Resiliencia en las infraestructuras: cómo prepararnos para un futuro de incertidumbre

En nuestra vida cotidiana dependemos de una red invisible de infraestructuras que hace posible casi todo lo que hacemos: el agua que bebemos, la electricidad que ilumina nuestras casas, el transporte que nos conecta o las telecomunicaciones que nos mantienen informados. Sin embargo, basta con que una de estas piezas falle para que se produzca un efecto dominó con graves consecuencias. Un corte eléctrico prolongado puede paralizar hospitales y transportes, una rotura en la red de agua puede afectar a la higiene, la industria y la propia seguridad contra incendios, y un colapso en las telecomunicaciones puede aislar a comunidades enteras. Estas situaciones ponen de manifiesto la necesidad de ir más allá de la protección frente a fallos y centrarse en la resiliencia de los sistemas de infraestructuras.

La resiliencia de la infraestructura se define como «la capacidad de un sistema para minimizar la pérdida de rendimiento debido a una interrupción y para recuperar un nivel de rendimiento específico dentro de unos límites de tiempo y costes predefinidos y aceptables». Este concepto ha recibido mucha atención en los últimos años, en parte debido a la creciente frecuencia e intensidad de los eventos disruptivos de baja probabilidad y gran impacto, como el huracán Katrina, el tsunami de Indonesia y los atentados terroristas. La sociedad moderna depende en gran medida del funcionamiento casi continuo de sistemas de infraestructura vitales, como los de transporte, suministro de agua, alcantarillado, energía y telecomunicaciones. Estas infraestructuras están compuestas por elementos tangibles e intangibles que forman redes socioeconómicas y técnicas complejas e interdependientes. La interrupción grave de estos «salvavidas» puede tener enormes impactos negativos en las estructuras económicas y sociales de las comunidades humanas. Los conceptos de resiliencia, junto con los enfoques de protección, son fundamentales para garantizar la continuidad de la operación de la infraestructura durante y después de tales eventos. La actual urbanización mundial ha aumentado también la población que depende de estas infraestructuras, lo que subraya aún más la necesidad de resiliencia.

En ingeniería, la resiliencia se define como la capacidad de un sistema de infraestructuras para absorber el impacto de una perturbación, mantener un nivel básico de servicio y recuperarse en un tiempo y con un coste socialmente aceptables. No basta con diseñar estructuras robustas que no se caigan; también es importante que, cuando sufran un daño o interrupción de forma inevitable, puedan volver a funcionar lo antes posible. A diferencia de la fiabilidad, que mide la probabilidad de que un sistema funcione sin fallos, o de la vulnerabilidad, que estima el grado de daño probable, la resiliencia se centra en el comportamiento del sistema antes, durante y después de la crisis.

Imaginemos una red de agua urbana: si sus tuberías están bien mantenidas y cuentan con sensores de fuga, será fiable, ya que es poco probable que falle; si, a pesar de todo, se produce una rotura y existen válvulas de sectorización, equipos de reparación rápida y depósitos de reserva, será resiliente, puesto que el servicio se recuperará en poco tiempo y con costes asumibles; y si la avería afecta a un hospital o a una zona muy poblada, mostrará una alta vulnerabilidad debido al gran impacto inicial.

Resiliencia en el diseño de infraestructuras

Un sistema resiliente se caracteriza por cuatro atributos fundamentales: robustez, que es la capacidad de resistir eventos disruptivos sin que su rendimiento se vea significativamente afectado; redundancia, que implica contar con elementos o recursos alternativos que puedan suplir a los que fallen durante una interrupción; inventiva, que es la capacidad de identificar problemas, priorizar acciones, movilizar recursos y procedimientos de manera eficaz para responder y recuperarse, y rapidez, es decir, la capacidad de contener daños y restaurar el funcionamiento a niveles aceptables en el menor tiempo posible. Además, la resiliencia se manifiesta a través de cuatro dimensiones (técnica, organizativa, social y económica), subrayando su carácter multidisciplinar y su relevancia para los sistemas de infraestructura civil.

Valoración de la resiliencia tras un evento extremo (Anwar et al., 2019)

Una de las formas más gráficas de explicar la resiliencia es mediante la curva de funcionalidad, también conocida como «triángulo de resiliencia». Imaginemos una red de suministro eléctrico que opera normalmente al 100 % de su capacidad. En el momento en que ocurre un huracán, la funcionalidad del sistema cae en picado, digamos que hasta un 40 %. A partir de ese momento, comienza la recuperación. En algunos casos, la curva puede ser lineal, con una mejora progresiva hasta alcanzar de nuevo el 100 %. En otros, puede tener forma exponencial, con una recuperación inicial rápida que se ralentiza al final. También puede ser trigonométrica, comenzando la recuperación lentamente y acelerándose después. El área bajo la curva, es decir, la «superficie» del triángulo de resiliencia, representa la pérdida acumulada de servicio y, por tanto, el coste social del fallo. Esta herramienta permite a los ingenieros comparar estrategias: un sistema con redundancia puede experimentar una caída inicial menor, mientras que otro con mejores recursos de reparación puede recuperarse más rápidamente.

Curvas de resiliencia: patrones de recuperación tras un evento disruptivo

La resiliencia de las infraestructuras no es un concepto aislado de la ingeniería estructural, sino que se nutre de múltiples disciplinas. La ecología, por ejemplo, aporta la idea de que los sistemas no siempre regresan a su estado original, sino que pueden alcanzar nuevos equilibrios tras un evento disruptivo. La economía ayuda a valorar las pérdidas no solo en términos de daños materiales, sino también en costes indirectos, como la pérdida de productividad o el impacto en la actividad social. Las ciencias sociales, por su parte, nos recuerdan que las infraestructuras existen para servir a la comunidad y que el tiempo de recuperación aceptable depende de la tolerancia y las necesidades de la sociedad. La teoría de grafos, por su parte, ofrece herramientas matemáticas para analizar redes como las de agua o telecomunicaciones e identificar qué nodos son críticos y qué sucede si se eliminan de forma aleatoria (simulando un desastre natural) o intencionada (como en un ataque).

Perspectiva interdisciplinaria de la resiliencia de las infraestructuras

Las infraestructuras modernas están muy interconectadas, por lo que existe un mayor riesgo de fallos en cadena: por ejemplo, un corte de energía puede afectar al suministro de agua, a las comunicaciones y al transporte. Aunque existen acuerdos de ayuda mutua entre sistemas para apoyarse durante las interrupciones, esto no garantiza que cada sistema sea más resiliente por sí mismo. Un evento grave que afecte a toda la región podría dejar a cada servicio dependiendo únicamente de sus propios recursos. Además, si se confía demasiado en la ayuda externa, se frena el desarrollo de la resiliencia propia. Por eso, es fundamental evaluar la resiliencia de cada sistema de manera individual para que esté mejor preparado frente a fallos generalizados y situaciones imprevistas.

Los ejemplos de interdependencia entre infraestructuras ilustran bien la complejidad del problema. Imaginemos un terremoto que daña simultáneamente la red eléctrica y la red de agua potable. Las estaciones de bombeo necesitan energía para funcionar, mientras que algunas centrales térmicas requieren agua para la refrigeración. Si falla la electricidad, no habrá agua, y si no hay agua, puede peligrar la producción de electricidad. Este círculo vicioso muestra cómo una perturbación localizada puede propagarse en cascada a otros sectores, multiplicando el impacto. Por ejemplo, un fallo en las telecomunicaciones puede impedir la coordinación de la reparación de carreteras o la distribución de combustible, lo que alarga los tiempos de recuperación. Estos ejemplos subrayan la importancia de diseñar infraestructuras robustas y conscientes de sus interconexiones.

Esquema de interdependencia de infraestructuras críticas: visualiza cómo agua, energía, telecomunicaciones y transporte dependen unas de otras y de la sociedad.

Para los futuros ingenieros, la resiliencia supone un cambio de mentalidad. No se trata solo de dimensionar una estructura para soportar una carga extrema, sino de pensar en cómo responderá todo el sistema ante un fallo parcial. Supone aceptar la incertidumbre y trabajar con escenarios probabilísticos en los que se consideran eventos disruptivos, como el envejecimiento de los materiales, las sequías prolongadas o las crisis energéticas. Implica integrar la resiliencia en la gestión de activos y tomar decisiones como, por ejemplo, si es más eficaz duplicar una tubería para garantizar la redundancia o disponer de brigadas de intervención rápida que acorten los tiempos de reparación.

Traducir la resiliencia en aplicaciones prácticas para la infraestructura civil es todo un desafío debido a su complejidad y naturaleza transdisciplinaria. Las definiciones varían en función de la disciplina; es difícil medirla y muchas metodologías se centran en aspectos aislados sin tener en cuenta su interacción. Además, para integrarla en los sistemas de gestión existentes y pasar del concepto teórico a la práctica, es necesario adoptar un enfoque integral que tenga en cuenta la variabilidad de los eventos disruptivos, las dimensiones técnicas y sociales, las implicaciones económicas y las características de red del sistema.

En conclusión, la resiliencia de las infraestructuras civiles no es un lujo, sino una necesidad estratégica en un mundo marcado por el cambio climático, la creciente urbanización y las redes interdependientes. Para los estudiantes de ingeniería, representa un campo fértil en el que confluyen la técnica, la economía y la sociedad, y en el que la innovación tendrá un impacto directo en la seguridad y la calidad de vida de millones de personas. Comprender y aplicar este enfoque significa prepararse para un futuro en el que la incertidumbre será constante, pero en el que nuestra mayor fortaleza será la capacidad de adaptación.

Os paso un vídeo que puede sintetizar bien las ideas de este artículo.

Referencias:

ANWAR, G.A.; DONG, Y.; ZHAI, C. (2020). Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7):1454-1457.

BRUNEAU, M.; CHANG, S.E.; EGUCHI, R.T. et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4): 733–752.

GAY, L. F.; SINHA, S. K. (2013). Resilience of civil infrastructure systems: literature review for improved asset management. International Journal of Critical Infrastructures9(4), 330-350.

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.