Hacia la rehabilitación de viviendas: demanda y necesidad social

Os paso a continuación un artículo que acabamos de publicar en la revista ANUARI d’Arquitectura. El trabajo analiza el impacto de la crisis económica de 2008 en el sector de la vivienda en España, que provocó un envejecimiento del parque de viviendas y dificultades para acceder a la vivienda. Destaca la necesidad de rehabilitación social de las viviendas existentes y la importancia de una vida sostenible. El artículo enfatiza el cambio hacia la rehabilitación de viviendas existentes en lugar de construir otras nuevas, lo que presenta un nuevo desafío para que la arquitectura aborde las necesidades de la sociedad.

Se pueden aportar las siguientes contribuciones del trabajo:

  • El trabajo destaca el impacto de la crisis económica de 2008 en el sector de la vivienda en España, que provocó un envejecimiento del parque de viviendas y dificultades para acceder a la vivienda.
  • Hace hincapié en la necesidad de la rehabilitación social de las viviendas existentes como respuesta a las demandas de la sociedad y en la importancia de promover una vida sostenible.
  • El documento analiza la demanda social de viviendas con características específicas, como los balcones y la eficiencia energética, y la importancia de adaptar los edificios a las nuevas demandas.
  • Explora el uso de herramientas de simulación del rendimiento de edificios (herramientas BPS) para facilitar los análisis especializados y mejorar el impacto ambiental de los edificios.
  • El documento también destaca los avances en los materiales y técnicas de construcción, como el uso de materiales puzolánicos y el sistema de aislamiento térmico externo (ETIS), para mejorar la utilización de los recursos, la durabilidad y la eficiencia energética.
  • Alinea el concepto de renovación de edificios con los Objetivos de Desarrollo Sostenible (ODS) establecidos en la Agenda 2030 de las Naciones Unidas, en particular el ODS 11 (ciudades y comunidades sostenibles) y el ODS 9 (infraestructura resiliente e industrialización sostenible)

Resumen:

El año 2008 se desencadenó una crisis económica mundial que hizo temblar los cimientos de la sociedad y produjo cambios en su visión. En España, esta crisis afectó con crudeza al sector inmobiliario, dejando miles de viviendas vacías. En la actualidad, aún quedan vestigios de esta herida en la sociedad: un parque de vivienda envejecido y la dificultad de acceso a la vivienda, entre otros factores. Este contexto social, sumado a la necesidad de trabajar para conseguir una manera de habitar más sostenible, justifica una necesidad social que se está convirtiendo en una realidad. Rehabilitar vivienda en lugar de construir nueva. Un nuevo reto para la arquitectura en respuesta a la sociedad. Un nuevo reto para el que se están planteando diferentes soluciones.

Palabras clave:

BIM; rehabilitación de edificios; sostenibilidad; vivienda

Referencia:

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2023). Towards housing rehabilitation: Demand and social need. ANUARI d’Arquitectura I Societat, 3:162-87. DOI:10.4995/anuari.2023.19984.

Al ser una publicación en abierto, os la paso para su descarga:

Descargar (PDF, 836KB)

Avances científicos en relación con los edificios prefabricados de hormigón sismorresistentes

Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. El trabajo lleva a cabo un análisis exhaustivo de 127 artículos para identificar las tendencias predominantes y las brechas actuales en la investigación sobre edificios prefabricados de hormigón (PCB) resistentes a los terremotos. Estos edificios ofrecen ventajas como la rapidez de construcción, la mejora de la durabilidad y la reducción de la mano de obra, pero es necesario estudiar las conexiones entre los elementos prefabricados para garantizar su resistencia sísmica.

El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Entre otras, se pueden destacar las siguientes contribuciones del trabajo:

  • Reveló la correlación entre los PCB y temas como las conexiones secas, la disipación de energía, el diseño óptimo y el colapso progresivo, lo que puso de relieve la naturaleza diversa de las investigaciones actuales en este campo.
  • Identificaron los sistemas de marcos y pantallas de rigidización como las categorías predominantes en la investigación de los PCB, siendo el enfoque tradicional de construcción moldeada in situ la referencia para determinar su rendimiento sísmico.
  • Destacó la necesidad de explorar con mayor detalle sistemas estructurales innovadores y resilientes y de adoptar metodologías de vanguardia para integrar la seguridad sísmica y la sostenibilidad de los PCB.
  • Proporcionó una hoja de ruta para futuros proyectos de investigación e informó sobre los últimos avances y tendencias en la investigación de PCB con seguridad sísmica.

La editorial permite la descarga gratuita del artículo en la siguiente dirección: https://authors.elsevier.com/sd/article/S2352-0124(23)01686-7

Abstract:

Precast concrete buildings (PCB) offer several advantages, including swift construction, exceptional quality, enhanced durability, decreased formwork requirements, and reduced labour. However, it is crucial to effectively study the connections between the various prefabricated elements that make up the structure, particularly in the face of dynamic loads and seismic actions. Extensive research has been conducted to develop seismic-resistant PCB, underscoring the necessity of exploring research approaches, identifying trends, addressing gaps, and outlining future research directions. A thorough analysis was carried out on a literature set comprising 127 articles published between 2012 and May 2023, using a three-step research process that included bibliometric search, quantitative analysis, and qualitative analysis. The primary objective was to identify prevailing research trends and pinpoint current gaps that would contribute to the advancement of future research. The scientific mapping of authors’ keywords revealed the correlation between PCB and topics such as dry connections, energy dissipation, optimal design, and progressive collapse, highlighting the diverse nature of current research in the field. Furthermore, the qualitative literature analysis demonstrated that frame and shear wall systems emerged as the predominant categories. This dominance can be attributed to the seismic performance reference being the traditional cast-in-place building approach. Nonetheless, this study brings attention to several notable research gaps. These gaps include exploring innovative, resilient structural systems in greater detail and adopting state-of-the-art methodologies that facilitate decision-making processes in integrating PCB seismic safety and sustainability. This study provides a roadmap for future research projects and reports on the latest developments and trends in seismically safe PCB research.

Keywords:

Precast concrete; Prefabricated building; Connections; Seismic design; Construction industry; Modern methods of construction; State of the art

Reference:

GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598. DOI:10.1016/j.istruc.2023.105598

 

Hormigón reforzado con fibra de vidrio

Figura 1. Fibra de vidrio. https://fibereagle.com/refuerzo-de-hormigon-con-fibra-de-vidrio/

El mortero de cemento reforzado con fibra de vidrio (GRC, en inglés), combina un mortero de cemento con fibras cortas de vidrio. Su desarrollo comenzó en la década de 1950 con la idea de incorporar fibras de vidrio en lugar de usar armaduras de hormigón. Sin embargo, el GRC actual surgió en la década de 1960, cuando se reemplazaron las fibras de amianto, que eran cancerígenas. Los primeros tipos empleaban fibras de vidrio basadas en sílice y mortero de cemento Portland. Sin embargo, estas propiedades a corto plazo se deterioraban debido a la corrosión de las fibras por el cemento. Para ampliar las aplicaciones del GRC, se desarrollaron fibras de vidrio resistentes a ambientes alcalinos, con circonio como elemento base, denominadas «alcali resistant» o AR.

El GRC destaca por su resistencia mecánica y su capacidad de adaptación en aplicaciones no estructurales, lo que lo convierte en un recurso valioso en proyectos de ingeniería civil y arquitectura que buscan soluciones estéticas y funcionales. Su flexibilidad en el diseño lo hace idóneo para crear diversas formas con grosores de aproximadamente 10 mm, sin el uso de armaduras. En ingeniería civil, el GRC se utiliza en elementos prefabricados para saneamiento, encofrados perdidos, pantallas de aislamiento acústico y revestimiento de túneles. La versatilidad de este material en términos de diseño permite crear encofrados perdidos con mosaicos y formas sumamente complejas.

Figura 2. Fachada de GRC para el Palacio de Justicia de Córdoba. https://arqzon.com.mx/2021/06/23/grc-concreto-reforzado-fibra-de-vidrio-en-la-construccion/

El mortero reforzado con fibra de vidrio se caracteriza por su resistencia al agrietamiento y a la tracción mecánica. Además, es eficaz en la prevención de daños por impacto y aumenta su capacidad de deformación, lo que contribuye a una mayor resistencia a las tensiones externas. También destaca su resistencia a la congelación, la descongelación, la fatiga, el peso y los cortes. Además, reduce significativamente la segregación, el sangrado y las filtraciones de líquidos, lo que mejora la integridad de las estructuras en las que se utiliza.

Las fibras de vidrio suelen tener un módulo de elasticidad a 25 °C de 70 GPa, una resistencia a tracción de una fibra de 3600 MPa (de 1750 MPa si es un haz de fibras) y una deformación en rotura del 2 %. Es importante destacar que las fibras de vidrio no son monolíticas, pues se componen de un haz de alrededor de 200 filamentos de vidrio, cada uno con un diámetro de unos 10-20 μm.

La cantidad necesaria de fibra de vidrio varía en función del método de fabricación. Hay que prestar atención a que las cantidades de cada componente sean las correctas. Así se evita que la fibra de vidrio aparezca en la superficie y se consigue la máxima resistencia. Si el GRC se proyecta, se añade una fracción volumétrica del 5 % de fibras de vidrio. Cuando se opta por una mezcla premezclada de fibra y mortero de cemento, la fracción se reduce al 3,5 %. La longitud de las fibras empleadas se encuentra en el rango de 25 a 40 mm. El cemento Portland es prácticamente el único que se utiliza en la fabricación del GRC. La arena suele ser de origen silíceo. Además, suele añadirse un plastificante que confiere la viscosidad adecuada al mortero. Asimismo, se pueden añadir diversos aditivos y pigmentos para lograr el aspecto deseado en los elementos.

Por lo general, se emplean cantidades iguales de cemento y arena, con una relación agua/cemento de alrededor de 0,4. No obstante, esta relación puede ajustarse para lograr la fluidez adecuada en el proceso de fabricación. Para evitar un exceso de agua, se recurre a superplastificantes. Para mantener las características del material en etapas avanzadas de su vida útil, en ocasiones se recurre al humo de sílice o al metacaolín. Es importante destacar que el GRC cambia sus propiedades con el paso del tiempo, con una pérdida apreciable de ductilidad y capacidad de carga.

En la actualidad, se emplean tres métodos principales para fabricar el GRC: la proyección conjunta, la mezcla previa y la mezcla previa con posterior proyección. Cada uno de estos métodos tiene sus propias variantes y particularidades. Veamos sus características.

Fabricación por proyección conjunta

El mortero se proyecta mediante una pistola que dispara las fibras y el mortero por orificios separados, los cuales se unen y mezclan en el molde. Una bobina suministra una cuerda de fibras de vidrio que se corta a la longitud deseada en la cabeza de la pistola. Por la parte inferior, fluye el mortero a través de una manguera. La consistencia del mortero debe ser fluida para facilitar su proyección. Existen dos posibilidades: la proyección manual y la proyección automática.

En la proyección manual, se aplica un desencofrante en el molde y se realiza una primera pasada depositando el material mediante movimientos oscilantes. Una vez que el molde presenta una fina capa del material, se utiliza un rodillo helicoidal para que el mortero y las fibras se adapten a la forma del encofrado. La proyección continúa hasta alcanzar el espesor deseado y, finalmente, se emplea una llana sobre la superficie libre para lograr uniformidad. Este método requiere una gran cantidad de mano de obra, pero ofrece resultados de alta calidad, particularmente cuando el operario posee la experiencia adecuada. En España, este método de fabricación es el habitual.

La proyección automática se emplea en la fabricación de paneles rectangulares de formas simples y planas. Aunque es menos versátil que el método manual, también existen dos variantes: en una, se utiliza un cabezal de proyección móvil, y en la otra, el molde se mueve. En ambos casos, se regula la velocidad de proyección para asegurar una distribución precisa del material. Para igualar el espesor de la pieza, se recurre a un sistema automático que pasa una llana, un rodillo u otra herramienta sobre la cara expuesta del material.

La principal ventaja de este método es su capacidad para lograr una mayor producción a un menor coste. Además, el sistema automatizado se ha mejorado mediante el uso de moldes con pequeños agujeros que evacúan el exceso de agua. Esto reduce la relación agua/cemento, aumenta la densidad del material y mejora sus propiedades mecánicas. Otra variante de este método consiste en aplicar una carga en la cara libre del material para que la mezcla se adapte con precisión a los diseños y patrones del molde.

Fabricación por premezclado

El método de premezclado consiste en combinar previamente el cemento, las fibras de vidrio, el agua, la arena, el plastificante y las adiciones antes de verter la mezcla en el molde. Hay que preparar el mortero de cemento y, luego, incorporar las fibras de vidrio. Para evitar que las fibras se enreden, se sumergen en aditivos que las lubrican y facilitan su dispersión en la matriz de mortero. Es esencial minimizar el tiempo de mezcla del mortero y las fibras para prevenir la segregación y la pérdida de agua en la mezcla. Una vez mezclados los componentes, se vierte la pasta en los moldes. Después, se someten los moldes a una vibración externa para eliminar burbujas de aire y espacios vacíos. Si es necesario rellenar moldes con cavidades, es preferible inyectar GRC premezclado, aunque puede dañar las fibras e, incluso, introducir burbujas de aire.

Fabricación por premezclado y proyección

En los últimos años, ha surgido un método conocido como «sprayed premix». Las fibras de vidrio se integran durante la mezcla del mortero y, posteriormente, se proyectan ambos componentes, ya mezclados, en el molde. A pesar de que este método ofrece resultados similares a la proyección tradicional, la calidad de los elementos fabricados depende en menor medida de la destreza del operario. Además, la determinación del contenido de fibra se realiza en peso, lo que resulta más preciso que el método tradicional, se elimina la formación de burbujas en la mezcla y se simplifica la maquinaria de proyección.

Os dejo algún vídeo explicativo que espero os sea de interés.

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACHE (2000). Monografía M-2. Manual de tecnología del hormigón reforzado con fibras de acero.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

GÁLVEZ, J.C.; ALBERTI, M.G.; ENFEDAQUE, A.; PICAZO, A. (2019). Fundamentos de hormigón reforzado con fibras. García-Maroto Editores, 51 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

SERNA, P. (2007). Recientes ejemplos estructurales de aplicación de hormigón de fibras. Monografía sobre aplicaciones estructurales de hormigones con fibras, pp. 33-47.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Apeo de fachadas para el vaciado de edificios: estabilizadores de fachada

Figura 1. Apeo en fachada (Valencia). https://derribosdegeser.es/apeos-y-refuerzos-estructurales

La protección del patrimonio arquitectónico considera no solo el valor intrínseco de un edificio, sino también los valores que aporta al espacio público, especialmente la imagen exterior que ofrece la fachada. Las normas urbanísticas municipales muchas veces obligan a preservar dicha fachada y permiten demoler y reconstruir el resto de la estructura. Este es un proceso complejo que precisa del uso de apeos específicos que garanticen la seguridad y la estabilidad de estas fachadas mientras se procede a la demolición y reconstrucción del resto del edificio (Figura 1).

En los últimos años, se han incrementado significativamente este tipo de intervenciones, por lo que este tipo de apeos han llamado la atención y ha crecido la sensibilidad para que su empleo sea seguro. Estas estructuras de apeo, aunque sean temporales, deben proyectarse, calcularse y ejecutarse con el mismo nivel de detalle que cualquier otro tipo de estructura permanente. Además, al sustentar un elemento tan relevante en condiciones no previstas originalmente, que a menudo ha sido afectado por alteraciones o daños significativos, es fundamental llevar a cabo estudios pormenorizados que aborden estos aspectos con especial atención y cuidado.

Hemos asistido a una continua mejora en este tipo de intervenciones. Se refleja tanto en el cuidado con el que se resuelve el problema, empleando sistemas tradicionales de sustentación mediante estructuras tubulares interconectadas, como en el aumento de intervenciones basadas en estructuras de perfiles laminados diseñadas y construidas específicamente para este propósito. Además, se ha introducido en el mercado sistemas industrializados de estructuras para este tipo de apeos.

La estabilización del interior de la fachada (Figura 2) consiste en una estructura modular compuesta por vigas y tensores conectados mediante uniones atornilladas. Este sistema cuenta con diferentes niveles de correas y puntales, diseñados para unir los muros y solidarizar el movimiento entre ellos. Es importante que estos muros tengan la capacidad de soportar las cargas horizontales a las que estarán expuestos, pues la función del arriostramiento es asegurar una conexión sólida entre ellos, para que trabajen de manera conjunta y eficiente. La ingeniería de esta conexión posibilita la compatibilización de los desplazamientos horizontales entre el conjunto de muros y rigidizadores. Como resultado, parte de la carga se deriva hacia los otros muros arriostrados, lo que disminuye significativamente la tensión sobre el muro en estudio. Esto conlleva una reducción del riesgo de deformaciones y fisuraciones excesivas, contribuyendo a una mayor durabilidad y seguridad de la estructura.

Figura 2. Sistema de estabilización de fachada interior. https://www.incye.com/estabilizadores-de-fachada/interiores/

El proceso de apeo de la fachada involucra varias fases. En primer lugar, es importante obtener un profundo conocimiento previo de los elementos afectados por el apeo, lo que abarca tres aspectos esenciales: las características constructivas de la fachada y su relación con el resto del edificio, el estado de conservación y posibles daños, así como un estudio detallado del suelo y subsuelo donde se asentará el apeo. La siguiente etapa implica definir el propio apeo y establecer las medidas de seguridad necesarias, atendiendo a las particularidades específicas de la fachada y las lesiones presentes, considerando las acciones concretas requeridas, así como aspectos generales relacionados con la estabilización, como excentricidades de carga, pandeo, fuerzas del viento y sismicidad. Por último, la ejecución de las obras incluye medidas preliminares, como calado de forjados y tabiques para permitir el paso de elementos del apeo, junto con la implementación de apuntalamientos y consolidaciones específicas según el estado intrínseco de la fachada. Posteriormente, se construye la estructura de sustentación de la fachada y se procede a la demolición del interior del edificio para, finalmente, vincular el nuevo edificio de manera segura a la antigua fachada.

Figura 3. Apeo en fachada (Ayora). Imagen: V. Yepes (2022)

Aquí tenéis algunos vídeos que, espero, os interesen:

Os paso un documento donde se describen los estabilizadores de fachada, de la profesora Inmaculada Oliver Faubel, de la Universitat Politècnica de València.

Descargar (PDF, 872KB)

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño sostenible de losas aligeradas de hormigón armado en entornos costeros

La industria de la construcción tiene un impacto significativo en el medio ambiente, especialmente en el sector de la construcción residencial, debido a un alto consumo de recursos. Con el fin de reducir el impacto ambiental en las etapas de construcción, servicio y fin de vida de los edificios, los académicos priorizan la adopción de Métodos Modernos de Construcción (MMC) para optimizar el consumo de materiales y minimizar el impacto del ciclo de vida de los edificios.

Este estudio evalúa la sostenibilidad de losas planas de hormigón armado utilizando un sistema estructural hueco, especialmente en entornos que desencadenan la corrosión del hormigón. El análisis se centra en siete alternativas de diseño para una estructura de hotel frente a la playa, empleando la técnica VIKOR para agregar cinco criterios de sostenibilidad. La opción más rentable y beneficioso para el medio ambiente es el uso de hormigón con un 10 % de humo de sílice, lo cual reduce los costos del ciclo de vida en un 87 % e impacta el diseño base en un 67 %. Sin embargo, al considerar criterios de sostenibilidad económica y ambiental, se llegó a mejores diseños sostenibles, como un recubrimiento de hormigón más extenso para las barras de refuerzo inferiores, lo que resulta en un índice de sostenibilidad un 46 % mejor.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2023). Sustainable design of lightened reinforced concrete flat slabs in coastal environment. 8th International Symposium on Life-Cycle Civil Engineering IALCCE 2023, July 2-6, Milano (Italy). DOI: 10.1201/9781003323020-300

Os paso el artículo completo, pues está publicado en abierto. Las actas completas del congreso la podéis descargar aquí.

Descargar (PDF, 737KB)

 

El apeo de urgencia

Figura 1. Rescate urbano. Fuente: UME Ministerio de Defensa España. https://rescateurbanousar.wordpress.com/category/apuntalamiento/

La misión principal de los apeos de urgencia es evitar un colapso repentino de una estructura dañada y garantizar la seguridad del personal que realiza operaciones en el edificio. Dado que las condiciones de trabajo son peligrosas, es necesario utilizar elementos fabricados con materiales ligeros y de rápida entrada en carga y fáciles de ensamblar. En esta etapa de la actuación, los apeos telescópicos metálicos son los más adecuados, aunque también se emplean apeos ligeros de madera o metal. También existen puntales con sistemas hidráulicos y neumáticos con bloqueo que permiten un “apuntalamiento remoto”. Sin embargo, no supone una solución de apeo definitiva.

La principal diferencia entre un apeo de emergencia y uno programado radica en que, en el primer caso, no es posible realizar un estudio detallado de la distribución de cargas en la estructura ni diseñar el apeo de manera adecuada debido a la limitación de tiempo. Sin embargo, las condiciones técnicas deberían ser similares, lo que implica que el apeo de urgencia debe ser rápido y sencillo, permitiendo mejoras o extensiones posteriores a otras áreas o bajo diferentes criterios.

Se recomienda diseñar un apuntalamiento de urgencia que sea compatible con los trabajos de reparación o sustitución posteriores del elemento dañado. Sin embargo, lograr este nivel de precisión requiere una diagnosis precisa y la anticipación de si los trabajos futuros serán de reparación o sustitución, así como la técnica que se empleará. Esta tarea puede resultar complicada debido a la urgencia con la que se aborda, incluso si es realizada por un técnico que será responsable de la reparación posteriormente. Existe la posibilidad de que el técnico encargado del apuntalamiento de urgencia no sea el mismo que lleve a cabo la reparación, lo que podría generar discrepancias en los criterios de reparación.

En situaciones extremas, es posible que el apuntalamiento de urgencia sea ejecutado por bomberos u otros cuerpos de emergencia con el objetivo de salvar el edificio, incluso poniendo en riesgo su propia integridad. En este caso, su prioridad principal es proteger a las personas y asegurar rápidamente la estructura. Por lo tanto, aunque es deseable lograr una compatibilidad entre el apuntalamiento de urgencia y los trabajos posteriores, esto no siempre será posible, ya que se prioriza la rapidez y la seguridad de las personas.

Cuando se ejecuta un apeo, el proceso debe seguirse siempre de abajo hacia arriba, consolidando primero las partes inferiores y luego las superiores. Si se realiza el apuntalamiento desde el forjado dañado hacia el terreno, se someten los forjados a esfuerzos de flexión debido a las cargas adicionales del apuntalamiento, incluso si ya están apuntalados. Cuando se utiliza madera para el apeo, es crucial utilizar un material de buena calidad, seco y en buen estado. Se debe tener precaución al ajustar las cuñas, haciéndolo lentamente para que la carga se aplique gradualmente. Un ajuste excesivo puede ocasionar daños más graves a la estructura. Por lo tanto, un buen apeo, incluso en situaciones de urgencia, debe ser neutro, evitando levantar excesivamente la estructura mediante un apriete o acuñado excesivo de las piezas, pues esto podría causar lesiones más graves que las que se intentan corregir.

En el caso de utilizar puntales metálicos, es fundamental seleccionar el adecuado para alcanzar la altura deseada y asegurarse de que estén correctamente aplomados al colocarlos, de manera que transmitan las cargas de manera adecuada. Una vez finalizado el apeo, se recomienda colocar testigos de yeso para monitorear cualquier avance en la lesión que pueda requerir nuevas medidas de seguridad, y realizar revisiones periódicas.

Se puede reducir la gran flecha en el vano de un forjado mediante la colocación de una fila de puntales telescópicos. En el espacio bajo la cubierta, se instala un apeo enano compuesto por un pie derecho y un codal inclinado denominado tornapunta, que se coloca sin apretar, en lo que se conoce como posición “a la espera”. Estos elementos se aseguran mediante un pasador y descargan sobre una línea vertical de puntales y las cabezas de los tirantes. Para contrarrestar el empuje del codal hacia la sobrecarrera central, se fijan en ambos lados utilizando dos durmientes colocados sobre los tirantes, asegurándolos con tirafondos. En el caso de un muro socavado, se recomienda instalar otro codal de menor altura y con la menor inclinación posible para evitar su colapso. Para contrarrestar el empuje horizontal en la base, se realiza una excavación en el terreno donde se coloca un durmiente que asegura la base de la tornapunta.

Figura 2. Apuntalamiento con puntales. https://demodtres.com/servicios/apuntalamiento/

Existe un riesgo inminente de caída de alguna sección de cornisa hacia la vía pública, por lo tanto, es necesario delimitar un área de seguridad con vallas. En una etapa posterior, estas vallas deben reemplazarse por andamios con visera que permitan una circulación segura por el exterior. Entre las operaciones siguientes se incluye la instalación de un segundo conjunto de apeos, en consecuencia, los apeos actuales no deben obstaculizar ni impedir la instalación y ubicación de los siguientes. El orden y tipo de las operaciones posteriores dependerá del objetivo final previsto.

A continuación os dejo un documento de gran interés, elaborado por Pedro Sánchez Gálvez, donde se describen apeos y apuntalamientos de urgencia en edificios dañados por el sismo de Lorca el 11 de mayo del 2011.

Descargar (PDF, 25.09MB)

También puede resultar de interés este documento sobre evaluación de daños en emergencias, de la Región de Murcia, donde desarrolla un capítulo completo sobre los apeos de emergencia.

Descargar (PDF, 22.27MB)

En este documento se describen apeos y apuntalamientos de emergencia, cuyo autor es Francisco Javier Vivo Parra. Espero que también os sea de interés.

Descargar (PDF, 24.73MB)

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los sistemas de apeo

Figura 1. Apeo de un edificio en Valencia. https://derribosdegeser.es/apeos-y-refuerzos-estructurales

Las estructuras auxiliares son instalaciones temporales utilizadas para ayudar o complementar la construcción o el mantenimiento de elementos estructurales en una construcción durante la fase de obras. Estas estructuras incluyen andamios, encofrados, entibaciones, entre otros. Dentro de este grupo se encuentra el apeo, que consiste en un sistema de equilibrio de fuerzas compuesto por los elementos de apeo y los propios de la estructura que se está apuntalando.

El apeo se refiere al sistema estructural implementado en una construcción existente para complementar o reemplazar una estructura de manera provisional mientras se realizan obras de reparación o demolición en dicha construcción. Se distingue entre los sistemas de refuerzo y los sistemas de apeo, pues los elementos estructurales empleados en el refuerzo se integran permanentemente en la estructura reforzada. El refuerzo se considera una solución definitiva para un edificio dañado, debiendo garantizar tanto la estabilidad estructural como la funcionalidad. Sin embargo, algunos elementos tradicionales de apeo pueden convertir el sistema de apeo en una solución de refuerzo.

Un sistema de apeo debe asegurar la estabilidad y, en algunos casos, la funcionalidad de una construcción dañada mientras se implementa una solución definitiva a sus deficiencias. La acción a tomar estará condicionada por el destino final que se planee para la estructura, ya sea reparación, reconstrucción o demolición. El plan de apeo puede requerir varias etapas de ejecución, incluyendo una fase de emergencia, a corto plazo y a largo plazo. No obstante, en un artículo anterior se comentó las sutiles diferencias que, en ocasiones, existen entre los propios apeos y los apuntalamientos si se atiende a la urgencia en su uso.

Figura 2. Estabilización de fachadas. Fuente: https://www.linkedin.com/in/francisco-sancho-martinez-968a6b228/

En algunos casos, el objetivo del apeo puede limitarse a garantizar la seguridad de los trabajadores encargados de llevar a cabo un apeo más permanente, o bien como una medida provisional mientras se implementa un sistema de apeo más complejo que requiere más tiempo tanto para su ejecución como para el suministro de los elementos necesarios.

Un sistema de apeo complementario aborda las deficiencias de seguridad que puede presentar una estructura deteriorada, permitiendo que siga cumpliendo su función. Este sistema se compone de elementos de apeo adicionales y de los propios de la estructura apuntalada. Su objetivo es garantizar su seguridad, pero no se utiliza para reemplazar sus elementos estructurales. No constituye un sistema estructural independiente, sino que se integra, al igual que el refuerzo, dentro de la propia estructura.

Por el contrario, un sistema de apeo supletorio se presenta como una estructura alternativa. Al entrar en carga, permite abordar la sustitución de aquellos elementos de la estructura afectados por daños. Esto implica ejecutar diversas operaciones auxiliares, como la realización de perforaciones en elementos verticales y horizontales, con el fin de otorgar a los apeos continuidad e identidad como una estructura autónoma. Este enfoque provoca un aumento de los costos en comparación con los apeos complementarios.

Os dejo algunos vídeos explicativos, que espero sean de vuestro interés.

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nos ha dejado Florentino Regalado, referente en la ingeniería de caminos

Figura 1. Florentino Regalado Tesoro (1950-2023), en su despacho del estudio de ingenieros. https://www.informacion.es/alicante/2023/06/13/fallece-ingeniero-caminos-florentino-regalado-88628877.html

Hoy, martes 13 de junio de 2023, al momento de escribir estas palabras, me he enterado con pesar del fallecimiento de Florentino Regalado Tesoro.

Con su partida, no solo hemos perdido a un destacado ingeniero, sino también a un ser humano excepcional y querido amigo. Aunque de manera apresurada y sin poder abarcar todo lo que quisiera, no puedo evitar dedicar unas breves líneas en su memoria. Pido disculpas por lo mucho que me dejo en el tintero, pero seguro que me sabréis perdonar.

Florentino nació en Cáceres en 1950, en el seno de una humilde familia vinculada a unas tierras de la Marquesa de Camarena, cerca de Trujillo. Tras finalizar sus estudios de ingeniero de caminos, canales y puertos en Santander, se vino a Alicante para reunirse con su hermano Ricardo.

Alguno de vosotros podéis conocerlo por haber sido el fundador de la empresa CYPE, otros por su faceta docente, por sus innumerables proyectos. Su huella se extiende por toda la provincia de Alicante, con miles de proyectos destacados en edificios de gran altura, centros comerciales, hospitales, puentes y más. Pero yo lo tengo que recordar en sus últimos años como una gran persona. Una pequeña reseña la podéis ver en el periódico Información de Alicante, un periódico donde solía escribir sobre múltiples temas, porque como me dijo un día: “quien no escribe en Información, no es nadie en Alicante”: https://www.informacion.es/alicante/2020/12/12/alicante-cabeza-26233920.html

La última vez que estuve con él personalmente fue en el VIII Congreso de la Asociación Española de Ingeniería Estructural, ACHE, que tuvo lugar en Santander el año pasado. Este congreso se tuvo que retrasar varias veces debido a la pandemia y fue un punto de reencuentro para muchos de nosotros. Aproveché para preguntarle todo aquello de lo que tenía curiosidad. Su sentido común era abrumador y su experiencia en estructuras, desbordante. A modo de ejemplo, le insinué que hoy en día, abordar el cálculo de un rascacielos supone un trabajo de modelización matemática importante que, hace apenas 30 años, era absolutamente impensable. Y la pregunta era clara: ¿cómo calculábais los rascacielos de Benidorm? Claro, quería saber cómo a finales de los 80 se podía abordar el proyecto de la estructura de un edificio como el Gran Hotel Bali de Benidorm, de 186 metros de altura y 53 plantas. Su respuesta fue de lo más inteligente: “con un par de números en una servilleta, pe ele dos partido por ocho (sic)”. Lo que me quería decir es que lo relevante es la experiencia y la comprobación conceptual con grandes números y que, luego, ya vendrían los modelos matemáticos para afinar los resultados. Ingeniería pura. Hablando en ese mismo momento sobre el desastre del terremoto de Lorca, me dio una lección en dos minutos de lo que realmente era importante en un cálculo estructural en un sismo: los detalles constructivos. También hablamos de la salud, de la familia, y de todo tipo de temas. El último día del congreso me despedí de él. Estaba alegre, se iba con su familia a su tierra natal. Luego pude ver algunas fotografías que compartió. Fue la última vez que tuve la ocasión de verle en persona.

Florentino era un apasionado del “patrimonio construido”. Hace unos años ya me contó su preocupación por dejar un montón de escritos sobre este tema que había elaborado a lo largo de su vida y que no sabía bien a quién dejar. Me dejó una fracción pequeña de sus legajos en formato digital. Afortunadamente, no se ha perdido la totalidad de sus escritos, pues me consta que el Colegio de Ingenieros de Caminos ha recibido dicho legado, que hay que ordenar, clasificar y, en su momento, hacer visible.

También fue Florentino una voz independiente y libre que, sin problema alguno, compartía con cualquier interlocutor. Las redes sociales nos han permitido, a través de un grupo de WhatsApp de los ingenieros de caminos de Alicante, conocer sus ideas, sus puntos de vista y sus debates de todo tipo. Eso sí, siempre respetuoso con las ideas de los demás. Esta misma mañana, sin conocer la fatal noticia, algún compañero le preguntaba su opinión sobre el manifiesto de la Asociación de Ingenieros de Caminos, Canales y Puertos y de la Ingeniería Civil sobre la normativa sísmica. No llegamos a tiempo.

Voy a poner un par de anécdotas personales en ese tipo de debates que, como veréis, rezumaban sentido común por todos sus poros. El último intercambio de mensajes ocurrió el 1 de junio pasado. Hacía partícipe a mis compañeros del Premio a la Excelencia Docente que había recibido del Consejo Social de la Universidad Politécnica de Valencia. Florentino me dijo: “Lástima no haberte conocido siendo estudiante”, a lo cual le contesté: “Florentino, lástima no haber coincidido contigo profesionalmente para haber aprendido lo mucho que sabes”. Son unas palabras que valen mucho más que cualquier premio, pues vienen de alguien a quien admiro mucho.

Pero no siempre coincidíamos en nuestras opiniones. Especialmente en el ámbito de las nuevas tecnologías y de la inteligencia artificial. A una noticia recogida en la prensa sobre nuestras investigaciones en optimización de estructuras con algoritmos heurísticos, Florentino me dijo lo siguiente (el lenguaje es coloquial, escrito en WhatsApp, pero sin omitir ni cambiar nada): “Víctor no acabo de explicarme cuando más sabemos, más algoritmos, más normas, más laboratorios, más de todo, mucho más costosas resultan las estructuras. LAS ECONOMÍAS SON UN MITO. Una torre en Benidorm, podía llevarse entre 25 y 30 kg de acero m2. En la actualidad ha subido como poco a los 40. Y si te descuidas puedes fabricar un Titanic. ¿Qué puñetas está pasando?”. Mi respuesta: “Florentino, un ingeniero en su vida, puede calcular 1000 estructuras. Un algoritmo inteligente revisa más de un millón en media hora. Los ahorros existen, no es un mito. El tema es que ahora las consultoras no están aprovechando las ventajas de la investigación de vanguardia. Pero en poco tiempo lo harán”. Sin embargo, no acababa de estar de acuerdo Florentino conmigo y me replicaba: “Lamento discrepar de ti, pero si para la inteligencia natural es un mito absoluto (nadie podrá darnos lo que no tiene), ya me dirás en qué consiste una construcción inteligente, frente a una construcción bien parida y bien construida. Estamos dejándonos arrastrar por un lenguaje que yo ya no entiendo su significado”. Y para zanjar el tema, y terminar de forma elegante este pequeño debate, yo le contesté: “Florentino, estoy encantado de discutir este tipo de temas en un foro como este, de técnicos. A veces se nos olvida lo que somos con otros temas. Los algoritmos no son inteligencia. Son estrategias que utilizan la fuerza bruta del ordenador para hacernos fácil el trabajo. Ingenieros como Florentino son imprescindibles para dar sentido común a lo que se investiga. La experiencia es un grado”. Ya no me pudo rebatir más, ya notábamos todos que sus fuerzas estaban mermando. ¡Maldita enfermedad!

Para acabar esta pequeña reseña personal, me he bajado a la primera planta para rebuscar entre las tesis doctorales defendidas en el Departamento de Ingeniería de la Construcción de la Universidad Politécnica de Valencia. He encontrado los dos tomos de su tesis doctoral: “Investigación y revisión crítica del conocimiento y uso de los forjados reticulares en España, con propuestas de nuevos criterios para su diseño, análisis y construcción”, dirigida por el catedrático Juan José Moragues Terrades, y defendida en el año 2001. Como podéis ver, una tesis presentada ya en la madurez profesional de Florentino. Era otra época, donde el grado de doctor solo se buscaba en el ámbito académico, y donde la publicación de artículos en revistas científicas internacionales no dejaba de ser una anécdota frente a la valía profesional. En mi caso, aunque 14 años más joven, leí la tesis también tarde, en 2002, un año después, tras casi dos décadas de experiencia profesional en empresas constructoras y en la administración pública. Pero algo ya empezaba a cambiar, tanto en nuestra universidad como en la profesión.

Para los que tengáis curiosidad, os dejo el breve resumen de su tesis doctoral, tal y como lo escribió:

Partiendo de la realidad española del uso de los forjados reticulares, la tesis pretende sistematizar los criterios que se emplean y la razón y ser de los mismos, analizándolos arquitectónica, mecánica y constructivamente a la luz de las principales normas del mundo. Basándonos en nuestra experiencia, ensayos e investigaciones, de tipo numérico realizados sobre esta tipología de forjados, se establece, en nuestra opinión, toda una filosofía operativa que racionaliza y sistematiza el uso de los mismos, reflejando plenamente su comportamiento físico real al margen de consideraciones teóricas y escasamente representativas”.

Os dejo un par de entrevistas, también un par de conferencias donde podéis profundizar algo más en su visión personal de la ingeniería. Descansa en paz, Florentino. Te echaremos mucho de menos.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Recomendaciones para la distribución de las instalaciones de obra

Figura 1. Vista aérea de septiembre de 2017 de las obras del estadio de Los Ángeles en Hollywood Park. https://commons.wikimedia.org/

Las instalaciones temporales son elementos colocados durante una obra para garantizar la seguridad y eficiencia de los trabajos. Al finalizar, se retiran. Es crucial realizar un estudio previo para evitar retrasos y problemas, como acceso dificultoso o falta de infraestructuras.

Las instalaciones temporales deben cumplir con la normativa vigente y pueden incluir vallas de obra para protección, instalaciones auxiliares con baños portátiles, áreas de descanso y espacios de primeros auxilios. La señalización es relevante para informar sobre los peligros y prevenir accidentes. Estas instalaciones deben ser adecuadas al tamaño y tipo de obra, y es importante que los trabajadores estén debidamente informados y capacitados. La presencia de señales es tan valiosa como la formación de los trabajadores.

La distribución eficiente y segura de las instalaciones de obra es de vital importancia. Para lograr este objetivo, se recomienda una adecuada planificación, pues optimizará el flujo de trabajo y garantizará un entorno seguro.

En general, cuando se dispone de espacio suficiente, se pueden considerar las siguientes recomendaciones para la distribución de las instalaciones de obra que facilite su gestión eficiente:

a) Las oficinas de obra deben situarse en zonas elevadas para tener una vista panorámica de la entrada y salida de la obra.

b) Los vestuarios y barracones para el personal obrero deben ubicarse fuera de la zona de trabajo, preferiblemente fuera de la vista de los tajos.

c) Los almacenes y talleres también deben estar alejados del área de trabajo para no obstaculizar la llegada y salida de suministros, así como el tráfico normal de la instalación. Los almacenes deben tener fácil acceso desde el exterior y salida fácil hacia los talleres.

d) Es recomendable que las obras importantes dispongan de una báscula propia para camiones cerca de la entrada para facilitar el control por peso de los aprovisionamientos.

e) Si hay un gran número de vehículos en uso, se debe considerar la instalación de una gasolinera o almacén-surtidor de combustible.

f) En la medida de lo posible, se debe considerar la posibilidad de reutilizar las instalaciones después de la obra o, al menos, evitar la necesidad de demolerlas.

g) Siempre que sea posible, se debe diseñar las instalaciones aprovechando la gravedad y reducir el trabajo necesario aprovechando la orografía o las pendientes del terreno.

h) Las instalaciones deben ajustarse a la duración prevista de la obra, y su ubicación debe ser tal que no se necesite un cambio de emplazamiento durante la obra. Si un cambio es imprescindible, debe tenerse en cuenta desde el principio y planificarse cuidadosamente para evitar interrupciones en el trabajo.

Os dejo un par de vídeos al respecto, que espero os sea de interés.