Compactación del hormigón con regla vibrante

Figura 1. Regla vibrante. https://esfactory.mennofolk.org/content?c=regla+vibradora+para+hormigon&id=27

Las reglas o maestras vibrantes son máquinas diseñadas para alisar o dar acabado a superficies de hormigón, resultando especialmente útil en la construcción de soleras y pavimentos. Principalmente, constan de un elemento vibrador acoplado a una regla metálica de 3 a 5 m de longitud. Este bastidor lleva, en cada uno de sus extremos, dos elementos de arrastre desmontables, entre los cuales suele ubicarse el interruptor de arranque y parada del vibrador. El vibrador suele ser de tipo rotatorio de contrapesos, accionado con motor eléctrico o de combustión en los equipos más ligeros y neumáticamente en los más pesados. Las vibraciones se transmiten a través del entramado o la placa mientras se desliza sobre el hormigón, permitiendo la compactación y el alisado simultáneos de la superficie.

Estas máquinas se utilizan para nivelar hormigón en superficies extensas como locales industriales, aceras, garajes, calles y carreteras. A excepción de algunos equipos autoportantes más pesados, el entramado suele ser ligero para facilitar su manejo, reduciendo así la presión sobre el hormigón. Además, la vibración vertical se amortigua rápidamente. Por lo tanto, cuando el espesor de la solera supera los 20 cm, es necesario realizar una compactación previa con vibradores de inmersión.

Su uso elimina el laborioso trabajo manual de las maestras y aumenta la eficiencia sin esfuerzo adicional. La acción vibradora corrige las irregularidades superficiales, dejando el suelo perfectamente liso.

Hay dos tipos principales de reglas vibrantes: las de un solo larguero y las de dos largueros. Las reglas vibrantes de doble larguero constan de un conjunto vibrante y dos largueros o vigas. El conjunto vibrante está equipado con un motor, ya sea eléctrico o de gasolina, que impulsa un vibrador con amplitud de vibración variable. Este vibrador está montado en un bastidor provisto de grapas que permiten fijar los largueros o vigas de tubo rectangular, ajustándose a las longitudes requeridas según el ancho de la solera, con un máximo de 4 m. Para anchos mayores, se pueden montar dos elementos vibrantes sobre las vigas. La frecuencia de vibración oscila entre 50 y 100 Hz, con aceleraciones que van desde 5 hasta 10 g.

Figura 2. Regla vibradora. https://emaresarental.cl/wp-content/uploads/2020/06/ficha-alisadora-regla-vibradora.pdf

El esfuerzo de compactación transmitido por la regla vibrante al hormigón es directamente proporcional a la carga estática, a la amplitud y a la frecuencia de vibración, pero es inversamente proporcional a la velocidad de desplazamiento. La experiencia ha evidenciado que es más favorable la combinación de una amplitud alta y una frecuencia baja en comparación con la combinación de baja amplitud y alta frecuencia.

La mayor popularidad de la regla vibratoria doble en comparación con la de una sola regla se debe principalmente a su capacidad de ajustar la amplitud de vibración. Esta característica permite seleccionar entre amplitudes baja, media y alta, adaptándose así de manera óptima a la profundidad de hormigón a vibrar: 5, 10 y 15 cm respectivamente. Otra de las características importantes de esta regla es que el primero de los largueros recibe dos tercios de la vibración, con lo cual vibra en profundidad y nivela el hormigón, y el segundo larguero que recibe un tercio de la vibración, permite acabar la superficie sacando el aire del hormigón y el agua.

El hormigón no debe tener cantidad elevada de agua, porque dejaría charcos que forman desigualdades. Una consistencia demasiado rígida impide una compactación suficiente y deja una superficie porosa; debe ser plástica con un asiento de cono de Abrams de 5 a 7,5 cm. Cuando se trabajan con mezclas secas, también es posible utilizar reglas vibrantes; sin embargo, en estos casos, se requieren estructuras más pesadas para generar la energía necesaria y compactar el espesor adecuado de la masa de hormigón.

Existen algunos modelos con vibradores múltiples.  En este caso, los vibradores están separados a intervalos muy próximos, a unos 50 cm, que producen una superficie más plana. La velocidad de desplazamiento debe estar comprendida entre 0,5 y 1 m/min. La regla puede desplazarse mediante tracción desde ambos lados o mediante un cabrestante, cuyo cable está anclado al final de la trayectoria de la regla. El cabrestante puede ser accionado manualmente o con un motor.

Se pueden utilizar varios tipos de reglas de manera secuencial para cumplir funciones complementarias. Por ejemplo, la primera regla puede ser una regla con o sin hélice extendedora, la segunda puede ser una regla para aplicar productos de curado o endurecedores metálicos, y la tercera puede ser otra regla para el acabado final. En algunos casos, se prescinde de la segunda regla y la tercera regla se utiliza para realizar una función de revibrado. Esta función de revibrado puede llevarse a cabo con la primera regla, realizando una segunda pasada y vibrando en la misma dirección que en la primera ocasión.

Cuando la regla vibrante se automatiza por completo, se desplaza sobre raíles mediante ruedas, que también pueden funcionar como guías laterales del encofrado o sobre durmientes. Es crucial mantener un cuidado especial en el estado de las ruedas, ya que esto afecta la uniformidad de la superficie del hormigón una vez compactado. Aunque pueden alcanzar longitudes de hasta unos 20 m, lo habitual es no exceder los 10 m. La frecuencia de vibración típica ronda los 60 Hz, con aceleraciones de hasta 6 g. La velocidad de avance suele oscilar entre 0,3 y 2,4 m/min, y el rendimiento de estas máquinas puede superar los 75 m³ por hora, dependiendo de las condiciones específicas de uso.

Para longitudes mayores, se requiere el uso de reglas vibrantes en celosía, las cuales cuentan con elementos metálicos desmontables que posibilitan alcanzar extensiones de hasta 25 m. Estas reglas están equipadas con sistemas de vibración externa para garantizar un adecuado compactado del hormigón a lo largo de la superficie.

Figura 3. Regla vibrante en celosía. https://interconex.us/es/reglas-vibratorias/

En situaciones donde el empleo de reglas vibrantes totalmente automatizadas resulte costoso, también se puede considerar el empleo de reglas vibrantes manuales. Estas reglas suelen consistir en una viga de madera encastrada en un perfil metálico, con vibradores dispuestos cada 2 m aproximadamente. Cuando se utilizan para compactar losas, se colocan transversalmente junto a costeros laterales que facilitan la nivelación de la losa. Normalmente, son operadas por dos personas, una en cada extremo de la viga, y su longitud típica no excede los 5,5 m. Cuando no están en contacto con el hormigón, estas reglas pueden alcanzar frecuencias de alrededor de 70 Hz, con aceleraciones de 5 g o 6 g y amplitudes de aproximadamente 0,35 mm. Sin embargo, al entrar en contacto con el hormigón, tanto la aceleración como la amplitud se reducen. Por lo general, se utilizan en losas con espesores de hasta 20 cm.

Os dejo algunos vídeos explicativos. Espero que os sean de interés.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¡Portada en Nature! Investigadores de la UPV idean un nuevo método de diseño de edificios que evita colapsos catastróficos

De vez en cuando se recibe una buena noticia que marca un punto de inflexión en la investigación. Es un honor para mí pertenecer al Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y a la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia. En este contexto, el equipo del catedrático José Miguel Adam ha logrado un hito al publicar un artículo en la revista de mayor impacto por excelencia: NATURE. No solo eso, sino que, además, es portada de dicha revista. Mi más sincera enhorabuena a José Miguel y a su equipo. Os paso la noticia completa.

Un equipo del Instituto ICITECH de la Universitat Politècnica de València (UPV) ha publicado en Nature los últimos resultados de su “radical” propuesta para conseguir edificios ultrarresistentes, que sean capaces de aguantar situaciones extremas causadas por desastres naturales –riadas, inundaciones, deslizamiento de laderas…- explosiones, su propio envejecimiento, o un mantenimiento y conservación inadecuados. Esta propuesta añade al diseño de la estructura de los edificios una última línea de defensa para evitar colapsos catastróficos.

El nuevo método se inspira en cómo los lagartos se protegen de los depredadores al liberar sus colas cuando son atacados.

Los métodos de diseño actuales se basan en mejorar la conectividad entre los componentes de la estructura. En el caso de que algún componente falle, esta conectividad permite que las cargas que soportaban los componentes que fallan se redistribuyan al resto del sistema estructural. Aunque estos métodos resultan eficaces en el caso de pequeños fallos iniciales, pueden aumentar el riesgo de colapso progresivo tras grandes fallos iniciales, conduciendo así a colapsos completos o de gran magnitud. Así sucedió, por ejemplo, en las Champlain Towers y en el derrumbe de un edificio en Peñíscola en 2021, o en la ciudad iraní de Abadan en 2022. Y esto es lo que evita la propuesta surgida del ICITECH de la UPV.

“Nuestro novedoso método de diseño proporciona una solución para superar esta alarmante limitación y conseguir edificios más resilientes, capaces de aislar el colapso a solo la parte de la estructura que ha sufrido el fallo inicial, y salvaguardar el resto del edificio. El nuevo método de diseño ha sido verificado con un ensayo sobre un edificio real. Por tanto, se trata de la primera solución contra la propagación de colapsos en edificios tras grandes fallos iniciales que ha sido probado y verificado a escala real. Con la aplicación del nuevo método de diseño se conseguirá prevenir colapsos catastróficos, protegiendo así vidas humanas y minimizando los costes materiales que supondría un colapso completo de la estructura”, destaca José M. Adam, coautor de la publicación con Nirvan Makoond, Andri Setiawan y Manuel Buitrago; todos ellos miembros del ICITECH de la UPV.

Unos “fusibles” evitan el colapso total

La clave del método ideado por el equipo de la UPV reside en usar el concepto de fusible estructural, que permite aislar las partes dañadas de un edificio con el fin de evitar la propagación de grandes fallos a toda la construcción.

“Esta nueva filosofía es parecida a la forma en que las redes eléctricas se protegen frente a sobrecargas, al conectar diferentes segmentos de la red mediante fusibles eléctricos. Con nuestros diseños, el edificio presenta continuidad estructural bajo condiciones normales de funcionamiento, pero se segmenta cuando la propagación de un fallo es inevitable, reduciendo así el alcance del colapso y evitando el derrumbe total”, apunta Nirvan Makoond.

“La implementación del método repercutirá levemente, o incluso de forma despreciable, en el coste de la estructura, ya que utiliza detalles constructivos y materiales convencionales”, señala Andri Setiawan.

En su estado de desarrollo actual, el nuevo diseño de estos investigadores se puede aplicar a prácticamente cualquier edificio de nueva construcción. “Su eficacia ha sido verificada y demostrada para edificios con estructura prefabricada de hormigón. Actualmente, trabajamos en la aplicación de la metodología a edificios ejecutados con hormigón in situ y a edificios con estructura de acero”, concluye Manuel Buitrago.

Validado en un ensayo pionero a nivel mundial

El desarrollo de este nuevo método de diseño es uno de los resultados más destacados hasta la fecha del proyecto Endure, financiado por el European Research Council – ERC (Consejo Europeo de Investigación) con una ayuda Consolidator Grant de más de 2,5 millones de euros. Fue precisamente en el marco de este proyecto donde se llevó a cabo, en junio del año pasado, un ensayo pionero a nivel mundial que permitió validar sus prestaciones. Las pruebas se hicieron con un edificio completo, a escala real, en el que un gran fallo inicial en la estructura se aisló en una parte del edificio, evitando su propagación a toda la estructura. Cabe resaltar que la investigación se lleva a cabo al 100% en la UPV, siendo los cuatro autores de la publicación investigadores también de la UPV.

Portada de Nature

Nature ha publicado el trabajo del equipo del Instituto ICITECH de la UPV en la portada de su número de hoy. Además, es la primera vez que la revista publica un artículo de investigación en el campo del diseño y construcción de edificios.

Primeros pasos gracias a un proyecto financiado por la Fundación BBVA

El germen de este proyecto surgió de una Beca Leonardo que en 2017 otorgó la Fundación BBVA a José M. Adam. Ahora, siete años más tarde, el investigador del ICITECH – UPV continua con este proyecto revolucionario, de la mano del Consejo Europeo de Investigación, que permitirá levantar edificios más seguros y salvar vidas humanas.

Endure se desarrollará hasta 2026 en el laboratorio de estructuras del ICITECH de la Universitat Politècnica de València, uno de los mayores de Europa para el ensayo de grandes elementos estructurales.

Referencia

Makoond, N., Setiawan, A., Buitrago, M. et al. Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). https://doi.org/10.1038/s41586-024-07268-5

Os dejo el vídeo y el artículo completo, pues está publicado en abierto.

Descargar (PDF, 23.79MB)

Indicadores de nivel en los silos de cemento

Figura 1. Silos de cemento. https://www.machinio.es/anuncios/72938606-silo-de-cemento-en-esmirna-turquia

En grandes instalaciones, los silos de cemento se vacían con rapidez, requiriendo una monitorización constante del volumen de su contenido para realizar los pedidos y consumir el cemento según una programación predefinida. Cuando se trata de almacenar productos de cemento, la tecnología también debe abordar desafíos relacionados con la humedad. Esta tiende a aglutinar materiales, provocando problemas como la baja densidad y la constante dieléctrica reducida. Además, durante el invierno, se puede producir condensación, lo que potencialmente afecta a las mediciones. Para medir el nivel de llenado de los silos, se utilizan diversos tipos de indicadores de nivel, como los mecánicos, ultrasónicos, electrónicos, entre otros.

Existe una amplia gama de estos dispositivos, con algunos altamente sofisticados. Se pueden clasificar en dos categorías principales: aquellos que ofrecen una indicación continua del nivel de llenado y aquellos que operan en un modo de “todo o nada”. Estos últimos, además de no proporcionar una medida continua, requieren al menos dos dispositivos para ofrecer dos informaciones clave: si el silo está vacío o lleno. Se pueden colocar en diversas ubicaciones dentro del silo, ya sea en la parte superior, inferior, en el cono o en ambas. Los dispositivos de “todo o nada” pueden ser útiles en instalaciones con múltiples silos que contienen el mismo producto (se activa el segundo cuando el primero está vacío), donde el nivel exacto de llenado no es esencial.

Hasta hace algunos años, los procedimientos más comunes eran los dispositivos mecánicos o electromecánicos. Sin embargo, actualmente, estos han ido siendo reemplazados cada vez más por procedimientos electrónicos. Ya sea que se trate de dispositivos mecánicos o electrónicos, todos operan según dos métodos: por contacto o sin contacto con el material.

Los dispositivos mecánicos pueden ser los siguientes:

  • De paletas, aletas y semiesferas giratorias: Estos dispositivos constan de pequeños motores ubicados cerca de las paredes de los silos, los cuales accionan un eje equipado con paletas. Cuando el material desciende y libera las paletas previamente bloqueadas por el cemento, el motor se activa y se enciende un piloto luminoso como aviso.
  • De contrapeso o palpador: Consisten en un torno que permite descender un peso hasta el nivel del cemento, emitiendo una señal al alcanzar dicho nivel y deteniendo el motor del torno. La longitud del cable proporciona información sobre el nivel de cemento. Una vez conocido, se enrolla nuevamente el cable y se repite el proceso según intervalos programados periódicamente.
  • De diafragmas presiométricos: En este tipo de dispositivo, el circuito eléctrico permanece abierto cuando el cemento ejerce presión sobre el diafragma. Cuando el nivel de cemento desciende y la presión disminuye, el circuito se cierra, activando un piloto luminoso como indicador.
  • De péndulo: Estos dispositivos constan de un péndulo de corta longitud que, al entrar en contacto con el cemento durante el llenado del silo, se inclina, abriendo un circuito eléctrico. De manera similar, al vaciarse el silo, el circuito se cierra, activando un indicador luminoso de nivel, ubicado ya sea en el propio silo o en el panel de control del puesto de mando.

Los dispositivos electrónicos principales comprenden:

  • Detectores de láminas vibrantes: Estos dispositivos generan vibraciones en unas horquillas de acero inoxidable mediante corriente eléctrica. La frecuencia de vibración varía dependiendo de si las horquillas están libres o cubiertas por el cemento, lo que indica si el nivel de este ha superado la altura de las láminas.
  • Medidores de conductividad: Consisten en una columna vertical en el centro del silo con emisores de impulsos eléctricos distribuidos uniformemente en altura. En la pared del silo, receptores miden la conductancia o capacitancia del medio (aire o cemento), lo que permite conocer constantemente la altura del cemento en el silo.
  • Medidores de ondas: Estos dispositivos se basan en la propagación y medición de ondas sónicas, infrasónicas o de isótopos radioactivos. Aunque son precisos, son más costosos y delicados en comparación con los electromecánicos, que son menos precisos pero más robustos.
  • Medidores de ultrasonidos: Utilizan parejas de emisores-receptores ubicados a diferentes alturas en la misma horizontal. Comparando las velocidades ultrasónicas en aire o cemento, es posible determinar la altura del material.
  • Medidores de ondas sónicas: Funcionan según el mismo principio que los anteriores y pueden tener una disposición similar. También pueden situarse en la parte superior del silo, midiendo el tiempo que tarda la onda sónica emitida por el aparato en reflejarse en el cemento y ser captada nuevamente, lo que proporciona una indicación precisa del nivel de cemento.
  • Detectores de nivel de ondas radioactivas: Estos dispositivos se basan en la emisión de rayos gamma desde una fuente en la parte superior del silo y en unos captadores (contadores Geiger) que se activan cuando no están bajo presión del cemento, indicando así su nivel.

Os dejo varios vídeos explicativos que, espero, sean de vuestro interés:

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El puente de Astilleros de Valencia

Figura 1. Puente de Astilleros, Valencia. https://puentesvalencia.com/2023/09/15/puente-de-astilleros/

El enorme tráfico que presentaba el puerto de Valencia a finales del siglo XIX hizo pensar en la conveniencia de ensanchar la carretera existente en la margen derecha del Turia y en la construcción de un nuevo puente en el poblado de Nazaret. La primera alternativa la presentó D. Antonio Guijarro Montó en el año 1891, a la que siguió otra de D. Fernando Prósper y González, siendo ambas rechazadas por el Ayuntamiento.

El 2 de septiembre de 1901, los ingenieros municipales Casimiro Meseguer y J. Blanco firman un nuevo proyecto, cuyas obras dieron comienzo el 14 de mayo de 1904. Surgieron problemas con los terraplenes laterales y se añadieron unos tramos metálicos en los extremos, con lo que quedó un puente de cinco vanos metálicos de 12 m de luz. Sin embargo, la estructura duró poco y en 1921 la Dirección de Caminos la declara en ruina, y se cierra durante dos años. Después se rehabilitó y se añadió un tramo más, quedando su longitud en 72 m con una anchura de calzada de 3,5 m y dos aceras de 0,5 m.

El actual puente de Nazaret o de Astilleros (1928-1931), que se hubiera llamado “Príncipe de Asturias” si no hubiese sido por los avatares políticos de entonces, se adjudicó a “Cubiertas y Tejados, que empezaron las obras un 16 de julio de 1928 y las terminaron el 22 de septiembre de 1931, siendo inaugurado el puente el 14 de noviembre de ese mismo año. Su ubicación fue unos 165 m aguas abajo del antiguo puente de Hierro que, para peatones y carros, existía frente a la calle Mayor del poblado de Nazaret. Se trata de un puente que se proyectó en 1926 y cuya forma, materiales y procedimientos constructivos son los propios de aquella época.

Figura 2. Plano de sección en proyecto original del puente de Astilleros. https://valenciaactua.es/puente-de-astilleros/

Su longitud es de 175 m y su anchura de 25. Formado por cinco vanos de hormigón armado de 23 m y cuatro vanos de 9,45 m, todos rectos. Se tuvieron que resolver las dificultades propias de una cimentación sobre un terreno fangoso mediante pilotes de hormigón armado clavados algunos a más de 12 m. Sus barandas son de hierro forjado, con adornos de hierro fundido, ornamentadas entre pilastras de hormigón que forman la base de las farolas. El coste de la obra se situó en torno a los 2 millones de pesetas de entonces, siendo sus autores los ingenieros Federico Gómez de Membrillera y Piazza y Luis Dicenta Vera.

Su estilo modernista tiene gran influencia del art-decó, destacando la belleza de las farolas y las barandillas. Las aceras vuelan sobre los paramentos y se apoyan en sus extremos en las pilas y en el centro de una gran ménsula de piedra artificial. Además, cuenta en sus pilas con relieves alusivos a la marina, las obras públicas, etc. En su origen tuvo una zona central adoquinada y raíles para los tranvías, pero posteriormente se eliminó transformándose en calzada para el tráfico. La riada de 1949 provocó daños que debió reparar, dándole solidez y capacidad viaria, la Junta del Puerto. Fue ampliado hasta adquirir su fisonomía actual con dos aceras y seis carriles para circulación rodada.

Figura 3. Detalle de la barandilla del puente de Astilleros.

Si bien este puente no fue el primero que se realizó en la Comunidad Valenciana en hormigón armado, sí que lo fue sobre el cauce del Turia, en Valencia, pues se trató de un puente que debía soportar el tráfico de vehículos, ferrocarriles y tranvías. Eso lo diferenciaba de la pasarela de la Exposición de 1909, cuya función solo fue peatonal.

Referencia:

YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Una aproximación histórica, estética y constructiva a la Valencia foral. Universitat Politècnica de València, 372 pp. Registro de la Propiedad Intelectual 09/2011/643.

 

Investigación sobre la optimización de las emisiones de carbono en proyectos internacionales de construcción

Acaban de publicarnos un artículo en Scientific Reports, revista indexada en el JCR. El documento enfatiza la importancia de contar con modelos de evaluación sólidos para abordar las emisiones y de carbono en los proyectos internacionales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El trabajo presenta el proyecto del puente marítimo de Suramadu en Indonesia, construido según el modelo EPC por el gobierno chino, y muestra las especificaciones de diseño detalladas y los procesos de construcción. Además, establece un modelo de evaluación de las emisiones de carbono de los proyectos de inversión internacionales, que integra ocho etapas para analizar las fugas de carbono, destacando la importancia de evaluar con precisión las emisiones de carbono en los proyectos internacionales.

De Sakurai Midori – Trabajo propio, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=8028163

El documento contribuye al demostrar la fiabilidad y la naturaleza científica de los datos de evaluación mediante la combinación de la bibliografía, la evaluación y el acoplamiento multidisciplinario de modelos matemáticos, lo que contribuye a la formulación de políticas de emisiones y aranceles al carbono.

Analiza de manera innovadora los complejos efectos de acoplamiento de varios datos e indicadores de incertidumbre en los proyectos internacionales, proporcionando modelos y evaluaciones precisos de los efectos interactivos, algo esencial para los responsables políticos.

Abstract:

Due to the rapid economic development of globalization and the intensification of economic and trade exchanges, cross-international and regional carbon emissions have become increasingly severe. Governments worldwide establish laws and regulations to protect their countries’ environmental impact. Therefore, selecting robustness evaluation models and metrics is an urgent research topic. This article proves the reliability and scientificity of the assessment data through literature coupling evaluation, multidisciplinary coupling, mathematical model, and international engineering case analysis. The innovation of this project’s research lies in the comprehensive analysis of the complex coupling effects of various discrete data and uncertainty indicators on the research model across international projects and how to accurately model and evaluate interactive effects. This article provides scientific measurement standards and data support for governments worldwide to formulate carbon tariffs and carbon emission policies. Case analysis data shows that the carbon emission ratio of exporting and importing countries is 0.577:100; the carbon trading quota ratio is 32.50:100.

Keywords:

Construction industry, Environmental impact, Carbon trading, Model evaluation.

Reference:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

Como el artículo está publicado en abierto, os lo paso para su descarga:

Descargar (PDF, 10.82MB)

Mejora de la robustez en la optimización de estructuras modulares prefabricadas: Integración de NSGA-II, NSGA-III y RVEA para una infraestructura sostenible

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El documento explora el diseño de estructuras modulares prefabricadas sostenibles utilizando la optimización multiobjetivo (MOO) y la toma de decisión multicriterio (MCDM) con algoritmos avanzados como NSGA-II, NSGA-III y RVEA. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo destaca la importancia de integrar la sostenibilidad del ciclo de vida en los proyectos de infraestructura de transporte para estimular la innovación y la colaboración entre las partes interesadas. Además, presenta una estrategia de diseño novedosa que se centra en la optimización del ciclo de vida de los marcos modulares prefabricados de hormigón armado (RCPMF). Por último, amplía la comprensión de la aplicabilidad de los algoritmos avanzados de MOO y las técnicas de MCDM para mejorar el desarrollo sostenible de la infraestructura.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio evalúa el rendimiento de optimización del ciclo de vida de los algoritmos NSGA-II, NSGA-III y RVEA dentro de una estructura prefabricada tipo marco de diseño coherente para una infraestructura de transporte sostenible.
  • El NSGA-III se identifica como el algoritmo con mejor rendimiento, lo que demuestra su potencial para facilitar enfoques de diseño sostenibles.
  • El problema del MCDM se evalúa rigurosamente y se abordan nueve soluciones no dominantes generadas por los algoritmos de optimización, lo que demuestra la eficiencia y la fiabilidad del marco integrado de MOO y MCDM.
  • Los resultados abogan por un enfoque transformador del desarrollo de infraestructuras, orientado hacia soluciones de ingeniería más avanzadas y sostenibles.

Abstract:

The advancement toward sustainable infrastructure presents complex multi-objective optimization (MOO) challenges. This paper expands the current understanding of design frameworks that balance cost, environmental impacts, social factors, and structural integrity. Integrating MOO with multi-criteria decision-making (MCDM), the study targets enhancements in life cycle sustainability for complex engineering projects using precast modular road frames. Three advanced evolutionary algorithms—NSGA-II, NSGA-III, and RVEA—are optimized and deployed to address sustainability objectives under performance constraints. The efficacy of these algorithms is gauged through a comparative analysis, and a robust MCDM approach is applied to nine non-dominated solutions, employing SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR decision-making techniques. An entropy theory-based method ensures systematic, unbiased criteria weighting, augmenting the framework’s capacity to pinpoint designs, balancing life cycle sustainability. The results reveal that NSGA-III is the algorithm converging towards the most cost-effective solutions, surpassing NSGA-II and RVEA by 21.11% and 10.07%, respectively, while maintaining balanced environmental and social impacts. The RVEA achieves up to 15.94% greater environmental efficiency than its counterparts. The analysis of non-dominated solutions identifies the 𝐴4𝐴4 design, utilizing 35 MPa concrete and B500S steel, as the most sustainable alternative across 80% of decision-making algorithms. The ranking correlation coefficients above 0.94 demonstrate consistency among decision-making techniques, underscoring the robustness of the integrated MOO and MCDM framework. The results in this paper expand the understanding of the applicability of novel techniques for enhancing engineering practices and advocate for a comprehensive strategy that employs advanced MOO algorithms and MCDM to enhance sustainable infrastructure development.

Keywords:

Multi-objective optimization; multi-criteria decision-making; NSGA-II; NSGA-III; RVEA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Enhancing Robustness in Precast Modular Frame Optimization: Integrating NSGA-II, NSGA-III, and RVEA for Sustainable Infrastructure. Mathematics, 12(10):1478. DOI:10.3390/math12101478

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Descargar (PDF, 1001KB)

Diseño sostenible de los cimientos de los aerogeneradores terrestres

Acaban de publicarnos un artículo en el Journal of Physics: Conference Series, referente a la comunicación que presentamos en la WindEurope Annual Event 2024 en Bilbao. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El documento evalúa la sostenibilidad de los cimientos de los aerogeneradores utilizando un enfoque holístico, comparando diferentes alternativas concretas en función de los impactos del ciclo de vida y empleando un modelo de toma de decisiones multicriterio. Cuantifica la sostenibilidad y clasifica el hormigón con escorias de alto horno como el más sostenible, seguido del hormigón convencional y las cenizas volantes, y proporciona una metodología para la optimización del diseño con una perspectiva sostenible.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio concluye que la alternativa del hormigón con escorias molidas de alto horno (GBFS) demuestra índices de sostenibilidad más altos en comparación con el hormigón convencional (CONV) y el hormigón con cenizas volantes (FA) para cimentaciones de aerogeneradores.
  • El GBFS supera al CONV y al FA en términos de impacto ambiental, mientras que el CONV es más económico que el GBFS y el FA, y el GBFS muestra impactos sociales más destacados según los indicadores de los trabajadores.
  • El documento hace hincapié en la importancia de tener en cuenta simultáneamente las dimensiones económica, ambiental y social al optimizar el diseño, y destaca la necesidad de adoptar un enfoque holístico de la sostenibilidad en el diseño de las cimentaciones de las turbinas eólicas.

Abstract

Recently, wind power has emerged as a prominent contributor to electricity production. Minimizing the costs and maximizing the sustainability of wind energy is required to improve its competitiveness against other non-renewable energy sources. This communication offers a practical approach to assess the sustainability of wind turbine generator foundations from a 3-dimensional holistic point of view. Specifically, the main goal of this study is to analyse the life cycle impacts of one shallow foundation design by comparing three different concrete alternatives: conventional concrete, concrete with 66-80% of blast furnace slags and concrete with 20% fly ash, and then to apply a Multi-Criteria Decision-Making model based on TOPSIS method to evaluate and compare the resulting sustainability of each alternative considered. The study results in a methodology for quantifying sustainability rather than simply qualifying it. Therefore, with a sustainable perspective, this methodology can be employed for design optimization, such as geometry and materials. Specifically, in this study, concrete with blast furnace slags emerges as the top-ranked sustainable alternative, followed by conventional concrete in second place and the fly ash option in third position.

Reference:

MASANET, C.; NAVARRO, I.; COLLADO, M.; YEPES, V. (2024) Journal of Physics:Conference Series, 2745:012005. DOI:10.1088/1742-6596/2745/1/012005

Esta comunicación está en abierto, por lo que os la dejo para su descarga.

Descargar (PDF, 808KB)

 

Optimización de los costes de fabricación de vigas híbridas de chapa de acero soldadas

Acaban de publicarnos un artículo en la revista Advances in Civil Engineering (revista indexada en el JCR) donde se optimizan las vigas de acero híbridas para minimizar los costos de fabricación. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo del artículo es optimizar las vigas de acero híbridas transversal-longitudinalmente (TLH) para minimizar los costos de fabricación, basándose en investigaciones anteriores sobre vigas híbridas transversalmente. Explora la ubicación de los puntos de transición en las vigas TLH para maximizar las ventajas de la configuración mecánica, y ofrece recomendaciones para establecer transiciones y configuraciones de acero en función de los niveles de tensión y las longitudes de los elementos.

La metodología implica definir estudios de casos, modelar estructuras híbridas transversales y longitudinalmente, formular un problema de optimización para explorar las configuraciones de TLH y establecer restricciones de diseño. El estudio utiliza técnicas de optimización para determinar el número y las posiciones óptimos de los puntos de transición a lo largo del elemento, así como las configuraciones de los materiales para los diferentes tramos de vigas TLH.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio muestra los beneficios económicos de las vigas de acero híbridas transversal-longitudinalmente (TLH) en comparación con los diseños homogéneos tradicionales y optimizados, y muestra una reducción de costos de fabricación de más del 50%.
  • Se ha descubierto que las configuraciones TLH son más eficaces para elementos de mayor envergadura, con recomendaciones específicas para los puntos de transición y las configuraciones de materiales en función de los niveles de tensión.
  • La metodología propuesta ofrece un enfoque de diseño sostenible al optimizar los elementos del TLH para mejorar los índices económicos y las consideraciones ambientales, lo que allana el camino para futuras investigaciones sobre el comportamiento estructural, el análisis conjunto y la implementación más amplia de criterios de sostenibilidad.

Abstract:

I-section girders with different types of steel in the flanges and web (fyf > fyw, respectively) are known as transverse hybrid girders. These have proven to be more economical than their homogeneous counterparts. However, the use of hybrid configurations in the longitudinal direction of the element has yet to be studied. This paper uses optimization techniques to explore the possibility of constructing transverse and longitudinally hybrid (TLH) steel girders. The optimization objective is to minimize the manufacturing cost, including seven activities besides the material cost. The geometrically double symmetric I-girder design subjected to a uniform transverse load is performed using Eurocode 3 specifications. Nine case studies are implemented, varying the element span (L) and the applied load. The results show that establishing various configurations along the length of the element is beneficial. The optimum number of transition points is six, meaning the girder will have four configurations, i.e., one central and three others symmetrically distributed toward each half of the element. The optimum position for the first transition would be at (L/2), the second at (L/2), and the third at (L/2). The optimum extreme configuration is usually homogeneous (fyf = fyw = 235 MPa). The others increase the steel quality in the plates, maintaining hybrid arrangements to reach the central one that usually remains with S700 steel for the flanges and S355 for the web. The study shows that TLH configurations are more effective for elements with larger spans. By applying the formulated design recommendations in a different case study, the manufacturing cost dropped by over 50% compared to the traditionally designed element and by more than 10% relative to the optimized element with a homogeneous configuration. The study’s limitations and encouraging results suggest future lines of research in this area.

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

Como la publicación está en abierto, os la dejo para su descarga.

Descargar (PDF, 3.33MB)

Homogeneidad en la fabricación del hormigón

Figura 1. Homogeneidad del hormigón. https://ingeniero-de-caminos.com/hormigon-homogeneidad/

Un hormigón se considera homogéneo cuando su composición es uniforme en todos sus puntos. Esto implica que el principio, la parte media y el final de la amasada mantienen la misma calidad. De esta manera, las amasadas sucesivas pueden considerarse idénticas. La homogeneidad se consigue a través de un buen amasado, de un transporte cuidadoso y de una colocación adecuada.

Un hormigón homogéneo implica que debe ser uniformemente heterogéneo, es decir, que sus componentes deben estar perfectamente mezclados y en la proporción prevista en la dosificación de la mezcla en cualquier parte de su masa. Las mezclas bien diseñadas y adecuadamente amasadas proporcionan una manejabilidad uniforme y óptima, independientemente de la ubicación de la muestra tomada en la mezcla, lo que permite obtener hormigones con resultados consistentes y poco dispersos.

Para garantizar la homogeneidad, es crucial mantener una proporción adecuada entre agua y cemento, así como asegurar una mezcla completa de los componentes para lograr la consistencia deseada. Tal y como indica el Código Estructural en su Artículo 51.3.3, los componentes se amasarán de forma que se consiga su mezcla íntima y homogénea, debiendo resultar el árido bien recubierto de pasta de cemento. La mejor forma de conseguirlo es introduciendo los componentes en una hormigonera o máquina amasadora, que se encarga de mezclarlos, lista para su aplicación en la obra.

Figura 2. https://ich.cl/unidad/05-uso-del-hormigon-en-obra/

La calidad uniforme de los componentes y la precisión de los dosificadores son aspectos críticos para lograr esta homogeneidad en el hormigón. Si los componentes iniciales son uniformes y los dosificadores proporcionan las cantidades precisas, entonces la variabilidad en los hormigones la determina la calidad del proceso de mezclado. Es esencial elegir adecuadamente el equipo de mezclado, pues este garantiza la homogeneidad de los productos finales. El Código Estructural, en su artículo 51.3.2.1, indica que la dosificación de cemento, de los áridos, y en su caso, de las adiciones, se realizará en peso. Además, se deberá vigilar el mantenimiento de la dosificación para garantizar una adecuada homogeneidad entre amasadas.

La gravedad y las fuerzas de rozamiento obstaculizan el movimiento de los materiales durante la fase inicial del amasado. Se producen rozamientos superficiales entre la masa y las paredes, rozamientos internos debido a la rugosidad de los áridos, y rozamientos complejos causados por la variabilidad de la viscosidad en diferentes partes de la mezcla. Por tanto, para obtener un hormigón homogéneo, es esencial no solo reducir la influencia de estas fuerzas, sino también romper las fuerzas de unión que mantienen los granos unidos por el agua de la mezcla. Esto requiere un aporte significativo de energía, distribuida de manera óptima por los componentes de mezclado. En este sentido, los fabricantes investigan qué tipo de perfiles son los más adecuados para las paletas, su número y disposición en el equipo de amasado. Para lograr mezclas de calidad, es fundamental que los medios mecánicos empleados sean lo suficientemente potentes para permitir el desplazamiento de los componentes entre sí, sin favorecer a ciertos elementos según su tamaño o densidad.

El Código Estructural, en su Artículo 51.4.1 relativo al transporte del hormigón, indica que no deberán presentar desperfectos o desgastes en las paletas o en su superficie interior que puedan afectar a la homogeneidad del hormigón. Asimismo, el transporte podrá realizarse en amasadoras móviles, a la velocidad de agitación, o en equipos con o sin agitadores, siempre que tales equipos tengan superficies lisas y redondeadas y sean capaces de mantener la homogeneidad del hormigón durante el transporte y la descarga.

En la prefabricación de piezas de hormigón, se debe desmoldar lo antes posible, por lo que es importante contar con equipos de mezclado que garanticen una perfecta cohesión y una plasticidad constante en los hormigones producidos.

En ciertos tipos de equipos, como las hormigoneras, la densidad desempeña un papel fundamental, pues los componentes del hormigón son elevados y luego caen de nuevo en la mezcla. En el caso de las amasadoras, un exceso de energía contribuye a mejorar las propiedades de la mezcla.

La dislocación de la mezcla del hormigón, que es un error que afecta la homogeneidad, puede ocurrir incluso cuando la mezcla inicial es adecuada. Durante el transporte, vertido o fraguado, los elementos del hormigón tienden a separarse y decantarse según su densidad y tamaño.

La segregación del hormigón supone que sus componentes se separan, lo que provoca una superficie mal acabada con grietas o fisuras, o un exceso de mortero que afecta su resistencia y durabilidad. Por otro lado, si la mezcla es demasiado líquida, los áridos gruesos tienden a caer al fondo del molde o encofrado, mientras que el mortero queda en la superficie, lo que implica una pérdida de homogeneidad por decantación. La probabilidad de que ocurran estos fenómenos aumenta con el contenido de agua, el tamaño máximo del árido, las vibraciones o sacudidas durante el transporte, y la colocación en obra en caída libre. Es importante señalar que un hormigón poco manejable tiende a segregar, lo que provoca resistencias mecánicas inferiores a las previstas y superficies poco estéticas cuando se retira el encofrado.

La exudación del hormigón es otro tipo de segregación en el cual el agua tiende a ascender hacia la superficie de la mezcla debido a la incapacidad de los áridos para retenerla durante la compactación. Esta agua forma una capa delgada, débil y porosa en la superficie del hormigón, careciendo de resistencia y durabilidad.

La homogeneidad del hormigón se ve comprometida cuando queda afectada la cohesión entre sus componentes. Esto puede ocurrir debido a una relación inadecuada entre los ingredientes, como en el caso de un hormigón demasiado seco o con demasiada agua. Un hormigón seco con poca agua y componentes finos tiende a separar los áridos más gruesos, mientras que un exceso de agua aumenta el riesgo de segregación, con el mortero separándose de los áridos. Por tanto, hay que cuidar la proporción de materiales y la humedad durante el mezclado para evitar la segregación y garantizar la homogeneidad.

La pérdida de homogeneidad en el hormigón está estrechamente ligada a su cohesividad: cuanto menor sea esta última, mayor será la pérdida de homogeneidad. Esto se refleja en la relación inadecuada entre arena y grava, el tamaño máximo del árido, el contenido de agua, entre otros factores. Un hormigón debe ser manejable sin mostrar signos de segregación, lo que implica una adecuada cohesión.

Las mezclas más propensas a la segregación son aquellas que son poco manejables o ásperas, extremadamente fluidas o secas, o aquellas que contienen una gran cantidad de arena. Además, incluso un hormigón muy manejable puede experimentar segregación si ha sido sometido a un tratamiento inadecuado o a operaciones mal ejecutadas.

Os dejo algún vídeo explicativo al respecto.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón de limpieza en fondos de excavación

Figura 1. Hormigón de limpieza. https://www.paviconj-es.es/noticias/hormigon-de-limpieza/

El hormigón de limpieza (HL) tiene como fin evitar la desecación del hormigón estructural durante su vertido, así como una posible contaminación de este durante las primeras horas de su hormigonado. El Anejo 10 del Código Estructural detalla el alcance, los materiales y las especificaciones para este tipo de hormigón. Para esta aplicación, se debe usar el hormigón HL-150/C/TM, es decir, tal y como se indica en la identificación, donde la cantidad mínima de cemento por metro cúbico es de 150 kg, como se especifica en su identificación. Se sugiere que el tamaño máximo del árido sea inferior a 30 mm para mejorar la manejabilidad durante su aplicación. Estos hormigones tienen una baja proporción de cemento, por lo que se aconseja la inclusión de aditivos reductores de agua para minimizar la porosidad en su estado endurecido.

Lo habitual en obra es extender sobre la superficie del fondo de excavación una capa de hormigón de regularización. Según el Código Estructural, los hormigones de nivelación o de limpieza de excavaciones no se consideran de naturaleza estructural y, por tanto, no están sujetos a los requisitos de resistencia mínima establecidos para otros tipos de hormigón, ya sea en masa, armado o pretensado. Sin embargo, cuando las piezas estructurales están en contacto directo con el terreno y no se ha aplicado una capa de limpieza, el recubrimiento mínimo requerido es de 70 mm, según lo establecido en el Artículo 44.2.1.1.

La finalidad de esta solera es proporcionar una base plana y horizontal para la zapata, y en suelos permeables, evitar que la lechada de hormigón estructural penetre en el terreno, dejando los áridos de la parte inferior sin recubrimiento, lo que resultaría en un hormigón poroso que facilita la entrada de agua. Se recomienda un espesor mínimo de 10 cm para la solera de hormigón pobre, y su superficie debe ser nivelada de manera que el canto del cimiento se ajuste adecuadamente en cada punto, con una discrepancia de menos de 20 mm respecto al valor teórico indicado en los planos.

Figura 2. Hormigón de limpieza. https://www.lesterrassesresidencial.es/proceso/hormigon-de-limpieza/

Dado su reducido espesor y su función como hormigón de sacrificio, es necesario aplicar un proceso de curado para minimizar la desecación que pueda sufrir al entrar en contacto directo con el terreno. La altura máxima del hormigón de limpieza será la misma que la prevista en el proyecto para la base de las zapatas o vigas riostras.

En resumen, el hormigón de limpieza ofrece varias ventajas:

  • Previene que el hormigón estructural que se vierte posteriormente para el arriostrado entre en contacto con el suelo.
  • Aunque no tiene una función estructural en la obra, mejora la calidad y la durabilidad del hormigón estructural.
  • Contribuye a conformar el volumen geométrico requerido para un propósito específico.
  • Se puede elaborar in situ, eliminando la necesidad de fabricarlo en planta.
  • Proporciona un nivelado excelente, lo que facilita los trabajos posteriores de levantamiento de muros de carga u otros elementos de construcción.
  • Evita la contaminación de las armaduras, proporcionando protección.
  • Previene que el hormigón estructural se deshidrate durante el vertido.

Os dejo a continuación el Anejo 10 del Código Estructural donde se define el alcance y las especificaciones que deben tener los hormigones de limpieza.

Descargar (PDF, 680KB)

Aquí tenéis varios vídeos al respecto. Espero que os sean de interés.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.