Gestión del riesgo de inundación en infraestructuras críticas: estrategias y medidas de resiliencia

Las inundaciones suponen una amenaza significativa para las infraestructuras críticas (IC), como el suministro de electricidad, las telecomunicaciones, el agua potable, el tratamiento de aguas residuales y el gas. La gestión del riesgo de inundación en las infraestructuras críticas cobra mayor importancia en un contexto de cambio climático, en el que los eventos extremos son más frecuentes e intensos. Este informe aborda la gestión del riesgo de inundación en las infraestructuras críticas y expone medidas específicas para incrementar su resiliencia, la aplicación de modelos para evaluar el impacto de estos eventos y la implementación de estrategias para mejorar la capacidad de recuperación.

Infraestructuras críticas y el riesgo de inundación: marco de referencia

Las infraestructuras críticas son sistemas esenciales para el funcionamiento de una sociedad, que incluyen sectores clave como la energía, las telecomunicaciones, el agua y los servicios de saneamiento. Estos sectores son interdependientes y se organizan en redes complejas, por lo que una interrupción en uno de ellos puede desencadenar efectos en cascada que afecten a múltiples sistemas, comprometiendo la seguridad y el bienestar de la población. La gestión del riesgo de inundación (GRI) en estas infraestructuras es fundamental, pues permite reducir la vulnerabilidad y mejorar la capacidad de recuperación ante eventos adversos.

Papel de las infraestructuras hidráulicas en la gestión del riesgo de inundación

Las infraestructuras hidráulicas, como las presas, los tanques de tormenta, las canalizaciones y los corredores verdes, desempeñan un papel crucial en la gestión de inundaciones y en la protección de las infraestructuras críticas (IC). Estas infraestructuras ayudan a gestionar el flujo de agua y evitan que las lluvias torrenciales y las crecidas de los ríos afecten directamente a las IC y a las áreas urbanas densamente pobladas.

  1. Presas y embalses: Estas estructuras permiten almacenar grandes volúmenes de agua y controlar el caudal de los ríos, además de regular el flujo hacia áreas vulnerables. Durante una tormenta, las presas pueden retener el exceso de agua y liberarla de forma gradual una vez que los niveles han disminuido, lo que reduce el riesgo de desbordamientos y minimiza el impacto aguas abajo.
  2. Tanques de tormenta: Son estructuras de almacenamiento subterráneo que recogen el agua de lluvia durante eventos intensos. Actúan como amortiguadores temporales, evitando que el sistema de alcantarillado se sature y se reduzca el riesgo de inundaciones en las áreas urbanas. Posteriormente, el agua acumulada puede liberarse de manera controlada hacia los sistemas de tratamiento o directamente a los cuerpos de agua cuando el caudal ha disminuido.
  3. Canalizaciones y sistemas de drenaje: Canalizar los ríos y desarrollar sistemas de drenaje bien planificados es esencial para redirigir el agua de inundación de manera segura, reduciendo la velocidad del flujo y mitigando el riesgo de erosión y daños estructurales en las áreas urbanas..
  4. Corredores verdes y zonas de retención natural: Estos espacios, a menudo ubicados en áreas urbanas o suburbanas, están diseñados para absorber y retener el exceso de agua de lluvia, y funcionan como «esponjas» naturales que reducen el caudal de agua que llega a los sistemas de alcantarillado. Además, estas zonas verdes actúan como amortiguadores, reteniendo el agua y liberándola lentamente, lo cual es particularmente útil para proteger infraestructuras sensibles a las inundaciones.
  5. Áreas de infiltración y pavimentos permeables: En las ciudades, los pavimentos permeables y las áreas de infiltración permiten que el agua de lluvia penetre en el suelo, recargando los acuíferos y reduciendo la escorrentía superficial. Esto alivia la presión sobre los sistemas de drenaje y evita que el agua llegue rápidamente a las áreas de IC, lo que disminuye el riesgo de inundación.

Ciclo de gestión de riesgos de desastres (GRD) en infraestructuras críticas

El proceso de GRI en IC suele estructurarse en cinco fases, que permiten implementar medidas específicas en cada etapa:

  1. Preparación: Incluye todas las acciones de planificación y recursos necesarios para reducir el impacto de las inundaciones, incluyendo la incorporación de infraestructuras hidráulicas y la capacitación del personal.
  2. Prevención y mitigación: Consiste en la implementación de infraestructuras hidráulicas, medidas de control y sistemas de drenaje para minimizar la vulnerabilidad de las IC frente a las inundaciones.
  3. Impacto: Se refiere a la capacidad de las infraestructuras para soportar los efectos de una inundación y a cómo estas protegen a las IC regulando el flujo de agua.
  4. Respuesta: Acciones de emergencia implementadas para reducir los daños y restaurar los servicios críticos.
  5. Recuperación y rehabilitación: Estrategias para devolver a las IC su estado funcional o mejorado, integrando lecciones aprendidas y mejorando la infraestructura para incrementar su resistencia a futuros eventos.

Impacto de las inundaciones en las infraestructuras críticas y la función de las infraestructuras hidráulicas

Las infraestructuras críticas, al depender de una red de servicios interconectados, son especialmente vulnerables a las inundaciones. Las infraestructuras hidráulicas desempeñan un papel esencial en la mitigación de estos efectos, ya que protegen los sistemas de IC de daños directos o indirectos:

  • Electricidad: El contacto con el agua puede provocar cortocircuitos, daños en estaciones de transformación y la interrupción del suministro a gran escala. Esto no solo afecta al servicio eléctrico, sino que también genera riesgos para la salud debido a la posibilidad de descargas eléctricas en áreas inundadas.
  • Telecomunicaciones: La infraestructura de telecomunicaciones incluye componentes activos (como nodos de red y antenas) que dependen de la electricidad y, por tanto, son altamente vulnerables a las interrupciones de suministro eléctrico. La interrupción de las comunicaciones complica la coordinación de emergencias y la respuesta rápida.
  • Suministro de agua: Las inundaciones pueden introducir contaminantes en el sistema de suministro de agua, especialmente en instalaciones de captación de agua cercanas a ríos u otras fuentes de agua superficial. Además, los sistemas de bombeo pueden verse interrumpidos, lo que afecta a la presión y la calidad del agua suministrada.
  • Tratamiento de aguas residuales: Este sector es especialmente vulnerable, ya que las inundaciones pueden dañar las plantas de tratamiento y provocar que las aguas residuales no tratadas se liberen al medio ambiente, con consecuencias ambientales y para la salud pública.
  • Gas: Aunque los sistemas de tuberías de gas suelen estar más protegidos, las estaciones de regulación y control pueden verse afectadas por las inundaciones, lo que interrumpiría el servicio y supondría posibles riesgos de seguridad.

Estrategias y medidas de resiliencia en la gestión del riesgo de inundación

Una estrategia integral de resiliencia frente a las inundaciones para infraestructuras críticas abarca una combinación de medidas estructurales y no estructurales. Estas medidas se estructuran de acuerdo con el ciclo de gestión del riesgo de desastre, como se detalla a continuación:

1. Preparación

La fase de preparación incluye la planificación y el equipamiento para mejorar la respuesta ante una emergencia. Algunas medidas clave son:

  • Planes de contingencia: Crear planes detallados para responder a situaciones de emergencia, incluyendo la designación de roles y responsabilidades para cada tipo de infraestructura.
  • Almacenamiento de equipos de emergencia: Disponer de generadores, bombas y otras unidades de repuesto listas para usar en caso de interrupciones.
  • Entrenamiento y simulacros: Capacitar al personal para que lleve a cabo los planes de emergencia y realizar simulacros periódicos de inundación.
  • Monitoreo y colaboración meteorológica: Establecer una estrecha colaboración con los servicios meteorológicos para monitorizar el riesgo de inundaciones en tiempo real, utilizando sistemas avanzados de alerta.

2. Prevención y mitigación

Las medidas de prevención y mitigación incluyen la infraestructura necesaria para controlar el flujo de agua y proteger las IC:

  • Construcción de infraestructuras resilientes: Elevar o construir instalaciones en áreas con menor riesgo de inundación, y utilizar materiales resistentes al agua en instalaciones críticas.
  • Barreras físicas: Instalar barreras móviles o permanentes alrededor de infraestructuras clave para protegerlas de las aguas de inundación.
  • Redundancia de sistemas: Desarrollar redundancias en la red para que, si un componente falla, otros puedan compensar la pérdida de servicio.
  • Planificación territorial y zonificación: Garantizar que las infraestructuras críticas se sitúen fuera de las zonas de alto riesgo de inundación, siempre que sea posible.

3. Impacto

La fase de impacto contempla la reducción de los efectos de una inundación mediante infraestructuras hidráulicas que controlen y disminuyan el caudal en zonas urbanas.

  • Gestión de flujos con presas y embalses: Control de la liberación de agua en embalses, asegurando que no se libere de manera repentina y que el flujo se distribuya para minimizar el impacto en las áreas críticas.
  • Desviación del flujo en canalizaciones: Redirigir el agua de inundación mediante canalizaciones y drenajes que la alejen de áreas vulnerables, como plantas de tratamiento y subestaciones eléctricas.
  • Evaluación de vulnerabilidad: Identificar los puntos más débiles en las infraestructuras para priorizar las medidas de protección y mitigación.
  • Medición y control de los niveles de agua: Implementar sensores para controlarlos en tiempo real, lo que permite respuestas más informadas y rápidas.

4. Respuesta

La respuesta es clave para minimizar el tiempo de interrupción de los servicios críticos y reducir los posibles daños adicionales. Las medidas que se deben tomar en esta etapa son:

  • Despliegue de unidades de reemplazo: Utilizar generadores móviles, bombas y sistemas de comunicación alternativos para restaurar  temporalmente los servicios mientras se repara la infraestructura dañada.
  • Prioridades en la restauración: Establecer listas de prioridades para el despliegue de recursos en las áreas de mayor impacto y donde se vean afectadas poblaciones vulnerables.
  • Comunicación pública: Informar a la comunidad sobre las interrupciones y los tiempos estimados de restauración, ofreciendo recomendaciones de seguridad.

5. Recuperación y rehabilitación

La fase de recuperación y rehabilitación se centra en restaurar los servicios de infraestructura de manera eficaz y reforzar su resiliencia futura. Las medidas en esta etapa incluyen:

  • Reparación y sustitución de componentes dañados: Restablecer los servicios lo antes posible mediante la reparación de las instalaciones dañadas y la sustitución de componentes.
  • Evaluación posterior al evento: Realizar un análisis detallado del impacto de la inundación y de la eficacia de las medidas implementadas, documentando lecciones aprendidas para mejorar los planes futuros.
  • Mejoras en la infraestructura: Donde sea posible, aplicar el principio de «reconstruir mejor», introduciendo mejoras en la infraestructura para aumentar su resistencia frente a futuros eventos.
  • Revisión y mantenimiento de las infraestructuras hidráulicas: Evaluar el estado de las presas, los tanques de tormenta y los sistemas de drenaje, y realizar mejoras en función de los eventos recientes.
  • Evaluación de la eficacia de las medidas implementadas: Análisis del impacto de las infraestructuras hidráulicas en la contención del flujo y ajuste del sistema de almacenamiento y drenaje según los datos recopilados.

Modelado del riesgo y evaluación de medidas hidráulicas

Para optimizar la planificación de la resiliencia, el modelado de redes de infraestructura crítica permite evaluar el impacto potencial de las inundaciones y probar diferentes medidas de mitigación. Este tipo de modelado incluye:

  • Análisis de impacto en redes: Representación de las interdependencias entre sectores críticos mediante modelos de red que simulan cómo los fallos en un sector pueden afectar a otros.
  • Evaluación de vulnerabilidades: Determinar los componentes más sensibles a las inundaciones dentro de cada red, como estaciones de bombeo o transformadores eléctricos, para priorizar su protección.
  • Simulación de medidas de resiliencia: Implementar simulaciones que muestran cómo diferentes medidas (como barreras de contención o sistemas de redundancia) pueden reducir los daños y acelerar la recuperación.
  • Cálculo de riesgo poblacional: Integrar datos de densidad poblacional para cuantificar el impacto de las interrupciones en términos de personas afectadas y tiempo de recuperación, lo que facilita la toma de decisiones informadas para la implementación de medidas.
  • Simulación de impacto y respuesta: Permite simular diferentes escenarios de inundación y evaluar la eficacia de las infraestructuras hidráulicas para proteger las IC, comparando opciones de almacenamiento, liberación controlada y desviación de agua.
  • Optimización del sistema de retención y almacenamiento: Determina la cantidad óptima de agua que debe almacenarse en embalses y tanques de tormenta para minimizar el riesgo de desbordamiento y daños a las IC.

Desafíos y recomendaciones para la resiliencia ante inundaciones

La gestión del riesgo de inundación en infraestructuras críticas plantea varios desafíos, entre los cuales se encuentran:

  • Interdependencias complejas: La dependencia mutua entre diferentes sectores hace que el fallo en uno de ellos pueda generar efectos en cascada que agraven el impacto global.
  • Cambio climático y eventos extremos: La mayor frecuencia e intensidad de las inundaciones requieren que las infraestructuras se diseñen y operen considerando escenarios extremos.
  • Disponibilidad de datos: La falta de datos integrados y fiables sobre las características de las infraestructuras y su vulnerabilidad ante las inundaciones limita la precisión de los modelos y la planificación de resiliencia.

Para enfrentar estos desafíos, se recomienda:

  1. Fortalecer la colaboración intersectorial: Establecer redes de cooperación entre operadores de infraestructura crítica para mejorar la planificación y la respuesta.
  2. Integrar herramientas de predicción y alerta temprana: Aprovechar tecnologías avanzadas de monitoreo y modelado climático para anticipar inundaciones y activar respuestas más eficaces.
  3. Aumentar la inversión en infraestructura resiliente: Priorizar la construcción y adaptación de infraestructuras críticas con materiales y diseños capaces de soportar inundaciones.
  4. Desarrollar políticas de zonificación y regulación más estrictas: Promover la construcción fuera de zonas de riesgo y fomentar diseños urbanos que integren espacios de absorción de agua.

Conclusión

La gestión del riesgo de inundación en infraestructuras críticas es fundamental para la resiliencia de las ciudades y la seguridad de la población. Al implementar un enfoque integral basado en el ciclo de gestión del riesgo de desastre (GRD), es posible identificar y aplicar medidas específicas en cada fase, desde la preparación hasta la recuperación. Los modelos de red permiten evaluar y mejorar la capacidad de respuesta de las infraestructuras ante las inundaciones, y ayudan a los operadores y a los gobiernos a tomar decisiones informadas que minimicen el impacto de estos eventos. Al integrar infraestructuras hidráulicas, como presas, tanques de tormenta y zonas de retención natural, en el ciclo de gestión del riesgo de desastres, es posible aumentar la protección de los servicios esenciales y reducir el impacto de las inundaciones. Además, combinar infraestructuras hidráulicas con medidas de resiliencia específicas para cada sector refuerza la capacidad de respuesta y recuperación, minimizando los efectos en cascada y garantizando la continuidad de los servicios esenciales y el bienestar de la población.

Os dejo un domuento denominado “Principios para la infraestructura resiliente”, de Naciones Unidas. Espero que os resulte de interés.

Descargar (PDF, 909KB)

Este otro, del Ministerio para la Transición Ecológica, trata de la “Evaluación de la resiliencia de los núcleos urbanos frente al riesgo de inundación: redes, sistemas urbanos y otras infraestructuras”.

Descargar (PDF, 44.85MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Presas y control de inundaciones: estrategias integradas para la reducción de riesgos hídricos

Presa de Forata, en el río Magro. Fuente: Confederación Hidrográfica del Júcar

Las presas son estructuras artificiales que, en todo o en parte, limitan el contorno de un recinto enclavado en el terreno y están destinadas al almacenamiento de agua. Se trata de infraestructuras esenciales para el control de las inundaciones, especialmente dentro del marco de la Gestión Integrada de Inundaciones (GII). Las inundaciones, que representan uno de los desastres naturales más recurrentes y devastadores, se han incrementado en frecuencia e intensidad en las últimas décadas, debido en gran medida al cambio climático, la deforestación y el aumento de la urbanización en zonas vulnerables. A continuación, resumiré un artículo escrito por Luis Berga que profundiza en el papel fundamental de las presas en la gestión de los riesgos de inundación. En él se abordan sus beneficios, su funcionamiento, sus limitaciones y algunos ejemplos de su aplicación en distintos lugares.

Importancia de las presas en el control de inundaciones

A nivel global, las inundaciones representan aproximadamente el 30 % de todos los desastres naturales y son responsables de un 20 % de las muertes y de un 30 % de los daños económicos generados por eventos naturales extremos. Según el análisis del Comité Internacional de Grandes Presas (ICOLD), en el periodo comprendido entre 1975 y 2001 se produjeron cada año unas 100 inundaciones significativas, que afectaron a 150 millones de personas y causaron una media anual de 11 000 muertes. En este contexto, las presas desempeñan un papel crucial, especialmente en regiones con grandes poblaciones y actividades económicas en zonas de riesgo.

Funcionamiento de las presas en la mitigación de inundaciones

Las presas regulan el flujo de agua, especialmente en casos de caudales extremos, mediante la laminación de avenidas. Este proceso consiste en retener temporalmente el agua de los ríos o torrentes en embalses y liberarla posteriormente de forma controlada para reducir el caudal pico y minimizar los daños aguas abajo. La laminación permite que las zonas de riesgo puedan soportar caudales menores y menos destructivos, lo que protege tanto a las comunidades como a los ecosistemas circundantes.

Dependiendo de su objetivo, las presas pueden clasificarse en varios tipos en relación con su papel en la laminación de avenidas:

  1. Presas de regulación general: Su objetivo principal es el abastecimiento de agua, la generación de energía o el riego, y tienen un impacto limitado en la reducción de crecidas.
  2. Presas de usos múltiples con laminación secundaria: Estas presas consideran la laminación de avenidas como un objetivo importante, pero secundario a otros usos, como el abastecimiento de agua o la producción de electricidad.
  3. Presas de usos múltiples con prioridad en laminación: En este tipo, la laminación de avenidas es el objetivo principal, combinado con otros fines menores.
  4. Presas dedicadas exclusivamente a la laminación de avenidas: Estas presas están diseñadas exclusivamente para reducir los caudales pico durante las inundaciones, proporcionando la mayor capacidad de mitigación posible.

Cada tipo de presa cumple su función de acuerdo con las características de la cuenca y la magnitud de las crecidas, así como con el tipo de infraestructura y las necesidades de la región.

Beneficios de las presas en la gestión de inundaciones.

El impacto positivo de las presas va más allá de la mitigación de los picos de caudal. Entre los beneficios adicionales se incluyen:

  • Reducción de las áreas inundadas: Al disminuir el caudal punta, se reducen significativamente las áreas que quedan bajo el agua, con lo que se minimizan los daños en zonas urbanas, agrícolas y ecosistemas importantes.
  • Protección de infraestructuras críticas: Las presas ayudan a evitar que el agua afecte infraestructuras estratégicas como carreteras, puentes y redes de transporte, lo que a su vez permite una respuesta de emergencia más rápida y eficiente.
  • Prevención de daños económicos: Al mitigar el impacto de las crecidas, se reducen las pérdidas en propiedades y cultivos, lo que beneficia a la economía local y regional. Por ejemplo, la presa de Oroville, en EE. UU., ha evitado daños económicos valorados en más de 1300 millones de dólares en las últimas décadas.
  • Reducción de la pérdida de vidas humanas y de las afecciones a la salud: Al controlar los caudales y evitar inundaciones masivas, se minimizan los riesgos para la vida humana y se evitan problemas de salud asociados con aguas estancadas e insalubres.

Sin embargo, es importante no promover una falsa sensación de seguridad total. Aunque las presas son altamente efectivas, siempre existe un riesgo residual, especialmente en eventos climáticos extremos que pueden superar la capacidad de almacenamiento del embalse.

Ejemplos de eficacia de las presas en el control de inundaciones

Diversos casos a nivel mundial evidencian la eficacia de las presas en la gestión de inundaciones:

  • El huracán Mitch y la Presa de El Cajón (Honduras): En 1998, el huracán Mitch provocó enormes crecidas en Centroamérica, pero la presa de El Cajón retuvo un caudal de entrada de 9800 m³/s, liberando solo 1200 m³/s. Esta reducción del 88 % en el caudal punta evitó daños catastróficos aguas abajo, protegiendo a las poblaciones ubicadas en las llanuras aluviales del país.
  • El tifón Rusa en Corea del Sur (2002): Las presas en Corea del Sur redujeron el caudal pico en el río Han en un 32 % y en el río Nakdong en un 51 %, protegiendo a las ciudades y zonas agrícolas de graves inundaciones. Los embalses principales retuvieron 1,4 km³ de agua, lo que mitigó el impacto de las lluvias torrenciales.
  • Presa de Danjiangkou (China): Desde su construcción en 1968, esta presa ha evitado graves inundaciones en el río Yangtsé, reduciendo el caudal punta en un promedio del 64 % y protegiendo a la ciudad de Wuhan. La laminación de avenidas en este embalse ha transformado crecidas importantes en eventos menores, salvaguardando la vida y los bienes de millones de personas.

Limitaciones y consideraciones en el uso de presas

Pese a sus múltiples beneficios, las presas también presentan limitaciones que deben tenerse en cuenta. Algunas de las más relevantes son:

  • Riesgo de eventos extremos: En situaciones de lluvias extremadamente intensas o prolongadas, una presa puede llegar a su capacidad máxima de almacenamiento, lo que obliga a verter agua sin laminación adicional, lo que podría generar inundaciones aguas abajo.
  • Impactos ambientales: Las presas alteran el flujo natural de los ríos y afectan a los ecosistemas acuáticos y terrestres. Además, pueden bloquear la migración de especies acuáticas y modificar la calidad del agua debido a la sedimentación en el embalse.
  • Costo económico y social: La construcción y el mantenimiento de una presa suponen una inversión elevada, que debe justificarse con los beneficios obtenidos en términos de mitigación de riesgos y otros usos complementarios, como la generación de energía o el abastecimiento de agua.
  • Gestión y coordinación de zonas aguas abajo: Las zonas cercanas a la presa deben contar con planes de emergencia, así como con sistemas de alerta temprana y zonificación adecuada para evitar asentamientos en áreas de riesgo.

Para maximizar los beneficios de las presas, es fundamental complementarlas con otras medidas de gestión de inundaciones, tanto estructurales (como diques y canales) como no estructurales (zonificación de uso del suelo, creación de zonas de almacenamiento controladas y sistemas de alerta temprana).

La gestión integrada de inundaciones y el papel complementario de las presas

La Gestión Integrada de Inundaciones considera tanto medidas estructurales como no estructurales para ofrecer una respuesta holística al riesgo de inundación. Dentro de este enfoque, las presas juegan un papel esencial, pero necesitan ser complementadas por:

  • Zonificación de áreas de riesgo: Al restringir los asentamientos en zonas propensas a inundaciones y promover el uso agrícola o recreativo en estas áreas, se reduce la exposición de las personas y propiedades al riesgo.
  • Planes de emergencia y sistemas de alerta temprana: Las presas pueden incluir sistemas de monitoreo que, junto con datos climáticos, permiten anticipar crecidas y alertar a la población.
  • Medidas de conservación del suelo y reforestación: La conservación del suelo y la vegetación en las cuencas contribuyen a disminuir la escorrentía superficial, reduciendo así la cantidad de agua que llega al embalse en eventos de lluvias intensas.

Conclusión

Las presas constituyen una solución efectiva y probada para mitigar los riesgos de inundación, ya que permiten controlar los caudales en momentos críticos y reducir así el impacto sobre las áreas vulnerables. La laminación de avenidas y la capacidad de almacenamiento controlado son fundamentales para la protección de las comunidades y los ecosistemas. Sin embargo, para una gestión del riesgo completa y sostenible, es necesario considerar un enfoque integral que combine el uso de presas con otras estrategias de gestión, a fin de proteger la vida humana, el bienestar social y la preservación del entorno natural.

Las presas no deben verse como infraestructuras aisladas, sino como elementos clave de un sistema coordinado de gestión de cuencas y respuesta a emergencias, de manera que se maximicen sus beneficios y se minimicen los posibles impactos adversos. Este enfoque integral permite hacer frente a los crecientes desafíos que plantean las inundaciones en un contexto de cambio climático y urbanización acelerada, y construir resiliencia y promover la seguridad a largo plazo para las generaciones futuras.

Referencia:

BERGA, L. (2006). El papel de las presas en la mitigación de las inundaciones. Ingeniería Civil, 144: 7-13.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Efectos de las inundaciones en las estructuras de las edificaciones

Figura 1. Efectos de la DANA en Valencia. https://www.diariodesevilla.es/sociedad/catastrofe-inundaciones-valencia-directo_10_2002684877.html

Para comprender los efectos de las inundaciones en las estructuras de las edificaciones y cómo responder ante ellas, es fundamental entender tanto los factores que incrementan la vulnerabilidad de los edificios como las acciones preventivas y correctivas necesarias. Las inundaciones pueden afectar seriamente a las estructuras, dependiendo de la magnitud de las aguas, su salinidad, la saturación del suelo y la calidad de los materiales y prácticas constructivas empleados. La identificación de estos daños requiere evaluaciones técnicas detalladas y precisas. Este conocimiento es útil tanto para los propietarios, los técnicos y el personal de emergencias que deben tomar decisiones rápidas y bien fundamentadas en situaciones críticas.

1. Efectos de las inundaciones en la estructura de las edificaciones

Las inundaciones suponen una amenaza significativa para la integridad de los edificios y pueden afectar a la estructura de diversas maneras. Estos no siempre son visibles de inmediato y pueden empeorar con el tiempo si no se toman medidas correctivas. En las zonas propensas a las inundaciones, los edificios pueden sufrir diversos daños estructurales, como:

  • Socavación y fallos en la cimentación: La erosión causada por la corriente de agua disminuye la estabilidad de los cimientos. Cuando una inundación causa socavones cerca de una edificación, esto afecta directamente a la capacidad portante de los cimientos, ya que se pierde el soporte horizontal y lateral del suelo. Esto puede causar inclinaciones en las estructuras, grietas en los muros y, en casos extremos, el colapso parcial o total del edificio.
  • Erosión del suelo y pérdida de capacidad portante: La capacidad del suelo para soportar cargas se ve reducida debido a la erosión, lo que puede llevar al fallo de la cimentación.
  • Saturación del suelo: La acumulación de agua provoca saturación, lo que aumenta el riesgo de deslizamientos, derrumbes y avalanchas y afecta a la estabilidad del conjunto de cimentación y estructura. El suelo que rodea los cimientos de una edificación, al saturarse con agua, pierde densidad y estabilidad. Este fenómeno es especialmente crítico en áreas cercanas a cuerpos de agua (ríos, lagos o mares), donde el agua puede hacer que el suelo pierda su capacidad de soporte. Esto puede provocar fenómenos como deslizamientos, derrumbes y licuefacción. En casos graves, el terreno bajo la edificación se comporta casi como un líquido, perdiendo su capacidad para soportar el peso de la estructura y poniendo en riesgo su estabilidad.
  • Pérdida de soporte lateral y horizontal: Al disminuir la capacidad portante del suelo, la estructura pierde los soportes laterales y horizontales, lo que compromete su estabilidad y capacidad de carga.
  • Deterioro de los muros exteriores: Cuando el nivel de las inundaciones supera el metro de altura, la descompensación de presiones puede provocar fallos en los muros exteriores..
  • Inestabilidad estructural por impacto de escombros: Los escombros arrastrados por el agua, combinados con la presión hidrostática o hidrodinámica, pueden impactar en elementos estructurales y causar inestabilidad.
  • Aparición de grietas en muros, losas y columnas: Dependerá de la magnitud de la inundación y podría ocasionar daños que van desde reparables hasta irreparables.
  • Daños por capilaridad y humedad en las paredes: El fenómeno de capilaridad permite que el agua suba a través de los materiales porosos de los muros, debilitándolos progresivamente. Este problema es más frecuente en estructuras construidas directamente sobre el suelo sin barreras de impermeabilización o sobrecimientos. El agua absorbida por capilaridad puede afectar a la durabilidad y la resistencia de los materiales, provocando grietas y desprendimientos del revestimiento.
  • Deterioro de materiales de construcción: La exposición al agua contaminada o salina provoca corrosión en los materiales, especialmente en elementos metálicos no protegidos, galvanizados o inoxidables.
Figura 2. Presión hidrostática.

Para reducir estos riesgos, las nuevas construcciones en zonas de inundación deben ser diseñadas y construidas con especificaciones a prueba de inundaciones. Estas mejoras en la resistencia estructural no solo reducen el riesgo de fallos, sino que también disminuyen significativamente la probabilidad de víctimas en escenarios de inundación.

2. Problemática: daños y consecuencias

  • Daños estructurales: Las inundaciones generan múltiples efectos en la estabilidad de los edificios, afectando su integridad estructural. Entre estos daños destacan:
    • Presión hidrostática: La acumulación de agua en el perímetro de la edificación ejerce presión horizontal sobre los muros, proporcional al calado de la inundación. Este tipo de presión puede levantar los suelos o cimentación cuando el agua se acumula de un solo lado del edificio. En casos donde el agua ingresa al edificio, esta presión se neutraliza, pero introduce una carga gravitatoria que afecta elementos horizontales como forjados y soleras, pudiendo conducir al colapso de la estructura.
    • Presión hidrodinámica: El flujo de agua de un río desbordado puede alcanzar velocidades considerables y generar impactos en los muros, los cuales deben ser diseñados para soportar estas cargas dinámicas.
    • Impactos de objetos arrastrados: El agua arrastra escombros, vehículos y mobiliario urbano que impactan contra la edificación, generando daños considerables en sus elementos​.
    • Durabilidad y corrosión: El agua, especialmente si contiene minerales y sales, puede corroer el acero de refuerzo en estructuras de hormigón, debilitando su capacidad de carga. En materiales como la madera, la humedad reduce significativamente su resistencia estructural. Estos daños son más difíciles de detectar cuando los elementos están cubiertos o enterrados.
    • Erosión del material y del terreno: La exposición prolongada al agua, especialmente si el flujo es constante, puede erosionar materiales como ladrillo y bloque, deteriorando el mortero de unión y comprometiendo la estabilidad del edificio. El terreno también se ve afectado, sobre todo en su capacidad de soporte, agravando el riesgo de asentamientos diferenciales en la cimentación​.
  • Daños constructivos y estéticos: Las inundaciones afectan no solo a los elementos estructurales, sino también a los acabados y componentes funcionales de los edificios:
    • Daños en cerramientos y tabiques: Los paramentos exteriores e interiores pueden experimentar corrosión en elementos metálicos, pérdida de adhesión en revestimientos y daños en aplacados​.
    • Pérdida de estabilidad en fachadas y tabiques: Los impactos de objetos arrastrados por el agua o la reducción en las propiedades de los materiales debido a la humedad pueden hacer que las fachadas o tabiques colapsen​.
    • Daños en pavimentos: La prolongada presencia de agua produce abombamientos y deformaciones en los suelos, especialmente en los pavimentos de madera, causando el levantado de los materiales de agarre​.
    • Desperfectos estéticos: La humedad genera manchas y decoloración en superficies, mientras que los impactos pueden provocar la rotura de elementos ornamentales​.
    • Disfunción de instalaciones: Las instalaciones eléctricas, redes de saneamiento, sistemas de agua potable y equipos de ventilación y climatización pueden colapsar o fallar debido a la exposición a la humedad y obstrucción por residuos, lo cual compromete la funcionalidad del edificio​.
  • Daños al contenido: El ingreso de agua en el interior de un edificio provoca, inevitablemente, daños en su contenido, desde pérdidas materiales como aparatos electrónicos, mobiliario y documentos, hasta daños económicos significativos en edificaciones comerciales e industriales. Además, los edificios que almacenan bienes sensibles, como bibliotecas o museos, pueden sufrir daños irreparables en sus colecciones culturales o documentales.
  • Daños funcionales: Las inundaciones pueden afectar gravemente al funcionamiento de los edificios, especialmente en instalaciones críticas como hospitales o estaciones de bomberos, donde cualquier interrupción implica riesgos adicionales. Esto incluye la interrupción de servicios esenciales que comprometen la capacidad de respuesta en situaciones de crisis, la inactividad prolongada en edificaciones comerciales o industriales que ocasiona pérdidas económicas y la obstrucción de vías de acceso y evacuación, lo que dificulta las operaciones de emergencia y la seguridad de los ocupantes.
  • Daños relacionados con el entorno: Además de los daños directos a la estructura, las inundaciones pueden afectar a la parcela circundante y a los elementos del entorno inmediato, provocando erosión y desgaste en áreas sin edificación, como jardines o zonas comunes, donde se acumulan sedimentos y residuos que deterioran el terreno, el mobiliario y la vegetación. Asimismo, elementos del entorno, como vehículos o vegetación arrastrada, pueden afectar a la edificación y provocar asientos diferenciales por los desplazamientos del terreno. Finalmente, los residuos y contaminantes de instalaciones industriales o agrícolas arrastrados por el agua pueden afectar tanto al entorno natural como a la propia edificación.
  • Daños a largo plazo: Además de los daños inmediatos, las inundaciones pueden causar problemas que se manifiestan con el tiempo, como la corrosión en elementos estructurales debido a la humedad residual en materiales como el hormigón, lo que debilita las armaduras de acero y compromete la estructura gradualmente; también pueden surgir problemas de humedad persistente en áreas de difícil acceso, como los forjados sanitarios, donde el agua estancada crea condiciones favorables para el crecimiento de hongos y otros problemas fitosanitarios.

Estos puntos resaltan la complejidad de los efectos de una inundación en las edificaciones y su entorno, subrayando la importancia de contar con medidas preventivas y de rehabilitación efectivas para mitigar las consecuencias.

3. Identificación de los posibles daños en edificaciones debido a inundaciones

Este capítulo detalla los daños que pueden producirse en una edificación cuando ocurre una inundación. Abarca la identificación de puntos vulnerables, la inspección de elementos de valor, y la evaluación de daños en función del nivel de agua.

  • Identificación e inventario de puntos débiles: La ubicación y el riesgo del edificio son determinantes para identificar sus puntos débiles y reducir la vulnerabilidad ante las inundaciones. Los principales puntos de entrada del agua en las construcciones son los defectos en el mortero de ladrillo o mampostería, que facilitan la infiltración; las grietas en fachadas y juntas estructurales, especialmente en las uniones entre materiales diferentes, como paredes y losas; las ventanas y puertas, donde las fallas en el sellado y el contacto de los marcos permiten filtraciones; y las escaleras y entradas a sótanos, que al estar en niveles inferiores favorecen la acumulación de agua.
  • Comprobación de estabilidad estructural: Es crucial evaluar la capacidad de resistencia de los elementos estructurales a las fuerzas del agua, ya que las presiones desiguales pueden dañar paredes y pisos. La diferencia en la rapidez de entrada y salida del agua entre el exterior y el interior del edificio puede generar presión adicional, ocasionando daños estructurales importantes en muros y suelos.
  • Inspección de los elementos de valor del edificio: Realizar un inventario de los elementos importantes en el edificio permite diagnosticar daños potenciales y planificar su aseguramiento. Estos elementos se clasifican en: seres vivos (personas, mascotas y animales en actividades agropecuarias), continente (que abarca la estructura y el equipamiento, como cimientos, muros, sistemas de electricidad, agua y ventilación) y contenido (que varía según el uso del edificio e incluye mobiliario, documentos y materiales peligrosos).
  • Diagnóstico de daños en función de la altura del agua: El nivel del agua en el edificio influye directamente en el grado de daño. Ejemplos de daños según el nivel son:
    • 0 a 0,3 m (debajo del nivel de la planta baja): Posibles erosiones en cimientos, corrosión en elementos metálicos, acumulación de limo, y formación de moho.
    • 0,3 a 0,5 m: Saturación de revestimientos de paredes y suelos, problemas de humedad, y daños en puertas internas y externas.
    • Más de 0,5 m: Daños estructurales graves debido a la presión del agua, corrosión y fallos generalizados en sistemas eléctricos y sanitarios.

Estos daños muestran la importancia de realizar un diagnóstico exhaustivo para implementar medidas de mitigación eficientes, que garanticen la seguridad estructural del edificio y la protección de sus ocupantes y contenido.

Figura 3. Inventario de puntos de entrada del agua de inundación. Fuente: Preparing for Flood, Interim guidance for improving the flood resistance of domestic and small business properties. Office of the Deputy Prime Minister. 2003. Environment Agency – UK.

4. Factores de vulnerabilidad que agravan los daños por inundaciones

Las características constructivas y de mantenimiento de una edificación influyen en su vulnerabilidad frente a las inundaciones. Algunos factores clave incluyen:

  • Ausencia de sobrecimiento e impermeabilización: El sobrecimiento es una barrera de 30-50 cm de altura que se coloca en la base de los muros, y su función es proteger contra la humedad que asciende del suelo. La ausencia de este elemento en una construcción permite que el agua entre en contacto directo con las paredes, lo que facilita la absorción de agua por capilaridad. Además del sobrecimiento, la impermeabilización de cimientos y muros de la planta baja es vital para prevenir que el agua dañe las estructuras.
  • Calidad de los materiales: Cada material de construcción reacciona de manera distinta a la exposición prolongada al agua. La calidad del cemento, la arena y otros materiales utilizados en la construcción de los bloques y los cimientos influye en la resistencia de la edificación frente a las inundaciones. Los materiales de baja calidad se desintegran más rápidamente cuando entran en contacto con el agua. En áreas con edificaciones antiguas de tapial, por ejemplo, estos tienden a disolverse tras un contacto prolongado con el agua, provocando la descomposición de la estructura. El bahareque, compuesto tradicionalmente por madera, cañas y barro, presenta baja resistencia a la humedad y se deteriora rápidamente, con desprendimientos de revestimiento y deformaciones en la estructura de madera o caña, lo que puede causar inclinaciones o incluso el desplome de las viviendas. En el caso de la mampostería, aunque aparenta ser resistente, los bloques de cemento, por su porosidad y la falta de cocción de algunos materiales, son vulnerables al agua. La humedad puede deteriorar las primeras hiladas, debilitar la base y provocar el desplome parcial o total de la estructura, especialmente en zonas donde los bloques son de baja calidad o con una proporción insuficiente de cemento.
  • Errores en la construcción: En algunas construcciones, se cometen errores técnicos que comprometen la estabilidad de la estructura, especialmente en zonas inundables. Por ejemplo, el uso incorrecto de aparejos en mampostería o la falta de conocimientos técnicos en la ejecución de los cimientos puede resultar en problemas estructurales graves cuando la edificación enfrenta una inundación.

5. Medidas preventivas para minimizar daños en situaciones de inundación

La implementación de medidas preventivas ayuda a minimizar el impacto de las inundaciones en las edificaciones. Estas son algunas acciones recomendadas:

  • Inspección y mantenimiento regulares: Es crucial que las edificaciones en zonas propensas a inundaciones reciban mantenimiento constante y revisiones estructurales periódicas. Las inspecciones técnicas pueden identificar signos de desgaste o debilidades estructurales antes de que se conviertan en problemas graves. Esto incluye revisar cimientos, paredes y elementos de soporte clave.
  • Empleo de materiales resistentes al agua: Al construir o rehabilitar una vivienda en una zona propensa a las inundaciones, se recomienda usar materiales menos porosos y resistentes al agua. Asimismo, en áreas vulnerables, se recomienda aplicar revestimientos y pinturas impermeables en paredes y cimientos para evitar la absorción de humedad.
  • Adecuación del terreno y del sistema de drenaje: El sistema de drenaje del terreno circundante a una edificación es fundamental para evitar que el agua se acumule y afecte a los cimientos. En zonas propensas a las inundaciones, es importante crear canales de drenaje y pendientes que faciliten la salida del agua hacia áreas de menor riesgo.

6. Recomendaciones de emergencia para responder a inundaciones en edificaciones

En caso de inundación, estas son algunas recomendaciones prácticas para garantizar la seguridad de las personas y proteger, en la medida de lo posible, la estructura del edificio:

  • Inspección inmediata de daños: Una vez que el nivel del agua haya descendido, es fundamental realizar una inspección detallada del edificio para identificar daños visibles y ocultos. Los técnicos deben evaluar los cimientos y la estabilidad de las paredes para identificar signos de debilitamiento estructural que puedan suponer un riesgo.
  • Secado y limpieza de estructuras: Es crucial crucial eliminar el agua acumulada y permitir que las estructuras afectadas se sequen. El secado evita que la humedad siga dañando los materiales de construcción. Además, se debe limpiar la suciedad y los restos dejados por la inundación, ya que estos pueden acelerar el deterioro de los materiales.
  • Refuerzo y reparación de cimientos y paredes: Si las inspecciones revelan daños en los cimientos o paredes, es necesario realizar refuerzos inmediatos para evitar colapsos. Los cimientos debilitados pueden reforzarse con elementos estructurales adicionales y las paredes pueden requerir tratamientos impermeabilizantes o refuerzos de mampostería.

Conclusión

Entender los efectos de las inundaciones en las edificaciones es fundamental para aplicar medidas de prevención y reparación efectivas. Estos eventos pueden causar daños severos en la estructura, la estabilidad y el contenido de los edificios, lo que subraya la necesidad de realizar un diagnóstico preciso y de llevar a cabo acciones correctivas. La identificación de las áreas vulnerables, junto con el uso de materiales adecuados y sistemas de drenaje eficientes, es esencial para reducir los riesgos. Asimismo, el mantenimiento regular y una respuesta rápida ante las inundaciones son cruciales para proteger tanto la seguridad de los ocupantes como la integridad del edificio. La implementación de técnicas constructivas apropiadas mejora la resistencia de las estructuras frente a estos desastres.

A continuación, dejo algunos documentos que creo que pueden ser de interés.

Descargar (PDF, 24.19MB)

Descargar (PDF, 50.33MB)

Descargar (PDF, 1.26MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Comunicaciones presentadas al 28th International Congress on Project Management and Engineering AEIPRO 2024

Durante los días 3-4 de julio de 2024 tiene lugar en Jaén (Spain) el 28th International Congress on Project Management and Engineering AEIPRO 2024. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Esta investigación propone una metodología para dimensionar losas innovadoras de hormigón armado sin vigas, que permiten el uso eficiente de materiales. Utilizando un enfoque estadístico y modelos de regresión lineal, se proporcionan criterios para calcular el espesor de la losa aligerada con esferas o discos plásticos presurizados, minimizando el número de variables. Este espesor puede estimarse a partir de la luz principal entre apoyos, la altura del disco o el diámetro de la esfera, así como el uso previsto del edificio. El modelo final ajustado logra explicar el 98% de la variabilidad en el espesor de la losa para luces comprendidas entre 5 m y 16 m. Este tipo de forjado contribuye a la reducción del consumo de hormigón y acero, lo que resulta en una disminución del peso y las cargas aplicadas. Esto impacta directamente en los costos y mejora los indicadores ambientales en comparación con los sistemas tradicionales. Se presenta como una alternativa eficiente para edificaciones, permitiendo la combinación de parámetros estructurales, constructivos y sostenibles.

SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Esta nueva forma de construir implica, necesariamente, un cambio en la forma de dirigir los proyectos, que pasan a ser industrializados, donde la eficiencia estructural, constructiva y la sostenibilidad ambiental y social son protagonistas. El objetivo del artículo es identificar los aspectos característicos de estas construcciones innovadoras que influyen en la ingeniería de proyectos, integrando a grupos multidisciplinares como arquitectos, ingenieros estructurales y empresas constructoras. Para ello se realizará un estudio para el caso de edificios construidos con losas planas aligeradas mediante elementos aligerantes multiaxiales. Los resultados muestran que estos diseños permiten integrar el proyecto, la fabricación de elementos y el procedimiento constructivo. El proyecto de estas construcciones permite aligerar y reducir las cuantías de hormigón y acero en aquellas zonas de las losas donde la capacidad portante es insignificante. Además, se ha comparado este diseño con otros tradicionales, destacando una reducción de costes y un aumento de la sostenibilidad a lo largo del ciclo de vida.

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

El proyecto estructural normalmente se basa en la experiencia del proyectista. En ocasiones, dicha experiencia se plasma en fórmulas de predimensionamiento que, si bien ofrecen buenos resultados, en ocasiones arrastran ineficiencias cuando se comparan con técnicas actuales de optimización que tenga en cuenta las dimensiones económicas y ambientales. En este artículo se comparan reglas de dimensionamiento previo de estructuras basadas en la experiencia con técnicas de optimización. Se aplica al caso del proyecto de tableros de puentes tipo losa pretensados aligerados. El resultado de la investigación resalta la importancia de aplicar métodos basados en la optimización heurística y en metamodelos para actualizar la experiencia de los proyectistas y proponer nuevas fórmulas de predimensionamiento más ajustadas a la optimización económica y ambiental. Además, en el trabajo se ofrecen nomogramas de predimensionamiento, con el mínimo número de datos posible, que pueden ser de utilidad al proyectista en sus diseños previos.

Os paso el vídeo de presentación del congreso.

Premio para Mehrdad Hadizadeh-Bazaz en el IX Encuentro de Estudiantes de Doctorado

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del IX Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal. Es el segundo año consecutivo que Mehrdad consigue este premio.

Hoy en día, debido a los elevados costes de construcción, reparación y mantenimiento de grandes estructuras como los puentes, así como la creciente atención al ciclo de vida sostenible en todas las etapas, desde el diseño hasta el final de su vida útil, es crucial emplear diversos métodos para identificar daños y evaluar su eficacia en diferentes estructuras y condiciones. Esto no solo puede aumentar la vida útil de las estructuras y reducir los costes, sino también minimizar el impacto ambiental y social.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Descargar (PDF, 830KB)

Referencias:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Structural Engineering and Mechanics, 85(2):197-206. DOI:10.12989/sem.2023.85.2.197

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2022). Performance comparison of structural damage detection methods based on Frequency Response Function and Power Spectral Density. DYNA, 97(5):493-500. DOI:10.6036/10504

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¡Portada en Nature! Investigadores de la UPV idean un nuevo método de diseño de edificios que evita colapsos catastróficos

De vez en cuando se recibe una buena noticia que marca un punto de inflexión en la investigación. Es un honor para mí pertenecer al Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y a la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia. En este contexto, el equipo del catedrático José Miguel Adam ha logrado un hito al publicar un artículo en la revista de mayor impacto por excelencia: NATURE. No solo eso, sino que, además, es portada de dicha revista. Mi más sincera enhorabuena a José Miguel y a su equipo. Os paso la noticia completa.

Un equipo del Instituto ICITECH de la Universitat Politècnica de València (UPV) ha publicado en Nature los últimos resultados de su “radical” propuesta para conseguir edificios ultrarresistentes, que sean capaces de aguantar situaciones extremas causadas por desastres naturales –riadas, inundaciones, deslizamiento de laderas…- explosiones, su propio envejecimiento, o un mantenimiento y conservación inadecuados. Esta propuesta añade al diseño de la estructura de los edificios una última línea de defensa para evitar colapsos catastróficos.

El nuevo método se inspira en cómo los lagartos se protegen de los depredadores al liberar sus colas cuando son atacados.

Los métodos de diseño actuales se basan en mejorar la conectividad entre los componentes de la estructura. En el caso de que algún componente falle, esta conectividad permite que las cargas que soportaban los componentes que fallan se redistribuyan al resto del sistema estructural. Aunque estos métodos resultan eficaces en el caso de pequeños fallos iniciales, pueden aumentar el riesgo de colapso progresivo tras grandes fallos iniciales, conduciendo así a colapsos completos o de gran magnitud. Así sucedió, por ejemplo, en las Champlain Towers y en el derrumbe de un edificio en Peñíscola en 2021, o en la ciudad iraní de Abadan en 2022. Y esto es lo que evita la propuesta surgida del ICITECH de la UPV.

“Nuestro novedoso método de diseño proporciona una solución para superar esta alarmante limitación y conseguir edificios más resilientes, capaces de aislar el colapso a solo la parte de la estructura que ha sufrido el fallo inicial, y salvaguardar el resto del edificio. El nuevo método de diseño ha sido verificado con un ensayo sobre un edificio real. Por tanto, se trata de la primera solución contra la propagación de colapsos en edificios tras grandes fallos iniciales que ha sido probado y verificado a escala real. Con la aplicación del nuevo método de diseño se conseguirá prevenir colapsos catastróficos, protegiendo así vidas humanas y minimizando los costes materiales que supondría un colapso completo de la estructura”, destaca José M. Adam, coautor de la publicación con Nirvan Makoond, Andri Setiawan y Manuel Buitrago; todos ellos miembros del ICITECH de la UPV.

Unos “fusibles” evitan el colapso total

La clave del método ideado por el equipo de la UPV reside en usar el concepto de fusible estructural, que permite aislar las partes dañadas de un edificio con el fin de evitar la propagación de grandes fallos a toda la construcción.

“Esta nueva filosofía es parecida a la forma en que las redes eléctricas se protegen frente a sobrecargas, al conectar diferentes segmentos de la red mediante fusibles eléctricos. Con nuestros diseños, el edificio presenta continuidad estructural bajo condiciones normales de funcionamiento, pero se segmenta cuando la propagación de un fallo es inevitable, reduciendo así el alcance del colapso y evitando el derrumbe total”, apunta Nirvan Makoond.

“La implementación del método repercutirá levemente, o incluso de forma despreciable, en el coste de la estructura, ya que utiliza detalles constructivos y materiales convencionales”, señala Andri Setiawan.

En su estado de desarrollo actual, el nuevo diseño de estos investigadores se puede aplicar a prácticamente cualquier edificio de nueva construcción. “Su eficacia ha sido verificada y demostrada para edificios con estructura prefabricada de hormigón. Actualmente, trabajamos en la aplicación de la metodología a edificios ejecutados con hormigón in situ y a edificios con estructura de acero”, concluye Manuel Buitrago.

Validado en un ensayo pionero a nivel mundial

El desarrollo de este nuevo método de diseño es uno de los resultados más destacados hasta la fecha del proyecto Endure, financiado por el European Research Council – ERC (Consejo Europeo de Investigación) con una ayuda Consolidator Grant de más de 2,5 millones de euros. Fue precisamente en el marco de este proyecto donde se llevó a cabo, en junio del año pasado, un ensayo pionero a nivel mundial que permitió validar sus prestaciones. Las pruebas se hicieron con un edificio completo, a escala real, en el que un gran fallo inicial en la estructura se aisló en una parte del edificio, evitando su propagación a toda la estructura. Cabe resaltar que la investigación se lleva a cabo al 100% en la UPV, siendo los cuatro autores de la publicación investigadores también de la UPV.

Portada de Nature

Nature ha publicado el trabajo del equipo del Instituto ICITECH de la UPV en la portada de su número de hoy. Además, es la primera vez que la revista publica un artículo de investigación en el campo del diseño y construcción de edificios.

Primeros pasos gracias a un proyecto financiado por la Fundación BBVA

El germen de este proyecto surgió de una Beca Leonardo que en 2017 otorgó la Fundación BBVA a José M. Adam. Ahora, siete años más tarde, el investigador del ICITECH – UPV continua con este proyecto revolucionario, de la mano del Consejo Europeo de Investigación, que permitirá levantar edificios más seguros y salvar vidas humanas.

Endure se desarrollará hasta 2026 en el laboratorio de estructuras del ICITECH de la Universitat Politècnica de València, uno de los mayores de Europa para el ensayo de grandes elementos estructurales.

Referencia

Makoond, N., Setiawan, A., Buitrago, M. et al. Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). https://doi.org/10.1038/s41586-024-07268-5

Os dejo el vídeo y el artículo completo, pues está publicado en abierto.

Descargar (PDF, 23.79MB)

Marco normativo en seguridad y salud de encofrados y cimbras

Figura 1. Imagen: V. Yepes

En lo que respecta a la seguridad y salud en el uso de encofrados y cimbras, existen un conjunto de normativas, recomendaciones y buenas prácticas que incluyen normativas básicas, leyes y reglamentos de cumplimiento obligado. Además, se encuentran las normativas técnicas UNE, las cuales consisten en especificaciones técnicas no vinculantes, a menos que se indique lo contrario. Por último, se incluyen las Notas Técnicas de Prevención (NTP), que se presentan como guías de buenas prácticas y se consideran recomendaciones no obligatorias, a menos que se establezca lo contrario. Veamos estas normas a fecha de hoy (AFECI, 2021); no obstante, si se detecta que alguna está obsoleta o que existen nuevas normativas, se agradecería se comunicara para actualizar el listado:

Normativas básicas, leyes y reglamentos de obligado cumplimiento:

  • Constitución Española: en su artículo 40.2, encomienda a los poderes públicos velar por la seguridad e higiene en el trabajo.
  • Transposición de la Directiva Europea 89/391/CEE.
  • Ley 31/1995, de 8 de noviembre, de prevención de riesgos laborales.
  • Ley 54/2003, de 12 de diciembre, de reforma del marco normativo de la prevención de riesgos laborales.
  • Directiva 92/57/CEE del Consejo, de 24 de junio, relativa a las disposiciones mínimas de seguridad y de salud que deben aplicarse en las obras de construcción temporales o móviles.
  • Real Decreto 1627/1997, de 24 de octubre, por el que se establecen disposiciones mínimas de seguridad y de salud en las obras de construcción.
  • Real Decreto 2177/2004, de 12 de noviembre, por el que se modifica el Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura.
  • Real Decreto 171/2004, de 30 de enero, por el que se desarrolla el artículo 24 de la Ley 31/1995, de 8 de noviembre, de prevención de riesgos laborales, en materia de coordinación de actividades empresariales.
  • Real Decreto 1801/2003, de 26 de diciembre, de seguridad general de los productos.
  • Real Decreto 604/2006, de 19 de mayo, por el que se modifican el R.D. 39/1997, de 17 de enero, por el que se aprueba el reglamento de los servicios de prevención, y el R.D. 1627/97, de 24 de octubre, por el que se establecen las disposiciones mínimas de seguridad y salud en las obras de construcción.
  • Orden Circular 3/2006 sobre medidas a adoptar en materia de seguridad en el uso de instalaciones y medios auxiliares de obra.

Normativas técnicas UNE

  • UNE 180201:2022 Encofrados. Diseño general, requisitos de comportamiento y verificaciones.
  • UNE-EN 795:2012 Protección contra caídas de altura: Dispositivos de anclaje. Requisitos y ensayos.
  • UNE-EN 341:2011 Equipos de protección individual contra caídas en altura: Dispositivos de rescate.
  • UNE-EN 353-1:2014 Equipos de protección individual contra caídas de altura. Dispositivos anticaídas deslizantes sobre línea de anclaje. Parte 1: Dispositivos anticaídas deslizantes sobre línea de anclaje rígida.
  • UNE-EN 353-2:2002 Equipos de protección individual contra caídas en altura Parte 1: Dispositivos anticaídas deslizantes sobre línea de anclaje flexible.
  • UNE-EN 354:2011 Equipos de protección individual contra caídas. Equipos de amarre.
  • UNE-EN 355:2002 Equipos de protección individual contra caídas en altura: Absorbedores de energía.
  • UNE-EN 360, 361, 362 y 363 Equipos de protección individual contra caídas de altura (dispositivos retráctiles, arneses, conectores y sistemas contra caídas, respectivamente).
  • UNE-EN 795:2012 Equipos de protección individual contra caídas. Dispositivos de anclaje.
  • UNE-EN 813:2009 Equipos de protección individual contra caídas. Arneses de asiento.
  • UNE-EN 1263-1:2014 Equipamiento para trabajos temporales de obra. Redes de seguridad. Parte 1: Requisitos de seguridad y métodos de ensayo.
  • UNE-EN 1263-2:2016 Equipamiento para trabajos temporales de obra. Redes de seguridad. Parte 2: Requisitos de seguridad para los límites de instalación.
  • UNE-EN 358:2018 Equipo de protección individual para sujeción en posición de trabajo y prevención de caídas de altura. Cinturones y equipos de amarre para posicionamiento de trabajo o de retención.
  • UNE-EN 360:2002 Equipos de protección individual contra caídas de altura. Dispositivos anticaídas retráctiles.
  • UNE-EN 13374-2013 Sistemas provisionales de protección de borde. Especificaciones del producto. Métodos de ensayo.
  • UNE-EN ISO 14122-4:2017 Seguridad de las máquinas. Medios de acceso permanentes a máquinas. Parte 4: Escalas fijas.
  • UNE-CEN/TR 15563 IN Equipamiento para trabajos temporales de obras. Recomendaciones de seguridad y salud.
  • UNE-EN 1263-1:2014 Equipamiento para trabajos temporales de obra. Redes de seguridad. Parte 1: Requisitos de seguridad y métodos de ensayo.
  • UNE-EN 1263-2:2016 Equipamiento para trabajos temporales de obra. Redes de seguridad. Parte 2: Requisitos de seguridad para los límites de instalación.
  • UNE-EN 13414-1:2004+A2:2008 Eslingas de cables de acero. Seguridad. Parte 1: Eslingas para aplicaciones generales de elevación.

Notas técnicas de prevención NTP:

  • NTP 239: Escaleras manuales — Año 1989.
  • NTP 408: Escaleras fijas de servicio – Año 1996.
  • NTP 719: Encofrado horizontal. Puntales telescópicos de acero – Año 2006.
  • NTP 803: Encofrado horizontal. Protecciones colectivas (I) – Año 2008.
  • NTP 804: Encofrado horizontal. Protecciones colectivas (II) – Año 2008.
  • NTP 816: Encofrado horizontal. Protecciones individuales contra caídas de altura – Año 2008.
  • NTP 834: Encofrado vertical. Muro a dos caras, pilares, muros a una cara (I) – Año 2009.
  • NTP 835: Encofrado vertical. Muro a dos caras, pilares, muros a una cara (II) – Año 2009.
  • NTP 836: Encofrado vertical. Sistemas trepantes (I) – Año 2009.
  • NTP 837: Encofrado vertical. Sistemas trepantes (II) – Año 2009.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio

Acaban de publicarnos en DYNA, revista indexada en el JCR, un artículo sobre la mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo contribuye al campo de la evaluación de la sostenibilidad de los puentes en entornos agresivos mediante la aplicación de técnicas de toma de decisiones grupales en el ámbito de los criterios múltiples. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras.
  • El estudio evalúa cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero utilizando cuatro técnicas de toma de decisiones (ANP, TOPSIS, COPRAS y VIKOR). Los resultados indican que los hormigones que contienen pequeñas cantidades de humo de sílice funcionan mejor a lo largo de su ciclo de vida que otras soluciones que suelen aumentar la durabilidad.
  • La investigación contribuye al desarrollo de herramientas y métodos para evaluar la sostenibilidad de las infraestructuras y guiar las futuras acciones de diseño en diversas estructuras. Se alinea con el enfoque en promover las iniciativas de economía circular y el cumplimiento de los requisitos ambientales y sociales específicos en las licitaciones de proyectos públicos

Abstract:

The construction industry is increasingly recognized as critical in achieving Sustainable Development Goals. Construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design a focal point of current research investigating how best to contribute to sustainability as society demands. Although methods exist to assess infrastructures’ economic, environmental, and social life cycle, the challenge remains in combining these dimensions into a single holistic indicator to facilitate decision-making. This study applies four decision-making techniques (ANP, TOPSIS, COPRAS, and VIKOR) to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. The results indicate that concretes containing even small amounts of silica fume perform better over their life cycle than other solutions usually considered to increase durability, such as water/cement ratio reduction or concrete cover increase.

Keywords:

Sustainable design, bridges, life cycle assessment, Analytic Network Process, TOPSIS, VIKOR, COPRAS, Multi-criteria decision-making

Reference:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2023). Enhancing sustainability assessment of bridges in aggressive environments through multi-criteria group decision-making. DYNA, 98(5):477-483. DOI:10.6036/10816

Os paso el artículo en abierto, tanto en inglés como en español.

Descargar (PDF, 520KB)

Descargar (PDF, 390KB)

Comunicaciones presentadas al 27th International Congress on Project Management and Engineering AEIPRO 2023

Durante los días 10-13 de julio de 2023 tiene lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

Los expertos y los gobiernos llevan tiempo centrándose en reducir los costes de reparación y mantenimiento de estructuras cruciales como los puentes mediante un mantenimiento y una reparación continuos. Este estudio explora la rentabilidad de dos métodos de predicción de daños mediante el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños mediante el rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado. El estudio evalúa el impacto de los iones cloruro en la localización y extensión de los daños a lo largo de la vida útil del puente y compara los costes totales de mantenimiento y reparación. Los resultados muestran que, si bien el método PSD es eficaz para estructuras de hormigón con recubrimientos de hormigón bajos, el aumento del espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.

YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.

Parámetros de diseño y seguridad en las cimbras

Figura 1. Cimbra. https://www.incye.com/apeos-y-rehabilitacion/cimbras/

En artículos anteriores hemos hablado de las precauciones específicas en seguridad relativas al montaje y desmontaje de cimbras y encofrados. Sin embargo, en este nos centraremos en los parámetros de diseño y la seguridad en las cimbras, atendiendo a las medidas de protección individual y colectivas.

Para garantizar un montaje, uso y desmontaje adecuado de las cimbras, es fundamental cumplir con las instrucciones establecidas en el manual de instrucciones proporcionado por el fabricante o proveedor, al igual que con cualquier otro medio auxiliar. Además del manual de instrucciones, es importante tener en consideración otros documentos obligatorios y relevantes relacionados con la seguridad y la salud. Esto implica revisar el plan de seguridad y salud, el proyecto de la cimbra y contar con procedimientos por escrito que describan la secuencia correcta de montaje y desmontaje. En todo momento, es esencial verificar que la cimbra sea adecuada para el proyecto en ejecución, que las alturas sean correctas y que las condiciones del terreno sean apropiadas. Además, es fundamental asegurarse de contar con todos los equipos de seguridad necesarios.

En el montaje y desmontaje de sistemas de cimbra, así como en los sistemas de andamios, es crucial distinguir entre un sistema de cimbra con módulos de torres preconformados y otro sin torres modulares. En ambos casos, se debe planificar y llevar a cabo los procedimientos de montaje y desmontaje siguiendo la siguiente metodología: emplear plataformas horizontales de montaje y colocar los módulos de torres en posición horizontal a nivel del suelo, luego elevarlos y ubicarlos en su posición final, manteniendo la longitud completa (altura) del tramo correspondiente. Es esencial tener en cuenta que la implementación segura de estos procedimientos puede requerir el uso de sistemas anticaídas, en cuyo caso se proporcionarán instrucciones específicas en el manual del producto.

Durante la utilización, es importante seguir las siguientes medidas de seguridad: acceder a la zona de trabajo utilizando las áreas designadas específicamente para ese propósito, suspender las labores en caso de condiciones climáticas adversas como lluvia, nieve o vientos superiores a 65 km/h, evitar trabajar sobre plataformas sin protección o en niveles distintos, y no utilizar andamios de borriquetas u otros elementos auxiliares para alcanzar alturas en los niveles de trabajo.

Al proyectar las zonas de trabajo y circulación en una cimbra, es necesario considerar los siguientes parámetros de diseño:

  • En general, estas áreas deben tener un ancho mínimo de 60 cm en proyección horizontal, sin interrupciones a nivel del suelo. Además, deben presentar una resistencia y estabilidad suficientes para garantizar que el trabajo correspondiente se pueda realizar con la máxima seguridad.
  • Las zonas de trabajo deben construirse utilizando elementos metálicos u otros materiales resistentes. Asimismo, estas áreas deben incluir mecanismos de bloqueo para evitar movimientos involuntarios.
  • En el caso de que las zonas de trabajo estén compuestas por módulos estandarizados, es indispensable indicar de manera visible e indeleble la carga máxima permitida.
  • En los bordes, donde la caída sea mayor a 2 m, se debe instalar una barandilla metálica con una altura mínima de 90 cm, una barra intermedia y un rodapié de al menos 15 cm de altura, a menos que existan justificaciones razonables. La instalación de una barandilla puede no ser necesaria en bordes situados a menos de 20 cm de una pared o cualquier otro obstáculo que impida la caída. El diseño de la barandilla debe cumplir con las normas de seguridad vigentes.
  • Las superficies de trabajo deben ser principalmente horizontales. Solo se permite una inclinación de no más de 15º cuando sea necesario trabajar con cimbras inclinadas, siempre que la superficie sea lo suficientemente rugosa que impidan que tanto las personas como los materiales se deslicen.
  • Se debe procurar definir una zona de “gálibo” con una altura libre mínima de 190 cm y un ancho de 60 cm, sin obstrucciones, excepto en circunstancias específicas, que permita un paso sin problemas. Los elementos que se encuentren dentro de esta zona deben estar pintados con colores vivos y distintivos, y deben estar desprovistos de bordes cortantes, barras salientes y cualquier elemento que pueda representar un riesgo de lesiones al trabajar con cimbras.

Para garantizar la protección individual, es imperativo emplear los equipos de protección individual mencionados en el Plan de Seguridad y Salud de la obra. A modo orientativo, deben tenerse en cuenta las siguientes consideraciones:

  • Cada trabajador debe tomar medidas para salvaguardar su propia seguridad personal.
  • Es necesario usar ropa adecuada, como botas de seguridad con ataduras sin cordones sueltos y con protección para el tobillo. La ropa debe ser cómoda, ajustada, pero no holgada, resistente a rasgaduras y sin salientes o huecos que puedan representar un peligro de engancharse. Además, las mangas y las perneras deben tener bandas elásticas en los bordes para garantizar un ajuste adecuado. Se debe proporcionar ropa y calzado impermeables a cada trabajador según sea necesario.
  • El casco y los guantes son elementos obligatorios del equipo de seguridad. El casco adecuado es aquel que carece de visera y con barbuquejo, mientras que los guantes empleados deben adaptarse a la tarea específica en cuestión.
  • Cuando se trabaja más allá de la zona encofrada, plataformas de trabajo, pasillos u otras áreas protegidas, se debe utilizar un arnés de seguridad compuesto por un braguero con cabo de amarre y mosquetón. Preferiblemente, el arnés debe ser del tipo paracaidista y poseer un absorbedor de energía en el cordón de amarre.
  • Solo se deben llevar las herramientas esenciales necesarias para la tarea en cuestión, garantizando que las manos permanezcan libres. Es preferible llevar estas herramientas en un cinturón de herramientas o dispositivo similar, teniendo cuidado de proteger las manos contra posibles caídas o tropiezos.
  • En situaciones donde exista riesgo de proyección de partículas, polvo u otros materiales, se deben usar gafas de seguridad, pantallas de protección y mascarillas si es necesario.
  • Es fundamental poseer un conocimiento completo de las características específicas de la tarea y de cómo ejecutarla, tal como se describe en el Anejo de Operación.

Una vez suministrada la cimbra en la obra, se realizará un examen exhaustivo de los siguientes puntos y, según sea necesario, se tomarán las medidas correctivas apropiadas:

  • El personal con amplia experiencia o capacitación especializada se encargará del montaje de estas estructuras y poseerá un conocimiento completo de los peligros asociados con tales tareas.
  • Se implementarán medidas de protección durante las fases de montaje, uso y desmontaje para evitar la caída de personas u objetos, y el área se delimitará para prohibir la presencia o el paso de personas.
  • Todos los elementos de seguridad, como suelos y barandillas, deben fijarse de forma segura a la estructura de la cimbra, de tal manera que no puedan desprenderse, extraviarse, caerse o aflojarse inadvertidamente.
  • Todas las maniobras se ejecutarán de conformidad con las ubicaciones indicadas en el Anejo de Operación, empleando las herramientas necesarias y el personal designado, a menos que se determine una metodología alternativa en el sitio que no ponga en peligro la seguridad. Este enfoque alternativo debe recibir la aprobación del coordinador de seguridad y salud, así como de los proveedores de la cimbra, y se incorporará al anejo antes mencionado.
  • Las superficies de agarre, como los pasamanos, las asas, los cables, las cuerdas y las cadenas, deben estar desprovistas de astillas, bordes afilados o soldaduras que puedan provocar cortes.
  • En la cimbra se dispondrá de un botiquín para proporcionar primeros auxilios en caso de heridas cortantes, traumatismos, torceduras o fracturas, y se establecerá una comunicación por radio o teléfono con la enfermería u oficinas para solicitar asistencia médica.
  • Antes de comenzar el trabajo, los proveedores proporcionarán la información del Anejo de Operación, que incluirá la documentación del personal y las instrucciones del equipo. Además, se diseñará un plan de acción en caso de emergencia.

Referencias:

Fundación Agustín de Betancourt (2011). Sistemas de encofrado: análisis de soluciones técnicas y recomendaciones de buenas prácticas preventivas. Comunidad de Madrid, 130 pp. Enlace

Fernández, R.; Honrado, C. (2010). Estudio de las condiciones de trabajo en encofrado, hormigonado y desencofrado. Junta de Castilla y León, 68 pp. Enlace

OSALAN (2007). Guía práctica de encofrados. Instituto Vasco de Seguridad y Salud Laborales, 200 pp. Enlace

INSHT. Instituto Nacional de Seguridad e Higiene en el Trabajo. Colección de Legislación en materia de Prevención de Riesgos Laborales. Enlace

REAL DECRETO 2177/2004, de 12 de noviembre, por el que se modifica el Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura. BOE nº 274 13-11-2004. Enlace

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.