Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Pilas cónicas para el almacenamiento de graneles

Figura 1. Pila cónica de almacenamiento de graneles al aire libre. https://jenike.com/services/conceptual-functional-engineering/stockpiles/

La utilización de montones o pilas permite el almacenamiento de grandes cantidades al aire libre de graneles sólidos de manera económica. Estos espacios pueden ser completamente abiertos o parcialmente cubiertos. En términos generales, estas instalaciones suelen generar emisiones difusas debido a la erosión eólica y/o a la manipulación de los materiales. Por lo tanto, el almacenamiento al aire libre de graneles es apropiado para aquellos materiales que no se verán afectados por las condiciones meteorológicas.

El montón se crea al dejar caer el material desde una altura específica sobre una superficie plana, que puede o no contar con elementos de retención, como muros o paredes. La cantidad de material que puede contener el montón está determinada por diversos factores, siendo notables el área disponible, la altura y el método de descarga, el ángulo de reposo y el peso específico del material.

Las pilas cónicas se generan al mantener un punto de caída con forma cónica y constante. El material cae libremente para dar forma a un cono, cuyo diámetro se encuentra restringido por el ángulo de reposo del material y las dimensiones del espacio disponible. Estas pilas se originan o renuevan mediante el uso de una cinta transportadora fija o móviles giratorias. Para manejar los materiales que rodean el perímetro de la pila, se requieren equipos de carga frontal. Estas pilas se utilizan para almacenar concentrados de minerales, escoria, granos y otros materiales similares. Sin embargo, es importante destacar que debido a la considerable altura de caída de los materiales almacenados en las pilas cónicas, se generan grandes cantidades de polvo si no se cubren adecuadamente.

En lo que respecta a los equipos empleados en la construcción de estas pilas, los volquetes, como camiones y vagones basculantes, son los protagonistas. Cuando se trata de regenerar estas pilas, se utilizan dispositivos de carga posterior, como palas de puente-grúa, palas laterales y palas pórticas.

Los equipos basculantes permiten verter los graneles sólidos en la pila desde uno de los lados. Según los requisitos específicos, estos vehículos pueden estar equipados con una cinta basculante o una cinta transversal. Siguiendo el mismo principio, también es posible llenar directamente la pila desde el vagón situado por encima de ella. Las cintas transportadoras de descarga arrojan el material a granel sobre la pila en este proceso.

Esta pila cónica se podría vaciar por un punto central. En este caso, existe una capacidad viva o útil, que es una fracción de la capacidad total del cono. Este valor se calcula en función de los ángulos de reposo y de descarga (ver Figura 2).

Figura 2. Volumen vivo y muerto de una pila cónica con descarga en un punto central, en función de los ángulos de reposo y descarga

A continuación se ofrece un nomograma, creado en colaboración con varios profesores, entre los que destaca Pedro Martínez Pagán. Espero que os sea de utilidad.

 

Referencias:

LÓPEZ JIMENO, C. et al. (2021). Manual de logística de sustancias minerales. Sistemas y equipos para el transporte y almacenamiento. Grupo de Proyectos de Ingeniería, E.T.S.I. Minas y Energía, Universidad Politécnica de Madrid, 537 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación directa por tamaños. El cribado

https://dasenmining.com/es/product/vibrating-screen/

El cribado se refiere a la clasificación por tamaño de los fragmentos de un material, generalmente aquellos que tienen un tamaño superior a 2 mm. Estos fragmentos presentan diversas dimensiones y formas. Se someten a una superficie con aberturas, conocida como superficie de cribado, que permite el paso de los fragmentos más pequeños que la apertura (llamados pasantes) y retiene o rechaza aquellos de un tamaño mayor (rechazo).

El cribado se utiliza para separar los fragmentos más gruesos, ya sea para eliminarlos o para someterlos a un proceso de fragmentación adicional, en comparación con los fragmentos que tienen el tamaño requerido. Además, elimina los elementos más finos, como las arcillas o los elementos coloidales (este proceso se conoce como deslamado).

Los métodos de cribado más comunes incluyen el uso de mallas de alambre metálico y chapas perforadas con agujeros circulares. Las máquinas más empleadas son el trómel o criba rotativa y el tamiz o criba plana. Además, el cribado se puede realizar en seco o en húmedo.

En el caso del cribado en seco, el material se somete al cribado tal como se obtiene de la cantera. Sin embargo, presenta la desventaja de que, cuando contiene cierta humedad, los agujeros se obstruyen fácilmente, especialmente en los tamaños más pequeños, como en el caso de la arena. El secado del material resulta costoso desde el punto de vista económico. Por otro lado, el cribado en húmedo evita la obstrucción de los agujeros y, al mismo tiempo, permite el lavado de los áridos, lo cual resulta más ventajoso, aunque implica un mayor costo de instalación y la necesidad de un proceso adicional para la recuperación de los finos.

Precribado. https://www.nubasm.com/articulo-tecnico/etapas-del-cribado-i/

Definición de términos:

  • Rechazo: Porcentaje de partículas que quedan retenidas en una criba y tienen un tamaño superior al valor de clasificación establecido.
  • Pasante: Porcentaje de partículas que atraviesan una criba y tienen un tamaño inferior al valor de clasificación establecido.
  • Semitamaño: Porcentaje de alimentación a una criba compuesto por partículas con un tamaño inferior a la mitad del valor de clasificación.
  • Desclasificados: Porcentaje o masa de partículas finas que no pasan a través de la criba y se mezclan con la fracción más gruesa (rechazo).
  • Todo-Uno: Es la mezcla completa antes de su clasificación.

Terminología empleada en la clasificación por tamaños:

  • Escalpado: Operación que consiste en eliminar fragmentos grandes que pueden representar un peligro u obstáculo para las etapas siguientes del proceso.
  • Precribado: Fracción fina con el tamaño adecuado que se evita que pase a la siguiente etapa de trituración o machaqueo.
  • Calibrado: Clasificación para calibres superiores a 100 mm. Se utilizan parrillas fijas o dinámicas.
  • Cribado: Clasificación de tamaños entre 150 μm y 100 mm. Se emplean trómeles, cribas de sacudidas o cribas vibrantes.
  • Tamizado: Clasificación de tamaños entre 40 μm y 150 μm. Se usan cribas rotativas o tamices vibrantes.
  • Recribado: Operación adicional de clasificación que tiene como objetivo mejorar la eliminación de la fracción fina, en particular para la eliminación de impurezas.
  • Agotado: Operación que consiste en eliminar el exceso de líquido (generalmente agua) de las mezclas sólido-líquido que se manejan en procesos húmedos.

Os dejo varios vídeos sobre el cribado de áridos:

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación. Tecnología, diseño y aplicación. Ed. Rocas y Minerales, Madrid, 360 pp.

MARFANY, A. (2004). Tecnología de canteras y graveras. Fueyo Editores, Madrid, 525 pp.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos — ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Esquema de circulación y flujo de una instalación de tratamiento de áridos

El esquema de circulación es un dibujo que representa los movimientos de los áridos durante los diferentes procesos de trituración, clasificación y almacenamiento, incluyendo los retornos y reciclajes. Estos esquemas se elaboran antes de diseñar la instalación y deben analizarse detalladamente, considerando todas las opciones necesarias para lograr los resultados deseados y sus variantes. Requieren varias iteraciones y ajustes para encontrar la solución más adecuada al problema.

En el esquema, es importante incluir números que indiquen el tamaño de la entrada y la configuración de apertura de salida asignados a cada trituradora. En el caso de las cribas, además de su identificación, deben aparecer las aperturas de malla correspondientes a cada nivel de cribado. Asimismo, en los alimentadores, es necesario indicar su identificación junto con el tamaño máximo de alimentación permitido.

Las líneas que representan las circulaciones deben incluir el caudal horario y el tamaño del árido, indicando sus límites inferior y superior en milímetros. El caudal debe expresarse en toneladas por hora.

Es importante tener en cuenta que las posiciones relativas de las máquinas en el esquema de circulación no reflejan necesariamente las que se adoptarán en el proyecto final. Los acopios representados son simbólicos y podrán ser realizados en forma de montón, depósito de fábrica o tolvas metálicas, pudiendo ser abiertos, cubiertos o cerrados.

El esquema definitivo, que se adopta como solución, se obtiene mediante un proceso iterativo que comienza con una hipótesis de maquinaria con la capacidad adecuada. Se efectúan modificaciones en las variables hasta lograr la proporción de áridos deseada dentro de una tolerancia establecida. Las variables incluyen:

  • Ajuste de la apertura de salida de los trituradores.
  • Control de la abertura de las parrillas de los molinos.
  • Determinación del porcentaje de material pretriturado y clasificado que se someterá a trituración secundaria.
  • Selección del tipo de máquina utilizada en la trituración secundaria.
  • Evaluación de la opción de reciclar el material empleando la misma máquina, ya sea con o sin clasificación previa.
  • Consideración de la posibilidad de efectuar trituraciones terciarias en una o varias fracciones del material clasificado.

A continuación recojo un problema resuelto donde se puede apreciar las características básicas de un ejemplo de circulación y flujos para una instalación de tratamiento de áridos. Espero que sea de vuestro interés.

Descargar (PDF, 454KB)

Referencias:

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras

Tengo el placer de presentar un nuevo libro que acaba de salir de imprenta. Se trata de una colaboración con los profesores Pedro Martínez Pagán y Marcos A. Martínez Segura, de la Universidad Politécnica de Cartagena.

Es un libro que está editado en abierto, por lo que es posible su descarga gratuita. Se trata de un libro sobre ejercicios resueltos de sistemas de transporte continuo, centrado en bombas y cintas transportadoras.

Lo podéis descargar directamente en esta dirección del Repositorio Digital de la Universidad Politécnica de Cartagena: https://repositorio.upct.es/handle/10317/12154

Los problemas tipo que aquí se abordan son similares a los tratados durante las clases de resolución de problemas y casos prácticos que se imparten en la asignatura de Ingeniería Minera del Grado en Recursos Minerales y Energía (GIRME) de la Universidad Politécnica de Cartagena (España). De esta forma, el libro es apropiado para todos aquellos estudiantes de grado o cursos de máster relacionados con la industria mineral, de los áridos o de la obra civil; donde se presenta la necesidad de resolver problemas sobre bombeo de pulpas, elevación de agua, transporte de materias primas, etc.

Al final del texto se facilitan algunos libros y enlaces que los autores sugieren para completar o adquirir conocimientos que serían recomendables para la resolución de algunos de los problemas que aquí se presentan, así como las plantillas y ábacos utilizados en la resolución de los problemas. Los autores quieren agradecer las útiles sugerencias y aportaciones recibidas durante la elaboración de este trabajo por todos aquellos especialistas en esta materia, especialmente a D. Juan Luis Bouso Aragonés, presidente de Eral Chile, S.A.

También aquí, como en otros libros anteriores, esperamos y deseamos que su consulta sea útil y que el lector sepa disculpar posibles erratas que hayan podido producirse.

Resumen:
Este libro lo componen unos 40 problemas tipo totalmente resueltos, abordando la resolución de sistemas hidráulicos de bombeo para el transporte de aguas y pulpas y transporte de material sólido a granel por medio de cintas transportadoras, unidades imprescindibles encargadas de favorecer y mantener el flujo continuo entre unidades de procesos en la industria minera y civil. Por ello, estos equipos se encuentran instalados de una manera muy extendida en la industria: plantas de tratamiento de recursos minerales, petroquímicas, canteras para la fabricación de áridos, cementeras, obras civiles, etc. En definitiva, estos ejercicios resueltos pretenden ayudar a dimensionar y seleccionar adecuadamente estas unidades, siguiendo criterios internacionalmente establecidos, por lo que lo convierten en un libro de consulta idóneo para aquellos profesionales o especialistas relacionados con los procesos de minerales, las plantas de áridos, la construcción, la obra civil, etc.
Palabras clave:

Cintas transportadoras; bombas; transporte de graneles sólidos; transporte hidráulico de pulpas; sustancias minerales; mineralurgia; procesos minerales; materias primas

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2023). Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras. Ediciones UPCT. Universidad Politécnica de Cartagena, 284 pp.

También tenéis la opción de descargarlo aquí mismo:

Descargar (PDF, 16.1MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo del transporte hidráulico de pulpas

Figura 1. Bomba horizontal de pulpas (Bouso y Martínez-Pagán, 2023)

Una pulpa es una mezcla líquida que contiene partículas sólidas en suspensión. Las características de la pulpa dependen de la naturaleza, tamaño, forma, densidad y cantidad de las partículas sólidas, así como de la naturaleza, densidad y viscosidad del líquido. El flujo de las pulpas es diferente al de los líquidos homogéneos, donde su naturaleza (laminar, transitorio o turbulento) se determina a partir de las propiedades físicas del líquido y su conductividad. Para calcular un sistema de transporte hidráulico de pulpa, compuesto por una bomba y una tubería, es esencial conocer previamente parámetros como la densidad de sólido y líquido, viscosidad, concentración de sólidos, tipo de tubería y topografía del terreno.

La caracterización de una pulpa es más compleja que la de un líquido debido a la presencia de partículas sólidas y su influencia en la mezcla. Es importante tener en cuenta que una pulpa no es una disolución, sino una suspensión de sólidos en líquidos donde cada componente está claramente definido. Debemos considerar el fenómeno de sedimentación de los sólidos en el líquido, especialmente cuando las turbulencias son bajas o no existen. Este fenómeno puede causar acumulaciones de sólidos y dificultar las operaciones de transporte o almacenamiento. En términos generales, las pulpas se pueden clasificar en dos grupos: pulpas sin sedimentación y pulpas con sedimentación.

Figura 2.  Bomba de pulpas. https://www.mogroup.com/es/informacion/e-books/manual-de-bombas–para-pulpa/

Las pulpas sin sedimentación, también conocidas como pulpas homogéneas, están compuestas por partículas finas (menores de 50 mm) y forma una mezcla homogénea y estable. No causan desgaste significativo, pero requieren una atención especial en la selección y funcionamiento de las bombas debido a su aumento de viscosidad. Cuando el contenido de partículas es alto, su reología se asemeja a la de líquidos No-Newtonianos. Ejemplos de este tipo de pulpa incluyen lodos espesados de la extracción de áridos, lechadas de cemento y lodos de perforación.

Las pulpas con sedimentación están formadas por partículas gruesas que tienden a crear una mezcla inestable y se comportan como líquidos Newtonianos. Generalmente, causan un elevado desgaste y requieren una selección cuidadosa de las tuberías, debido a su tendencia a sedimentar y causar obstrucciones. Este tipo de pulpa es común en el transporte de pulpas y se conoce como pulpa heterogénea, ya que los sólidos no se distribuyen uniformemente en conducciones horizontales a lo largo de su eje vertical a altas velocidades. Las fases sólida y líquida mantienen su propia identidad y el aumento de viscosidad es generalmente de poca importancia. Las pulpas heterogéneas suelen ser de menor concentración de sólidos y con partículas de mayor diámetro que las pulpas homogéneas. Ejemplos incluyen pulpas en plantas de tratamiento de áridos y minerales, equipos de dragado, etc.

En el transporte de pulpas minerales por tubería, la naturaleza de las partículas y las velocidades de flujo determinan los regímenes de flujo, que pueden ser tanto turbulentos como laminares. Sin embargo, en la mayoría de las aplicaciones, el régimen turbulento, que se produce cuando las partículas son gruesas y tienden a sedimentar, es el más común. Este tipo de fluido se conoce como fluido newtoniano. En cambio, las pulpas con partículas finas y uniformes suelen producir regímenes de flujo laminar.

Os dejo a continuación un artículo, elaborado por Juan Luis Bouso y Pedro Martínez-Pagán, donde se presenta un ejemplo de cálculo para una operación de bombeo de pulpas. Se exploran las diferentes alternativas de cálculo, que pueden variar debido a las preferencias personales de los técnicos o a la adaptabilidad de un procedimiento específico a las características de la operación de bombeo. Al final del trabajo, se incluye un anexo con gráficos y cálculos, que pueden ser muy útiles. Espero que os sea de interés.

Descargar (PDF, 36.36MB)

Referencias:

ANDREA, E. (2014). Tecnología metalúrgica. Universidad de Cantabria. https://ocw.unican.es/course/view.php?id=261

BOUSO, J.L.; MARTÍNEZ-PAGÁN, P. (2023). Bombeo de pulpas minerales. Diferentes procedimientos de cálculo. Rocas y Minerales, 605:56-73.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ-PAGÁN, P.; PERALES, A. (2020). Tecnología metalúrgica, 2ª edición. Universidad Politécnica de Cartagena. https://ocw.bib.upct.es/course/view.php?id=178

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Precribado: Parrillas de barras o cribas de barrotes

Figura 1. Parrillas de barras. https://www.mekaglobal.com/es/productos/trituradores-y-cribas/cribas/criba-de-parrilla

Las parrillas de barras, cribas de barrotes o superficies formadas son utilizadas en cribados en seco de material grueso o muy grueso antes de la trituración primaria, con tamaños superiores a 150 mm (Figura 1). Algunas de las aplicaciones más comunes de este tipo de cribado incluyen:

      1. Realizar un escalpado, es decir, prevenir la entrada de material de gran tamaño a la trituradora primaria o a un sistema de transporte de material, como puede ser una cinta transportadora. Las partículas demasiado grandes podrían atascar las trituradoras.
      2. Eliminar de la alimentación a la trituradora primaria de fracciones inferiores, ya sea para evitar su trituración o para producir un producto específico de cantera.

Estas parrillas son de construcción robusta, compuestas por barras, perfiles o carriles de vía en posición invertida, hechos de acero. Están dispuestos en paralelo y separados con precisión para cumplir con la clasificación deseada. Para trabajos duros y de alta abrasividad, se emplea acero al manganeso o aleado con cromo. La longitud máxima de las barras se alinea con la dirección del flujo del material, y suele tener una sección trapezoidal invertida para prevenir obstrucciones. La sección de las barras se va estrechando hacia el final de la criba, lo que crea una divergencia hacia la salida que impide atascos (ver Figura 2).

Figura 2. Criba de barrotes longitudinales. Detalle de la sección transversal y planta.

Las parrillas de barras fijas tienen una inclinación que promueve el avance del material, que va desde 20º hasta 45º. Esto aumenta el caudal de alimentación, pero se reduce su eficiencia. La separación entre las barras puede oscilar desde 25 mm hasta 250 mm, y una capacidad proporcional al área de 0,5-2,5 t/h por m2 de superficie útil por mm de abertura.

Una variante son los precribadores de barras móviles. En este caso las barras están fijas solo en un extremo, por lo que el golpeteo del material origina cierta vibración que mejora su limpieza. Están formados por dos juegos de barras longitudinales alternadas. Se emplean para la alimentación de machacadoras y molinos de tamaño mediano a pequeño.

Figura 3. Cribas de barras móviles. https://www.eralki.com/maquinas/cribas-vibrantes/

La otra opción son los precribadores vibrantes. Las barras se montan en una estructura vibrante que cuenta con dos o más series de superficies cribadoras formadas por barras. Estas pueden estar situadas una encima de la otra como en una criba normal (scalper) o dispuestas en varios escalones en cascada (grizzly). Su función principal es evitar la entrada de materiales reducidos y arcillosos antes de llegar a la trituradora. En este caso, la separación entre barras varía de 50 mm a 150 mm, y las dimensiones de las bandejas van de 1.200 x 2.000 mm a 2.000 x 6.000 mm. Las potencias van desde 11 kW hasta 30 kW. El scalper está diseñado para soportar impactos de bloques más grandes que el grizzly.

Figura 4. Criba vibrante de barras tipo grizzly. https://tallereslosan.com/cribas/cribas-vibrantes-barras-grizzlyz/

Os he grabado un vídeo explicativo sobre este tema, que espero os sea de interés.

A continuación os dejo un vídeo de una criba scalper. Espero que os sea útil.

Referencias:

ANDREA, E. (2014). Tecnología metalúrgica. Universidad de Cantabria. https://ocw.unican.es/course/view.php?id=261

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ-PAGÁN, P.; PERALES, A. (2020). Tecnología metalúrgica, 2ª edición. Universidad Politécnica de Cartagena. https://ocw.bib.upct.es/course/view.php?id=178

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Teoría probabilista del cribado

Figura 1. Relación entre los parámetros de una criba.

Sea una partícula esférica de diámetro d, la cual cae perpendicularmente a la superficie de cribado. La probabilidad P que pase a través de la malla, sin considerar los roces o rebotes en los hilos de la malla, se puede expresar como la relación entre el área en la que la partícula puede pasar libremente y el área total de la malla, incluyendo la parte proporcional del hilo.

Siendo a la abertura cuadrada de la criba y b el diámetro de los alambres, tal y como se puede ver en la Figura 1, la expresión sería la siguiente:

En la expresión anterior, el primer término de la expresión se refiere a la proporción del área de paso efectiva, que depende de la relación entre el tamaño de la partícula y la abertura de la malla. El segundo término representa la proporción de la superficie de cribado que está libre de obstáculos, permitiendo el paso de la partícula.

La probabilidad de ser cribado para un grano de tamaño d<a, cuando se dan un número n de rebotes encima de la criba será:

Prob (1)                               Probabilidad de pasar en un salto

Prob (0) = 1 – Prob (1)    Probabilidad de no pasar en un salto

Por tanto, la probabilidad de no pasar en n rebotes será:

Como la suma de la probabilidad de paso más la de no paso es igual a uno, tenemos por diferencia que la probabilidad de paso de una partícula de tamaño d<a, para el total de n rebotes encima de la criba, se obtiene de la siguiente expresión general:

Y, por tanto,

Esta expresión no considera la interacción entre las partículas ni otros factores presentes durante el proceso de cribado, sin embargo, permite deducir propiedades esenciales en el funcionamiento de una criba.

A continuación, comparto un par de problemas resueltos que espero os resulten útiles. Se puede ver que las partículas con un tamaño menor a la mitad de la malla de la criba pasan inmediatamente al caer y prácticamente no afectan el cálculo de su capacidad siempre que su proporción sea baja. Por tanto, en los cálculos de la capacidad de una criba, se consideran los tamaños comprendidos entre 0,5 y 1 vez el tamaño de la malla. Se ha determinado que los granos con tamaños entre 0,5 y 1,5 veces el tamaño de la malla son los que más intervienen en el cribado, causando cierta obstrucción. Estos granos se conocen como tamaños críticos. En general, la criba directa, tanto en seco como en húmedo, se limita a tamaños de hasta 0,5 mm, a excepción de algunos casos específicos que pueden llegar hasta 0,1 o 0,2 mm.

Descargar (PDF, 392KB)

Referencias:

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

WILLS, B.A.; NAPIER-MUNN, T. (2006). Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 7th edition.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Velocidad crítica de giro de un molino de bolas

Figura 1. Molino de bolas. https://commons.wikimedia.org/wiki/File:Ball_mill.gif

La velocidad crítica es aquella a la que una partícula infinitesimal en la periferia interna del molino se centrifugaría (se puede ver en las Figuras 1 y 2). Cuando se alcanza esta velocidad, el molino pierde su capacidad de molienda, ya que una parte de la carga de materiales molturadores deja de trabajar.

Siguiendo la recomendación de Wills y Napier-Munn (2006), se recomienda que el molino opere entre el 50% y el 90% de su velocidad crítica, dependiendo de factores económicos. Sin embargo, el punto de máxima eficiencia, medido por la potencia requerida para accionar el molino, se encuentra cerca del 75%. Por lo tanto, se suelen utilizar velocidades de rotación del 65-70% para los molinos de bolas y del 50-70% para los molinos de barras.

Figura 2. Equilibrio entre el peso de una partícula y la fuerza centrífuga dentro de un molino de bolas

Os presento a continuación la demostración de dicha velocidad crítica y un problema de aplicación. Podéis observar que esta velocidad crítica es independiente del tipo de material molido. Espero que os sea de interés.

Descargar (PDF, 144KB)

Referencias:

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

WILLS, B.A.; NAPIER-MUNN, T. (2006). Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 7th edition.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trómeles: cribas dinámicas y cilindros lavadores

Figura 1. Trómel lavador de áridos. https://minerales-maquinaria.com/tromer-lavador-de-aridos-y-minerales/

Las cribadoras tipo trómel son tambores giratorios constituidos por chapas perforadas curvadas o paneles de malla ensamblados en un cilindro que gira alrededor de su eje central o a través de un tren de neumáticos, de entre 4 y 24 ruedas, la mitad de las cuales son motrices. Trabajan tanto en vía seca como húmeda, aunque es común que sean trómeles lavadores.

La rotación favorece la disgregación del material, desempeñando así un papel de lavado. El rechazo se transporta por el tambor hasta que se descargan por el extremo del equipo. Para facilitar el movimiento del material en su interior, están inclinados de 5º a 7º sobre la horizontal y se encuentran equipados con deflectores internos que empujan y voltean el material. La limpieza de los orificios se realiza facilitando la caída del grano atascado a su paso por la parte superior de su recorrido, donde la gravedad hace que las partículas caigan con la ayuda de las vibraciones que acompañan el movimiento.

Los tambores giran entre un 30 % y un 45 % de su velocidad crítica, evitando el centrifugado, siendo la velocidad periférica de 40 a 50 r.p.m. La capacidad de transporte se puede estimar como 32·Di2 (m³/h), donde Di es el diámetro interno del tambor expresado en metros. Estas cribas suministran el material clasificado por tamaños, empezando por la fracción más fina y terminando con la más gruesa. Es por ello que los diámetros de las cribas van de menor a mayor (Figura 2). Los finos se descargan a través de las paredes del cilindro.

Figura 2. Trómel de cribado. https://en.wikipedia.org/wiki/Trommel_screen

Las dimensiones habituales del diámetro interno de estos trómeles varían de 1,5 a 3 m, con longitudes aproximadas de tres veces este diámetro y potencias entre 22 y 130 kW. Sus capacidades de lavado oscilan entre 50 y 450 t/h cuando la densidad aparente del material es de 1,6 t/m3, admitiendo tamaños máximos a la entrada de 150 a 300 mm.

Los trómeles lavadores reciben agua y áridos por la boca más alta, permitiendo el volteo, una atrición que libera las tierras y arcilla que acompañan a los áridos, saliendo limpios por la boca opuesta. Pueden ser de dos tipos: de simple corriente, para áridos de tamaños entre 180 y 400 mm, y a contracorriente, para tamaños entre 90 y 260 mm. El consumo de agua varía entre los 150 y los 2.000 m³/h, dependiendo del tamaño y si el flujo va en la misma dirección del material. A contracorriente se emplea menos, aunque su consumo de agua es menor.

El tiempo de permanencia del árido en el cilindro determina el efecto de lavado deseado. Este periodo, para áridos fáciles de lavar, está en torno al minuto y medio, pero puede más que duplicarse en el caso de que los materiales arcillosos o de aglomerados sea elevado, reduciéndose la capacidad de un 30 % a un 50 %. A más tiempo de permanencia, mayor índice de llenado, lo que aumenta la potencia empleada para mover el cilindro con una carga más grande.

Figura 3. Trómel de lavado. https://www.thprocess.com/es/productos/tromel-de-lavado-tl

Las ventajas del trómel son la ausencia de vibraciones, una construcción sencilla y barata, facilidad de separación con una instalación única. Como inconveniente destaca su capacidad relativamente pequeña y la dificultad de mantenimiento de las superficies de criba. La capacidad de lavado es baja, de 0,1 a 1,5 t/h/m2 por mm de abertura, debido a la reducida proporción de la superficie del tamiz que se utiliza durante su giro. Hoy en día se van sustituyendo por una combinación de trómel desenlodador y tamices vibrantes inclinados. Sin embargo, siguen montándose en grupos móviles de machaqueo y clasificación, de pequeña producción (hasta 35 t/h). Aún se conservan en el tratamiento de áridos para producir arenas sin finos y también a la salida del producto de molinos de bolas o barras. Se emplean en plantas de lavado de arenas e instalaciones de clasificación y reciclado. Otra aplicación es colocarlo a la salida de los molinos de bolas o barras, evitando que las piezas molturantes desgastadas pasen a las siguientes etapas. En los molinos autógenos y semiautógenos, el trómel retira los guijarros (pebbles) para llevarlos a trituración.

Se construyen dos tipos de trómeles. Los de construcción ligera, que no presentan revestimiento interior y con gran diámetro de boca, lo que supone un pequeño nivel de llenado y una baja potencia de accionamiento, con un bajo efecto de lavado. Los de construcción pesada tienen revestimiento interior desmontable, con un reducido diámetro de boca y elevada potencia. Estos últimos operan con un alto porcentaje de llenado y un alto efecto de lavado.

He grabado un vídeo explicativo sobre este tema que, espero, os sea útil.

Os dejo algunos vídeos explicativos, que espero sean de vuestro interés.

Referencias:

FUEYO, L. (1999). Equipos de trituración, molienda y clasificación. Tecnología, diseño y aplicación. Ed. Rocas y Minerales, Madrid, 360 pp.

MARFANY, A. (2004). Tecnología de canteras y graveras. Fueyo Editores, Madrid, 525 pp.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos — ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.