanja con herramientas como cucharas bivalvas, retroexcavadoras con brazos largos (eficaces hasta 15 o 20 metros, o hasta 25 o 30 metros con brazos especiales) o zanjadoras de brazo inclinable. La mezcla utilizada consiste en bentonita, cemento, agua y, opcionalmente, aditivos. Las dosificaciones típicas por metro cúbico de mezcla varían: entre 100 y 950 litros de agua, entre 20 y 80 kg de bentonita, entre 100 y 400 kg de cemento y hasta 5 kg de aditivos. La bentonita se añade para evitar la decantación del cemento antes del fraguado. La mezcla se elabora en una planta y se envía a la obra. Es crucial asegurar la continuidad entre paneles para evitar juntas, lo que se logra mediante la perforación inmediata de paneles contiguos o mordiendo el extremo de un panel aún pastoso para la adhesión del nuevo lodo.

3. ¿Qué son las pantallas de suelo-bentonita y en qué se diferencian de las pantallas de bentonita-cemento?

Las pantallas de suelo-bentonita son barreras que se utilizan para detener el paso del agua o aislar residuos o zonas contaminadas de agua subterránea. A diferencia de las pantallas de bentonita-cemento, que son más comunes en Europa, las pantallas de suelo-bentonita se originaron en Estados Unidos en 1945 y son más habituales en este país. La principal diferencia radica en el material de relleno: mientras que las pantallas de bentonita-cemento utilizan una mezcla específica de estos componentes, las pantallas de suelo-bentonita emplean una mezcla de suelo excavado y bentonita. Esto último hace que sean la tipología de barrera más económica, ya que permite utilizar gran parte del material de la propia zanja. Sin embargo, las pantallas de suelo-bentonita pueden ser más susceptibles al deterioro por ciclos de humedad/sequedad o congelación/descongelación, y su permeabilidad puede verse afectada por contaminantes.

Figura 2. Construcción de zanja de lodo con suelo-bentonita como material de relleno. Adaptado de Cashman y Preene (2012)

4. ¿Cómo se realiza la excavación y el relleno de las pantallas de suelo-bentonita?

Durante la excavación de las zanjas para las pantallas de suelo-bentonita, se utiliza bentonita (a veces con aditivos) para estabilizar las paredes y mantener un nivel constante de lechada cerca de la parte superior. Las zanjas suelen tener una anchura de entre 0,6 y 1,5 metros. Una vez alcanzada la profundidad deseada, se introduce la mezcla final de suelo y bentonita. Esta mezcla debe tener un peso específico mayor que el del lodo de la zanja para desplazarlo eficazmente. La preparación de la mezcla puede realizarse en tanques de homogeneización para garantizar una mayor calidad o de forma más rudimentaria en superficie con un buldócer. Es fundamental garantizar que la pantalla se extienda de manera continua por todo el estrato permeable y succionar los sedimentos del fondo de la zanja, sobre todo si se trata de arenas y gravas limpias. La colocación del relleno y la excavación deben realizarse de forma simultánea.

5. ¿Qué es la técnica de pantalla de suelo-cemento con hidrofresa (cutter soil mixing)?

La pantalla de suelo-cemento con hidrofresa, también conocida como cutter soil mixing, es una técnica de mejora de suelos que se utiliza para crear pantallas impermeabilizantes verticales. Consiste en excavar el terreno en paneles verticales con una hidrofresa, que es un cabezal cortador provisto de elementos giratorios con dientes. La hidrofresa no solo excava, sino que también inyecta una mezcla de bentonita y cemento en la parte central de las ruedas cortantes. El movimiento giratorio de los dientes y unas paletas mezclan esta inyección con los detritos del terreno, formando un nuevo material que, tras el fraguado del cemento, crea una pantalla impermeable. Una ventaja clave de este método es que utiliza el propio material del terreno, por lo que se generan muy pocos residuos.

Figura 3. Hidrofresa. http://www.malcolmdrilling.com/cutter_soil_mixing/

6. ¿Cómo funciona el proceso de construcción con hidrofresa para pantallas de suelo-cemento?

El procedimiento constructivo con hidrofresa consta de varias fases. En primer lugar, se prepara una zanja guía para recoger el exceso de lodo. A continuación, se posiciona la hidrofresa en el eje de la pared y se introduce en el suelo a una velocidad continua (normalmente entre 20 y 60 cm/min). Las ruedas de corte rompen el suelo y, simultáneamente, se bombea un fluido (bentonita-cemento) a las boquillas para mezclarlo con la tierra suelta. Una corriente de aire comprimido puede mejorar la mezcla. Al alcanzar la profundidad de diseño, se extrae lentamente la hidrofresa mientras se sigue añadiendo la lechada de cemento para garantizar la homogeneización mediante la rotación de las ruedas. Finalmente, se puede introducir armadura, como perfiles de acero, en la pantalla terminada para mejorar su resistencia. Para ello, se utilizan vibradores, si es necesario, para profundidades mayores. En el caso de muros continuos, se excavan paneles primarios y secundarios que se solapan para garantizar la estanqueidad.

7. ¿Qué son las pantallas de lodo autoendurecible armado y cuál es su función?

Las pantallas de lodo autoendurecible armado, también denominadas pantallas de lechada armada o «reinforced slurry wall», son pantallas compuestas con carácter estructural. Combinan elementos portantes resistentes a la flexión, como tablestacas o perfiles metálicos en «I», con un relleno intermedio de bentonita-cemento que los une y transfiere las cargas a los elementos estructurales. Este sistema funciona como elemento de contención de agua y, al mismo tiempo, como soporte estructural. Una variante es la pared de mezcla suelo-cemento reforzada, que utiliza una mezcla de suelo y cemento en lugar de lechada. Esta técnica se sitúa a medio camino entre un muro berlinés y un muro pantalla, ya que ofrece contención de agua y resistencia estructural.

8. ¿Cómo se construye una pantalla de lodo autoendurecible armada?

El procedimiento constructivo de una pantalla de lodo autoendurecible armada utiliza herramientas de excavación similares a las empleadas en los muros pantalla, como la cuchara bivalva. Durante la excavación, la lechada de bentonita y cemento no solo sirve como material de relleno intermedio, sino que también estabiliza las paredes de la zanja. Una vez colocada la lechada, se insertan perfiles verticales (tablestacas o perfiles en «I») en ella. El lodo endurecido transmite el empuje activo de las tierras y el agua hacia estos perfiles por efecto bóveda, y estos resisten la flexión gracias a anclajes, arriostramientos y el empotramiento bajo el fondo de la excavación. Si se emplean tablestacas, la pantalla opera como un muro continuo convencional, combinando las propiedades impermeabilizantes del lodo con la resistencia estructural de los elementos armados.

Os dejo un audio sobre este tema que, espero, os sea interesante.

Glosario de términos clave

  • Pantallas plásticas (blandas/lodo autoendurecible): Barreras impermeables construidas con mezclas fluidas que fraguan o se autoendurecen, utilizadas para contener el agua subterránea.
  • Bentonita-cemento: Mezcla de bentonita, cemento, agua y aditivos que fragua lentamente y forma una barrera impermeable.
  • Función impermeabilizante: La capacidad de una pantalla para impedir o reducir significativamente el paso del agua.
  • Responsabilidad estructural: La capacidad de un elemento para soportar cargas y esfuerzos (como flexión) sin deformaciones excesivas o fallos. Las pantallas blandas tienen poca responsabilidad estructural.
  • Decantación: El proceso por el cual las partículas sólidas de una suspensión se asientan en el fondo de un líquido debido a la gravedad. La bentonita ayuda a evitar la decantación del cemento.
  • Fraguado: El proceso de endurecimiento de una mezcla cementicia debido a reacciones químicas.
  • Cuchara bivalva: Herramienta de excavación con dos «cucharas» articuladas que se cierran para recoger el material, utilizada en la ejecución de pantallas.
  • Retroexcavadora con brazos largos: Maquinaria de excavación modificada con brazos extendidos para alcanzar mayores profundidades en la construcción de zanjas y pantallas.
  • Zanjadora de brazo inclinable: Maquinaria especializada para excavar zanjas, con un brazo que puede inclinarse.
  • Rendimiento: La cantidad de trabajo realizado en un período determinado (ej., m²/día de pantalla construida).
  • Nivel freático: La superficie superior del agua subterránea, donde la presión del agua es igual a la presión atmosférica.
  • Tablestacas: Elementos prefabricados, generalmente metálicos o de hormigón, que se hincan o se colocan en el terreno para formar muros de contención.
  • Suelo-bentonita: Mezcla de suelo excavado y lechada de bentonita que se utiliza como material de relleno para formar pantallas impermeables.
  • Gradiente hidráulico: La tasa de cambio de la carga hidráulica por unidad de distancia en la dirección del flujo.
  • Peso específico: El peso por unidad de volumen de una sustancia. Es crucial que el relleno de suelo-bentonita tenga un peso específico mayor que el lodo de la zanja.
  • Tanques de homogeneización: Recipientes donde se mezcla y agita el suelo y la bentonita para lograr una consistencia uniforme antes de su colocación.
  • Segregación: La separación de los componentes de una mezcla debido a diferencias en tamaño, forma o densidad.
  • Permeabilidad: La capacidad de un material para permitir el paso de fluidos a través de él. Una baja permeabilidad es deseable en pantallas impermeables.
  • Hidrofresa (cutter soil mixing – CSM): Maquinaria equipada con cabezas cortadoras giratorias y un inyector, utilizada para excavar y mezclar el terreno in-situ con una lechada (bentonita-cemento) para formar pantallas.
  • Detritos: Fragmentos de roca y suelo resultantes de la excavación o trituración del terreno.
  • Zanja guía: Pequeña excavación superficial que se realiza al inicio para alinear la maquinaria y recoger el excedente de lodo.
  • Paneles primarios y secundarios: En la construcción de muros continuos, los paneles primarios se excavan primero, y luego los secundarios se excavan solapándose con los primarios para asegurar la continuidad.
  • Armadura: Elementos de refuerzo (como perfiles de acero) que se insertan en la pantalla para proporcionarle resistencia estructural adicional.
  • Pantalla de lodo autoendurecible armado (reinforced slurry wall): Una pantalla compuesta que incorpora elementos portantes estructurales (como perfiles en «I» o tablestacas) dentro de un relleno de lodo autoendurecible (bentonita-cemento o suelo-cemento).
  • Efecto bóveda: Fenómeno por el cual los empujes del terreno se distribuyen y descargan hacia elementos de mayor rigidez o resistencia, como los perfiles en una pantalla armada.
  • Empotramiento: La condición en la que un elemento estructural está fijado rígidamente en otro (ej., un perfil anclado en el fondo de excavación) impidiendo su rotación y traslación.
  • Muro berlinés: Sistema de contención que consiste en perfiles metálicos hincados en el terreno, entre los cuales se colocan elementos de contención (tablones de madera, prelosas de hormigón, etc.) a medida que se excava.
  • Muro pantalla: Muro de contención de hormigón o similar, ejecutado en el terreno por paneles, utilizando lodo bentonítico para estabilizar la excavación antes del vertido del hormigón.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, n.º 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and applications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.