Encofrado de aluminio

Figura 1. Encofrado de aluminio. Fuente: https://tectonica.archi/materials/encofrado-de-aluminio-para-viviendas-monoliticas-de-hormigon/

Los encofrados de aluminio comparten muchas similitudes con los de acero. Su principal ventaja respecto a estos últimos radica en su menor peso específico, lo que los hace más ligeros. Su uso ofrece una mayor velocidad en comparación con otros sistemas, gracias a su ligereza, facilidad de montaje y desmontaje, así como la posibilidad de transporte manual sin requerir el uso de grúas. Sin embargo, debido a que sus resistencias a la tracción, compresión y transporte son inferiores a las de los encofrados de acero, se requieren secciones mayores en los encofrados de aluminio. Es importante considerar que el aluminio posee un coste superior respecto al acero y tiene una propensión a deformarse con facilidad. Esta característica podría generar complicaciones en el caso de realizar modificaciones en el proyecto.

No obstante, el Código Estructural, en su artículo 48.3, no permite el uso de encofrados de aluminio, a menos que se proporcione a la dirección facultativa un certificado emitido por una entidad de control y firmado por una persona física. Este certificado deberá confirmar que los paneles utilizados han sido previamente sometidos a un tratamiento de protección superficial para prevenir la reacción con los álcalis presentes en el cemento.

Os dejo a continuación algunos vídeos sobre estos encofrados de aluminio. Espero que sean de vuestro interés.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrado metálico de acero

Figura 1. Encofrado metálico para muros. Fuente: https://www.sioingenieria.com/portal/novedades/encofrados-metalicos-y-sus-ventajas

Los encofrados metálicos de acero se componen de piezas que se ensamblan entre sí, definiendo las formas de los elementos a moldear. Este tipo de encofrado, de gran rigidez y resistencia, se utiliza preferentemente en obras donde predominan elementos de un mismo tipo, como columnas y vigas, y se combina a menudo con madera en la confección de losas. Además, se emplean ampliamente en la fabricación de elementos prefabricados debido a sus ventajas y características. A diferencia de los encofrados de madera, las piezas del encofrado metálico, por su naturaleza, están destinadas exclusivamente al tipo de molde para el cual fueron diseñadas, no siendo aprovechables, salvo en casos excepcionales, para otro elemento diferente.

En obras con una gran cantidad de piezas idénticas, como aquellas que cuentan con numerosos pilares de dimensiones uniformes, los tableros metálicos prefabricados resultan muy adecuados para la creación de los respectivos encofrados. En estas situaciones, la utilización de encofrados metálicos resulta más rentable que la opción de madera. Aunque el costo inicial de adquisición es elevado, su durabilidad promedio de 100 a 500 usos, cuando se mantienen adecuadamente, hace que esta alternativa sea más eficiente. Aunque en ocasiones resulta difícil establecer de antemano el número exacto de reutilizaciones. El encofrado metálico de chapa de acero se sustenta comúnmente mediante rigidizadores paralelos, ya sean horizontales o verticales, dispuestos a intervalos de 0,25 o 0,30 m. En cuanto al espesor de las chapas en estos encofrados metálicos de acero, varía entre 4 y 5 mm, destacándose por su economía debido a la alta frecuencia de uso. En aplicaciones específicas, como en encofrados para prefabricación, se emplean grosores de 6 a 8 mm, considerando el deterioro de la superficie del encofrado (más de 1000 a 2000 usos).

Figura 2. Moldes de acero para prefabricados. Fuente: https://www.mesaimalat.com.tr/es/urun/moldes-para-prefabricados/

La principal ventaja radica no solo en la facilidad y rapidez tanto del encofrado como del desencofrado, y en la obtención de superficies lisas y bien cuidadas, sino también en la gran durabilidad de dicho encofrado, pues no sufre deformaciones ni deterioros por el uso. Los acabados del hormigón son regulares, siendo las coqueras su principal defecto. Se requiere atención cuidadosa en el manejo y mantenimiento para evitar abolladuras.

En cuanto a su manejo, resulta sencillo, y aunque la simple observación del dibujo correspondiente suele ser suficiente para comprender el montaje. Cabe destacar que, en los extremos y bordes, los tableros llevan machos o vástagos que se introducen en los orificios de otro tablero, lo que permite obtener pilares de diversas secciones con un mismo tablero.

Las operaciones de encofrado, desencofrado y aplomado son rápidas y sencillas, y con el equipo adecuado, todas estas tareas pueden llevarse a cabo con elementos de tamaño considerable. Además, las superficies lisas de hormigón que con ellos se consiguen pueden ser interesantes en determinados tipos de obras, ofreciendo acabados con caras limpias. Es fundamental realizar una limpieza exhaustiva cada vez que se desencofra, asegurando un ajuste preciso en la siguiente instalación.

Entre las desventajas, se puede mencionar su falta de adaptabilidad a todos los tipos de pilares, a diferencia de la madera, y su mayor peso, que dificulta su transporte y manejo. En el caso de los soportes, uno de sus mayores inconvenientes es la dificultad de aplomarlos cuando la altura supera los 4 m. Por otra parte, a menos que se utilicen muchas veces, resultan costosos y, en ausencia de precauciones, proporcionan escasa protección y aislamiento durante el vertido de hormigón en tiempo frío. Además, hay que tener en cuenta el riesgo de oxidación de los elementos de este tipo de encofrados.

Os dejo algunos vídeos que, espero, sean de vuestro interés.

Referencias:

BENDICHO, J. P. (1983). Manual de planificación y programación para obras públicas y construcción. Segunda parte: programación y control. Editorial Rueda, Madrid.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrados de madera

Figura 1. Detalle construcción de tablero de puente con encofrado de madera. Imagen: V. Yepes

La madera es el material más antiguo para la construcción de encofrados. En líneas generales, este material sigue siendo predominante en la construcción de encofrados, destacando tanto la madera aserrada como los tableros contrachapados. Los componentes de un encofrado de madera se cortan a medida en obra. No obstante, en los últimos años, ha aumentado significativamente la utilización de elementos metálicos, plásticos y otros materiales en esta área.

La madera constituye uno de los principales materiales que dará forma al hormigón, gracias a su notable flexibilidad. No obstante, es importante que la madera sea adecuada. Debe ser resistente a las cargas para evitar roturas, rígida para no deformarse frente a la presión del hormigón, estanca para asegurar que el hormigón permanezca dentro del molde, y no adherente para facilitar la extracción del molde una vez concluido el encofrado. La madera para encofrados será preferiblemente de especies resinosas y de fibra recta. La madera aserrada se ajustará, como mínimo, a la clase I/80, según la Norma UNE 56 525. Dependiendo de la calidad requerida para la superficie del hormigón, las tablas destinadas al forro o tablero del encofrado pueden ser machihembradas o escuadradas con aristas vivas y llenas, cepilladas y en bruto. Únicamente se emplearán tablas cuya naturaleza, calidad, tratamiento o revestimiento aseguren la ausencia de alabeos o hinchamientos que puedan provocar filtraciones de material fino en el hormigón fresco o generar imperfecciones en los paramentos. Además, las tablas destinadas a forros o tableros de encofrados estarán exentas de sustancias perjudiciales para el hormigón en sus estados fresco y endurecido, así como de elementos que puedan manchar o alterar el color de los paramentos. Con frecuencia se utilizan tablillas de 2 cm de grosor y planchas (cepilladas o no) de 2,7 a 4 cm de espesor.

Los tipos de madera más comúnmente empleados en la actualidad para encofrar son los siguientes:

  • Madera aserrada: Se trata de maderas generalmente de baja calidad y no aptas para carpintería, sin embargo, su elevada resistencia las convierte en una opción aprovechable en el encofrado. Aunque su acabado visual puede no ser el más estético debido a su propensión a degradarse fácilmente en la parte que entra en contacto con el hormigón, estas maderas se presentan en tres formatos diferentes, dependiendo de sus dimensiones, que las hacen adaptables a diferentes situaciones de construcción: tabla, tablón y tabloncillo.
  • Madera en rollo: Está conformado por piezas o troncos de diámetro reducido, sin cortezas ni ramas, actualmente ha caído en desuso como material de encofrado.
  • Tableros de madera: son el sistema más eficiente y ampliamente utilizado en la actualidad para encofrar. Destacan por cumplir de manera óptima con los requisitos para lograr acabados superiores en el encofrado gracias a su textura menos rugosa. Además, son ligeros y altamente resistentes. Los dos tipos principales de tableros de madera utilizados son los contrachapados, obtenidos a partir de maderas como abedul, eucalipto, chopo, pino o abeto, y los tableros tricapa, conformados por tres capas encoladas entre sí, con las fibras de las maderas en las capas exteriores dispuestas longitudinalmente y en dirección transversal en la capa interior, todas provenientes de coníferas.
Figura 2. Encofrado de madera para pilares. Fuente: https://www.alsina.com/es-es/4-conceptos-fundamentales-a-la-hora-de-encofrar-columnas-o-pilares

El artículo 286 del PG-3/75 establece que la madera destinada para entibaciones, apeos, cimbras, andamios, y demás medios auxiliares, así como para la carpintería de armar, debe provenir de troncos sanos que hayan sido apeados en la estación adecuada. Además, debe haber sido desecada al aire, resguardada del sol y la lluvia, durante un período no inferior a dos días. Es esencial que la madera no muestre signos de putrefacción, atronaduras, carcomas o ataques de hongos, y esté exenta de grietas, lupias, verrugas, manchas u otros defectos que puedan comprometer su solidez y resistencia. Se requiere especialmente que contenga el menor número posible de nudos, los cuales, en todo caso, deberán tener un espesor inferior a la séptima parte (1/7) de la menor dimensión de la pieza. Además, la madera debe presentar fibras rectas y no reviradas ni entrelazadas, manteniéndose paralelas a la mayor dimensión de la pieza. Debe exhibir anillos anuales con aproximada regularidad, sin excentricidad de corazón ni entrecorteza, y al ser golpeada, debe producir un sonido claro.

La capacidad de la madera para succionar y absorber agua o desencofrante depende de factores como su densidad y la dirección de las fibras. Por lo tanto, es fundamental asegurar la homogeneidad de todas las tablas y que tengan un número similar de usos. La experiencia revela que las diferencias de tono en la superficie del hormigón, derivadas de las distintas capacidades de succión o absorción de las tablas, desaparecen con el tiempo.

Para evitar cambios de tono, la aplicación del desencofrante debe ser lo más uniforme posible. Sin embargo, en zonas ricas en resinas, como los nudos, se absorberá menos desencofrante, y la concentración mayor en estos puntos puede generar manchas en la superficie del hormigón.

Es importante considerar que las tablas nuevas tienen una mayor capacidad de absorción en comparación con las ya usadas, que, al entrar en contacto con la lechada del hormigón, han experimentado cierta mineralización superficial. Por esta razón, resulta aconsejable impregnar los encofrados nuevos con desencofrante al menos dos veces.

Si se quiere reflejar la huella de la tabla en el hormigón, es recomendable utilizar tablas de sierra sin cepillar. La utilización de berenjenos, ya sean triangulares o trapezoidales, se presenta como una opción efectiva para disimular posibles defectos visibles en las juntas de hormigonado. Asimismo, con el propósito de prevenir deformaciones ocasionadas por el peso o la presión del hormigón, se aconseja emplear tablas con un espesor mínimo de 25 mm.

En líneas generales, al emplear encofrados de madera, es importante asegurar que los encofrados sean rígidos para absorber los esfuerzos generados durante el hormigonado y la puesta en obra. Se debe prestar especial atención al cuidado de las aristas, puntos más susceptibles a daños. Es relevante extremar el control de planos, niveles y alineaciones de tablas y tablero, así como limpiar exhaustivamente los encofrados y saturarlos con agua o aplicar desencofrante justo antes de verter el hormigón.

Es esencial desencofrar con precaución para evitar desconchones, y en caso de encofrados demasiado secos, conviene humedecerlos ligeramente antes de proceder al desencofrado. Antes de la colocación del hormigón, se recomienda humedecer los encofrados para evitar que absorban agua de este. No obstante, el exceso de humedad en las maderas de los encofrados disminuye la resistencia y rigidez de estos elementos. Además, se debe disponer de las tablas y juntas de manera que permitan su libre hinchamiento, sin generar esfuerzos o deformaciones anormales, y sin permitir la salida de la pasta de cemento.

Figura 2. Detalle construcción de tablero de puente con encofrado de madera. Imagen: V. Yepes

El consumo por unidad de superficie de encofrado variará en función de la cantidad de reusos y la estructura necesaria para resistir el empuje durante el hormigonado. En proyectos repetitivos, la madera en buenas condiciones puede reutilizarse de 10 a 15 veces, mientras que en obras no repetitivas, el uso se limita a unas 8 veces, con un promedio de 4 o 5 veces debido a pérdidas en recortes y desencofrado.

En la Tabla 1 se especifican, de forma indicativa, los usos de la madera, su utilidad y los kilogramos de clavos y ataduras según el tipo de encofrado. En la estimación de costos, se aconseja distinguir entre la madera de tabla y largueros y la de puntales, siendo esta última más económica. El costo de la madera debe incrementarse en un rango del 10 al 20 % para cubrir pérdidas, recortes y cuñas.

El equipo de trabajo está compuesto por un oficial de primera (carpintero) y un peón especializado encargados ambos de la fabricación, montaje y desmontaje. Se sugiere un aumento del 15 al 20 % del tiempo empleado por el equipo, que incluye las horas de trabajo del peón ordinario destinadas a la limpieza y almacenamiento de la madera.

Tabla 1. Rendimientos de la mano de obra en encofrados de madera y consumos de materiales (Bendicho, 1983)

Os dejo un vídeo de Enrique Alario donde se utiliza madera entablillada. Espero que os interese.

Aquí os dejo otro vídeo de encofrado de madera.

Referencias:

BENDICHO, J. P. (1983). Manual de planificación y programación para obras públicas y construcción. Segunda parte: programación y control. Editorial Rueda, Madrid.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pont de les Arts de Valencia

Figura 1. Vista inferior del Pont de les Arts (Valencia).

El Pont de les Arts, construido en los últimos años del siglo XX, coincide con la transformación del antiguo cauce del Turia en el parque más extenso de Valencia. Les Arts destaca por su singularidad al unir dos zonas históricas e incorporar entre ambas el Institut Valencià d’Art Modern (IVAM). Este puente, que simboliza la modernidad en contraste con los antiguos y próximos puentes de piedra, está formado por dos tableros separados por 20 m, apoyados transversalmente en una única pila que no interfiere con el cercano e histórico Puente de San José. El puente, con una longitud total de 145 m, se compone de cinco vanos distribuidos en segmentos de 20-36-36-36-20 m respectivamente. Su diseño fue cuidadosamente concebido para destacarse como un elemento visual en armonía con el entorno del Jardín del Turia. Presenta un diseño moderno, construido con hormigón, de gran amplitud y longitud, situado a baja altura con respecto al lecho del río. Debajo, a diario, el río cobra vida con numerosos campos deportivos, pistas de atletismo y su carril bici.

Este puente (1993-1998) fue proyectado por Norman Foster en colaboración con la oficina Carlos Fernández Casado, S.L. (Leonardo Fernández, Javier Manterola, Miguel A. Ástiz, José Cuervo y Agustín Sevilla). Su construcción la realizó FCC Fomento de Construcciones y Contratas, con un presupuesto de 2.094 millones de pesetas, con un plazo de ejecución de 18 meses que terminó en junio de 1998. La estructura cruza el Jardín del Turia, conectando los barrios de Tendetes con los de El Carmen y El Botánico. Además, enlaza las calles Pare Ferrís y Mauro Guillén, así como la avenida Menéndez Pidal con el Paseo de la Petxina y las calles Guillem de Castro, Na Jordana y Blanqueria. En el extremo sur del puente se encuentra el IVAM, que da nombre al conjunto de las Arts, y el Centro Cultural la Beneficència, que alberga el Museo Etnológico de Valencia.

Figura 2. Detalle de las pilas del Pont de les Arts (Valencia)

El puente se construyó sobre cimbra, avanzando del cuarto de la luz de un vano al cuarto de la luz del siguiente, conectando las unidades de pretensado en las juntas. La singularidad del proceso residió en ejecutar ambos tableros simultáneamente para equilibrar las cargas en las pilas, y tesar los tableros y la pila al mismo tiempo para que los tres elementos entren en carga a vez. Para lograr este objetivo, el proceso de tensado comienza con una primera fase de tesado de la pila, seguida por el tesado del tablero y, finalmente, se completa el tesado de la pila una vez completado el vano siguiente.

Se compone de dos tableros de hormigón de 20 m de ancho, separados entre sí otros 20 m, unidos por cuatro pilas de doble ménsula sujetas por un único fuste, a modo de candelabro. De esta pila central sobresalen farolas blancas de 15 m de altura. La unión entre el tablero y la pila se caracteriza por su rigidez, pues la intersección forma parte tanto del tablero longitudinal como de la ménsula transversal.

Figura 3. Vista de la calzada del Pont de les Arts (Valencia)

Para evitar que el puente adopte la configuración de un pórtico múltiple, lo que generaría momentos transversales importantes en las pilas que se convertirían en torsión en las ménsulas, se han incorporado apoyos de neopreno entre la pila y la cimentación. Este diseño garantiza que el tablero funcione como una viga continua, eliminando la presencia de momentos transversales en la pila. Además, se ha prestado especial atención a la protección de estos neoprenos para prevenir su deterioro.

Los vanos laterales también se apoyan sobre neoprenos en los cabezales, actuando como estribos tras el muro de piedra. El tablero es una losa continua de canto variable, definida por cuatro superficies. En primer lugar, el trasdós del tablero es una superficie plana definida por la plataforma de la vía. El intradós, en cambio, se compone de tres cilindros de directriz circular. Dos de estos cilindros presentan generatrices paralelas al eje del tablero, intersectándose en una línea paralela a dicho eje, situada en su proyección vertical. Esta disposición genera un prisma de sección triangular con dos superficies cilíndricas y una tercera superficie plana que corresponde al trasdós del tablero. A su vez, este prisma se corta con un tercer cilindro con generatrices horizontales, pero normales a las anteriores. Este tercer cilindro corta al prisma en los vértices inferiores de los extremos del vano, generando la sección triangular del prisma como la sección del tablero en los arranques. En el centro del vano, la sección adquiere la forma de un trapecio con lados no paralelos curvos. Esta geometría genera un tablero con canto variable en el vano principal, presentando canto máximo de 1,50 m en el arranque que tiene forma triangular y canto mínimo de 0,70 m en el centro del vano. Los vanos de compensación, que son ligeramente mayores que la mitad del central, se forman al dividir el vano principal por la mitad y prolongar la sección en clave.

Las pilas, que se proyectan en forma de ménsula, requieren que el tablero sea lo más ligero posible para reducir al mínimo la flexión en estas zonas. Por esta razón, la sección presenta la forma de cajón multicelular en las zonas con mayor canto del tablero. En la parte superior de las pilas, el tablero se ensancha como un balcón, destacando así el efecto de ménsula de las pilas. La base de la pila tiene un ancho de 23,30 m, y se prolonga en ménsulas hacia ambos lados hasta alcanzar un ancho de 60 m; como resultado, los voladizos laterales tienen una longitud de 18,34 m.

Las ménsulas presentan un espesor constante de 1 m y un canto variable, siendo mínimo en el extremo con 0,65 m, y alcanzando su máximo a 7,50 m del eje del puente, donde llega a los 5,50 m. En este punto la ménsula se bifurca en dos elementos: un tirante superior de hormigón que se extiende hasta la pila central, y el diafragma inferior que va reduciendo su canto hasta llegar al pie del mismo pilar central. La configuración resultante de este aligeramiento adopta una forma elíptica, cortada en su eje vertical por el pilar donde se empotran los tirantes.

Los pilares verticales, responsables de sostener los tirantes de hormigón, culminan de manera elegante con farolas de 15 m de altura. Estas estructuras no solo cumplen la función de iluminar ambas plataformas del puente, sino que están resueltas con tubos y chapas metálicas, sirviendo como un remate estilizado para los pilares y contribuyendo a la estética global del puente.

Figura 4. Detalle de las farolas del Pont de les Arts (Valencia)

 

Evaluación del desarrollo sostenible de la industria de la construcción

Nos acaban de publicar en la revista Sustainable Cities and Society (1/68, CONSTRUCTION & BUILDING TECHNOLOGY, primer decil del JCR) un artículo relacionado con la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Se corresponde con la colaboración internacional que mantiene nuestro grupo de investigación con la Hunan University of Science and Engineering, de China. El primer autor, Prof. Zhou, sigue perteneciendo a nuestro grupo de investigación, pues desarrolló con nosotros su tesis doctoral.

Los datos de la investigación muestran que la industria de la construcción en China alcanzará su pico más alto de emisiones, según la evaluación del ciclo de vida en 2030 y tendrá emisiones nocivas entre 2061 y 2098. La evaluación del impacto social indica que se alcanzará su punto máximo en 2048.

Las contribuciones más relevantes de esta investigación son las siguientes:

  • El artículo innova modelos teóricos, como la «ponderación de la sensibilidad de la respuesta estructural», a través de una investigación interdisciplinaria, que aborda las limitaciones de la precisión de la iteración multifactorial, multidiscreta, con múltiples restricciones y con un bajo acoplamiento.
  • La investigación proporciona un sistema integral de teoría de la investigación y estándares de referencia para el cálculo científico y la evaluación precisa del desarrollo sostenible de la industria de la construcción en varios países del mundo.
  • El documento presenta un modelo, el «peso de sensibilidad a la respuesta estructural (SRSW)», que determina de forma precisa e intuitiva los resultados de la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.
  • La investigación incluye estudios de casos para demostrar la solidez del modelo, y muestra el pico de emisiones y las emisiones nocivas más altas de la industria de la construcción en China según la evaluación del ciclo de vida más alto.
  • La investigación contribuye al campo de la investigación sobre sostenibilidad en la industria de la construcción, ya que proporciona información y datos para que los responsables políticos y los profesionales tomen decisiones informadas con respecto al entorno ecológico.

ABSTRACT:

Sustainability research in the construction industry is of great strategic significance to the ecological environment of countries worldwide. This paper innovates theoretical models such as “structural response sensitivity weight” through interdisciplinary research on advanced mathematics, engineering science, computer science, environmental management and economic sociology. The model solves the limitations of multi-factor, multi-discrete, multi-constraint and low coupling iteration accuracy. The article shows the robustness of the model through case studies. The research data shows that the construction industry in China will reach its highest life cycle assessment emission peak of 2.73 GT in 2030 and will have harmful emissions of -2.78 GT between 2061 and 2098. The social impact assessment will peak at 4.26 GT in 2048 and harmful emissions of −3.75 GT per year from 2061 to 2098. This research provides a comprehensive research theory system and reference standards for scientific calculation and accurate assessment of the sustainable development of the construction industry in various countries around the world.

KEYWORDS:

Gross domestic product; Life cycle cost; Life cycle assessment; Social impact assessment; Topology optimization.

REFERENCE:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

La editorial ELSEVIER permite el acceso directo y gratuito a este artículo hasta el 8 de marzo de 2024. El enlace para la descarga es: https://authors.elsevier.com/c/1iRse7sfVZE2dg

 

El Puente de San José sobre el viejo cauce del Turia en Valencia. Una aproximación histórica, estética y constructiva

Puente de San José, en el antiguo cauce del Turia (Valencia). Imagen: V. Yepes

El Puente de San José, conocido también como Pont Nou, de la Santa Cruz o de la Saïdia, tuvo sus antecesores en palancas de madera, sucesivamente arrasadas por la impetuosidad del río Turia a lo largo de los años. El nombre de San José se debe a que en 1628 se estableció el convento carmelita homónimo de las monjas descalzas junto al Portal Nou (Melió, 1997:64). De los cinco puentes construidos en la época foral, es el que está situado más aguas arriba, además de ser el último edificado. Comunica esta estructura el barrio de Roters, por el desaparecido Portal Nou, con el Llano de la Saïdia, Marxalenes, Tendetes y Campanar. En este tramo fluvial se situaba la zona del Cremador inquisitorial, paraje donde eran quemados literalmente los reos. Por cierto, el último ajusticiado por la intolerancia fue el maestro de escuela Cayetano Ripoll, que murió ahorcado junto al puente, el 31 de julio de 1826, quemando sus restos en un barril.

Es muy probable que en época musulmana existiese alguna pasarela que conectase la ciudad con el palacio de la reina Saïdia. Sin embargo, las primeras referencias a esta estructura, del año 1383, se refieren a una pequeña pasarela conocida como “Palanca del Cremador”, rudimentaria y de escaso valor estratégico para las comunicaciones viarias de la ciudad. Apenas salvaría la anchura del cauce del río y sufrió, a lo largo del tiempo, episodios de crecidas que arrasaron, total o parcialmente, su estructura. Rosselló y Esteban (2000:23) indican que la estructura, entonces de madera, se hundiría en 1406. Serra (1994:116) refiere la participación de Joan del Poyo en los trabajos que desarrolló, entre los años 1435 y 1439, en la palanca o puente de madera del Portal Nou. Se documenta que la riada del 28 de octubre de 1487 derribó la palanca del Portal Nou y lo mismo ocurriría el 20 de agosto de 1500. Decididos a terminar con estas vicisitudes, se decidió construir un puente de cantería, pero fue derribado en apenas una hora con ocasión de la furiosa avenida del 27 de septiembre de 1517, día de los santos Cosme y Damián. (Carmona).

Os dejo a continuación el artículo completo.

Referencia:

YEPES, V. (2010). El Puente de San José sobre el viejo cauce del Río Turia en Valencia. Una aproximación histórica, estética y constructiva. Universitat Politècnica de València, 13 pp. DOI:10.13140/RG.2.2.29846.73287

Descargar (PDF, 1.79MB)

Visualizar el futuro del intercambio de conocimientos en las PYMEs del sector de la construcción

Acaban de publicarnos un artículo en la revista Advances in Civil Engineering (revista indexada en el JCR) donde se revisa la literatura existente sobre el intercambio y la transferencia de conocimientos en las pequeñas y medianas empresas (PYMES) del sector de la construcción, destacando la importancia fundamental del intercambio y la transferencia de conocimientos para las pymes de este sector. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo proporciona un mapa conceptual que describe el desarrollo histórico del intercambio y la transferencia de conocimientos a nivel individual, grupal y organizacional en la industria de la construcción. Además, sugiere las tendencias futuras en el intercambio y la transferencia de conocimientos, haciendo hincapié en la importancia de la colaboración, el aprendizaje continuo, las capacidades tecnológicas y el desarrollo de una cultura y una estructura organizacionales adecuadas para la innovación abierta en la industria de la construcción.

Las contribuciones del trabajo se pueden resumir de la siguiente forma:

  • El documento sintetiza sistemáticamente la literatura existente sobre el intercambio y la transferencia de conocimientos en las pymes del sector de la construcción, y ofrece una revisión exhaustiva del tema.
  • Identifica el desarrollo histórico del intercambio y la transferencia de conocimientos a nivel individual, grupal y organizacional en la industria de la construcción, creando un mapa conceptual del campo.
  • El estudio hace hincapié en la importancia fundamental del intercambio y la transferencia de conocimientos para las pymes del sector de la construcción, destacando el papel de la innovación y la innovación abierta para facilitar una implementación exitosa.
  • El documento sugiere las tendencias futuras en materia de intercambio y transferencia de conocimientos, haciendo hincapié en la importancia de la colaboración, el aprendizaje continuo, las capacidades tecnológicas y el desarrollo de una cultura y una estructura organizativas adecuadas para la innovación abierta en la industria de la construcción.
  • Ofrece recomendaciones prácticas para mejorar la gestión del conocimiento y la capacidad de innovación en las empresas relacionadas con la construcción.

El trabajo ofrece una serie de recomendaciones prácticas para mejorar la gestión del conocimiento en las empresas relacionadas con la construcción:

  • Evalúe las prácticas de gestión de datos para garantizar un manejo y una utilización eficientes del conocimiento dentro de la organización.
  • Implemente sistemas digitales para la gestión interna a fin de agilizar los procesos de intercambio de conocimientos y mejorar la accesibilidad.
  • Identificar las ineficiencias en la transferencia de conocimientos dentro de las redes de colaboración y tomar las medidas necesarias para abordarlas.
  • Adapte los enfoques de gestión del conocimiento para que se adapten a los diferentes contextos culturales y geográficos, teniendo en cuenta los desafíos y oportunidades únicos que presentan.
  • Fomentar una cultura de colaboración dentro de la organización, alentando a los empleados a compartir e intercambiar conocimientos de forma activa.
  • Haga hincapié en el aprendizaje continuo y brinde oportunidades para que los empleados adquieran nuevos conocimientos y habilidades.
  • Mejorar las capacidades tecnológicas para mejorar la gestión del conocimiento y facilitar la innovación dentro de la empresa.
  • Desarrollar una estructura organizativa adecuada que apoye la innovación abierta y fomente el intercambio de conocimientos entre los diferentes departamentos y equipos.

ABSTRACT:

This review paper systematically synthesizes existing literature on knowledge sharing (KS) and knowledge transfer (KT) in the context of small and medium-sized enterprises (SMEs) in the construction industry, updating previous research and making predictions about emerging issues. The comprehensive literature review employs three different bibliometric techniques: (1) textual analysis of keywords and abstracts to identify relevant research areas, (2) cocitation analysis of references to analyze the evolution of KS and KT in SMEs, and (3) bibliographic linkage analysis of documents to summarize the background and results. The resulting conceptual map outlines the historical development of KS and KT at individual, group, and organizational levels in the construction industry. The study emphasizes the critical significance of KS and KT for SMEs in this industry. It highlights the role of innovation and open innovation in facilitating the successful implementation of KS and KT. The analysis also reveals the need for enhanced knowledge management in SMEs through better data management, implementation of digital systems for internal management, identification of inefficiencies in KT in collaborative networks, and adjustment of knowledge management approaches to suit different cultural and geographic contexts. Finally, the paper suggests future trends in KS and KT, emphasizing the importance of collaboration, continuous learning, technological capabilities, and developing a suitable organizational culture and structure for open innovation in the construction industry. This article offers an innovative approach to KS and KT in SMEs and practical recommendations for improving knowledge management and innovation capacity in construction-related businesses. Its systematic approach and focus on SMEs in the construction industry make it highly relevant for research and business practice.

REFERENCIA:

LOPEZ, S.; YEPES, V. (2024). Visualizing the future of Knowledge sharing in SMEs in the construction industry: A VOS-viewer Analysis of emerging trends and best practices. Advances in Civil Engineering, 2024:6657677. DOI:10.1155/2024/6657677

Os dejo el artículo, pues está publicado en abierto.

Descargar (PDF, 2.15MB)

Premio EMA (Excelencia y Mérito Académico) de estructuras de edificación 2023

Iván Negrín ha ganado la primera edición del Premio EMA (Excelencia y Mérito Académico) de estructuras de edificación 2023. Se trata de un premio otorgado por la Asociación de consultores de estructuras de edificación (ACIES), una convocatoria dirigida a estudiantes e investigadores con interés en el cálculo de estructuras de edificación. Tengo el honor de dirigir su tesis doctoral junto con el profesor Moacir Kripka. Iván es un estudiante de nuestro Programa de Doctorado, de nacionalidad cubana y que tiene una beca predoctoral para realizar su trabajo de investigación. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. ¡Enhorabuena, Iván!

Este galardón, impulsado por la Junta Directiva de ACIES, persigue los siguientes fines:

  • Dar a visibilidad y reconocimiento la labor de estudiantes e investigadores en el campo de la consultoría de estructuras de edificación
  • Promocionar el interés de las nuevas generaciones en la consultoría de estructuras de edificación
  • Fomentar la incorporación de estudiantes con formación e interés en el mundo laboral del gremio de la consultoría de estructuras de edificación.
  • Poner en valor la importancia de la consultoría de estructuras de edificación dentro de la construcción a través de las nuevas generaciones.

Su trabajo, Optimización metaheurística enfocada en el diseño sostenible basado en fiabilidad y robusto de estructuras híbridas para marcos de edificaciones, presentaba una innovación técnica notable que proponía edificaciones aporticadas que mejoren los índices de sostenibilidad de las tipologías actuales.

“Mediante la aplicación de la novedosa metodología de diseño propuesta se busca formular problemas de optimización que exploren en profundidad la posibilidad de construir estructuras mixtas o híbridas. Esto con el objetivo de obtener diseños más económicos, respetuosos con el medio ambiente, de gran impacto social, fáciles de construir y duraderos”, especifica en su trabajo Negrín.

En el siguiente enlace se puede ver a los otros finalistas y a los miembros del jurado: https://www.acies.es/actividades/premios-ema

Descargar (PDF, 1.28MB)

Encofrado autotrepante variable para pilas de puente inclinadas

Figura 1. Sistema autotrepante para pilas inclinadas. https://www.peri.es/productos/encofrados/soluciones-para-obra-civil/sistemas-de-trepado/acs-self-climbing-system.html

Cuando se trata de ejecutar las pilas de puente que sean inclinadas, existen sistemas de encofrado autotrepante que es variable y regulable. Las distintas plataformas que componen este sistema pueden regularse en su inclinación, creando así una zona de trabajo horizontal que facilita la realización segura y cómoda de tareas como la colocación de armaduras, el encofrado, el hormigonado y la terminación.

Este sistema permite elevar cuatro niveles de trabajo de una puesta a otra sin necesidad de grúa. Estos niveles incluyen la plataforma de hormigonado, el nivel de encofrado y desencofrado, la plataforma que alberga el sistema hidráulico y los controles, y la plataforma de terminación destinada a desmontar soportes de trepado y conos de anclaje. El sistema de encofrado trepante a una cara permite resolver muros o pilas en altura, sin necesitar de las barras dywidag.

Con respecto a los encofrados trepantes inclinados utilizados en los pilonos de puentes y otros paramentos inclinados, como los vistos en un artículo previo para una presa, se destaca la importancia de anclar la consola, ya que este factor condiciona la resistencia del hormigón. Esta limitación no se presenta al trepar elementos verticales, dado que, en ese caso, el hormigón no experimenta flexiones, lo que implica que las resistencias necesarias para el ascenso son considerablemente menores. Es crucial que el proveedor del sistema de anclaje establezca claramente cuál es este límite para asegurar la eficacia del anclaje en situaciones que involucren elementos inclinados.

Os dejo a continuación un artículo donde se describe en detalle el proceso constructivo de las pilas y torres del Puente de la Constitución de 1812 sobre la Bahía de Cádiz. Espero que os sea de interés.

Descargar (PDF, 5.64MB)

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441. Valencia, 50 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrados trepantes para presas

Figura 1. Ejecución de muros de presa con inclinación variable. https://www.ulmaconstruction.com/es/encofrados/encofrados-trepantes/sbd-170-consola-de-trepado-para-presas

En el ámbito de construcciones como presas, galerías, esclusas, diques o edificaciones que enfrentan considerables cargas procedentes del hormigonado, se emplean encofrados trepantes específicos configurados a medida para adaptarse a cambios de inclinación vertical hacia adelante y hacia atrás según el proyecto. Este encofrado es un sistema trepante de una sola cara, en el cual las fuerzas generadas durante el hormigonado se descargan sin la necesidad de anclajes tradicionales. En su lugar, se utilizan consolas equipadas con correas y tornapuntas de alta capacidad, transmitiendo las fuerzas hacia el anclaje mediante la consola. Se pueden ejecutar muros con grandes desplomes, con las plataformas de trabajo siempre horizontales.

Estos encofrados son robustos y rentables, eliminando la necesidad de costosos trabajos de terminación al prescindir de anclajes de encofrado que requieran sellado individual. Además, el sistema se desplaza sobre el carro sin necesidad de grúa, facilitando el ferrallado, el montaje de consolas y encofrados, así como el desencofrado de vanos mediante el basculamiento del encofrado.

En el mercado existen soluciones estándar para alturas de bloques de hasta 5 m. Estas soluciones incorporan plataformas de trabajo amplias, con anchuras de hasta 2,80, m y garantizan subidas y bajadas seguras entre las plataformas gracias a un sistema de acceso integrado.

Figura 2. Consola de trepado para presas. https://www.ulmaconstruction.com/es/encofrados/encofrados-trepantes/sbd-170-consola-de-trepado-para-presas

Las principales ventajas de los sistemas trepantes para presas incluyen la obtención de una solución robusta y rentable para cargas pesadas. Las distancias entre consolas permiten trabajar con módulos de encofrado de gran tamaño, optimizando la capacidad de carga y logrando soluciones económicas.

Además, se emplean anclajes diseñados específicamente para este tipo de consolas. Los conos de trepado descargan esfuerzos de tracción y transversales en el hormigón, con conos de protección anticorrosiva que se recuperan y reutilizan, dejando únicamente la barra y la contraplaca de forma permanente en el hormigón.

La flexibilidad en la planificación es otra ventaja, pues este sistema permite hormigonar superficies inclinadas hacia adelante o atrás, incluso en construcciones circulares. La capacidad de montar lateralmente consolas adicionales facilita el encofrado de superficies inclinadas, permitiendo la inclinación que indique el fabricante en su manual de producto y posibilitando la instalación de accesos prácticamente horizontales.

Os dejo un vídeo de ULMA sobre la utilización de estos encofrados en presas.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441. Valencia, 50 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.