Técnica Dematel aplicada a la evaluación de la sostenibilidad de puentes en ambiente marino

Figura 1. Puente de A Illa de Arousa. Imagen: V. Yepes (2023).

Acaban de publicar un artículo en el International Journal of Computational Methods and Experimental Measurements. El estudio evalúa diferentes alternativas de diseño para un puente de hormigón situado cerca de la costa utilizando técnicas de toma de decisiones como TOPSIS, COPRAS y VIKOR, con un enfoque en la sostenibilidad y la evaluación del ciclo de vida. La investigación destaca que el hormigón con humo de sílice funciona mejor a lo largo de su ciclo de vida en comparación con otras soluciones que mejoran la durabilidad, como la modificación de la relación agua/cemento o el aumento del recubrimiento del hormigón. Esta adición puede mejorar significativamente la sostenibilidad al aumentar la durabilidad frente a los cloruros y reducir los requisitos de mantenimiento. El estudio destaca que las decisiones de diseño de infraestructuras deben tener en cuenta los impactos sociales junto con los factores económicos y ambientales, y que las diferentes alternativas de diseño muestran diferentes impactos sociales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción es un sector crítico para alcanzar los Objetivos de Desarrollo Sostenible. Sin embargo, las actividades de construcción y las propias infraestructuras producen impactos positivos y negativos. Ello provoca que el diseño de infraestructuras sea el centro de la investigación actual para encontrar la mejor manera de satisfacer las demandas de sostenibilidad de la sociedad. Aunque los métodos para evaluar el ciclo de vida económico, medioambiental y social de las infraestructuras son bien conocidos, el reto reside en combinar estas dimensiones en un indicador global que ayude a la toma de decisiones. Este estudio utiliza tres técnicas de toma de decisiones, a saber, TOPSIS, COPRAS y VIKOR, para evaluar cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero. Para mejorar la coherencia del proceso de toma de decisiones multicriterio, se aplica un enfoque basado en DEMATEL. Los resultados del estudio demuestran que el hormigón que contiene incluso pequeñas cantidades de humo de sílice se comporta mejor a lo largo de su ciclo de vida que otras soluciones habitualmente consideradas para aumentar la durabilidad, como la reducción de la relación agua/cemento o el aumento del recubrimiento de hormigón.

ABSTRACT:

The construction industry has recently been recognized as a critical sector in achieving the Sustainable Development Goals. However, construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design the focus of current research in finding the best way to meet society’s demands for sustainability. Although methods for economic, environmental, and social life cycle assessments of infrastructures are well-known, the challenge lies in combining these dimensions into a comprehensive indicator that aids decision-making. This study uses three decision-making techniques, namely TOPSIS, COPRAS, and VIKOR, to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. To enhance the consistency of the multi-criteria decision-making process, a DEMATEL-based approach is applied. The study’s results demonstrate unanimously that concrete containing even small amounts of silica fume performs better over its life cycle than other solutions typically considered to increase durability, such as reducing the water/cement ratio or increasing concrete cover.

KEYWORDS:

Sustainable design, bridges, life cycle assessment, DEMATEL, TOPSIS, VIKOR, COPRAS, multi-criteria decision-making.

REFERENCE:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2023). Dematel-Based Completion Technique Applied for the Sustainability Assessment of Bridges Near ShoreInternational Journal of Computational Methods and Experimental Measurements, 11(2):115-122. DOI:10.18280/ijcmem.110206

El artículo está publicado en abierto. Os lo dejo para su descarga.

Descargar (PDF, 1.13MB)

Evaluación del ciclo de vida social de las alternativas de subestructura ferroviaria

Acaban de publicar un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El estudio presenta indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias y evalúa los impactos sociales de tres soluciones comunes de este tipo subestructura. La investigación tiene como objetivo determinar la alternativa de diseño más ventajosa desde el punto de vista social para la infraestructura ferroviaria, haciendo hincapié en la importancia de tener en cuenta los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo sostenible. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El estudio utilizó el proceso de redes analíticas (ANP) para sintetizar el desempeño social de las diferentes soluciones de subestructuras en un solo indicador de comparación. La investigación recopiló datos de inventario de las bases de datos oficiales del territorio español para evaluar los indicadores basados en el contexto social. El documento estableció una colección de criterios mensurables y seleccionó seis indicadores sociales basándose en las «directrices» y las fichas metodológicas para las subcategorías de la evaluación del ciclo de vida social. La metodología introducida en la investigación se puede aplicar en la evaluación de los impactos sociales en varios proyectos de infraestructura más allá de los ferrocarriles, como puentes, carreteras o estructuras portuarias, lo que mejora la aplicabilidad de la evaluación del ciclo de vida social.

Las contribuciones más destacables de este trabajo son las siguientes:

  • Introduce indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias.
  • Evalúa los impactos sociales de tres soluciones frecuentes de subestructura de vías férreas.
  • Destaca la importancia de considerar los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo de infraestructuras sostenibles.

ABSTRACT

The sustainable design of infrastructure involves assessing economic, environmental, and social impacts. While significant progress has been made in evaluating economic and environmental life cycle impacts since the Paris Agreement, there’s a notable gap in techniques for assessing social aspects in infrastructure design. This study introduces social indicators tailored for evaluating the lifecycle of railway infrastructures. The indicators are applied to assess the social impacts of three common railway track substructure solutions: conventional ballasted track, embedded slab track (BBEST solution), and sleeper-based, ballastless (RHEDA2000) substructure solutions. Using the Analytic Network Process (ANP), the social performance of each alternative is synthesized into a single indicator for comparison. Results indicate that the conventional ballasted track outperforms, scoring 12% higher than BBEST and 61% better than RHEDA in social terms. This is attributed to its reliable capacity for generating high-quality employment and fostering economic activities in the defined product system regions.

KEYWORDS:

Social life cycle assessment; Railway; ANP; Sustainability; Multi-criteria decision-making; Sustainable design.

REFERENCE:

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. (2024). Social life cycle assessment of railway track substructure alternatives. Journal of Cleaner Production, 450:142008. https://doi.org/10.1016/j.jclepro.2024.142008.

Os dejo el artículo para su descarga, pues está publicado en abierto.

Descargar (PDF, 5.96MB)

Fausto Elío Torres y el embalse de Beniarrés (Alicante)

Figura 1. Presa de Beniarrés. Imagen: V. Yepes (2024)

El embalse de Beniarrés está ubicado entre el municipio homónimo y el de Planes de la Baronía, predominando en este último en términos de extensión. Se encuentra en la provincia de Alicante, España.

Abarca una superficie de 268 hectáreas, con una capacidad máxima de almacenamiento útil de 30 hm³. Su presa de gravedad tiene una altura de 53 m y cuenta con un aliviadero de compuertas con capacidad para 1000 m³/s. Se permite en este embalse la práctica de la pesca, donde se pueden encontrar especies como la carpa y el black bass, y también se permite la navegación.

Este embalse es gestionado por la Confederación Hidrográfica del Júcar y sus aguas se utilizan principalmente para el riego de la huerta de la Safor.

La cuenca de drenaje abarca una superficie total de 752,11 km². Su principal río es el Serpis, que tiene un caudal medio de 0,95 m³/s. Este río nace en las estribaciones del Parque Natural del Carrascal de la Font Roja, con altitudes superiores a los 700 m, y después de recorrer aproximadamente 63 km, desemboca en el mar Mediterráneo en el término municipal de Gandía, en la comarca de La Safor.

Carlos Dicenta, ingeniero de la División Hidráulica, redactó el Anteproyecto del Pantano de Beniarrés en el río Serpis (1925), que fue aprobado dos años después. El proyectista de la primera fase fue F. Elío, y R. Donat de la segunda fase.

Figura 2. Construcción de la presa de Beniarrés. http://www.alicantevivo.org/2007/12/beniarrs-un-documento-histrico.html

La construcción del embalse de Beniarrés comenzó en el año 1945; sin embargo, no fue hasta 1958, trece años después, que se consolidó definitivamente como una infraestructura operativa y entró en funcionamiento. La presa fue recrecida en 1970. En el año 2002 se destinaron aproximadamente 1,50 millones de euros para llevar a cabo la consolidación de la infraestructura. Este proyecto incluyó una serie de trabajos, entre los que se destacan la consolidación e impermeabilización de la presa para prevenir posibles fugas, así como la implementación de un nuevo sistema de drenaje para aumentar su capacidad en un 40%. Estas labores se completaron en el año 2010, con un presupuesto total que superó los 17 millones. Desde principios de 2005, los equipos de la Confederación Hidrográfica del Júcar han realizado obras menores en el embalse para prevenir y mantener la infraestructura. En este sentido, se llevó a cabo la consolidación de los cimientos de la presa del embalse mediante inyecciones de cemento (540 toneladas) a través de un sistema de galerías. Durante el año, se detectó una fuga en una de las laderas del embalse, la cual fue sellada de inmediato; además, se delimitó y consolidó toda la zona afectada. Estas tareas de mantenimiento fueron financiadas tanto por el Ministerio de Medio Ambiente como por la propia Confederación. En 2009, la Confederación adjudicó las obras de dragado del embalse con el objetivo de aumentar ligeramente su capacidad, así como realizar reparaciones en el desagüe de fondo de la presa y mejorar sus accesos.

Figura 3. Presa de Beniarrés. https://www.iagua.es/data/infraestructuras/presas/beniarres
Figura 4. Embalse de Beniarrés. Imagen: V. Yepes (2024)
Figura 5. Fausto Elío Torres. https://www.chj.es/es-es/ciudadano/publicaciones/

Aprovechamos este artículo para resaltar la figura de Fausto Elío Torres (Madrid, 1878-1958), redactor de la primera fase del proyecto de la presa de Beniarrés, aunque no sea esta la obra más importante de este ingeniero. Proyectó (1911) y ejecutó obras de mejora en el embalse de Almansa, redactó el anteproyecto de la presa de Benagéber (1920), embalse de Domeño (1928). En 1930 concluía el proyecto de la presa de Benagéber, del cual el ingeniero se sentía singularmente satisfecho. Era, sin duda, uno de los proyectos sobre el que más había reflexionado durante los años vividos al frente de la zona 2ª de la División. La actividad de Fausto Elío está bien documentada entre 1906 y 1931 en Alzira, Albalat, Polinyà, Riola, Sueca y Carcaixent, con varias decenas de proyectos, obras y liquidaciones.

Fausto Elío Torres pertenecía a una familia de ingenieros de Caminos. Después de una breve experiencia como ingeniero subalterno en las Jefaturas Provinciales de Obras Públicas de Tarragona y Valencia, el 1 de febrero de 1906 asumió la responsabilidad de la 2ª zona (cuencas del Turia y Júcar) en la División de Trabajos Hidráulicos del Júcar, posición que ocupó hasta finales de 1931. El 21 de noviembre de 1932 fue designado ingeniero-director de las obras de regulación del Júcar y del Turia. Para fines de 1934, ocupaba el cargo de ingeniero-director de la Confederación Hidrográfica del Júcar. Tras la Guerra Civil en Valencia, el 29 de marzo de 1940 fue designado como Jefe de Aguas de la Delegación de Servicios Hidráulicos del Júcar. Finalmente, concluyó su carrera profesional en Madrid como consejero (marzo de 1942) y presidente (marzo de 1948) del Consejo de Obras Públicas.

Formaba parte de la generación de ingenieros que ingresaron en las Divisiones Hidráulicas a principios del siglo XX y se dedicaron a ellas durante dos o tres décadas. Esta generación, personificada por Manuel Lorenzo Pardo en la cuenca del Ebro, dirigió la política hidráulica del regeneracionismo y, especialmente, contribuyó con su experiencia a las bases técnicas del Plan Nacional de Obras Hidráulicas (1933). Al evaluar las trayectorias profesionales de los ingenieros que se unieron a las Confederaciones en la primera década del siglo XX, se comprende mejor el Plan de 1933 como un proyecto hidráulico que incorpora valiosas contribuciones técnicas de algunos de ellos.

Os dejo a continuación el proyecto de TYPSA de adecuación de la presa de Beniarrés (2023). Tras más de seis décadas de servicio, necesita mejoras de seguridad hidrológica. Se propone un aliviadero de emergencia para afrontar caudales extremos, dado que el actual resulta insuficiente según criterios actuales.

Descargar (PDF, 1MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

El puente de Murillo de Gállego

Figura 1. Antiguo puente de Murillo de Gállego. Imagen: V. Yepes (2024)

Los dos puentes, en la comarca de La Hoya de Huesca, suponen el retrato de cómo un río es capaz de arruinar un puente. Ambas estructuras están ubicadas en las proximidades del pueblo de Murillo de Gállego, en la comarca de La Hoya de Huesca, aunque geográficamente pertenecen a la provincia de Zaragoza. Se accede a ellos a través de la carretera autonómica A-132, que conecta Huesca con Puente la Reina de Jaca. Estas estructuras se sitúan a pocos metros antes de llegar al punto kilométrico 36 en dirección ascendente.

El puente actual, de principios de la década de los años 40 del siglo XX, se alza a pocos metros del antiguo (Figura 2), que debió de inaugurarse sobre el año 1898. Aunque parcialmente intacto, este último aún se erige en algunos tramos, evocando la grandeza y la belleza que alguna vez poseyó. Se construyó en hormigón en masa revestido por una excelente cantería, de talla muy regular. Destacan sus cuatro arcos apuntados u ojivales, que aún se mantienen en pie en su mayoría, con la excepción de un tramo de estructura metálica y plano que conectaba ambas orillas. Fue víctima de una crecida en agosto de 1942, cuando las aguas alcanzaron una altura superior a los 7,5 metros, tres más que la mayor riada registrada en 1900. Se trataba de una estructura mixta. En efecto, en la Figura 2 se puede ver que el vano central del puente se salvaba con una viga metálica en celosía inferior compuesta por barras diagonales entrecruzadas que trazaban una retícula reforzada a su vez por barras verticales, según el sistema Howe, muy aplicado a finales del XIX y principios del XX.

Figura 2. Puente viejo sobre 1940. https://loboquirce.blogspot.com/2016/06/puentes-de-murillo-de-gallego-huesca.html

En aquel entonces, se evaluó el emplazamiento más idóneo para la construcción del puente que lo reemplazaría, apenas a 150 metros río abajo. El puente actual, construido en hormigón y con tablero plano, tiene una longitud aproximada de 64 metros y una anchura de calzada, junto con los pretiles, de 9,60 metros. Está diseñado en una disposición diagonal con respecto al curso del río. Destaca por un gran arco central de tipo parabólico, cuyos tímpanos se aligeran con seis arquillos a cada lado. Además, presenta arcos de medio punto en los extremos (cuatro en el margen derecho y dos en el izquierdo), los cuales se elevan considerablemente sobre el cauce. En cada extremo, se encuentran estribos robustos revestidos de piedra caliza. El pretil, también construido en hormigón y contemporáneo al resto del puente, exhibe una serie continua de huecos cajeados en su frente.

Este nuevo puente, además de soportar un considerable tráfico vehicular, se utiliza para la práctica del puenting, una actividad que se suma al rafting, senderismo y ciclismo de montaña, ofreciendo a la región un paisaje de aventura y emociones. A 1,5 kilómetros del casco urbano de la localidad se encuentra el puente sobre el río Gállego en la carretera A-132, desde donde se realiza un salto de 25 metros de altura hasta casi rozar el agua.

Figura 3. Actual puente de Murillo de Gállego. Imagen: V. Yepes (2024)

Os dejo un vídeo sobre este emplazamiento y otro sobre la actividad de puenting.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

Severino Bello y la Presa de La Peña (Huesca)

Figura 1. Presa de La Peña. Imagen: V. Yepes (2024)

La presa de La Peña fue proyectada por el ingeniero Severino Bello Poëyusan, habiéndose terminado las obras el 24 de julio de 1913. Su tipología es de arco gravedad, con una altura de 61 m desde cimientos, con una longitud de coronación de 111,70 m, siendo la capacidad de las aguas embalsadas de 15 hm³. La presa, que recoge las aguas del río Gállego, se sitúa en la Hoya de Huesca, dentro del término municipal de Las Peñas de Riglos. Este río, después de recoger las aguas del Pirineo en el extenso Valle de Tena, atraviesa el estrecho de Biescas (donde, sesenta años después, se construiría la presa de Búbal) y fluye hacia Sabiñánigo. El vaso del embalse está situado sobre las margas blandas e impermeables. Los cimientos de la presa se anclan en las calizas, que aunque son resistentes, presentan el problema de la karstificación. La presa se encuentra en explotación, siendo su titular el Sindicato de Riegos Pantano La Peña.

Severino Bello (1866 – 1940), nacido en Madrid, fue un destacado ingeniero español. Realizó su bachillerato en las Escuelas Pías de San Fernando y se graduó como Ingeniero de Caminos en 1889. Trabajó en Huesca, donde diseñó un salto hidroeléctrico en el río Gállego, y luego dirigió las obras de la presa de La Peña. En 1913 organizó el Primer Congreso Nacional de Riegos en Zaragoza, recibiendo la Gran Cruz del Mérito Agrícola. Más tarde, en 1915, supervisó los Riegos del Alto Aragón. Se destacó por su labor en el Canal de Isabel II y en proyectos de abastecimiento de agua en Bilbao. Fue presidente del Consejo Nacional de la Energía en 1928. Se casó en 1900 y tuvo siete hijos, uno de ellos Pepín Bello, conocido por su relación con Buñuel, Lorca y Dalí. Jubilado en 1933, su legado técnico y familiar perdura.

Figura 2.
Figura 2. Presa de la Peña, de arco gravedad. Imagen: V. Yepes (2024)

Para mitigar caudales estimados en 2900 m³/s, que elevaban el nivel del río hasta 20 m por encima del nivel normal, Bello implementó medidas adicionales, además de la tradicional galería inferior de limpieza, hoy en desuso. Dispuso dos desagües de fondo, cada uno con capacidad para 16 m³/s, en ambas orillas, junto con cuatro tomas superiores de 4 m³/s cada una, ubicadas en la margen izquierda y agrupadas. Estas últimas se canalizan a través de un túnel hasta un conducto de desagüe escarpado excavado en la roca, que lo dirige hacia la presa, donde el agua cae muy cerca de su base.

Siguiendo las normativas vigentes en ese entonces, se decidió separar el aliviadero del muro principal y ubicarlo en un túnel apartado de la estructura principal. Este sistema consta de diez túneles paralelos, cada uno controlado por compuertas basculantes automáticas de alzas móviles, dispuestas en línea. Cada compuerta tiene la capacidad de desaguar 30 m³/s y se activa conforme sea necesario. En aquel tiempo, la construcción de nueve túneles más pequeños se consideraba más manejable que la de uno o dos de mayor tamaño. La presión del agua, al alcanzar un nivel predefinido, supera la resistencia de los contrapesos, provocando el movimiento de las compuertas. Cada compuerta está equilibrada con contrapesos a ambos lados, conectados mediante bielas de acero, que se distribuyen simétricamente a lo largo de la línea, creando una estructura similar a un rastrillo plateado que se adhiere a la ladera.

Figura 3. Túnel del embalse de La Peña. Imagen: V. Yepes (2024)

La construcción de la presa se llevó a cabo utilizando mampostería revestida de grandes sillares meticulosamente labrados, salvo en áreas críticas como los cierres de las galerías, que se realizaron en hormigón armado recubierto de fundición. Las compuertas, fabricadas en fundición con todas sus partes mecánicas de bronce, aún están en uso, salvo los elementos motrices que fueron reemplazados alrededor de 1998, así como las compuertas automáticas del aliviadero. Las sólidas barandillas de tubo de hierro son un ejemplo representativo de la calidad de los materiales utilizados en la presa, la cual fue diseñada para una operación y mantenimiento cómodos, siguiendo el estilo de las obras hidráulicas realizadas durante esa época en el Canal de Isabel II.

En esta ubicación, destaca el túnel del embalse de La Peña, con una longitud de 47 m, excavado en caliza y datado a principios del siglo XX, siendo construido simultáneamente con el embalse de La Peña, que se inauguró en 1913. Durante gran parte del siglo pasado, este túnel formaba parte de la antigua carretera de Tarragona a San Sebastián (N-240), la vía principal de acceso al Pirineo central aragonés. Al norte del túnel, comienza un puente de celosía metálica que atraviesa el cuerpo del embalse, mientras que al sur se encuentra un pequeño apartadero que permite estacionar y visitar la imponente y antigua presa de tipo arco-gravedad construida con sillares de piedra caliza. Además, al oeste del túnel se sitúan otros diez túneles sobredimensionados, con longitudes entre 220,5 y 244 m, que funcionan como aliviaderos del embalse, con una capacidad sorprendente de 2900 m³/s. Es importante mencionar que el puente, el túnel y el embalse fueron construidos simultáneamente. En la actualidad, estas dos infraestructuras de comunicación se han vuelto estrechas y presentan algunos problemas de circulación.

Figura 4. Puente de celosía metálica del embalse de La Peña. Imagen: V. Yepes (2024)

Referencias:

  • Aguiló, Miguel; 2002. La enjundia de las presas españolas. ACS, Madrid, p.200-202.
  • Bello Poeyusan, Severino; 1914. Coste de las obras hidráulicas en España. En: I Congreso Nacional de Riegos, Zaragoza. 2 al 6 de octubre de 1913. G. Casañal, Zaragoza, 1914: tomo II, L1-L126, p.57L.
  • Noticiero; 1908. Pantano de la Peña: fundación de las ataguías por aire comprimido. Revista de Obras Públicas, 1908, 56, tomo I (1730): 553-555.
  • Noticiero; 1910. Un triunfo de la ingeniería: el pantano de la Peña y Severino Bello. Revista de Obras Públicas, 1910, 58, tomo I (1821): 389-395.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nuestro proyecto de aerogeneradores en el Anuario InfoRUVID 2023

Es un placer compartir la noticia de que uno de mis proyectos ha sido seleccionado para su inclusión en la sección TECNOLOGÍA de nuestro Anuario InfoRUVID 2023, donde se presentan algunas de las noticias de investigación más relevantes que tuvieron lugar durante el año 2023 y que ya fueron recogidas en alguna de las ediciones mensuales del boletín digital InfoRUVID.

Tanto el boletín como el anuario son editados por la Red de Universidades Valencianas para el fomento de la I+D+i (RUVID) para visibilizar y poner en valor el trabajo investigador que se desarrolla en las universidades y el CSIC de la Comunitat Valenciana y del cual nos sentimos muy orgullosos.

Accede a la versión web del Anuario InfoRUVID 2023 en https://bit.ly/AnuarioInfoRUVID2023, donde podrás consultarlo online o descargarlo en pdf, tanto la versión completa como cada una de sus secciones por separado.

Asimismo, te invitamos a que lo compartas con todas aquellas personas a las que consideres que les podría interesar. ¡Difundamos entre todos el talento de nuestras universidades!

Vibradores externos para encofrados de hormigón

Figura 1. Vibrador eléctrico externo. https://beka.cl/ar26-vibrador-externo-wacker-neuson

La compactación del hormigón mediante vibración externa se lleva a cabo transmitiendo la vibración al hormigón a través del encofrado o molde que lo contiene. El propósito de expulsar burbujas para obtener la mayor compacidad posible en el hormigón. Se puede adaptar a propósito al dispositivo vibratorio incorporado. El vibrador externo contribuye a compactar de manera uniforme toda la masa de hormigón, garantizando un proceso completo en lugar de focalizarse únicamente en algunas áreas. Es especialmente eficaz en zonas de difícil acceso, como zonas densamente armadas, ya que la vibración se transmite a través de todo el encofrado de hormigón y, consecuentemente, al hormigón fresco en su totalidad.

Los vibradores adosados al encofrado son menos eficaces que los vibradores internos, ya que parte de la energía aplicada es absorbida por los moldes; sin embargo, resultan muy útiles para la compactación en ciertos elementos estructurales, como muros poco inclinados y columnas muy reforzadas, donde es difícil o imposible utilizar vibradores de inmersión. En tales situaciones, se utilizan pequeñas unidades portátiles que se aseguran de forma rígida al encofrado.

Su ámbito de aplicación más común es en la prefabricación, donde generalmente se utilizan hormigones de resistencias secas. Ante la vibración del encofrado, que debe ser principalmente metálico, la masa de hormigón responde en función de su granulometría y de la cantidad de agua presente. El mortero permite pequeños movimientos de acomodo de los agregados gruesos, pero limita los desplazamientos excesivos. Si la viscosidad del mortero no es la adecuada, existe el riesgo de segregación del agregado grueso. Al finalizar la acción del vibrado externo, aparece una capa brillante y húmeda sobre la superficie del hormigón.

Para llevar a cabo esta técnica de compactación, se emplean vibradores de encofrado que se fijan firmemente a soportes sólidos en el exterior del encofrado. Esto implica el uso de encofrados robustos, preferiblemente metálicos, y asegurados con abrazaderas o rigidizadores para evitar movimientos durante el proceso de vibración. En términos generales, una placa de acero con un espesor de 5 a 10 mm suele ser adecuada cuando se cuenta con una adecuada rigidización mediante nervios transversales. Estos vibradores se utilizan principalmente en prefabricados de gran tamaño con encofrados adecuadamente reforzados, y ocasionalmente en obras “in situ” en áreas donde los vibradores de inmersión no son viables o cuando el hormigón está demasiado seco. Para encofrados verticales, es aconsejable utilizar apoyos de neopreno u otros elastómeros para evitar la transmisión de vibraciones a la base o al terreno. Esto ayuda a prevenir la formación de aberturas en las juntas que podrían ocasionar pérdidas de lechada.

Generalmente, se utilizan para secciones de hormigón con un espesor que no excede los 30 cm. Cuando el espesor es mayor, se recomienda complementar la vibración en el encofrado con la utilización de vibradores internos, a menos que se trate de elementos prefabricados, donde a veces se han obtenido resultados satisfactorios para secciones de hasta 60 cm de espesor.

Figura 2. Disposición de vibradores externos de encofrado. https://web.icpa.org.ar/wp-content/uploads/2019/04/Compactacion-del-hormigon-jul2016.pdf

Tipos de vibradores externos de encofrado

Los vibradores externos de encofrado más comunes se dividen en dos tipos principales: rotatorios y de reciprocidad.

  • Vibradores rotatorios: son equipos que generan principalmente un movimiento armónico simple con componentes tanto en el plano del encofrado como ortogonal al mismo. Normalmente, operan con frecuencias entre 6.000 y 12.000 r.p.m. Al igual que los vibradores internos, pueden ser neumáticos, hidráulicos o eléctricos. En los dos primeros, la fuerza centrífuga se logra mediante el giro de una masa excéntrica, mientras que en los eléctricos, las masas excéntricas están ubicadas en cada uno de los árboles del motor.
  • Vibradores de reciprocidad: son equipos que operan mediante un pistón que se acelera en una dirección hasta detenerse al impactar contra una placa de acero, para luego ser acelerado en dirección opuesta. Por lo general, son de tipo neumático y su frecuencia oscila entre 1.000 y 5.000 r.p.m. Estos sistemas generan impulsos que actúan perpendicularmente al encofrado.

Los vibradores eléctricos externos ofrecen una alternativa fiable a los dispositivos de vibración neumática, abordando eficazmente dos desafíos principales en aplicaciones de encofrado de hormigón: el ruido y el consumo de energía.

Los vibradores neumáticos pueden generar un nivel de ruido considerable, alcanzando hasta 105 dB(A) incluso en condiciones de vacío. Esto implica que los usuarios deben tomar precauciones cuando el nivel de ruido en el lugar de trabajo excede los 90 dB(A). Por contra, los vibradores eléctricos mantienen su nivel de ruido constantemente por debajo de los 80 dB(A), eliminando la necesidad de tomar medidas adicionales.

Es importante considerar que cuando no hay operarios presentes cerca de los vibradores, la presión sonora se reduce en 3 dB(A) al duplicar la distancia a la fuente. Por lo tanto, una medición estándar de presión acústica de 105 dB(A) tomada a una distancia de 1 m sigue siendo lo suficientemente alta como para superar los 90 dB(A) en un radio de acción de 32 m.

El uso del encofrado conlleva un notable aumento en el nivel de ruido, especialmente al inicio del vertido del hormigón, donde se pueden alcanzar fácilmente los 120 dB(A). Este efecto también se observa en los vibradores eléctricos, aunque la diferencia inicial mínima es de al menos 15 dB(A). Sin embargo, es esencial recordar que los estándares establecidos por el R.D. 286/2006, de 10 de marzo, sobre la protección de la salud y seguridad de los trabajadores frente a los riesgos asociados con la exposición al ruido, se refieren al nivel diario equivalente. En consecuencia, es necesario evaluar el tiempo total de exposición del operario al ruido en lugar de simplemente considerar los niveles instantáneos medidos, limitando esta exposición a un máximo semanal. Por ejemplo, una exposición de 15 minutos diarios a un nivel de 120 dB(A) resultaría en un nivel de presión sonora equivalente de 105 dB(A). Esto implica que el nivel de 90 dB(A) se superaría en un radio de acción de 32 m.

En cuanto al consumo de energía de los equipos, aunque cada situación requiere un análisis individualizado, la realidad es que la relación entre la solución eléctrica y la neumática es de 1 a 20. Por lo tanto, el diferencial de costos entre ambas soluciones se amortiza en menos de un año en condiciones normales de trabajo. De hecho, el uso de un sistema de vibradores eléctricos se vuelve rentable en un plazo máximo de 5 años, gracias al ahorro de energía al cambiar de la solución neumática a la eléctrica. Los defensores de los vibradores neumáticos han argumentado a su favor, afirmando que estos pueden permanecer instalados en los moldes durante el curado con vapor, mientras que los eléctricos no. No obstante, los vibradores eléctricos actuales se diseñan para que puedan operar en atmósferas de vapor, eliminando la necesidad de desmontarlos durante el proceso de curado.

Consideraciones sobre los moldes

El diseño del molde no solo influye en la carga dinámica soportada por la acción de los vibradores, sino que también impacta en su durabilidad y eficiencia. Desde el punto de vista de la resistencia de los moldes, es crucial evitar que la frecuencia de excitación de los vibradores coincida con la frecuencia propia del molde, lo que ayuda a minimizar la carga dinámica inducida por la vibración en la estructura metálica.

La relación entre la frecuencia de los vibradores y la frecuencia propia del molde determina la amplificación dinámica experimentada por la estructura. La frecuencia de funcionamiento debe superar la frecuencia propia del molde, con una relación que exceda el valor de 3 para alcanzar factores de amplificación por debajo de 0,125. El límite inferior de esta frecuencia propia está determinado por la resistencia del molde.

Ubicación de los vibradores

Es esencial considerar que los puntos de anclaje de los vibradores en la estructura del molde deben coincidir con los rigidizadores, o sobre dispositivos especiales, evitando situarlos sobre la chapa del molde. De lo contrario, las tensiones localizadas que se pueden generar cerca del vibrador podrían provocar el colapso del encofrado. Por lo tanto, la disposición de los vibradores está determinada principalmente por la ubicación y distribución de los rigidizadores. Los vibradores se instalan con su eje perpendicular al eje de mayor inercia de los refuerzos del molde. En encofrados verticales, la distancia entre vibradores se encuentra comprendida entre 1,5 y 2,5 m. Además, al emplear vibradores eléctricos en encofrados de membrana, es importante tomar las precauciones necesarias para prevenir el sobrecalentamiento y el riesgo de incendio.

Selección de los vibradores

La selección de los vibradores implica considerar varios parámetros:

  • Amplitud: Influye en la compactación y no debe ser inferior a 0,04 mm.
  • Aceleración: La compactación efectiva del hormigón ocurre dentro del rango de 0,5 a 3 g; niveles superiores no mejoran el proceso. Está relacionada con la fuerza centrífuga generada por el vibrador.
  • Frecuencia: El alcance de la vibración es proporcional a la frecuencia.

Teóricamente, se deberían combinar estos tres parámetros para obtener una amplitud alta, una fuerza centrífuga elevada y una frecuencia entre 6.000 y 9.000 r.p.m. Sin embargo, en la práctica, es necesario encontrar un compromiso. Por ejemplo, dado que la amplitud es inversamente proporcional a la frecuencia, no conviene seleccionar vibradores con una frecuencia excesivamente alta, pues esto limitaría la amplitud.

Para abordar esta dificultad, existen equipos con una función de doble frecuencia. Este vibrador de masa móvil se conecta a través de un variador de velocidad electrónico, permitiendo alcanzar una frecuencia de 3.000 r.p.m., lo que implica una amplitud elevada que facilita el llenado de los moldes y su rápida compactación. Al activar el vibrador en sentido opuesto, el variador ajusta la frecuencia a 6.000 r.p.m., reduciendo así la amplitud. Este proceso de “revibrado” permite redistribuir los áridos más finos en el hormigón y mejorar la calidad superficial del producto final.

En el caso de vibradores externos para encofrados verticales, para hormigones de consistencia seca se prefuere una frecuencia inferior a 6.000 r.p.m., una amplitud mayor a 0,13 mm y una aceleración transmitida a los encofrados verticales de 1 a 2 g. En el caso de consistencia plástica, la frecuencia será mayor a 6.000 r.p.m., la amplitud menor a 0,13 mm y la aceleración de 3 a 5 g.

Consideraciones en el uso de vibradores externos de encofrado

Se destacan los siguientes puntos:

  • Se debe verificar que todas las juntas, tanto dentro como entre los tableros, estén bien ajustadas y selladas. El encofrado tiende a moverse más que cuando se utilizan atizadores, lo que podría permitir que la lechada se filtre por la más mínima de las aberturas.
  • Es importante asegurarse de que los vibradores estén firmemente sujetos o atornillados a los soportes y se supervisen constantemente durante su uso. De lo contrario, las vibraciones no se transmitirán completamente al encofrado y al hormigón.
  • El hormigón se deberá verter en pequeñas cantidades dentro de las secciones para lograr capas uniformes de aproximadamente 150 mm de espesor. Esto ayuda a evitar la incorporación de aire a medida que aumenta la carga.
  • Todos los accesorios deben estar bajo observación constante, preferiblemente atornillados en lugar de clavados, especialmente las tuercas de los pernos, que pueden aflojarse fácilmente debido a la vibración intensa. También se debe monitorear cualquier pérdida de lechada de hormigón y sellar las fugas siempre que sea posible.
  • Cuando sea posible, los 600 mm superiores del hormigón en un muro o una columna se compactarán utilizando un atizador; si esto no es factible, se compactará manualmente o mediante paleo hacia abajo sobre la cara del encofrado. Los vibradores externos pueden crear espacios entre el encofrado y el hormigón; mientras que en las capas inferiores estos espacios se cierran gracias al peso de las capas superiores de hormigón, en la última capa pueden permanecer abiertos, lo que podría deformar la superficie.

Os dejo a continuación un artículo sobre la prevención de daños por el uso de vibradores externos en piezas prefabricadas.

Descargar (PDF, 697KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València. Ref. 477 (en prensa)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón precolocado: Prepakt y Colcrete

Figura 1. Hormigón precolocado. https://mvalarezo.files.wordpress.com/2014/01/fierro_valarezo.pdf

El hormigón precolocado, también llamado hormigón inyectado, o de “empaquetado previo”, es un procedimiento de construcción implica la disposición inicial de áridos gruesos en el encofrado o molde previsto y el posterior relleno de sus huecos. Para obtener un hormigón de calidad, es fundamental asegurar el completo relleno de todos los espacios, evitar la separación debido a la retracción del árido precolocado, prevenir la segregación y garantizar la retención adecuada de la humedad en la mezcla. Además, se requiere una fluidez óptima que evite obstrucciones en los conductos de inyección.

En la última etapa de la década de los cuarenta del siglo pasado, se alcanzó un hito significativo con la introducción de morteros de tipo coloidal, que lograron una dispersión efectiva de las partículas en la fase líquida y una estabilidad óptima tras la inyección. Estas suspensiones coloidales se lograban mediante métodos químicos, como en el caso de Prepakt, o bien, mediante procesos mecánicos, como los empleados en Colcrete o Colgrout.

En el procedimiento Colcrete, el mortero se sometía a un vigoroso batido en una máquina para laminarlo, evitando la formación de racimos de partículas de cemento y logrando una suspensión uniforme. Por otro lado, en el hormigón Prepakt, el mortero estaba compuesto por cinco elementos: cemento, arena, agua, un agente químico y un polvo mineral o fíller con características fisicoquímicas específicas. El agente químico se utilizaba en cantidades mínimas para conferir al mortero una suspensión coloidal altamente fluida, inducir una ligera incorporación de aire y reducir la retracción. El fíller, en proporciones variables entre el 30% y el 60%, reemplazaba al cemento y presentaba un alto contenido de sílice amorfa, la cual reaccionaba con la cal liberada durante el proceso de fraguado. Esta sustitución reducía la retracción y disminuía el desprendimiento de calor durante el fraguado, aunque también resultaba en una reducción de la resistencia inicial, mientras que la resistencia final permanecía inalterada. Además, incrementaba la resistencia a las aguas agresivas. La característica coloidal de la inyección facilitaba el hormigonado bajo el agua, sin ocasionar problemas de disolución apreciable.

El hormigón Prepakt exhibe una serie de características distintivas: presenta una resistencia final equiparable a la del hormigón convencional, al tiempo que permite un ahorro de cemento notable, oscilando entre el 30% y el 60%. Además, destaca por su elevada impermeabilidad y su mínima retracción endógena, llegando incluso a ser nula en algunos casos. Su retracción exógena es inferior al 50% de la convencional, y su menor contenido de cemento resulta en una disminución significativa del desprendimiento de calor durante el proceso de hidratación. Asimismo, exhibe una excelente adherencia tanto a superficies de hormigón antiguas como a rocas, y muestra una excelente resistencia a los ciclos de hielo y deshielo. En particular, demuestra una alta resistencia a las aguas agresivas, incluida el agua marina.

Durante la década de los 40 del siglo XX, el hormigón Prepakt fue empleado en las labores de reparación de los túneles-aliviaderos de la presa Hoover, en Estados Unidos. La experiencia acumulada en los años posteriores, especialmente en proyectos de presas, consolidó al Prepakt como material de elección para la construcción de estas estructuras, superando incluso su aplicación en obras marítimas. En España, durante la década de los 60, este hormigón fue utilizado en la presa bóveda de Matalavilla y en la presa de gravedad de Tiétar, específicamente en la inyección de las juntas.

A continuación, se describe el procedimiento constructivo de este tipo de hormigón inyectado. El árido grueso, exento de arena, se asienta, si es posible, generalmente mediante vibradores. A continuación, los espacios vacíos entre los áridos se rellena con una inyección de mortero de arena y cemento, de gran docilidad y plasticidad, que une los granos gruesos en contacto. Esta inyección se puede realizarse tanto en el aire como en el agua, siempre procediendo de abajo hacia arriba. Para ello, se instalan tubos entre los encofrados, los cuales se van retirando conforme la superficie de la inyección asciende. A medida que el mortero fluya hacia la superficie, se controlarán las posibles fugas para garantizar que toda la masa quede rellenada de manera uniforme con el mortero de inyección.

A medida que el mortero sube, desplaza al agua, quedando una clara línea de separación entre ambos, indicando que el primero no se diluye y que la mezcla se conserva sin variación alguna. La compacidad del árido grueso debe ser la mayor posible, y el mortero o papilla de inyección ha de tener unas características especiales de plasticidad para rellenar con facilidad todos los huecos. Para ello se prepara este mortero con fluidificantes. De esta manera, se logra un hormigón similar al convencional, pero mucho más compacto y con una retracción significativamente menor, aproximadamente la mitad.

El árido grueso, que se dispone antes del proceso, puede variar en tamaño desde los 6 hasta los 10 mm, o incluso más si es necesario. Ya sea de origen natural o producto de trituración, la textura y forma de sus componentes no afectan la facilidad de manipulación ni las propiedades finales. Esta disposición previa del árido genera un entramado rígido entre sus elementos, ya que se establece un contacto puntual entre ellos. Este entramado ayuda a evitar la retracción del hormigón una vez que el mortero lo envuelve. Además, el porcentaje de huecos en el árido es considerablemente menor que en el hormigón convencional, aunque el módulo de elasticidad es ligeramente mayor que el del convencional debido a que las propiedades del árido grueso tienen mayor efecto en el hormigón precolocado.

Inicialmente, se empezó a utilizar en las reparaciones de estructuras de hormigón debido a su extraordinaria capacidad de adherencia con hormigones más antiguos, así como donde se precisa un hormigón con baja retracción. Conforme se fueron destacando sus cualidades, su aplicación se amplió a nuevas construcciones, particularmente en pilares de puentes, túneles y diques marítimos. Asimismo, también se han usado en estructuras muy armadas por sismo u otras razones.

Este método es especialmente útil en situaciones donde el acceso al área encofrada es complicado, en lugares donde hay corrientes de agua fuertes que atraviesan la zona de vertido del hormigón, o en trabajos sujetos a la acción de las olas, donde el uso de métodos tradicionales de hormigonado bajo el agua está prohibido. Otros trabajos donde se usa es el recalce de cimentaciones o el relleno de cavidades de cimentación, que son poco comunes en la construcción convencional.

Para la inyección del mortero, se emplean tuberías que se insertan en la masa de árido grueso. Normalmente, tienen un diámetro de 20 a 30 mm para el hormigón estructural y de hasta 40 mm para el hormigón en masa. Estas tuberías deben colocarse verticalmente dentro de los 150 mm desde la base de la masa de árido, aunque también pueden insertarse horizontalmente a través del encofrado en distintos niveles.

Es una técnica delicada, por lo que es conveniente emplear procedimientos ya experimentados. En cualquier caso, requiere de mano de obra altamente especializada, especialmente dado que en muchas ocasiones resulta imposible inspeccionar el trabajo.

Una descripción con mayor detalle del hormigón precolocado se puede encontrar en la norma ACI 304.

Os dejo un artículo que creo os puede resultar de interés.

Descargar (PDF, 495KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas de colocación del hormigón bajo el agua

Figura 1. Colocación de hormigón sumergido con tubo tremie. https://tecnologiadelhormigonarmado.blogspot.com/p/hormigon-armado-en-ambientes-marinos.html

El hormigón sumergido o bajo el agua se caracteriza por emplearse en estructuras que deben estar continuamente en contacto con este líquido. La construcción de cimentaciones bajo el agua con hormigón no es una novedad. Se encuentran referencias de este método en el tratado De Arquitectura de Vitruvio (88-26 a. C.). Actualmente, este procedimiento se utiliza con frecuencia, especialmente en la cimentación de obras marítimas, sin embargo, su aplicación debe ser precisa y cuidadosa. Antes de decidirse por esta forma de hormigonar, es siempre preferible tratar de efectuar el hormigonado en seco, utilizado uno u otro de los diversos procedimientos existentes para agotar el agua, o, incluso, resolver la construcción utilizando elementos prefabricados.

Un hormigón sumergido debe tener características especiales en sus componentes, como son el tipo de árido, el agua de amasado, el cemento y los aditivos. Este tipo de hormigón debe mantenerse inerte a las condiciones del ambiente (el cemento y los áridos no deben reaccionar con el agua), será impermeable para evitar la corrosión en el caso de que sea hormigón armado y cumplirá con la resistencia requerida.

En primer lugar, el hormigón utilizado debe tener una dosificación más rica (sobredosis de cemento de un 25 %), con cementos de alto poder aglutinante que garanticen una buena compacidad bajo el agua. Es posible mejorar su capacidad aglutinante añadiendo aireantes, así como plastificantes para lograr la docilidad deseada sin necesidad de aumentar el contenido de agua (asiento en cono de Abrams de 150 mm). Cuando se trabaja en aguas en movimiento, puede ser necesario recurrir a aceleradores de fraguado, algunos de los cuales están diseñados específicamente para evitar la penetración del agua en el hormigón.

Para sumergir hormigón de manera efectiva, es fundamental garantizar su resistencia al lavado durante su colocación, lo cual requiere garantizar la adecuada consistencia y homogeneidad de la mezcla. Sin embargo, este objetivo enfrenta desafíos debido a dos factores adversos. En primer lugar, el movimiento del agua, ya sea por las corrientes fluviales o las mareas marinas, puede erosionar los hormigones, arrastrando parte de su cemento y generando lechadas. Estas lechadas dificultan la adhesión entre capas, aumentando la permeabilidad del conjunto y debilitando los morteros, lo que resulta en una disminución de su resistencia. Además, la disparidad en la densidad de los componentes del hormigón puede provocar su separación debido a la fluidez de la mezcla. Los áridos más pesados tienden a acumularse en el fondo y son más propensos al deslavado, ya que quedan protegidos únicamente por una delgada película de aglomerante.

Todo lo anterior implica minimizar al máximo el contacto del hormigón con el agua durante su transporte, así como durante el proceso de vertido y extendido. Para lograrlo, se recurre habitualmente a técnicas como el método de talud en avance, el uso de cubas especializadas y la utilización de canaletas (tubo tremie). No obstante, también existen otros procedimientos como el bombeo directo del hormigón, el hormigón prepakt (inyección con un mortero de áridos gruesos colocados en un molde) o el uso de hormigón ensacado. A continuación se describen las técnicas habituales.

Procedimiento de talud en avance

Cuando el agua no supera los 0,80 m de profundidad, pueden sumergirse las masas de hormigón por el procedimiento llamado de talud, análogo al que se emplea para la ejecución de los terraplenes. Este método solo resulta efectivo en aguas poco profundas, generalmente con un espesor inferior a los 80 cm. La operación comienza depositando el hormigón en la región A, que se incorpora por su peso con la masa B en flujo, que progresa con un talud C, el único en contacto directo con el agua y susceptible al deslavado. Se requiere una vigilancia constante para evitar que el agua interfiera con este talud, donde pueden formarse suspensiones de lechada que no fraguan y que podrían generar superficies de deslizamiento y roturas en el macizo.

Figura 2. Hormigonado bajo el agua con talud de avance.

Después de cada interrupción, se limpia el talud utilizando cepillos de acero para descarnar la superficie y eliminar los excesos de lechada. Cuando el cimiento está rodeado por el terreno o por algún tipo de estructura, es necesario eliminar las lechadas que se filtran del hormigón, ya sea utilizando cubos o bombas. Asimismo, al unir una masa de hormigón ya fraguada con otras posteriores, también es necesario limpiar estas lechadas. Es importante destacar que la masa en avance no puede compactarse ni vibrarse. Durante períodos de aguas agitadas, como crecidas u oleajes, es necesario suspender los trabajos.

Procedimiento con cuba

Este método es adecuado para profundidades superiores a 0,80 m. El hormigón se transporta a través de una cuba completamente estanca, la cual desciende lentamente hacia el área a hormigonar mediante un cabrestante o una grúa. Una vez depositadas sobre el macizo, un buzo la abre, elevándola suavemente luego para permitir que el hormigón fluya en aguas tranquilas. La función de los buzos se limita a colocar la cuba sobre el área a hormigonar y abrir sus compuertas, luego envían la cuba a la superficie para repetir el proceso. Sin embargo, este procedimiento no es apropiado cuando se necesita verter hormigón en un encofrado de dimensiones reducidas, pues su movimiento ascendente y descendente puede provocar agitación en el agua, actuando como un pistón (Figura 3).

Figura 3. Cuba bajo el agua en un encofrado de dimensiones reducidas (Galabru, 1964). https://tecnologiadelhormigonarmado.blogspot.com/p/hormigon-armado-en-ambientes-marinos.html

Las cubas son estancas, diseñadas con paredes inclinadas para facilitar la salida del hormigón. Se abren en la parte inferior mediante sistemas hidráulicos o neumáticos. Además, cuentan con patas que aseguran su estabilidad al posarse sobre el terreno, permitiendo que las puertas pivoten libremente. La capacidad de las cubas varía generalmente de 0,20 a 1,00 m³.

Durante la operación, las cubas descargan su contenido primero en el fondo y luego sobre las capas previamente vertidas y aún frescas, evitando así el contacto directo del hormigón con el agua y logrando una adecuada trabazón. Para áreas extensas, se subdividen en secciones pequeñas, generalmente no mayores a 6×6 m, ya que el hormigón tiene un radio de extensión de unos 30 cm y las cubas no se abren a más de 30 cm de altura.

Una variante de este sistema, utilizada en obras con poco volumen de hormigón, implica el uso de bolsas de lona impermeabilizadas, que se bajan boca abajo, amarradas por el fondo y cerradas en la boca con un nudo, permitiendo su apertura manual. Estas bolsas tienen una capacidad que no supera los 0,10 m³.

El método de inmersión en cubas presenta ventajas como una operación sencilla y una rápida ejecución del hormigonado, resultando en hormigones de buena calidad con una notable trabazón. Además, no requiere más equipo especializado que el depósito para sumergir el hormigón.

Procedimiento con canaleta (tubo tremie)

La canaleta o vertedera, conocida como tubo-tolva o tubo tremie, consta de un tubo especial de acero rígido con un diámetro de 20 a 45 cm, asegurando que el hormigón se vierta directamente sobre otra masa de hormigón sin dejar una capa intermedia de lodos u otros materiales. Las paredes de la tubería deben ser lisas y contrapesadas para prevenir la flotación, especialmente si se utiliza una placa para sellar la boca de la tubería y esta se sumerge estando vacía. El tubo se sumerge con un tapón que se extrae (método de cierre de fondo) o se desplaza (tapón deslizante) al verter el hormigón. Para evitar la entrada de agua, el tubo debe mantenerse constantemente sumergido en el hormigón a una profundidad de 1,00 o 1,50 m bajo la superficie del material. Las velocidades ideales de elevación del hormigón oscilan entre 0,3 y 3 m/h. Es crucial mantener una colocación continua, ya que los retrasos pueden provocar el endurecimiento del hormigón, lo que dificultaría la reanudación del flujo. El hormigón debe ocupar automáticamente el espacio entre el tubo y el encofrado sin necesidad de mover el tubo horizontalmente. En caso de utilizar varios tubos, se recomienda mantener una separación de entre 3 y 5 m entre ellos.

Un puente grúa equipado con cabrestantes móviles sostiene estos tubos, lo que permite subirlos y bajarlos. Todo el montaje se encuentra instalado en un andamio con plataforma de servicio. En la parte superior del tubo, se encuentra una tolva o un embudo para verter el hormigón. Se utiliza una tolva cuando se realizan aportaciones intermitentes de hormigón, como en el caso del transporte por cubas. Se emplea un embudo cuando se realiza una aportación continua de hormigón, como en el caso del hormigón bombeado. En la Figura 4 se observa el método del desplazamiento, que puede obtenerse utilizando un carrito o suspendiendo el tubo por medio de una grúa.

Figura 4. Colocación sumergida: método del desplazamiento

Esta técnica se emplea en una variedad de aplicaciones, que incluyen hormigones sumergidos, estructuras submarinas, reparaciones de hormigones sumergidos, construcción y unión de secciones de túneles submarinos, pilotes para cimentaciones de puentes y plataformas mar adentro. Se utiliza especialmente cuando se busca obtener una calidad estructural muy alta. Se han llevado a cabo operaciones de hormigonado con éxito a profundidades de hasta 50 m. Este procedimiento consiste en verter el hormigón in situ mediante un tubo, cuyo extremo inferior permanece siempre sumergido en el hormigón fresco, lo que ayuda a prevenir lavados y segregaciones significativas.

El proceso de hormigonado con tubo tremie consta de tres etapas: el cebado del tubo, la formación del bulbo y el vertido del hormigón.

Figura 5. Etapas del proceso de hormigonado con tubo tremie
  • Cebado del tubo: Es fundamental llenar completamente el tubo con hormigón sin que entre en contacto con el agua circundante. Para lograr esto, existen varios métodos, desde el uso de aire comprimido hasta otros más simples. Uno de los métodos más directos implica dejar caer un tapón que actúe como sello hermético dentro del tubo, asegurando así que la columna de hormigón descienda gradualmente, evitando el contacto con el agua y reduciendo la posibilidad de segregación debido a la caída libre. Otra opción es utilizar una cámara inflable tipo pelota en lugar del tapón, que se recupera después de cada proceso de cebado.
  • Formación del bulbo: Bajo el peso de la columna de hormigón fresco, este se extiende gradualmente alrededor del tubo debido a la tensión superficial. Es importante que el extremo inferior del tubo no se eleve más de 30 cm desde el fondo para evitar la segregación y el lavado del hormigón. Posteriormente, debido a la resistencia ejercida en el fondo y en la masa, la superficie del hormigón adquiere una forma de cúpula. Con el tubo hundido a la profundidad deseada, se forma el bulbo en la base de esta cúpula (Figura 1).
  • Vertido: Se lleva a cabo desplazando el tubo mediante el cabestrante y el puente grúa. Para impedir la entrada de agua, el tubo debe estar siempre lleno, realizándose la carga de hormigón de manera regular y continua para garantizar que no se vacíe. El peso del hormigón dentro del tubo debe ser siempre mayor que la presión del agua en su base.

Las técnicas de colocación por tremie suelen emplearse para el bombeo directo bajo el agua, aunque presentan algunas diferencias menores. En este método, el flujo se genera mediante la presión de la bomba en lugar de depender de la gravedad. La dosificación del material debe permitir el bombeo y el flujo una vez que la tubería se retira. Se utilizan tuberías más pequeñas, con secciones flexibles para la porción que queda embebida en el hormigón. La acción de la bomba puede provocar movimientos laterales que crean una lechada en la superficie de contacto entre la tubería y el hormigón. En algunos casos, puede ser necesario instalar una válvula de escape cerca del punto más alto de la tubería para evitar un bloqueo debido al vacío.

Os dejo a continuación unos vídeos que, espero, os resulten de interés.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón al vacío

Figura 1. Hormigón al vacío. https://www.solitec.eu/2021/11/11/il-vacuum-concrete-una-tecnica-ancora-valida/

El hormigón al vacío (vacuum concrete, en inglés) es una técnica concebida por primera vez por Billner en Estados Unidos en 1935, aunque no entró en Europa la técnica hasta los años 50 del siglo pasado. Persigue mejorar la resistencia y durabilidad del material y que implica la eliminación del exceso de agua de hidratación del cemento mediante presión de vacío antes de que comience el fraguado del hormigón. Esta acción conlleva una notable disminución en la relación agua/cemento (a/c) efectiva, lo que conlleva una mejora significativa en el rendimiento del hormigón. Aunque la reacción química entre el cemento y el agua requiere una relación a/c inferior a 0,38 para una óptima resistencia, la relación empleada suele ser mayor para mejorar su manejabilidad, sirviendo esta agua adicional para lubricar los componentes del hormigón fresco. Este exceso de agua crea poros capilares en el hormigón que aumentan su permeabilidad y reducen su resistencia.

La tecnología del hormigón al vacío resuelve este dilema, permitiendo tanto la trabajabilidad como la alta resistencia. Utiliza una bomba de vacío para aspirar el exceso de agua después de colocar y compactar el hormigón, lo cual puede suponer extraer entre el 10 % y 25 % del agua y aumentar la resistencia a compresión entre un 20 % y un 40 %. Las resistencias a los 7 días con vacío son aproximadamente las mismas que las obtenidas a los 21 días. Esta técnica es efectiva para una variedad de aplicaciones como suelos industriales, aparcamientos y losas de puentes. Tras aplicar el vacío, es posible caminar sobre la losa sin dejar rastro alguno, lo que elimina la necesidad de esperar períodos de tiempo. Los componentes clave incluyen una bomba aspiradora, un separador de agua, una almohadilla de filtración y un vibrador de placa de solera, que trabajan en conjunto para controlar la cantidad de agua eliminada y garantizar la calidad del hormigón resultante.

El efecto del vacío no se limita únicamente a la eliminación del exceso de agua, sino que también contribuye a llenar posibles huecos mediante la presión atmosférica. El vacío se logra mediante una bomba capaz de generar una depresión de 0,7 a 0,8 atmósferas. La duración de la aplicación del vacío varía según la consistencia inicial y el espesor del hormigón empleado. En la práctica, para elementos delgados como losas, muros o tuberías, el tiempo de aplicación del vacío suele ser de 10 a 20 minutos, mientras que para elementos de mayor grosor puede extenderse hasta 40 minutos. La temperatura mínima requerida para este proceso con hormigón es de 10 °C. Sin embargo, no todos los tipos de hormigón son adecuados para aplicar el vacío. Existe el riesgo de bloqueo superficial, que se refiere a la congestión de finos en la superficie que puede impedir el desarrollo del proceso. Por esta razón, el contenido máximo de cemento se limita a 350 kg/m³.

En este procedimiento, el hormigón se vierte en encofrados con una cara perforada, y el exceso de agua se extrae por succión a través de las perforaciones mediante una bomba de vacío. Los encofrados especiales empleados en este proceso consisten en una delgada cámara de baja altura cuya superficie en contacto con el hormigón es permeable, ya sea mediante una rejilla metálica o un tejido de caucho perforado. Las otras caras de la cámara son impermeables, con excepción de unas aberturas estratégicamente ubicadas a través de las cuales se genera el vacío en su interior. Estas aberturas, por lo general, se encuentran en la cara inferior del encofrado. Este método confiere al hormigón una notable cohesión, lo que facilita un desencofrado rápido.

Figura 2. Deshidratación al vacío del hormigón. https://industrysurfer.com/blog-industrial/construccion/hormigon-al-vacio-tecnologia-equipamiento-ventajas/

En una masa de hormigón recién vertida en un encofrado, existe cierto nivel de presión, derivado de la carga del hormigón fresco por encima del nivel considerado y de la presión atmosférica. Esta presión se divide en dos componentes: una presión intergranular, sostenida por el armazón o esqueleto formado por los áridos, y una presión intersticial, sostenida por el líquido que ocupa los espacios vacíos, es decir, el agua en la que están suspendidas las partículas de cemento.

El principio del tratamiento radica en eliminar o, al menos, reducir significativamente la presión intersticial al comunicar la matriz fluida del hormigón fresco, a través de un filtro, con una fuente de vacío. Sin embargo, es importante destacar que la presión total en el hormigón no se ve alterada, dado que la aplicación del vacío no afecta ni a la masa de hormigón sobre el nivel considerado ni a la presión atmosférica externa.

En estas circunstancias, la primera componente, es decir, la presión intergranular, experimenta un aumento repentino, lo que provoca que el armazón rígido se vea obligado a soportar lo que previamente sostenía el líquido. Como resultado, el esqueleto se compacta en busca de un nuevo equilibrio, reduciendo así sus espacios intersticiales y expulsando el exceso de agua, que se desplaza entre los granos hacia el filtro. Esta contracción persiste hasta que los áridos alcanzan la máxima compacidad compatible con su granulometría, momento en el cual cesa la compactación. En el caso de un recipiente, se observa cómo la superficie libre del hormigón desciende algunos centímetros durante este proceso de contracción.

El hormigón al vacío ofrece una serie de ventajas significativas, como un aumento de su resistencia final, la posibilidad de retirar los encofrados de los muros de forma más temprana, así como la combinación de trabajabilidad y resistencia gracias a la deshidratación mediante vacío. Además, presenta una alta durabilidad y densidad, junto con una reducción notable en la permeabilidad y en el tiempo requerido para el acabado final. También se observa un aumento del 20% en la resistencia de adherencia, facilitando su aplicación en trabajos de repavimentación y reparación. Asimismo, la reducción del agua reduce notablemente la retracción, con lo que se pueden separar las juntas hasta 20 m en pavimentos. Sin embargo, estas ventajas vienen acompañadas de algunos inconvenientes, como el consumo de energía y la necesidad de equipos específicos, lo que conlleva un costo inicial elevado y la necesidad de contar con mano de obra especializada. Además, la porosidad del hormigón puede permitir la filtración de agua, aceite y grasa, lo que podría debilitar la estructura con el tiempo.

En la Figura 3 se puede observar que el beneficio de la deshidratación del hormigón es más acusado en la capa superior que en la inferior. Por encima de 150 mm de profundidad, el efecto de este procedimiento es poco significativo. Por tanto, a efectos de mejora de resistencia, de reducción de poros y aumento de la durabilidad, esta mejora es particularmente evidente en las áreas donde más se necesita. Incluso, este procedimiento permite un aumento en la capa superficial de las soleras de hormigón que puede, en algún caso, competir con capas de rodadura.

Figura 3. Efecto de la deshidratación por vacío del hormigón. https://theconstructor.org/concrete/vacuum-concrete-techniques-equipments-advantages/6867/

Os dejo a continuación un artículo interesante sobre los primeros años de esta técnica en Colombia.

Descargar (PDF, 2MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.