Construcción en América Latina y el Caribe: digitalización e innovación como claves para la sostenibilidad

El sector de la construcción en América Latina y el Caribe (ALC) es uno de los pilares fundamentales de la economía regional, pero también se enfrenta a desafíos significativos en términos de sostenibilidad, productividad y digitalización.

A continuación nos hacemos eco de un informe donde se detallan las claves para transformar el sector basándose en datos, análisis de tendencias y recomendaciones prácticas. El informe lo tenéis al final de este resumen.

 

1. Introducción: importancia del sector y sus retos

El sector de la construcción genera aproximadamente 300 000 millones de dólares en América Latina y el Caribe, lo que representa el 6 % del producto interior bruto (PIB) regional y más de 20 millones de empleos directos. A nivel mundial, contribuye al 13 % del PIB y da empleo a 250 millones de personas. Sin embargo, su productividad ha crecido solo un 1 % anual en las últimas dos décadas, lo que la sitúa muy por debajo de sectores como la manufactura (3,6 %) y la agricultura (2,8 %).

El sector de la construcción es uno de los mayores consumidores de recursos naturales y contribuye significativamente al cambio climático. Según el World Green Building Council (2023):

  • Representa el 50 % del consumo global de recursos extraídos.
  • Utiliza el 15 % del agua potable mundial.
  • Es responsable del 37 % de las emisiones globales de CO₂ relacionadas con la energía.
  • Genera el 35 % de los residuos sólidos producidos anualmente en el planeta.

Además, las proyecciones indican que el sector crecerá considerablemente en los próximos años. Se estima que para 2050 aún no se ha construido el 60 % de los edificios necesarios y que el 20 % de las estructuras existentes requieren renovaciones para cumplir los objetivos de sostenibilidad y cero emisiones netas.

2. Soluciones habilitantes para la construcción sostenible

El documento identifica seis categorías fundamentales de soluciones que pueden transformar el sector hacia la sostenibilidad. Estas soluciones integran tecnologías digitales, diseño innovador, materiales sostenibles y enfoques de gestión eficientes.

  • Tecnologías digitales avanzadas: Las tecnologías digitales son esenciales para mejorar la eficiencia, la transparencia y la sostenibilidad en todas las etapas del ciclo de vida de los proyectos de construcción.
    1. Building Information Modeling (BIM): permite el diseño colaborativo de infraestructuras en un entorno digital. Sus beneficios incluyen:
      • Incremento de la productividad en un 13%.
      • Reducción de costos en un 4% y de los plazos en un 6%.
      • Automatización de procesos como la simulación de consumo energético y la evaluación de impactos climáticos.
      • Caso de éxito: en Uruguay, el uso de BIM y LEAN Construction en el proyecto CAIF Aeroparque resultó en un ahorro del 50% en tiempos de respuesta y un 63% menos en sobrecostos durante la pandemia​.
    2. Inteligencia artificial (IA): mejora la planificación, el diseño y la operación de los activos construidos. Ejemplos:
      • Simulaciones para evaluar el rendimiento energético y el comportamiento estructural ante desastres.
      • Optimización de rutas de transporte y logística en obra, reduciendo costos y emisiones.
    3. Internet de las cosas (IoT):
      • Sensores inteligentes monitorean el uso de energía, agua y recursos en tiempo real, ajustando automáticamente los sistemas para maximizar la eficiencia.
      • Aplicaciones como Building Resilience ayudan a evaluar riesgos climáticos y seleccionar ubicaciones óptimas para proyectos.
    4. Impresión 3D:
      • Permite fabricar componentes en obra o en fábricas cercanas, reduciendo los residuos y las emisiones de transporte.
      • Facilita el uso de materiales reciclados, disminuyendo la dependencia de recursos vírgenes.
    5. Blockchain:
      • Asegura la trazabilidad de materiales, verifica certificaciones ambientales y gestiona residuos con mayor transparencia.
    6. Gestión en la nube:
      • Reduce el empleo de papel, mejora la colaboración en tiempo real y almacena datos clave para optimizar la sostenibilidad.

  • Diseño sostenible: El diseño sostenible aborda el impacto ambiental desde la concepción del proyecto, empleando enfoques como el diseño bioclimático, que optimiza la orientación solar, el aislamiento térmico y la ventilación pasiva para reducir la demanda energética. Un ejemplo de ello son los edificios pasivos, que minimizan el uso de climatización activa; la eficiencia energética y la generación de energía renovable mediante paneles solares, sistemas LED y edificaciones de carbono neutro o positivas que producen más energía de la que consumen; y la flexibilidad en el diseño, con espacios modulares que se adaptan a diferentes usos y disminuyen la necesidad de futuras demoliciones.
  • Materiales sostenibles: El uso de materiales con bajas emisiones de carbono es fundamental para reducir el impacto ambiental. Entre estos materiales destacan la madera certificada, que tiene una huella de carbono negativa, es renovable, reciclable y eficiente energéticamente, y constituye una alternativa clave al hormigón en Chile, que representa el 54 % de las emisiones de carbono de un edificio; el bambú, un material resistente y de rápido crecimiento utilizado en zonas tropicales; y los materiales reciclados, que disminuyen la extracción de recursos naturales y los residuos de construcción.
  • Sistemas de construcción industrializada: La prefabricación, la construcción modular y la impresión 3D contribuyen a reducir los residuos en obra y el tiempo de construcción, y permiten finalizar las obras hasta un 50 % más rápido que con los métodos tradicionales.
  • Medición y verificación del impacto ambiental: Certificaciones como LEED, EDGE y BREEAM permiten evaluar y validar la sostenibilidad de los proyectos.
  • Enfoques de gestión eficientes: Metodologías como LEAN Construction y Advanced Work Packaging optimizan los procesos y reducen retrasos.

3. Experiencias, retos y oportunidades en Latinoamérica y el Caribe

El análisis en Brasil, Chile, Costa Rica y Uruguay revela 44 iniciativas identificadas desde 2015, la mayoría lideradas por el sector público. Entre los retos a los que se enfrentan destacan la falta de integración entre soluciones digitales y sostenibles, la baja percepción del valor económico de la sostenibilidad y los altos niveles de informalidad en el sector. Entre las buenas prácticas destacan el uso de estrategias internacionales de benchmarking, la capacitación técnica en metodologías digitales y la compra pública innovadora y ecológica para estimular la demanda de tecnologías sostenibles.

4. Claves para el futuro

Para transformar el sector, se recomiendan políticas de liderazgo público que promuevan la digitalización y la sostenibilidad, así como incentivos financieros y no financieros, como subsidios, créditos y regulaciones, para fomentar la adopción de prácticas sostenibles. También se recomienda fomentar la colaboración multisectorial mediante alianzas entre los sectores público, privado y académico para compartir conocimientos y recursos, y ofrecer programas de capacitación y educación en habilidades digitales para los trabajadores del sector.

5. Conclusión

La adopción masiva de tecnologías digitales, materiales sostenibles y enfoques innovadores puede situar a Latinoamérica y el Caribe a la vanguardia de la construcción sostenible a escala mundial. Para transformar el sector de la construcción, es necesario adoptar un enfoque holístico que combine innovación tecnológica, gestión eficiente y políticas públicas. La adopción generalizada de soluciones digitales y sostenibles no solo mejorará la productividad, sino que también reducirá el impacto ambiental, lo que hará que el sector sea más resiliente y competitivo en el contexto global.

Os dejo el siguiente documento, donde tenéis toda la información. Espero que os sea de interés.

Descargar (PDF, 4.11MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Investigación reciente muestra cómo la inteligencia artificial optimiza la gestión del agua

En un estudio pionero, investigadores de la Universitat Politècnica de València y la Pontificia Universidad Católica de Valparaíso (Chile) han revelado el enorme potencial del aprendizaje automático (Machine Learning, ML) en la mejora de la integridad y calidad de las infraestructuras hídricas.

Publicado en la Applied Sciences, revista del primer cuartil del JCR, el estudio analiza en profundidad la literatura científica reciente sobre el tema, para lo cual revisa 1087 artículos con el fin de identificar las áreas más prometedoras en la aplicación de estas tecnologías a la gestión del agua. Esta revisión va más allá de lo convencional al aplicar modelos avanzados de procesamiento del lenguaje natural (NLP), específicamente BERTopic, que permiten comprender el contexto y los temas emergentes en esta área de investigación.

Contexto y relevancia del estudio

El mantenimiento de infraestructuras de agua seguras y eficientes es un desafío global, especialmente en un contexto de cambio climático, urbanización creciente y escasez de recursos hídricos. A medida que aumentan los eventos climáticos extremos, las infraestructuras se ven sometidas a un estrés adicional. Estas condiciones afectan al acceso y a la distribución de agua de calidad, clave para la salud pública, el medio ambiente y sectores estratégicos como la agricultura, la industria y la energía.

En este contexto, el aprendizaje automático se presenta como una herramienta potente para gestionar y optimizar la calidad y el suministro del agua. Los algoritmos de ML pueden procesar grandes volúmenes de datos de sensores y otras fuentes para mejorar las predicciones y la toma de decisiones en tiempo real. Además, permiten diseñar protocolos de tratamiento del agua más eficientes, reducir las pérdidas en las redes de distribución y anticiparse a los problemas antes de que se conviertan en fallos significativos.

Metodología y clasificación de temas

Para explorar el uso del ML en la gestión de infraestructuras hídricas, el equipo realizó una búsqueda sistemática en la base de datos Scopus, centrada en artículos en inglés publicados desde 2015. Los investigadores aplicaron el modelo BERTopic, una técnica de NLP que utiliza redes neuronales (transformers) entrenadas para identificar y organizar los principales temas en la literatura. Esto permitió clasificar con precisión los estudios en cuatro grandes áreas de aplicación:

  1. Detección de contaminantes y erosión del suelo: El uso de ML en esta área permite la detección avanzada de contaminantes como los nitratos y los metales pesados en las aguas subterráneas. Mediante imágenes satelitales y sensores en campo, estos modelos analizan factores ambientales y condiciones del suelo para predecir y mapear zonas de riesgo de contaminación y erosión.
  2. Predicción de niveles de agua: El estudio destaca cómo las técnicas de aprendizaje automático, incluidas las redes neuronales y los modelos de series temporales, pueden prever las fluctuaciones en los niveles de agua de ríos, lagos y acuíferos. Esto resulta crucial para la gestión de los recursos hídricos en situaciones climáticas extremas, como las inundaciones y las sequías, y también para optimizar el uso del agua en la agricultura y la industria.
  3. Detección de fugas en redes de agua: Las pérdidas de agua suponen un problema significativo en las redes de distribución, especialmente en las zonas urbanas. El estudio descubrió que el ML, junto con tecnologías de sensores IoT, permite la detección precisa de fugas mediante el análisis de patrones de flujo y presión en las tuberías. Los algoritmos pueden identificar y localizar fugas, lo que reduce el desperdicio y mejora la eficiencia de la distribución.
  4. Evaluación de la potabilidad y calidad del agua: Garantizar el acceso a agua potable es fundamental para la salud pública, y el estudio subraya la utilidad del aprendizaje profundo en el control de la calidad del agua. Los algoritmos analizan parámetros de calidad como la turbidez, el pH y la presencia de sustancias químicas nocivas, con el fin de asegurar la potabilidad. Estos modelos también permiten automatizar los sistemas de alerta temprana en zonas con infraestructuras hídricas vulnerables.

Implicaciones y futuros pasos

Este estudio concluye que el uso de aprendizaje automático en la gestión del agua permite una mayor eficiencia y sostenibilidad, y supone un paso adelante en la administración de los recursos hídricos frente a los desafíos ambientales en aumento. Los autores señalan que la combinación de ML con sistemas de monitoreo avanzado puede transformar la forma en que gestionamos las infraestructuras hídricas, permitiendo predicciones precisas y decisiones basadas en datos en tiempo real.

En el futuro, se centrarán en mejorar la precisión de los modelos para áreas específicas, así como en implementar estos sistemas a gran escala. Además, se abren nuevas oportunidades para optimizar las redes de distribución mediante sistemas automatizados, algo vital en un contexto donde el agua es un recurso cada vez más valioso y escaso.

Este estudio no solo aporta conocimiento a la comunidad científica, sino que también proporciona una base sólida para que gestores y responsables de políticas públicas integren el aprendizaje automático en sus prácticas de gestión del agua, avanzando así hacia una gestión hídrica más sostenible y resiliente.

Referencia:

GARCÍA, J.; LEIVA-ARAOS, A.; DÍAZ-SAAVEDRA, E.; MORAGA, P.; PINTO, H.; YEPES, V. (2023). Relevance of Machine Learning Techniques in Water Infrastructure Integrity and Quality: A Review Powered by Natural Language Processing. Applied Sciences, 13(22):12497. DOI:10.3390/app132212497

Descargar (PDF, 23.87MB)

Los motivos por los que se equivocan estudiantes y profesionales de ingeniería al abordar la resolución de problemas

Resolver problemas en el ámbito universitario o profesional, en áreas tecnológicas, de ingeniería y ciencias, puede plantear una serie de desafíos que pueden conducir a errores. Estos fallos pueden surgir por diversas razones que van desde no comprender el concepto subyacente hasta confiar demasiado en la tecnología.

En un artículo anterior mencioné algunos ejemplos de problemas teóricamente sencillos, pero que marean a nuestros estudiantes. Ahora vamos a analizar detalladamente algunas de estas razones y cómo se relacionan entre sí. También he incluido enlaces a otros artículos del blog donde reflexiono sobre este tipo de cuestiones.

La falta de comprensión del concepto subyacente a un problema es una preocupación fundamental. Esto puede manifestarse de diversas formas, ya sea a través de errores conceptuales, una aplicación incorrecta del concepto o una interpretación errónea del mismo. Esta falta de entendimiento puede empeorar si se carece de experiencia o conocimientos específicos en el campo correspondiente. Cuando un estudiante o profesional se enfrenta a un problema para el que no tiene experiencia previa, puede tener dificultades para aplicar correctamente los principios necesarios para resolverlo.

Los datos son fundamentales para encontrar soluciones, sin embargo, su calidad y disponibilidad pueden ser problemáticos. La falta de datos adecuados, la presencia de información contradictoria o sesgada pueden conducir a conclusiones incorrectas. Asimismo, centrarse excesivamente en utilizar todos los datos disponibles puede distraer de la información realmente importante, al tiempo que validar datos sesgados o inventados puede conducir a conclusiones incorrectas.

El manejo inadecuado de las bases matemáticas también puede ser una fuente de errores (geometría, trigonometría, cálculo o álgebra). Esto puede incluir errores en el cálculo, así como el uso inapropiado de fórmulas o modelos matemáticos. Los problemas reales rara vez tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Además, el uso excesivo de la memoria en lugar de la comprensión de los principios subyacentes puede conducir a errores conceptuales y de selección de modelos de cálculo.

Los aspectos psicológicos también son importantes. El estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración pueden afectar a la capacidad de resolver problemas de manera efectiva. La falta de atención a los detalles, la fatiga y el agotamiento también pueden provocar errores en la resolución de problemas.

Es crucial comprender que los problemas reales pueden ser complejos y no tener necesariamente una solución única. Esto implica la necesidad de tomar decisiones informadas y comprender las limitaciones de los modelos o fórmulas utilizados. Además, la propagación de errores en las operaciones y el uso incorrecto de datos, fórmulas o software pueden dar lugar a resultados erróneos.

La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos una y otra vez. La falta de comunicación o colaboración entre profesionales en entornos de trabajo también puede provocar errores en la resolución de problemas. Confiar ciegamente en la tecnología o en herramientas automatizadas sin comprender en profundidad los principios subyacentes puede ser un problema.

En resumen, resolver problemas en el ámbito universitario o profesional de la ingeniería y las ciencias puede ser un proceso complejo y propenso a errores debido a una variedad de factores interrelacionados. Desde la comprensión del concepto hasta la calidad y disponibilidad de los datos, así como los aspectos psicológicos y técnicos relacionados con la resolución de problemas, es crucial abordar estos desafíos con atención y comprensión para lograr soluciones precisas y efectivas. Desde las universidades debe hacerse todo lo posible para superar este tipo de dificultades y conseguir que nuestros estudiantes adquieran las competencias necesarias para su posterior desarrollo profesional.

Sin querer ser exhaustivo, y sin que estén ordenadas por importancia, aquí os dejo una lista de 30 posibles causas por las cuales nuestros estudiantes en los exámenes o los técnicos en su ámbito profesional, suelen cometer errores al resolver los problemas. Estoy convencido de que hay más causas, pero esto puede ser un buen punto de partida para el debate y la reflexión. En el vídeo que he grabado, me extiendo y explico algo más lo que aquí recojo como una simple lista.

  1. La falta de comprensión del concepto subyacente en un problema puede conducir a errores conceptuales al aplicarlo incorrectamente o interpretarlo de manera errónea.
  2. La inexperiencia o la falta de conocimientos específicos pueden surgir cuando una persona afronta por primera vez un tipo de problema, ya sea durante un examen o en la práctica profesional.
  3. Los problemas relacionados con la disponibilidad de datos pueden presentarse de varias formas, como datos insuficientes, necesarios, innecesarios o contradictorios. A menudo, existe una obsesión por utilizar todos los datos disponibles en el enunciado del problema.
  4. La calidad de los datos también es un factor importante, con la posibilidad de incertidumbre o error en los datos disponibles. Además, dar por válidos datos sesgados, interesados o inventados puede llevar a conclusiones incorrectas. Es necesario un control de calidad de los datos.
  5. Intentar resolver un problema utilizando el enfoque típico visto en clase puede marear a nuestros estudiantes. Los alumnos prefieren resolver un problema típico explicado en clase, a ser posible, con datos parecidos.
  6. El manejo inadecuado de las bases matemáticas, que incluye errores en el cálculo, el uso incorrecto de fórmulas o modelos matemáticos, y la falta de comprensión de los principios subyacentes, puede ser una fuente común de errores. La falta de conocimientos básicos de geometría, trigonometría, álgebra o cálculo básicos son, en ocasiones, escollos. A veces hay dificultades en saber dibujar un esquema para resolver el problema.
  7. Los problemas reales generalmente no tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Esta distinción, que se da claramente entre los estudios de grado y los de máster, es importante tenerla en cuenta.
  8. Los aspectos psicológicos, como el estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración, pueden afectar negativamente la capacidad para resolver problemas de manera efectiva.
  9. La falta de atención o interés, así como la fatiga o el agotamiento, pueden contribuir a errores en la resolución de problemas, al igual que la prisa por resolver el problema.
  10. La complejidad de los problemas puede aumentar cuando se trata de situaciones poco comunes o rebuscadas, lo que requiere un enfoque cuidadoso y creativo para su resolución.
  11. Es crucial comprender la diferencia entre una ley general y una fórmula particular al aplicar normas técnicas que pueden estar basadas en hipótesis o casos específicos.
  12. Utilizar modelos de cálculo inadecuados, ya sean demasiado refinados o demasiado simples para los datos disponibles, puede conducir a soluciones incorrectas.
  13. Carecer de números estimativos para prever el resultado final puede resultar en una falta de comprensión del orden de magnitud del resultado. En este sentido, el uso de nomogramas en la docencia facilita la adquisición de este tipo de habilidad en los estudiantes. Los estudiantes y los profesionales deberían tener un conocimiento del “número gordo” y saber predimensionar.
  14. Es importante ser consciente de la propagación de errores en las operaciones, ya que incluso pequeños errores pueden magnificarse y llevar a resultados incorrectos.
  15. Utilizar fórmulas, datos o tablas en un contexto diferente al que dieron origen puede llevar a interpretaciones incorrectas o a soluciones erróneas.
  16. La extrapolación de resultados a límites no contemplados puede conducir a conclusiones incorrectas o poco realistas.
  17. Utilizar fórmulas empíricas con datos expresados en unidades diferentes a las que funcionan puede generar resultados inconsistentes o incorrectos.
  18. La dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede conducir a errores en la selección de modelos o fórmulas de cálculo.
  19. Errores conceptuales pueden llevar a la selección incorrecta de modelos o fórmulas de cálculo, lo que resulta en soluciones erróneas.
  20. El uso de software defectuoso o poco contrastado, así como la falta de habilidades para calcular manualmente un problema, pueden resultar en resultados incorrectos. A esto se une un uso inapropiado de la inteligencia artificial.
  21. El mal uso de ecuaciones o fórmulas, como cambiar el nombre de una variable sin entender el concepto subyacente, puede conducir a errores en la resolución de problemas.
  22. La falta de competencia o experiencia en una materia determinada puede resultar en una resolución incorrecta del problema.
  23. Repetir la resolución de problemas de un contexto a otro sin pensar en su validez puede conducir a soluciones inapropiadas.
  24. La falta de comprensión del problema, la pregunta o el tipo de resultado esperado puede resultar en soluciones incorrectas debido a la falta de comprensión lectora, capacidad analítica o de síntesis.
  25. La utilización de unidades defectuosas, notaciones o convenciones específicas puede llevar a interpretaciones erróneas o a soluciones incorrectas.
  26. La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez.
  27. La falta de comunicación o colaboración en entornos de trabajo entre profesionales puede contribuir a errores en la resolución de problemas.
  28. La confianza excesiva en la tecnología o herramientas automatizadas puede llevar a la falta de comprensión de los principios subyacentes y a la comisión de errores.
  29. La falta de revisión o verificación de los cálculos realizados por parte de un tercero independiente puede resultar en soluciones incorrectas.
  30. La falta de conocimiento del contexto del problema, incluyendo las restricciones, puede conducir a soluciones subóptimas o incorrectas.

Os paso un vídeo donde he desarrollado las ideas anteriores, con ejemplos, y he dejado algunas de mis reflexiones al respecto. Espero que os guste.

Os dejo un podcast sobre este tema (en inglés), generado por una IA sobre el vídeo.

Aquí tenéis un mapa conceptual que también os puede ayudar.

Artículos relacionados en el blog:

Los ingenieros, los ordenadores y mil un indios

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Cifras significativas y errores de medición

¿Cómo predimensionar un muro sin calculadora?

La inteligencia artificial en la ingeniería civil

Introducción a la toma de decisiones

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Referencias de libros de problemas:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2023). Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras. Ediciones UPCT. Universidad Politécnica de Cartagena, 284 pp. ISBN: 978-84-17853-62-4

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Revisión de estado del conocimiento en infraestructuras hídricas usando técnicas de aprendizaje automático

Acabamos de recibir la noticia de la publicación de nuestro artículo en la revista Applied Sciences, la cual está indexada en el JCR. Este estudio explora las diversas aplicaciones del aprendizaje automático (Machine Learning, ML) en relación con la integridad y calidad de las infraestructuras hidráulicas, identificando cuatro áreas clave donde se ha implementado con éxito. Estas áreas abarcan desde la detección de contaminantes en el agua y la erosión del suelo, hasta la predicción de niveles hídricos, la identificación de fugas en redes de agua y la evaluación de la calidad y potabilidad del agua.

Cabe destacar que esta investigación se llevó a cabo en el marco de una colaboración fructífera entre nuestro grupo de investigación e investigadores chilenos, liderados por el profesor José Antonio García Conejeros. El proyecto en sí, denominado HYDELIFE, forma parte de las iniciativas que superviso como investigador principal en la Universitat Politècnica de València.

Se realizó un análisis bibliográfico de artículos científicos a partir de 2015, que arrojó un total de 1087 artículos, para explorar las aplicaciones de las técnicas de aprendizaje automático en la integridad y la calidad de la infraestructura hídrica. Entre las contribuciones realizadas por el trabajo, caben destacar las siguientes:

  • Se identificaron cuatro áreas clave en las que el aprendizaje automático se ha aplicado a la gestión del agua: los avances en la detección de contaminantes del agua y la erosión del suelo, la previsión de los niveles del agua, las técnicas avanzadas para la detección de fugas en las redes de agua y la evaluación de la calidad y potabilidad del agua.
  • Destacó el potencial de las técnicas de aprendizaje automático (Random Forest, Support Vector Regresion, Convolutional Neural Networks y Gradient Boosting) combinadas con sistemas de monitoreo de vanguardia en múltiples aspectos de la infraestructura y la calidad del agua.
  • Proporcionó información sobre el impacto transformador del aprendizaje automático en la infraestructura hídrica y sugirió caminos prometedores para continuar con la investigación.
  • Empleó un enfoque semiautomático para realizar análisis bibliográficos, aprovechando las representaciones codificadas bidireccionales de Transformers (BERTopic), para abordar las limitaciones y garantizar una representación precisa de los documentos.
  • Las técnicas de aprendizaje automático ofrecen una alta precisión, un tiempo de procesamiento reducido y datos valiosos para la toma de decisiones en materia de gestión sostenible de los recursos y sistemas de alerta temprana.
  • La colaboración interdisciplinaria, los marcos integrados y las tecnologías avanzadas, como la teledetección y la IoT, son esenciales para avanzar en la investigación sobre la integridad y la calidad de la infraestructura hídrica.

Abstract:

Water infrastructure integrity, quality, and distribution are fundamental for public health, environmental sustainability, economic development, and climate change resilience. Ensuring the robustness and quality of water infrastructure is pivotal for sectors like agriculture, industry, and energy production. Machine learning (ML) offers the potential for bolstering water infrastructure integrity and quality by analyzing extensive data from sensors and other sources, optimizing treatment protocols, minimizing water losses, and improving distribution methods. This study delves into ML applications in water infrastructure integrity and quality by analyzing English-language articles from 2015 onward, compiling 1087 articles. A natural language processing approach centered on topic modeling was initially adopted to classify salient topics. From each identified topic, key terms were extracted and utilized in a semi-automatic selection process, pinpointing the most relevant articles for further scrutiny. At the same time, unsupervised ML algorithms can assist in extracting themes from the documents, generating meaningful topics often requires intricate hyperparameter adjustments. Leveraging the Bidirectional Encoder Representations from Transformers (BERTopic) enhanced the study’s contextual comprehension in topic modeling. This semi-automatic methodology for bibliographic exploration begins with broad categorizing topics, advancing to an exhaustive analysis. The insights drawn underscore ML’s instrumental role in enhancing water infrastructure’s integrity and quality, suggesting promising future research directions. Specifically, the study has identified four key areas where ML has been applied to water management: (1) advancements in the detection of water contaminants and soil erosion; (2) forecasting of water levels; (3) advanced techniques for leak detection in water networks; and (4) evaluation of water quality and potability. These findings underscore the transformative impact of ML on water infrastructure and suggest promising paths for continued investigation.

Keywords:

Water infrastructure integrity; machine learning; environmental sustainability; natural language processing; BERTopic

Reference:

GARCÍA, J.; LEIVA-ARAOS, A.; DÍAZ-SAAVEDRA, E.; MORAGA, P.; PINTO, H.; YEPES, V. (2023). Relevance of Machine Learning Techniques in Water Infrastructure Integrity and Quality: A Review Powered by Natural Language Processing. Applied Sciences, 13(22):12497. DOI:10.3390/app132212497

Descargar (PDF, 23.87MB)

La inteligencia artificial en la ingeniería civil: oportunidades y desafíos

Tengo el placer de compartir un artículo que se ha publicado en la revista IC Ingeniería Civil, que es una publicación mensual editada por el Colegio de Ingenieros Civiles de México. En este artículo se analiza el uso de la inteligencia artificial en la ingeniería civil, incluyendo la toma de decisiones, gestión de proyectos y monitorización de infraestructura. Destaca las oportunidades de la IA para elevar la calidad y la seguridad de las infraestructuras, reducir costos y acelerar la resolución de problemas complejos. También se señalan los desafíos y la necesidad de una colaboración interdisciplinaria para garantizar su utilización responsable y efectiva.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Referencia:

YEPES, V.; KRIPKA, M.; YEPES-BELLVER, L.; GARCÍA, J. (2023). La inteligencia artificial en la ingeniería civil: oportunidades y desafíos. IC Ingeniería Civil, 642:20-23.

Como se trata de un artículo en abierto, os lo paso para su lectura. Espero que os interese.

Descargar (PDF, 380KB)

Objetivos y metodología del proyecto de investigación HYDELIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Figura 1. Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores detallamos los antecedentes, la motivación, las hipótesis de partida, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar los objetivos y la metodología de este proyecto, del cual soy investigador principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Los investigadores de este proyecto pertenemos al Instituto de Ciencia y Tecnología del Hormigón (ICITECH).

El objetivo general perseguido se basa en afrontar el reto social que supone la creación y la conservación de las construcciones modulares y puentes mixtos en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para ello se precisa un salto científico capaz de integrar a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas metaheurísticas híbridas basadas en fiabilidad, aplicadas no sólo al proyecto de nuevas estructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporcionará conocimiento no trivial sobre las mejores prácticas. Esta metodología será aplicable también a otro tipo de infraestructuras.

El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales será responsable el investigador principal:

  • OE-1: Análisis de funciones de distribución específicas para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio.
  • OE-2: Determinación de indicadores clave basados en redes bayesianas y lógica neutrosófica para garantizar una efectiva integración de la sostenibilidad ambiental y social en la licitación de proyectos mantenimiento de construcciones modulares, puentes mixtos e híbridos.
  • OE-3: Identificación de estrategias de mantenimiento robusto óptimo de construcciones modulares y puentes mixtos y estructuras híbridas.
  • OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de construcciones modulares, puentes mixtos y estructuras híbridas mediante metaheurísticas híbridas.
  • OE-5: Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida.
  • OE-6: Difusión de resultados y redacción de informes.
Figura 2.- Objetivos específicos del proyecto HYDELIFE

Metodología propuesta en relación con los objetivos y con el estado del arte

El análisis del estado del arte alumbró dos huecos en la investigación, el empleo de metaheurísticas híbridas con Deep Learning y su aplicación a construcciones modulares, puentes mixtos y estructuras híbridas. Además, el empleo de la lógica neutrosófica y las redes bayesianas abre puertas en el ámbito de la decisión multicriterio. Estas novedades se combinan en la metodología con técnicas y disciplinas ya empleadas en otros proyectos: análisis del ciclo de vida, análisis basado en fiabilidad, diseño óptimo robusto, metamodelos y técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, en el caso de estructuras de nueva planta, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales.

La Figura 3 muestra el esquema metodológico propuesto para HYDELIFE, relacionando las fases con los objetivos propuestos. Se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el responsable debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.

Figura 3.- Esquema metodológico diseñado para HYDELIFE en relación con los objetivos

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

En este momento llevamos seis meses de trabajo, pues el proyecto comenzó en septiembre del 2021. Pero ya podemos dar algunos resultados que se pueden ver en la siguiente lista de referencias.

Referencias:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, (accepted, in press).

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

YEPES, V.; LOPEZ, S. (2021). Knowledge management in the construction industry: Current state of knowledge and future research. Journal of Civil Engineering and Management, 27(8):671-680. DOI:10.3846/jcem.2021.16006

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

MARTÍN, R.; YEPES, V. (2021). Bridging the gap between landscape and management within marinas: A review. Land, 10(8), 821. DOI:10.3390/land10080821

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

TANG, M.; LIAO, H.; YEPES, V.; LAURINAVICIUS, A.; TUPENAITE, L. (2021). Quantifiying and mapping the evolution of a leader journal in the field of civil engineering. Journal of Civil Engineering and Management, 27(2):100-116. DOI:10.3846/jcem.2021.14365

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hacia un mapa de conocimiento algorítmico de optimización de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial)

Acaban de publicarnos un artículo en la revista IEEE Access, revista de alto impacto indexada en el JCR. En este caso se ha realizado un análisis conceptual macroscópico de la industria AEC-AI (Arquitectura, Ingeniería, Construcción e Inteligencia Artificial). El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la arquitectura, la ingeniería y la construcción (AEC) constituye uno de los sectores productivos más relevantes, por lo que también produce un alto impacto en los equilibrios económicos, la estabilidad de la sociedad y los desafíos globales en el cambio climático. En cuanto a su adopción de tecnologías, aplicaciones y procesos también se reconoce por su status-quo, su lento ritmo de innovación, y los enfoques conservadores. Sin embargo, una nueva era tecnológica -la Industria 4.0 alimentada por la IA- está impulsando los sectores productivos en un panorama sociopolítico y de competencia tecnológica global altamente presionado. En este trabajo, desarrollamos un enfoque adaptativo para la minería de contenido textual en el corpus de investigación de la literatura relacionada con las industrias de la AEC y la IA (AEC-AI), en particular en su relación con los procesos y aplicaciones tecnológicas. Presentamos un enfoque de primera etapa para una evaluación adaptativa de los algoritmos de IA, para formar una plataforma integradora de IA en la industria AEC, la industria AEC-AI 4.0. En esta etapa, se despliega un método adaptativo macroscópico para caracterizar la “Optimización”, un término clave en la industria AEC-AI, utilizando una metodología mixta que incorpora el aprendizaje automático y el proceso de evaluación clásico. Nuestros resultados muestran que el uso eficaz de los metadatos, las consultas de búsqueda restringidas y el conocimiento del dominio permiten obtener una evaluación macroscópica del concepto objetivo. Esto permite la extracción de un mapeo de alto nivel y la caracterización de la estructura conceptual del corpus bibliográfico. Los resultados son comparables, a este nivel, a las metodologías clásicas de revisión de la literatura. Además, nuestro método está diseñado para una evaluación adaptativa que permita incorporar otras etapas.

Abstract:

The Architecture, Engineering, and Construction (AEC) Industry is one of the most important productive sectors, hence also produce a high impact on the economic balances, societal stability, and global challenges in climate change. Regarding its adoption of technologies, applications and processes is also recognized by its status-quo, its slow innovation pace, and the conservative approaches. However, a new technological era – Industry 4.0 fueled by AI- is driving productive sectors in a highly pressurized global technological competition and sociopolitical landscape. In this paper, we develop an adaptive approach to mining text content in the literature research corpus related to the AEC and AI (AEC-AI) industries, in particular on its relation to technological processes and applications. We present a first stage approach to an adaptive assessment of AI algorithms, to form an integrative AI platform in the AEC industry, the AEC-AI industry 4.0. At this stage, a macroscopic adaptive method is deployed to characterize “Optimization,” a key term in AEC-AI industry, using a mixed methodology incorporating machine learning and classical evaluation process. Our results show that effective use of metadata, constrained search queries, and domain knowledge allows getting a macroscopic assessment of the target concept. This allows the extraction of a high-level mapping and conceptual structure characterization of the literature corpus. The results are comparable, at this level, to classical methodologies for the literature review. In addition, our method is designed for an adaptive assessment to incorporate further stages.

Keywords:

Architecture, engineering and construction, AEC, artificial intelligence, literature corpus, machine learning, optimization algorithms, knowledge mapping and structure

Reference:

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

Descargar (PDF, 6.14MB)

Salto cualitativo en el proyecto de investigación HYDELIFE

ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Universitat Politècnica de València

La línea de investigación emprendida por nuestro grupo no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. En anteriores proyectos (HORSOST, BRIDLIFE, DIMALIFE) afrontados por nuestro grupo se abordó tanto el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos, como la toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos. También se emplearon metamodelos y el diseño óptimo robusto y basado en fiabilidad para obtener diseños automáticos de puentes e infraestructuras que consideraban hormigones con baja huella de carbono, donde se incluían los aspectos de durabilidad, de consumo energético y de emisiones de CO2, de seguridad, y otros que se estudiaban a lo largo del ciclo de vida de las estructuras, en especial en puentes de hormigón pretensado, tanto prefabricados, como construidos “in situ”. Además, se emplearon técnicas de decisión multicriterio para abordar, en primer lugar, la decisión de la mejor tipología constructiva de un puente, y posteriormente, para decidir la mejor de las opciones resultantes de la frontera de Pareto.

La producción científica de estos proyectos fue significativa. Se ha abordado la optimización multiobjetivo (coste, CO2 y energía) de puentes con vigas artesa (Martí et al., 2015; Martí et al., 2016; Yepes et al., 2015;2017), de puentes cajón (García-Segura et al., 2016;2017a;b). Se ha abordado la optimización del mantenimiento de puentes en ambiente marino (Navarro et al., 2017;2018), del mantenimiento de redes de pavimento (Yepes et al., 2016; Torres-Machí, 2017). Se ha analizado la sostenibilidad social de las infraestructuras (Sierra et al., 2017a;b). Se han utilizado metodologías emergentes en la toma de decisiones como la lógica neutrosófica (Navarro et al., 2020) o redes bayesianas (Sierra et al., 2018). Se han utilizado en la optimización metamodelos de redes neuronales (García-Segura et al., 2017b), modelos kriging (Penadés-Plà et al., 2019), el análisis de fiabilidad (García-Segura et al., 2017a). Se han propuesto sistemas de indicadores de sostenibilidad social y medioambiental (Milani et al., 2020; Sánchez-Garrido y Yepes, 2020). Se ha aplicado el diseño robusto a los puentes (Penadés-Plà et al., 2020). Se ha analizado la resiliencia de las infraestructuras (Salas et al., 2020). Se han realizado análisis del ciclo de vida de estructuras e infraestructuras óptimas (Penadés-Plà et al. 2017; Zastrow et al., 2017; Pons et al., 2018;2020; Navarro et al. 2018; Zhou et al., 2020). También se encuentra en fase de evaluación la patente “Viga en cajón mixta acero-hormigón, P202030530” (Alcalá y Navarro, 2020), autor que forma parte del equipo de investigación.

Sin embargo, con el fin de poder dar un paso adelante, es necesario abordar las limitaciones y el alcance de estos proyectos previos. El proyecto HYDELIFE busca un salto cualitativo en nuestra línea de investigación que pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, no se puede perder la oportunidad de incorporar las técnicas emergentes procedentes del DL en la hibridación de las metaheurísticas, pues sería renunciar a la potencia predictiva de la inteligencia artificial y a la eficiencia de esta nueva generación de algoritmos. En segundo lugar, debe abordarse la construcción industrializada modular tanto en edificación como en obra civil, estudiando en detalle y confrontando los puentes mixtos y estructuras híbridas con las soluciones de hormigón en un análisis completo de ciclo de vida que incluya la sostenibilidad social y medioambiental. Para ello se pretende profundizar en las técnicas de decisión multicriterio emergentes como la lógica neutrosófica y otras como las redes bayesianas. En este contexto, a pesar de que se ha avanzado en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables (Martínez-Frutos et al., 2014), tanto desde el diseño basado en fiabilidad como en el diseño óptimo robusto.

El gran problema de la optimización multiobjetivo de estructuras al incorporar las incertidumbres es su muy elevado coste computacional. Tal y como hemos visto en algunos de nuestros trabajos, este problema lo hemos abordado con metamodelos que proporcionan una relación funcional aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Sin embargo, las metaheurísticas híbridas basadas en DL emergen como técnicas que pueden mejorar estos planteamientos previos.

Los trabajos desarrollados hasta el momento por nuestro grupo de investigación han permitido avances importantes en el diseño automatizado y óptimo de las estructuras de hormigón con múltiples criterios a lo largo del ciclo de vida, sin embargo, existen una serie de limitaciones que este HYDELIFE tiene intención de superar:

  • Ampliación del análisis del ciclo de vida no solo a los puentes de hormigón, sino a otras tipologías como puentes mixtos y estructuras híbridas, además de estructuras industrializadas modulares.
  • Utilizar metaheurísticas híbridas basadas en la inteligencia artificial con un doble objetivo: mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generadas en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
  • Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo robusto y del diseño óptimo basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
  • Profundización en las funciones de distribución de los impactos sociales y ambientales en las construcciones modulares y mixtas.
  • Profundización en la investigación dirigida a la fase de mantenimiento, centrando más el problema social que plantean las estructuras modulares y mixtas en servicio.
  • Analizar la sensibilidad que existe en las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras. Ello supone modelar distintos escenarios económicos y analizar las soluciones eficientes derivadas, especialmente en épocas de crisis.
  • Profundización en la determinación de los factores determinantes en la toma de decisión multicriterio.
  • Profundización en los costes de mantenimiento y los esperados en caso de fallo. Además, las incertidumbres asociadas con el deterioro requieren métodos probabilísticos.
  • Profundizar en el análisis de ciclo de vida la inclusión de la demolición y reutilización de los materiales de las infraestructuras, siendo una de las variables de diseño la durabilidad.

Lo indicado hasta ahora, que resume los antecedentes y las realizaciones del grupo, se podría sintetizar en los siguientes aspectos:

  1. La temática a investigar se ha ido profundizando en cada uno de los proyectos realizados, acorde a los objetivos previstos.
  2. Los estudios realizados estaban basados en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida y el diseño robusto y basado en fiabilidad de puentes pretensados. El objetivo es dar un salto al incorporar en las metaheurísticas el aprendizaje profundo y ampliar el alcance a otro tipo de construcciones industrializadas modulares y puentes mixtos e híbridos.

Referencias

  • AFZAL, M.; LIU, Y.H.; CHENG, J.C.P.; GAN, V.J.L. (2020). Reinforced concrete structural design optimization: A critical review. Clean. Prod., 260:120623.
  • AGUADO, A. et al. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/
  • BIONDINI, F., FRANGOPOL, D. M. (2016). Life-Cycle of Deteriorating Structural Systems under Uncertainty: Review. J Struct Eng ASCE, 142(9), F4016001.
  • CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.
  • FRANGOPOL, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Struct Infrast Eng, 7(6), 389-413.
  • GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6), 862.
  • GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics, 8(4), 555.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Struct., 125:325-336.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017a). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017b). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Struct., 145:381-391.
  • GOBIERNO DE ESPAÑA (2020). Estrategia Nacional de Inteligencia Artificial. https://www.lamoncloa.gob.es/presidente/actividades/Documents/2020/021220-ENIA.pdf
  • MARI, A. (2007). Educar para la sostenibilidad en el ámbito de la ingeniería. Conferencia de clausura. II Jornadas de enseñanza del hormigón estructural. ACHE, Madrid, pp. 33-49.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Clean. Prod., 120:231-240.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J. Struct. Eng., 141(2): 04014114.
  • MARTÍNEZ-FRUTOS, J.; MARTÍ, P. (2014). Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas. Rev Int Metod Numer., 30(2):97-105.
  • MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Civ. Eng., 2020, 8823370.
  • MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. J. Environ. Res. Public Health, 17(12):4488.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018a). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018b). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Impact Assess. Rev., 72:50-63.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018c). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Clean. Prod., 196: 698-713.
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Impact Assess. Rev., 74:23-34.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Struct., 179:556-565.
  • PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265.
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Clean. Prod., 192:411-420.
  • RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows
  • RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Manage. Eng., 30(1):69-77.
  • SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. J. Environ. Res. Public Health, 17(3): 962.
  • SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Struct., 171:170-189.
  • SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Clean. Prod., 258: 120556.
  • SARMA, K.C.; ADELI, H. (1998). Cost optimization of concrete structures. J Struct Eng ASCE, 124(5): 570-578.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017a). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Impact Assess. Rev., 67:61-72.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017b). Method for estimating the social sustainability of infrastructure projects. Impact Assess. Rev., 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • TAFFESE, W.Z.; SISTONEN, E. (2017). Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Constr., 77:1-14.
  • THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Inst. Civ. Eng. – Forensic Engineering, 166(3):134-142.
  • TONG, X.; YANG, H.; WANG, L.; MIAO, Y. (2019). The development and field evaluation of an IoT system of low-power vibration for bridge health monitoring. Sensors, 19(5):1222.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Clean. Prod., 148:90-102.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Civ. Eng. Manage., 22(4):540-550.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Sci., 9(16), 3253.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Clean. Prod., 140:1037-1048.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. J. Environ. Res. Public Health, 17(16):5953.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hipótesis de partida del proyecto HYDELIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH). http://congress.cimne.com/SAHC2020/frontal/JoseM.Adam.asp

En varios artículos anteriores detallamos los antecedentes, la motivación, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar las hipótesis e partida sobre las que se basa este proyecto.

La hipótesis principal de partida es que las emergentes metaheurísticas híbridas son capaces de extraer información no trivial de las inmensas bases de datos procedentes de la optimización y mejorar la calidad y el tiempo de cálculo tanto en el diseño como en el mantenimiento óptimo de puentes y estructuras. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real planteando el diseño y el mantenimiento óptimo basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente en el caso de fuertes restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar los complejos procesos de cálculo.

Para la consecución de los objetivos del proyecto, es necesario alcanzar una serie de objetivos específicos que, a su vez, se basan en unas determinadas hipótesis:

  • Hipótesis 1: Las metaheurísticas mejoran la calidad y reducen el tiempo de cálculo cuando se hibridan con el aprendizaje profundo (DL).
  • Hipótesis 2: El análisis del ciclo de vida de la construcción industrializada modular presenta mejores indicadores medioambientales y sociales que la construcción tradicional.
  • Hipótesis 3: La optimización multiobjetivo de los puentes mixtos de hormigón y acero y las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida.
  • Hipótesis 4: La optimización multiobjetivo puede llevar a soluciones que pueden ser infactibles con pequeñas variaciones en los parámetros o en las restricciones.
  • Hipótesis 5: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
  • Hipótesis 6: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de puentes mixtos y estructuras modulares.
  • Hipótesis 7: Las soluciones de mantenimiento óptimo de puentes mixtos y estructuras modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
  • Hipótesis 8: Incluso considerando la variabilidad innata al mundo real, es posible integrar múltiples actores, escenarios y criterios (tangibles e intangibles) en técnicas analíticas que asistan en la toma de decisiones complejas que incluyan aspectos de sostenibilidad social y ambiental mediante herramientas colaborativas.
  • Hipótesis 9: Las decisiones públicas (instituciones) y privadas (empresas) adecuadas pueden mejorar la sostenibilidad, las prestaciones a largo plazo y la durabilidad de las estructuras incluso con escenarios presupuestarios muy restrictivos.
  • Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
  • Hipótesis 11: Las medidas estratégicas, de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones multicriterio son preferibles por su menor coste social y ambiental a la reparación severa de los puentes y estructuras modulares.
  • Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, conservación, mantenimiento y desmantelamiento de los puentes y estructuras modulares que sean robustas a cambios en los escenarios presupuestarios.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

“The asset time bomb”: La bomba de relojería de las infraestructuras, y en particular, de los puentes

Figura 1. Colapso del puente I-35W en Minneapolis. https://thestartupgrowth.com/2019/02/21/structural-health-monitoring-market-driven-by-rapid-expansion-in-the-infrastructure-sector-till-2024/

Una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió en agosto de ese mismo año con el derrumbe de un puente en Génova (Italia). Pero los ejemplos no quedan aquí. Podríamos hablar de la sustitución de los cables del puente Fernando Reig, en Alcoy, o del Puente del Centenario, en Sevilla. O del derribo del puente Joaquín Costa, en Madrid. Ejemplos tenemos en todo el mundo. En cualquier caso, estamos hablando de cifras millonarias, de cortes de tráfico, pérdidas humanas, por poner algunas consecuencias sobre la mesa.

Los puentes son componentes críticos de las infraestructuras, pues su correcto funcionamiento es básico para la resiliencia de nuestros entornos urbanos. Sin embargo, un gran número de infraestructuras que están llegando al final de su vida útil al mismo tiempo. De hecho, la vida útil de muchos puentes se espera que sea menor a la proyectada debido al continuo deterioro provocado por el incremento del tráfico y de los impactos ambientales. Esto constituye una auténtica bomba de relojería (Thurlby, 2013), que junto al reto de la reducción de los impactos ambientales, son razones más que suficientes para preocuparnos de mejorar el mantenimiento de nuestros puentes. De hecho, ya hemos comentado en un artículo anterior un concepto totalmente relacionado con éste: la “crisis de las infraestructuras“. Yo me atrevería a afirmar algo que puede parecer muy duro: el derrumbe de nuestra civilización será paralelo al de las infraestructuras que les da soporte.

Hoy día los gestores de las infraestructuras tienen ante sí un reto importante consistente en mantenerlas en un estado aceptable con presupuestos muy limitados. De hecho, la inspección de los puentes, su mantenimiento y reparación constituyen tareas rutinarias necesarias para mantener dichas infraestructuras en buenas condiciones (Tong et al., 2019). Sin embargo, el problema pasa a ser grave cuando una parte significativa del parque de infraestructuras se encuentra cercano al final de su vida útil. Y lo que aún es peor, cuando existen riesgos de alto impacto y de baja probabilidad que pueden afectar gravemente a las infraestructuras. Resolver este problema es complicado, pues no se presta fácilmente a la exploración con los instrumentos analíticos y de previsión tradicionales.

El estado o deterioro de una infraestructura sigue un comportamiento similar, pero invertido, de la llamada “curva de la bañera“, que es una gráfica que representa los fallos durante el periodo de vida útil de un sistema o de una máquina. En este caso, según vemos en la Figura 2, el estado de condición o las prestaciones de la infraestructura permanece alto durante un periodo de tiempo hasta que empieza a decaer. Para los gestores es necesario conocer el comportamiento de las infraestructuras para tomar decisiones. Sin embargo, muchas veces desconocen en qué posición de la curva se encuentran y, lo que es peor, a qué ritmo se va a deteriorar. Por ejemplo, en la Figura 2 podemos ver que la caída en las prestaciones de A a B, o de B a C son similares, pero la velocidad de deterioro es muy diferente. Y lo que es peor de todo, llega un momento que la caída en las prestaciones ocurre de forma muy acelerada, sin capacidad de reacción por parte de los gestores. Por eso se ha utilizado el símil de la “bomba de relojería”.

Figura 2. Estado o prestaciones de una infraestructura (Thurlby, 2013)

La gestión y el mantenimiento de los puentes está empezando a ser un problema de una magnitud que está empezando a ser más que preocupante. Algunos datos son un ejemplo de ello: en el año 2019, 47000 puentes de los puentes en Estados Unidos, (más del 20% del total) presentan deficiencias estructurales (American Road & Transportation Builders Association, 2019); en Reino Unido, más de 3000 puentes estaban por debajo de los estándares y requerían reparación (RAC Foundation, 2019). Estos son buenos argumentos para aumentar la vida útil de los puentes.

Una de las tecnologías para mejorar la gestión y el mantenimiento de los puentes es la vigilancia de su estado estructural (structural health monitoring, SHM), que trata de mejorar el comportamiento de la estructura mediante el aprendizaje de los datos obtenidos durante su vida útil mediante su monitorización (Figura 3). Estos datos sirven para actualizar los modelos y comprobar el estado en que se encuentra la estructura, lo cual permite minimizar la incertidumbre de los parámetros empleados en los modelos. Sin embargo, aún no se ha resuelto completamente el paso de la obtención de los datos del puente en tiempo real a la toma de decisiones en la gestión y mantenimiento de los puentes.

Figura 3. Structural health monitoring. https://thestartupgrowth.com/2019/02/21/structural-health-monitoring-market-driven-by-rapid-expansion-in-the-infrastructure-sector-till-2024/

En un artículo anterior se explicó el concepto de gemelos digitales (digital twins). Estos modelos actualizados constantemente mediante la monitorización del puente, permitirían conocer en tiempo real el estado estructural del puente y también predecir su comportamiento en el caso de que ocurrieran determinadas circunstancias. Esta información sería clave a la hora de tomar decisiones en la gestión y el mantenimiento del puente.

Las preguntas clave que deberíamos responder serían las siguientes: ¿Es el puente seguro?, ¿cuánto tiempo será el puente seguro?, ¿cuál es el comportamiento estructural actual del puente?, ¿cuándo y cómo deberemos intervenir en el puente?

La respuesta a estas preguntas no es tan evidente como pudiera parecer a simple vista. Los gestores de las infraestructuras deberían ser capaces de entender y valorar en su justa medida los resultados estructurales de los modelos cuyos datos se actualizan en tiempo real. La dificultad estriba en conocer no solo los datos, sino las causas subyacentes a los cambios en el comportamiento estructural. Una ayuda son las técnicas procedentes de la inteligencia artificial, como el aprendizaje profundo, que permiten interpretar ingentes cantidades de datos e identificar patrones y correlaciones entre dichos datos. En un artículo anterior hablamos de este tema. Por otra parte, la actualización de los datos procedentes de la vigilancia de los puentes debería ser automática y en tiempo real. Aquí vuelve a cobrar importancia la inteligencia artificial, aunque nunca debería suplantar el conocimiento ingenieril que permite interpretar los resultados proporcionados por los algoritmos.

Por otra parte, la modelización del riesgo y la resiliencia es una labor necesaria para entender la vulnerabilidad de las infraestructuras. De esta forma seríamos capaces de desarrollar estrategias de mitigación, que podrían ser complementarias a las estrategias de gestión del deterioro que se han explicado anteriormente.

Por tanto, existe un auténtico salto entre la investigación dedicada a la monitorización en tiempo real de los puentes y la toma de decisiones para su gestión y mantenimiento. Los gemelos digitales apoyados en los actuales desarrollos tecnológicos como el “Internet de las cosas“, deberían permitir el paso de la investigación y el desarrollo a la innovación directamente aplicable a la realidad de la gestión de las infraestructuras.

Referencias:

AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/

RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows

THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Proceedings of the Institution of Civil Engineers – Forensic Engineering, 166(3):134-142.

TONG, X.; YANG, H.; WANG, L.; MIAO, Y. (2019). The development and field evaluation of an IoT system of low-power vibration for bridge health monitoring, Sensors 19(5):1222.

YEPES, V. (2020). Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación. https://victoryepes.blogs.upv.es/2019/10/30/computacion-cuantica-gemelos-digitales/

YEPES, V. (2020). La inteligencia artificial en la ingeniería civil. https://victoryepes.blogs.upv.es/2020/09/08/la-inteligencia-artificial-en-la-ingenieria-civil/

YEPES, V. (2020). El aprendizaje profundo (deep learning) en la optimización de estructuras. https://victoryepes.blogs.upv.es/2020/09/15/el-aprendizaje-profundo-deep-learning-en-la-optimizacion-de-estructuras/

YEPES, V. (2020). La resiliencia de las infraestructuras. https://victoryepes.blogs.upv.es/2020/09/17/la-resiliencia-de-las-infraestructuras/

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.