Compatibilidad entre cementos y aditivos: análisis y criterios de evaluación

En este artículo se resumen las ideas básicas de la guía elaborada por la Plataforma Tecnológica Española del Hormigón en relación con la compatibilidad entre cementos y aditivos.

En esta guía se analiza la compatibilidad entre cementos y aditivos superplastificantes, especialmente los basados en policarboxilatos, y se destacan los retos asociados a los cementos con menores emisiones de CO₂.

Se propone un método de ensayo con morteros normalizados para evaluar parámetros como fluidez, consistencia, densidad y tiempos de fraguado, teniendo en cuenta las implicaciones normativas y ambientales.

Además, se explica el impacto de las adiciones en el rendimiento del hormigón y la importancia de elegir aditivos adecuados para garantizar su estabilidad y funcionalidad. También se abordan las implicaciones normativas actuales y futuras en este ámbito.

El texto concluye con recomendaciones sobre la evaluación de nuevas formulaciones cementicias para mantener o mejorar las propiedades del hormigón.

Introducción al análisis de la compatibilidad cemento-aditivo

A lo largo de las últimas décadas, la industria del hormigón ha incorporado nuevas formulaciones de aditivos, en particular superplastificantes basados en polímeros de policarboxilato (PCE), que han permitido alcanzar elevados niveles de fluidez y mantener una consistencia prolongada. Sin embargo, el uso de nuevos tipos de cementos, principalmente aquellos con bajo contenido de clínker y mayor proporción de adiciones, ha planteado desafíos específicos en cuanto a su compatibilidad con estos aditivos. Esta guía se centra en identificar, comprender y evaluar dichos desafíos, y propone un método de contraste basado en ensayos de morteros normalizados que permite anticipar posibles desviaciones en el rendimiento del hormigón debidas a cambios en la química del cemento o del aditivo.

1. Objeto

El objetivo de la guía es evaluar la interacción entre cemento y aditivos superplastificantes mediante un método de ensayo basado en morteros normalizados. Esta metodología permite identificar variaciones en parámetros como fluidez, mantenimiento de la consistencia, aire ocluido, densidad y tiempos de fraguado, tanto frente a modificaciones en la composición del cemento como al empleo de distintos tipos de aditivos, utilizando un protocolo que establece relaciones a/c precisas y reproducibles.

2. Alcance

Este enfoque es especialmente adecuado para cementos con bajo contenido de clínker, elevada finura o presencia de diversas adiciones. Se centra en cementos experimentales cuyo desarrollo tiene como objetivo reducir la huella de carbono y cuya aplicación requiere validar su comportamiento antes de su uso industrial, tanto en hormigón preparado como en prefabricado. En este contexto, la evaluación de compatibilidad se vuelve una herramienta indispensable para prever rendimientos y ajustar formulaciones en función de la tecnología disponible.

3. Mecanismo de actuación de los aditivos superplastificantes y compatibilidad cemento-aditivo

Los aditivos superplastificantes basados en PCE actúan sobre la superficie de las partículas de cemento mediante adsorción, generando una repulsión estérica entre ellas. Esta acción se traduce en una mejora de la fluidez del sistema. La capacidad de mantener el efecto en el tiempo depende del equilibrio dinámico entre la fracción de aditivo adsorbida, la disuelta en solución y la encapsulada en productos de hidratación como la etringita.

La compatibilidad se define como la capacidad del sistema para mantener la consistencia deseada sin pérdidas prematuras de fluidez. Las principales causas de incompatibilidad son una adsorción excesiva o deficiente, la absorción por materiales porosos o las interacciones químicas que inhiben el aditivo. Estos efectos están estrechamente relacionados con las propiedades del cemento, como su finura, el contenido de sulfato soluble, la presencia de adiciones con baja reactividad o carácter absorbente y la relación molar SO₄²⁻/C₃A.

El uso de cementos muy finos puede acelerar la adsorción del aditivo y reducir su reserva disponible, lo que compromete la durabilidad del efecto. Las adiciones absorbentes reducen la proporción de aditivo útil, lo que provoca una pérdida prematura de fluidez. En casos extremos, como defectos de sulfato soluble, puede producirse una inactivación casi total del aditivo. Para ajustar la elección del aditivo más adecuado, es fundamental evaluar detalladamente la compatibilidad y tener en cuenta estos aspectos.

4. Método de ensayo de contraste con morteros normalizados

El procedimiento implica la elaboración de morteros con y sin aditivo superplastificante, manteniendo constante la relación a/c, y la medición de propiedades como la consistencia utilizando una mesa de sacudidas, la densidad, el aire ocluido y los tiempos de fraguado.

Se emplea equipamiento normalizado según la normativa europea (EN 196-1, EN 1015-3, EN 480-1), cuidando las condiciones de amasado y la temperatura de los componentes. El ensayo se realiza en intervalos temporales (T0, T30 y T60) para registrar la evolución de la fluidez.

Los datos obtenidos permiten contrastar el comportamiento del mortero con aditivo respecto al patrón y detectar posibles efectos de incompatibilidad. También se registra la resistencia mecánica a flexión y compresión en diferentes edades para validar el rendimiento final del sistema.

5. Cementos que se recomienda ensayar

El impulso hacia cementos con menor huella de carbono ha llevado al desarrollo de formulaciones con una mayor proporción de adiciones, como cenizas volantes, escorias, puzolanas y calizas. El objetivo de estas estrategias es reducir el contenido de clínker, el componente que más emisiones genera.

Reducir el clínker afecta a la reactividad inicial, la trabajabilidad del hormigón y su estabilidad a largo plazo. La adición de materiales puzolánicos o inertes modifica el comportamiento reológico, por lo que es posible que sea necesario incorporar activadores o ajustar la formulación del aditivo.

La utilización de cementos con adiciones suele implicar la necesidad de aditivos de alta eficiencia, incluidos superplastificantes combinados con retardadores o aceleradores, así como aditivos reductores de retracción. A la hora de elegir, hay que tener en cuenta el tipo de adición y su interacción con el sistema.

Las normativas UNE-EN 197-1, 197-5 y 197-6 han ampliado el espectro de cementos aceptados, incluyendo nuevos tipos como el CEM VI y aquellos con materiales reciclados. Estas actualizaciones ofrecen una mayor flexibilidad en la formulación de cementos sostenibles, pero también exigen métodos de validación más precisos para garantizar la compatibilidad con aditivos y la calidad del producto final.

6. Cementos empleados y sensibilidad del método

El capítulo seis de la guía analiza los resultados obtenidos al aplicar el método de contraste a diversos tipos de cementos disponibles en el mercado, especialmente a aquellos que incorporan adiciones en proporciones significativas. El objetivo de este análisis es comprobar la capacidad del método para detectar diferencias sutiles en la interacción entre el cemento y el aditivo, y así evaluar su sensibilidad ante variaciones compositivas que, en principio, podrían parecer menores.

Se ha comprobado que el método de ensayo propuesto es sensible a las diferencias específicas en los comportamientos según el tipo de adición presente en el cemento. Entre las variables ensayadas, destacan la fluidez inicial, el mantenimiento de la consistencia, la cantidad de aire ocluido, la densidad del mortero fresco y los tiempos de fraguado. Estos parámetros permiten obtener una lectura clara de los efectos derivados del uso de diferentes tipos de adiciones, como escorias, cenizas volantes, calizas o puzolanas naturales.

Asimismo, el procedimiento permite observar los efectos de adiciones con altos grados de vitrificación o bajo nivel de ionización inicial, lo que puede inducir reacciones retardadas en la adsorción del aditivo. En estos casos, el ensayo no solo refleja una merma en la fluidez inicial, sino también un fenómeno de refluidificación tardía, lo que compromete la estabilidad del mortero con el paso del tiempo.

En general, los resultados confirman que el método de contraste no solo es reproducible, sino que su sensibilidad es suficiente para discriminar entre situaciones de compatibilidad aceptable y aquellas en las que existen limitaciones importantes que podrían comprometer el rendimiento del hormigón en aplicaciones reales.

7. Conclusiones

El análisis realizado en esta guía confirma que la compatibilidad entre cemento y aditivos no es un parámetro fijo o inherente al producto, sino que depende de un equilibrio dinámico y ajustado que debe evaluarse en función de cada combinación específica. La evolución de los cementos hacia formulaciones con menor huella de carbono ha introducido nuevas variables que afectan a este equilibrio, desde cambios en la mineralogía hasta variaciones en la reactividad de las adiciones utilizadas.

El método de ensayo de contraste con morteros normalizados propuesto ha demostrado ser eficaz para anticipar el comportamiento del sistema cemento-aditivo, ya que permite identificar de manera temprana posibles desviaciones en propiedades clave como la fluidez, la consistencia, la oclusión de aire, la densidad y los tiempos de fraguado. Su implementación sistemática ofrece una herramienta de diagnóstico útil tanto en las fases de diseño como en el control de calidad de la producción industrial.

En definitiva, comprender las variables que afectan a la compatibilidad entre cementos y aditivos y disponer de herramientas de evaluación sensibles y bien estructuradas es fundamental para garantizar el rendimiento del hormigón en contextos de creciente exigencia ambiental y tecnológica.

Aquí tenéis un mapa mental de lo anteriormente expuesto.

Además, os dejo el documento completo para su consulta.

Descargar (PDF, 6.84MB)

Cimentaciones en suelos blandos: análisis integral de mecanismos de fallo

Acaban de publicar nuestro artículo en la revista Buildings, de la editorial Elsevier, indexada en el JCR. El trabajo ofrece una contribución significativa al estudio de los mecanismos de fallo en fosos de cimentación profunda, especialmente en entornos geotécnicos desfavorables caracterizados por suelos blandos limosos. A diferencia de los enfoques previos, que tratan los problemas de estabilidad desde una perspectiva parcial, esta investigación desarrolla un modelo integral que combina simulaciones numéricas en tres dimensiones, pruebas de campo a escala real y un enfoque de acoplamiento microestructural para analizar el comportamiento del terreno y los elementos estructurales en condiciones reales de obra.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Hunan University of Science and Engineering (China).

Uno de los principales logros del estudio radica en la aplicación de un modelo multidisciplinar acoplado que tiene en cuenta factores como la consolidación del terreno, la deformabilidad del sistema de contención, la presión del agua subterránea y la calidad de la ejecución del piloteado. Este modelo no solo permite diagnosticar fallos con alta precisión, sino también anticipar comportamientos críticos antes de que se manifiesten de forma visible. Esta capacidad predictiva supone un avance significativo en el campo del control de calidad y la seguridad estructural en cimentaciones profundas.

Además, el trabajo plantea una metodología replicable basada en el uso combinado de tecnologías de ensayo estático, pruebas de onda de baja deformación y modelado por elementos finitos. La gran cantidad de datos empíricos obtenidos, junto con su correlación con los resultados simulados, constituye una base sólida para el desarrollo de futuras normativas de control y supervisión de obras en suelos con baja capacidad portante.

La investigación se ha estructurado en torno a tres ejes metodológicos principales: pruebas de campo, ensayos de laboratorio y modelado numérico. En primer lugar, se llevaron a cabo ensayos in situ que incluyeron pruebas de penetración estándar, ensayos de penetración dinámica, pruebas de velocidad de onda de corte y muestreo mediante perforación mecánica. Estos ensayos se llevaron a cabo en el entorno del proyecto XSS-10D, una obra de gran escala con un foso de cimentación profunda sometido a condiciones geotécnicas complejas.

En segundo lugar, se realizaron ensayos geotécnicos de laboratorio sobre más de 140 muestras de suelo para determinar propiedades como la densidad seca y húmeda, el contenido de humedad, el límite líquido, la cohesión y el ángulo de fricción interna. Estos datos fueron fundamentales para definir los parámetros de entrada de los modelos numéricos.

Finalmente, se construyó un modelo tridimensional por elementos finitos utilizando el programa informático Abaqus CAE. Dicho modelo incorporó las características del suelo, las estructuras de contención, los pilotes y la acción de cargas externas, teniendo en cuenta tanto el comportamiento estático como las deformaciones diferidas. Además, se emplearon modelos viscoelásticos, como el de Kelvin, y se aplicó el criterio de rotura de Mohr-Coulomb para simular el comportamiento plástico del suelo.

Los resultados obtenidos a partir del estudio del proyecto XSS-10D confirman la eficacia del modelo acoplado para detectar defectos estructurales en cimentaciones profundas. En particular, se identificó que el pilote ZH2-194 presentaba una serie de análisis anómalos en los ensayos de baja deformación, los cuales se corroboraron mediante pruebas de carga estática y muestreo con extracción de testigos.

Las pruebas de carga estática evidenciaron desplazamientos superiores a los límites de servicio, mientras que el análisis del testigo reveló defectos de fabricación como oquedades, segregación de hormigón y contaminación con materiales finos. Estas deficiencias se atribuyeron a problemas en el proceso de hormigonado, como la intrusión de lodo en el interior de la perforación, la pérdida de trabajabilidad del hormigón y la falta de compactación adecuada.

El modelo numérico reprodujo con exactitud la distribución de esfuerzos y desplazamientos en la zona afectada y localizó los puntos de mayor concentración de tensiones en las inmediaciones del pilote defectuoso. Se observó un fenómeno de desplazamiento lateral y una redistribución de esfuerzos en el sistema de contención, lo que refuerza la necesidad de tener en cuenta la interacción entre el suelo y la estructura en su conjunto.

Los resultados también mostraron la importancia de factores como la presión del agua subterránea, la consolidación secundaria del suelo y la heterogeneidad estratigráfica en la evolución de los mecanismos de fallo. En particular, la capa de limos blandos localizada en el estrato 3 resultó ser un elemento clave en la pérdida de capacidad portante y el desarrollo de deformaciones excesivas.

A partir de los resultados del presente estudio, se abren diversas posibilidades para profundizar en el análisis de cimentaciones en entornos complejos. Una dirección prometedora consiste en incorporar técnicas de inteligencia artificial para detectar automáticamente los defectos mediante el procesamiento de datos de sensores de deformación y pruebas dinámicas. Esta integración permitiría establecer sistemas de supervisión continua con capacidad de aprendizaje adaptativo.

También es pertinente investigar nuevos materiales con propiedades reológicas adaptadas a entornos saturados o con baja resistencia al corte, como morteros tixotrópicos o mezclas de hormigón autocompactante con aditivos antifisuración.

Otra línea de investigación interesante es el estudio del comportamiento de los sistemas de contención bajo acciones cíclicas o sísmicas, ya que los modelos actuales tienden a centrarse en condiciones estáticas. La incorporación de elementos de análisis dinámico permitiría mejorar la resistencia global del sistema ante eventos extremos.

Por último, se propone la estandarización de protocolos para la inspección microestructural de pilotes defectuosos, en los que se establecen umbrales de aceptabilidad y criterios objetivos de intervención.

En conclusión, el estudio realizado constituye una aportación relevante y detallada al conocimiento sobre los mecanismos de fallo en cimentaciones profundas en suelos blandos. Su enfoque integral, que combina simulaciones numéricas, ensayos geotécnicos y análisis microestructurales, ofrece herramientas eficaces para detectar patologías estructurales de manera temprana. Además, sentará las bases para mejorar los procesos constructivos y desarrollar nuevas metodologías de control de calidad adaptadas a entornos complejos. La replicabilidad del modelo y su aplicabilidad en casos reales lo convierten en una referencia útil para estudiantes y profesionales de la ingeniería civil.

Referencia:

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

Como el artículo es en abierto, os lo dejo para su descarga:

Descargar (PDF, 20.44MB)

Principio de Saint-Venant

Figura 1. Principio de Saint-Venant. https://ocw.bib.upct.es/

En el análisis de estructuras de los ámbitos de la ingeniería civil y mecánica se presentan numerosas situaciones en las que se aplican cargas en regiones localizadas de un cuerpo elástico. En estos casos, el estudio detallado del comportamiento del esfuerzo y la deformación cerca de los puntos de carga puede resultar complejo o innecesario si el interés del análisis se centra en regiones alejadas de estas zonas. Para abordar este tipo de problemas de forma más eficiente, se recurre al principio de Saint-Venant, formulado por el científico francés Adhémar Jean Claude Barré de Saint-Venant en 1855.

El principio de Saint-Venant se basa en una observación fundamental:

Los esfuerzos y deformaciones unitarias producidos en puntos del cuerpo que están suficientemente alejados de la zona donde se aplica una carga son prácticamente iguales a los que se producirían si en su lugar se aplicara otra distribución de cargas estáticamente equivalente sobre la misma región.

En otras palabras, si dos sistemas de fuerzas generan la misma resultante y el mismo momento resultante en una región concreta del cuerpo, entonces su efecto sobre el campo de tensiones y deformaciones a cierta distancia de esa zona será prácticamente el mismo, independientemente de cómo se distribuya la carga exactamente en esa región.

Este principio también implica que los efectos locales, como concentraciones de esfuerzo o distribuciones complejas cerca de los apoyos o puntos de aplicación, se disipan progresivamente hacia el interior del cuerpo y dejan de tener influencia significativa en zonas alejadas.

Desde el punto de vista físico, el principio de Saint-Venant se basa en la capacidad de los materiales elásticos para redistribuir las tensiones internamente. Las cargas aplicadas en una pequeña región producen un campo de tensiones localmente complejo, pero este campo tiende a estabilizarse a medida que nos alejamos de la fuente de perturbación.

Por ejemplo, una carga puntual aplicada sobre una estructura provoca, en teoría, una tensión infinita en su punto de aplicación. Para modelar correctamente esta situación, se reemplaza por una distribución continua de carga sobre una pequeña superficie, de modo que se mantiene el equilibrio estático (misma fuerza y mismo momento). Aunque el reparto de tensiones es diferente cerca del punto de carga, el comportamiento del cuerpo será el mismo en regiones lejanas para ambas situaciones.

Figura 2. Distribución de tensiones en el plano central vertical. https://spotcursos.com.br/blogs/mecanica-das-estruturas/posts/o-principio-de-saint-vernant

Este principio tiene consecuencias directas en el análisis estructural, ya que permite simplificar el estudio de esfuerzos y deformaciones sin necesidad de conocer con detalle la forma real de aplicación de las cargas. Algunas aplicaciones clave son:

  • Idealización de cargas complejas: las cargas concentradas, como ruedas, apoyos o uniones, pueden modelarse como distribuciones equivalentes sin alterar el análisis global.
  • Diseño por tramos o secciones: el comportamiento de una viga o columna puede estudiarse por secciones lejos de los apoyos sin considerar la distribución exacta de las reacciones.
  • Análisis numérico (por el método de elementos finitos): en zonas alejadas de las condiciones de contorno, no es necesario modelar con alta precisión el contacto o la geometría de la carga.

En general, esta «distancia suficiente» a partir de la cual se puede aplicar el principio con seguridad depende de las dimensiones características del cuerpo. En el caso de las vigas, suele ser de una a dos veces la altura de la sección transversal.

Para facilitar la comprensión, puede resumirse de la siguiente manera:

Al estudiar la distribución de esfuerzos en un cuerpo, si nos situamos en una sección suficientemente alejada de los puntos de aplicación de la carga, no necesitamos conocer la forma exacta en que se aplicaron esas cargas.

Lo relevante es que cualquier otra carga aplicada en la misma región y que sea estáticamente equivalente generará en esa sección los mismos esfuerzos y deformaciones unitarias. En consecuencia, los efectos locales se «suavizan» con la distancia y, en las zonas alejadas, predomina el equilibrio global de fuerzas.

A pesar de su utilidad, el principio de Saint-Venant no debe aplicarse en ciertas condiciones, como por ejemplo:

  • Análisis de tensiones cerca de puntos de carga o apoyos, donde los efectos locales no se han disipado.
  • Situaciones donde se presentan fenómenos como fatiga, fisuración o plastificación, que dependen críticamente de concentraciones de tensiones.
  • Cuerpos donde la distancia entre la zona de carga y la zona de interés es comparable a las dimensiones del sólido, por lo que no puede garantizarse la atenuación de efectos.

Tampoco es válido en materiales no elásticos o no lineales, donde la redistribución interna del esfuerzo no sigue el comportamiento descrito por la teoría elástica clásica.

El principio de Saint-Venant es un pilar fundamental en la formulación de modelos estructurales simplificados. Su aplicación permite al ingeniero centrarse en el análisis global sin necesidad de resolver problemas localmente complejos cerca de las cargas o apoyos.

En resumen, este principio nos recuerda que:

  • Los detalles locales importan poco a gran distancia, siempre que se conserve el equilibrio estático.
  • Las cargas reales pueden sustituirse por distribuciones ideales equivalentes en regiones alejadas.
  • La disipación de los efectos locales permite resolver problemas estructurales con mayor eficiencia sin sacrificar precisión en la mayoría de los casos prácticos.

Os dejo algunos vídeos explicativos. Espero que os sean de interés.

Referencias:

  • Berrocal, L. O. (2007). Resistencia de materiales. McGraw-Hill.
  • Hibbeler, R. C. (2006). Mecánica de materiales. Pearson educación.
  • Rui-Wamba, J. (2020). Teoría unificada de estructuras y cimientos: Una mirada transversal. Reverte.

Fazlur Rahman Khan: el ingeniero que reinventó los rascacielos

Fazlur Rahman Khan (1929-1982). https://en.wikipedia.org/wiki/Fazlur_Rahman_Khan

Fazlur Rahman Khan nació el 3 de abril de 1929 en Dhaka, que entonces formaba parte del Raj británico y hoy es la capital de Bangladés. Provenía de una familia bengalí musulmana: su padre, Khan Bahadur Abdur Rahman Khan, destacó como profesor, y su madre, Khadijah Khatun, pertenecía a una familia zamindar. Durante su infancia en una ciudad con construcciones modestas, comenzó a desarrollar una sensibilidad por el entorno construido que marcaría su carrera.

Tras completar sus estudios secundarios en el Armanitola Government High School, se graduó con honores en 1950 en el Bengal Engineering College, que por entonces estaba adscrito a la Universidad de Dhaka. En 1952, gracias a una beca Fulbright y con el apoyo del Gobierno de Pakistán, se trasladó a Estados Unidos para estudiar en la Universidad de Illinois en Urbana-Champaign. En tan solo tres años, obtuvo dos másteres y un doctorado en Ingeniería Estructural, centrando su tesis en el estudio de vigas pretensadas de hormigón.

En 1955 se incorporó a Skidmore, Owings & Merrill (SOM), una de las firmas de arquitectura e ingeniería más prestigiosas de Estados Unidos, con sede en Chicago. Allí entabló una colaboración clave con el arquitecto Bruce Graham. Su ascenso fue rápido: en 1966 fue nombrado socio y en 1970 alcanzó el rango de socio general. Trabajó en SOM durante toda su vida profesional, excepto por una breve interrupción.

John Hancock Center. https://en.wikipedia.org/

En esa etapa, Khan revolucionó el diseño de rascacielos al dejar de depender de las estructuras de acero convencionales. Inspirándose en la resistencia del bambú, ideó el concepto estructural de «tubo», que convertía las fachadas en elementos portantes. Este enfoque aumentó la eficiencia frente a cargas laterales, como el viento o los seísmos, y redujo la necesidad de materiales y el espacio interior necesario. Desarrolló distintas variantes del sistema: el tubo enmarcado, el tubo-en-tubo, el tubo agrupado y el tubo diagonalizado.

El primer edificio en incorporar esta tecnología fue el DeWitt-Chestnut Apartments (actualmente Plaza on DeWitt), en Chicago, concluido en 1963. En 1965, aplicó por primera vez el sistema de tubo con celosía en la estructura del John Hancock Center, logrando reducir notablemente el uso de acero en comparación con edificaciones anteriores, como el Empire State. En 1973, la Willis Tower (anteriormente Sears Tower) llevó su innovación aún más lejos al emplear el sistema de tubos agrupados, con los que se alcanzaron los 442 metros de altura con una estructura compuesta por nueve módulos unidos.

 

Willis Tower. https://en.wikipedia.org/

Además, Khan implementó el sistema tubo-en-tubo en el One Shell Plaza y el sistema de interacción marco-muro cortante en el Brunswick Building. También introdujo estructuras con arriostramientos y vigas de traspaso en edificios como la BHP House y el First Wisconsin Center, que resultan especialmente útiles en edificios de altura media.

Fue pionero en el uso de tecnologías de cálculo estructural por ordenador. Convenció a SOM de invertir en un mainframe y se encargó personalmente de programar tanto los cálculos como los dibujos técnicos, situando a la empresa a la vanguardia del diseño asistido por ordenador. También promovió el uso de prefabricados y hormigón ligero en edificios altos.

Durante los años setenta, su trabajo fue ampliamente reconocido. Recibió la Medalla Wason del American Concrete Institute (1971), el Thomas Middlebrooks Award (1972), el Alfred Lindau Award (1973), la Kimbrough Medal del American Institute of Steel Construction (1973) y la medalla Oscar Faber de la Institution of Structural Engineers de Londres (1973). Ese mismo año ingresó en la Academia Nacional de Ingeniería de Estados Unidos. En 1972, Engineering News-Record lo reconoció como «Hombre del Año» y lo incluyó cinco veces entre las figuras más influyentes del sector. Recibió doctorados honoris causa de las universidades Northwestern, Lehigh y ETH Zúrich.

En 1977 obtuvo el premio Ernest Howard de la Sociedad Americana de Ingenieros Civiles (ASCE). En 1981, diseñó la terminal del Hajj del Aeropuerto Internacional Rey Abdulaziz, en Arabia Saudí, que cuenta con cubiertas tensadas tipo tienda, lo que impulsó el uso de tejidos estructurales. También participó en proyectos como la Universidad Rey Abdulaziz, la Academia de la Fuerza Aérea de EE. UU. en Colorado Springs y el estadio Hubert H. Humphrey Metrodome de Mineápolis.

En sus últimos años desarrolló, junto al ingeniero Mark Fintel, conceptos pioneros para la protección sísmica de edificios mediante mecanismos de absorción de energía, que son el antecedente directo de los actuales sistemas de aislamiento sísmico.

El 27 de marzo de 1982, durante un viaje a Yeda (Arabia Saudí), Khan falleció de un infarto a la edad de 52 años. En ese momento era socio general de SOM. Su cuerpo fue trasladado a Estados Unidos y enterrado en el cementerio Graceland de Chicago. Su muerte supuso una gran pérdida para la ingeniería estructural, pero su legado perdura y sigue creciendo.

Tras su fallecimiento, continuaron los reconocimientos. En 1983 recibió el International Award of Merit in Structural Engineering de la IABSE y el AIA Institute Honor del American Institute of Architects. En 1987 fue galardonado con el John Parmer Award de la Asociación de Ingenieros Estructurales de Illinois y, en 2006, ingresó en el Salón de la Fama de la Ingeniería de Illinois.

El Consejo de Edificios Altos y Habitat Urbano instituyó la Medalla a la Trayectoria Fazlur Khan y estableció la cátedra Fazlur Rahman Khan Endowed Chair en la Universidad de Lehigh, actualmente ocupada por el profesor Dan Frangopol. Estas iniciativas promueven la investigación y la formación en arquitectura e ingeniería estructural.

En 2009, en su discurso en la Universidad de El Cairo, el presidente Barack Obama mencionó a Khan como ejemplo del legado de los ciudadanos musulmanes en Estados Unidos. En 2017, Google le dedicó un Doodle con motivo de su 88.º aniversario. En 2021, la directora Laila Kazmi inició la producción del documental Reaching New Heights: Fazlur Rahman Khan and the Skyscraper, con el apoyo de ITVS y la productora Kazbar Media.

Khan redefinió la forma de concebir los rascacielos. Gracias a su innovación estructural, fue posible construir edificios más altos, seguros, económicos y habitables. Entre sus principales aportaciones técnicas destacan:

  • Tubo enmarcado: estructura perimetral rígida que actúa como un gran tubo vertical anclado en la base. Permite una gran eficiencia ante cargas laterales. Ejemplo: World Trade Center (1973).

  • Tubo-en-tubo: combina un núcleo interno resistente con una estructura perimetral conectada por los forjados. Aumenta la rigidez global.

  • Tubos agrupados: sistema compuesto por varios tubos verticales unidos que forman una única estructura, como la Willis Tower (1975).

  • Tubo diagonalizado: incorpora diagonales visibles en fachada, que refuerzan el conjunto y generan una estética singular. Ejemplo: John Hancock Center (1970).

Más allá de la técnica, Khan fue un pensador ético y humanista. Durante la guerra de independencia de Bangladés en 1971, fundó el Movimiento por la Liberación de su país en Estados Unidos. También fue un puente entre ingeniería y arquitectura, defendiendo un enfoque integral y sensible al contexto.

Su hija, Yasmin Sabina Khan, le rindió homenaje con el libro Engineering Architecture: the Vision of Fazlur R. Khan (2004), un testimonio tanto técnico como humano. Como escribió Engineering News-Record en su obituario: “El consuelo es que sus estructuras seguirán en pie durante años, y sus ideas nunca morirán”.

Khan también hizo importantes contribuciones académicas. Entre sus publicaciones más influyentes figuran:

  • Computer Design of 100-Story John Hancock Center (1966)

  • On Some Special Problems of Analysis and Design of Shear Wall Structures (1966)

  • 100-Story John Hancock Center in Chicago – A Case Study of the Design Process (1972)

  • New Structural Systems for Tall Buildings and their Scale Effects on Cities (1974)

El ingeniero alemán Werner Sobek lo describió como «la vanguardia de la segunda escuela de Chicago», una corriente que integró de forma ejemplar la eficiencia estructural con la expresión arquitectónica.

En definitiva, Fazlur Rahman Khan no solo transformó la forma de construir en altura, sino que también cambió la manera de entender la arquitectura desde la ingeniería. Su vida fue una lección de innovación, compromiso y visión. Sus edificios, en pie en todo el mundo, siguen hablándonos hoy de su genialidad.

Os dejo un vídeo sobre este ilustre ingeniero (en inglés).

Jornada sobre infraestructuras resilientes al clima

El Colegio de Ingenieros de Caminos, Canales y Puertos organizó una jornada sobre Infraestructuras Resilientes al Clima el 4 de abril en el Auditorio Agustín de Betancourt. Estas jornadas tan interesantes se grabaron en un vídeo, que ahora os dejo.

El vídeo, titulado «Jornada sobre Infraestructuras Resilientes al Clima», es un recurso muy valioso que aborda la creciente necesidad de desarrollar infraestructuras que puedan resistir y adaptarse a los efectos del cambio climático.

Durante la jornada, se presentaron diferentes puntos de vista sobre cómo la ingeniería civil puede hacer frente a estos desafíos, resaltando la importancia de la resiliencia climática en la planificación y gestión de infraestructuras. Y ahora, vamos a echar un vistazo más de cerca a todo lo que se habló en la jornada.

 

 

 

1. Importancia de la resiliencia climática

La resiliencia climática se ha convertido en un concepto central en la planificación de infraestructuras, debido a la creciente vulnerabilidad de las comunidades ante eventos climáticos extremos.

Los impactos del cambio climático, tales como huracanes, inundaciones y sequías, han aumentado en frecuencia e intensidad. Estos fenómenos no solo afectan a las infraestructuras físicas, sino que también tienen repercusiones sociales y económicas significativas, que incluyen la pérdida de vidas, desplazamientos forzados y daños económicos.

A modo ilustrativo, en la jornada se expusieron ejemplos de comunidades que han adoptado soluciones resilientes, tales como sistemas de drenaje mejorados, infraestructura verde y edificaciones diseñadas para resistir eventos extremos. Estos ejemplos ponen de manifiesto los beneficios tangibles a largo plazo que conlleva la inversión en resiliencia.

2. Oportunidades profesionales en ingeniería civil

La jornada puso de manifiesto que la búsqueda de infraestructuras resilientes está generando nuevas oportunidades profesionales para los ingenieros civiles.

Se evidenció una demanda de especialistas debido a la necesidad imperante de adaptación al cambio climático, lo que ha generado una demanda de expertos en diversas áreas, tales como la gestión de recursos hídricos, la planificación urbana sostenible y la ingeniería de infraestructuras.

Se subrayó la relevancia de la educación continua y la formación especializada para que los profesionales puedan afrontar los desafíos emergentes en este campo. Los programas de capacitación y certificación en resiliencia climática son de vital importancia para la preparación de los ingenieros del futuro.

3. Retos normativos y de implementación

Uno de los asuntos más críticos que se ha planteado es la necesidad imperativa de adaptar las normativas vigentes para facilitar la implementación de infraestructuras resilientes.

Un número significativo de normativas vigentes no han sido concebidas para hacer frente a los riesgos asociados al cambio climático. Esta situación puede generar obstáculos para la implementación de soluciones innovadoras y efectivas.

En este sentido, se destacó la importancia de la colaboración interdisciplinaria entre ingenieros, urbanistas, arquitectos y responsables políticos. Un enfoque interdisciplinario puede ayudar a crear un marco normativo que apoye la resiliencia y facilite la implementación de proyectos.

Finalmente, se presentan ejemplos de mejores prácticas de otras regiones que han logrado adaptar sus normativas con éxito, lo que puede servir de modelo para otras comunidades.

4. Ingeniería humanitaria y adaptación a emergencias

En las jornadas también se subrayó el rol de la ingeniería humanitaria en el desarrollo de infraestructuras resilientes.

En lo que respecta a los denominados «Proyectos de respuesta rápida», se debatieron enfoques para el diseño de infraestructuras que puedan ser implantadas con celeridad en situaciones de emergencia, garantizando que las comunidades afectadas tengan acceso a servicios básicos de manera inmediata.

Por último, se abordó la importancia de la capacitación y los recursos, así como la formación de equipos de respuesta a emergencias y la disponibilidad de recursos adecuados, elementos esenciales para asegurar que las infraestructuras puedan soportar eventos extremos y facilitar la recuperación.

5. Educación y conciencia social

La jornada puso de manifiesto la importancia de la educación y la comunicación en la promoción de infraestructuras resilientes.

Es imperativo que la sociedad comprenda la relevancia de invertir en infraestructuras resilientes. En este sentido, la educación desempeña un papel crucial, ya que permite a las comunidades identificar los beneficios a largo plazo de tales inversiones.

Se propusieron programas de sensibilización que involucren a la comunidad en la planificación y diseño de infraestructuras, fomentando un sentido de propiedad y responsabilidad.

6. Financiación de infraestructuras resilientes

La financiación constituye uno de los desafíos más significativos en el desarrollo de infraestructuras resilientes.

En lo que respecta a las fuentes de financiación, se presentan diversas estrategias para asegurar fondos, tales como la colaboración entre los sectores público y privado, así como la búsqueda de fondos internacionales destinados a proyectos de adaptación y mitigación del cambio climático.

También se presentaron ejemplos de modelos de inversión exitosos que han permitido financiar proyectos de infraestructura resiliente, destacando la importancia de demostrar el retorno de inversión a largo plazo.

7. Implementación de directivas y normativas en España

La jornada abordó la implantación de la directiva de gestión de avenidas en España, cuyo objetivo es el de mejorar la preparación y respuesta ante inundaciones.

Se abordó la cuestión de las dificultades que enfrentan las autoridades para aplicar estas directivas de manera efectiva, así como las adaptaciones necesarias para enfrentar fenómenos climáticos inesperados.

Finalmente, se presentaron las lecciones aprendidas de la implantación de estas directivas, así como recomendaciones para mejorar la efectividad de las políticas existentes.

8. Innovaciones tecnológicas y soluciones sostenibles

La jornada destacó la importancia de la tecnología en el desarrollo de infraestructuras resilientes. También se abordó el tema de tecnologías emergentes, tales como la inteligencia artificial y el modelado predictivo, que tienen el potencial de ayudar a anticipar y gestionar los riesgos climáticos.

En lo que respecta a la Infraestructura Verde, se expusieron soluciones basadas en la integración de la naturaleza, como los techos verdes y los sistemas de drenaje sostenible, que se presentan como una estrategia eficaz para aumentar la resiliencia de las infraestructuras.

9. Perspectivas futuras y llamado a la acción

La jornada concluyó con una exhortación a la acción dirigida a todos los profesionales implicados en la planificación y gestión de infraestructuras.

Se hizo especial hincapié en que la responsabilidad de hacer frente al cambio climático es compartida y requiere la colaboración de todos los sectores de la sociedad.

Asimismo, se instó a los profesionales a adoptar una visión a largo plazo en la planificación de infraestructuras, contemplando no solo las necesidades actuales, sino también los desafíos futuros que plantea el cambio climático.

Conclusión

La jornada sobre infraestructuras resilientes al clima constituye un llamamiento a la acción dirigido a los profesionales de la ingeniería civil y otros actores implicados en la planificación y gestión de infraestructuras. La adaptación al cambio climático no solo es una responsabilidad, sino una oportunidad para innovar y crear un futuro más seguro y sostenible. Para ello, resulta imprescindible la colaboración, la educación y la inversión, que son pilares fundamentales para lograr infraestructuras que no solo resistan los desafíos actuales, sino que también estén preparadas para los retos del futuro. Este enfoque integral resulta imperativo para asegurar que las comunidades no solo sobrevivan, sino que prosperen en un mundo cada vez más afectado por el cambio climático.

Aquí tenéis un mapa conceptual de la jornada.

Pero creo que lo mejor es que, si tenéis un rato, oigáis de primera mano todas y cada una de las intervenciones en este vídeo. Espero que os sea de interés.

Glosario de términos clave

  • Adaptación al Cambio Climático: Proceso de ajuste a los impactos actuales o esperados del cambio climático. En el contexto de las infraestructuras, implica modificar su diseño, construcción y operación para soportar condiciones climáticas extremas.
  • Resiliencia (Climática): Capacidad de un sistema, comunidad o infraestructura para anticipar, resistir, adaptarse y recuperarse de eventos adversos del clima.
  • Dana (Depresión Aislada en Niveles Altos): Fenómeno meteorológico que puede causar lluvias torrenciales e inundaciones severas, mencionado en el texto como causa de trágicas consecuencias.
  • Niveles Preindustriales: Periodo de referencia (antes de la Revolución Industrial) utilizado para medir el aumento de la temperatura global debido a las actividades humanas.
  • Fenómenos Meteorológicos Extremos: Eventos climáticos de intensidad inusual, como olas de calor, sequías, inundaciones torrenciales y tormentas severas.
  • Infraestructuras Críticas: Infraestructuras esenciales para el funcionamiento de la sociedad y la economía, como las de transporte, energía, agua y telecomunicaciones, cuya afectación tiene consecuencias significativas.
  • Plan Nacional de Adaptación al Cambio Climático (PNACC): Marco de acción en España para integrar el cambio climático en la planificación sectorial, incluyendo las infraestructuras.
  • Ley de Cambio Climático y Transición Energética (2021): Ley española que establece objetivos de reducción de emisiones y promueve la adaptación al cambio climático en diversos sectores.
  • Directiva de Resiliencia de Infraestructuras Críticas: Normativa de la Unión Europea que obliga a los Estados miembros a adoptar estrategias para mejorar la resiliencia de sus infraestructuras esenciales.
  • Seopán: Asociación de Empresas Constructoras y Concesionarias de Infraestructuras, mencionada por su análisis de inversión en infraestructuras prioritarias.
  • CEDEX (Centro de Estudios y Experimentación de Obras Públicas): Organismo técnico español que realiza estudios y análisis relacionados con la ingeniería civil y el medio ambiente.
  • Cuencas Hidráulicas: Áreas geográficas donde el agua drena hacia un río principal, mencionadas en relación con la planificación hidrológica y la gestión de inundaciones.
  • Soluciones Basadas en la Naturaleza: Enfoques para abordar los desafíos ambientales que utilizan o imitan procesos naturales para proporcionar beneficios tanto para el medio ambiente como para la sociedad.
  • Sistemas de Saneamiento: Infraestructuras urbanas destinadas a la recogida y tratamiento de aguas residuales y pluviales.
  • Vías Separativas: Sistemas de saneamiento en los que las aguas residuales y las aguas pluviales se recogen y transportan por redes de tuberías separadas.
  • Resiliencia Estructural: Capacidad de una estructura para mantener su función y recuperarse después de ser sometida a eventos extremos o perturbaciones.
  • Robustez: Capacidad de una infraestructura o sistema para resistir un evento adverso sin una pérdida significativa de funcionalidad.
  • Rapidez (en Resiliencia): Velocidad con la que un sistema o infraestructura puede recuperarse y restaurar su funcionalidad después de una perturbación.
  • Análisis de Riesgos Climáticos: Evaluación de la probabilidad e impacto potencial de los eventos climáticos adversos sobre las infraestructuras.
  • Marco de Sendai para la Reducción del Riesgo de Desastres (2015-2030): Acuerdo internacional que establece un marco global para la reducción del riesgo de desastres, incluyendo la importancia de invertir en resiliencia.
  • Predicción y Modelos Predictivos: Uso de datos y herramientas para anticipar futuros eventos climáticos y sus posibles impactos.
  • Incertidumbre Profunda: Situación en la que hay una falta de conocimiento sobre las probabilidades o los posibles resultados de un evento.
  • Cisne Negro (Teoría): Término utilizado para describir eventos altamente improbables, de gran impacto y que solo se pueden explicar o predecir en retrospectiva.
  • Disponibilidad: Capacidad de una infraestructura para estar operativa y proporcionar su servicio.
  • Capacidad (en Infraestructura): Volumen o nivel de servicio que una infraestructura puede soportar o manejar.
  • Vulnerabilidad: Susceptibilidad de una infraestructura a sufrir daños o perder funcionalidad debido a un evento climático adverso.
  • Exposición: Grado en que una infraestructura está situada en un área propensa a eventos climáticos adversos.
  • Sensibilidad: Grado en que una infraestructura se ve afectada por un evento climático adverso una vez expuesta a él.
  • Escenarios de Cambio Climático: Proyecciones de posibles futuras condiciones climáticas basadas en diferentes supuestos sobre las emisiones de gases de efecto invernadero.
  • Trayectorias Socioeconómicas Compartidas (SSP): Marcos utilizados en la investigación del cambio climático para describir posibles futuros socioeconómicos y sus implicaciones para las emisiones y la adaptación.
  • Análisis Coste-Beneficio: Método para evaluar la rentabilidad de diferentes opciones de inversión, comparando los costos y beneficios esperados.
  • Gobernanza: Procesos y estructuras para tomar decisiones e implementar acciones, en este contexto, relacionadas con la resiliencia de las infraestructuras.
  • Inventario de Activos: Base de datos que contiene información detallada sobre las infraestructuras y sus componentes.
  • Sistemas de Ayuda a la Decisión: Herramientas informáticas y modelos que asisten en la toma de decisiones complejas, como la gestión de inundaciones o sequías.
  • Llanuras de Inundación Controlada: Áreas designadas para ser inundadas de manera planificada durante eventos de crecida para reducir el riesgo en otras zonas.
  • Probable Maximum Flood (PMF) / Avenida Máxima Probable: Estimación del evento de inundación más severo que es razonablemente posible en un lugar dado.
  • Flash Floods / Crecidas Repentinas: Inundaciones rápidas y violentas que ocurren con poca o ninguna advertencia, a menudo causadas por lluvias torrenciales intensas.
  • Six Sigma: Metodología de gestión de procesos que busca reducir al mínimo la probabilidad de defectos o errores.
  • Poka-yoke: Sistemas a prueba de errores diseñados para prevenir o detectar errores humanos.
  • Consorcio Administrativo: Entidad legal formada por varias administraciones públicas para coordinar y ejecutar acciones conjuntas.
  • Gemelos Digitales: Réplicas virtuales de sistemas o infraestructuras físicas que permiten la simulación y el análisis.
  • Big Data: Conjuntos de datos muy grandes y complejos que pueden ser analizados para revelar patrones y tendencias.
  • Ingeniería Humanitaria: Aplicación de principios y habilidades de ingeniería para abordar crisis humanitarias y promover el bienestar humano.
  • Estacionariedad Climática: Suposición de que las propiedades estadísticas del clima (como las distribuciones de precipitación o temperatura) permanecen constantes a lo largo del tiempo.
  • Análisis Probabilístico: Enfoque para evaluar la probabilidad de ocurrencia de eventos y sus posibles consecuencias.
  • Métodos Semiprobalísticos: Métodos de diseño estructural que utilizan factores de seguridad parciales basados en consideraciones probabilísticas.
  • Trayectorias Adaptativas: Secuencias de medidas de adaptación que se pueden implementar a lo largo del tiempo para hacer frente a los impactos cambiantes del cambio climático.
  • KPIs Financieros (Indicadores Clave de Rendimiento Financiero): Métricas utilizadas para evaluar el desempeño financiero, que pueden incorporarse en el análisis de la resiliencia de las infraestructuras.

De vertedero a pavimento: La ciencia que mide el beneficio social de reciclar neumáticos en asfaltos

Imagine una carretera que no solo conecta lugares, sino que también genera beneficios sociales en las comunidades por donde pasa. Estamos colaborando con ingenieros chilenos para transformar neumáticos desechados en un innovador aditivo para asfalto llamado Fityre, demostrando que la sostenibilidad vial va más allá de reducir emisiones.

Un reciente estudio publicado en Applied Sciences, revista Q1 del JCR, revela que este material, elaborado con fibras textiles recicladas, supera a alternativas tradicionales en impacto social mediante una revolucionaria metodología: mapas cognitivos difusos. Estas herramientas no solo miden la resistencia o el coste, sino también cómo cada componente afecta a los empleos locales, los riesgos sanitarios y el cumplimiento de las políticas ambientales. ¿El resultado? Un modelo que podría redefinir la forma en que elegimos los materiales para construir las carreteras del futuro.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de Chile.

El estudio establece un nuevo paradigma metodológico para cuantificar la sostenibilidad social de materiales de construcción mediante mapas cognitivos difusos (FCM), abordando una laguna crítica en la evaluación de infraestructuras. La innovación central consiste en modelar 116 interrelaciones entre 16 indicadores sociales, desde la creación de empleo local hasta la alineación con políticas de economía circular, superando las aproximaciones estáticas convencionales. Este enfoque dinámico permite simular efectos de segundo orden y dependencias no lineales entre variables, y proporciona una herramienta predictiva para diseñar políticas de materiales con un impacto social positivo.

La validación experimental del aditivo Fityre, compuesto por fibras textiles de neumáticos postconsumo (TfELT), demuestra que los materiales reciclados pueden superar a las alternativas importadas en múltiples dimensiones sociales. El análisis revela que Fityre aumenta entre un 30 y un 40 % los indicadores clave de reducción de riesgos sanitarios (I5) y contribución a la revalorización de residuos (I10), sentando un precedente para sustituir insumos vírgenes en países en vías de industrialización. Además, el marco metodológico desarrollado es adaptable para evaluar otros componentes de infraestructura, como hormigones y sistemas de drenaje urbano.

La investigación combina técnicas cualitativas y cuantitativas en tres fases secuenciales:

  1. Construcción del modelo conceptual: mediante la triangulación de entrevistas semiestructuradas (42 expertos), la revisión de normativas chilenas (Ley REP 20.920) y el análisis de manuales técnicos, se identificaron 16 indicadores sociales agrupados en 7 criterios. Un panel Delphi de trece especialistas validó la estructura mediante consenso binomial (75 % de acuerdo).
  2. Desarrollo del FCM: se mapearon las relaciones causales entre los indicadores mediante encuestas que asignaron pesos lingüísticos (desde muy baja hasta muy alta influencia) y polaridad (+/-) utilizando la plataforma QuestionPro. Un sistema de inferencia difusa (FIS) con funciones de membresía triangulares transformó estas respuestas cualitativas en pesos numéricos normalizados (entre -1 y +1). La estabilidad del modelo se verificó mediante iteraciones sucesivas hasta alcanzar la convergencia (<0,001 de variación entre ciclos 5-6).
  3. Evaluación dinámica: cuatro aditivos (Fityre, fibra de vidrio, poliéster y aramida) se analizaron mediante simulación de estados iniciales (t₀) basados en datos técnicos y socioeconómicos chilenos. La contribución social se cuantificó mediante la distancia de Manhattan respecto a un punto anti-ideal, considerando tres etapas del ciclo de vida: extracción, producción y mezclado.

El FCM revela patrones que van en contra de la intuición: mientras que los indicadores técnicos (I3: contribución técnica, I14: certificaciones) muestran una alta centralidad (grado de influencia = 8,7), su impacto en la sostenibilidad social es moderado (λ = 0,42). Esto sugiere que las mejoras técnicas no garantizan beneficios sociales automáticos, por lo que son necesarias intervenciones complementarias en materia de formación laboral y divulgación comunitaria.

En el caso de Fityre, se observa un efecto multiplicador en los criterios de revalorización: cada punto porcentual en I2 (extensión de la vida útil) genera incrementos del 0,8 % en I10 (cumplimiento del REP) y del 0,5 % en I5 (reducción de incendios). Este acoplamiento refuerza la viabilidad de modelos de negocio basados en simbiosis industrial, en los que los residuos de un sector se convierten en insumos críticos para otro.

Las fibras importadas, aunque superiores en I13 (interés de los productores, 75 % frente al 51 % de Fityre), presentan vulnerabilidades sistémicas: una variación del 10 % en los costes logísticos reduce su contribución social total en un 12,4 %, frente al 4,1 % de Fityre. Esto pone de manifiesto la importancia de desarrollar cadenas de suministro locales para materiales sostenibles.

Este estudio ofrece interesantes líneas de investigación futura:

  • Integración con análisis de ciclo de vida híbrido: combinación de FCM con ACV mediante modelos de entrada-salida extendidos, que permiten evaluar el impacto de las decisiones sobre la huella de carbono y la creación de empleo cualificado.
  • Optimización multiobjetivo: aplicar algoritmos genéticos para identificar dosificaciones óptimas de aditivos que maximicen simultáneamente parámetros sociales (I4: empleo nacional), técnicos (resistencia a la fatiga) y económicos (coste por tonelada).
  • Estudios de percepción social: implementar sistemas de supervisión participativa en proyectos piloto para correlacionar indicadores modelados (I9: aceptación al cambio) con métricas empíricas de satisfacción comunitaria.
  • Escalado industrial: desarrollar protocolos para adaptar el modelo a escalas de producción masiva y analizar los efectos de las economías de escala en indicadores como I15 (disponibilidad de fibra) y I7 (cantidad requerida por mezcla).
  • Arquitecturas de gestión: investigar modelos de contratación pública que internalicen los hallazgos del FCM mediante cláusulas de compra verde con ponderaciones sociales explícitas en licitaciones viales.

En conclusión, este trabajo trasciende el enfoque convencional en las propiedades mecánicas de los materiales y propone un marco sistémico para la toma de decisiones en ingeniería civil. Al cuantificar cómo elecciones técnicas afectan a dinámicas sociales complejas, proporciona herramientas para alinear proyectos de infraestructura con los ODS 9 (industria innovadora) y 12 (producción responsable). Los resultados justifican políticas activas de fomento del uso de materiales reciclados locales, no solo por sus beneficios ambientales, sino también por su capacidad para generar capital social en economías emergentes.

Referencia:

SIERRA-VARELA, L.; CALABI-FLOODY, A.; VALDÉS-VIDAL, G.; YEPES, V.; FILUN-SANTANA, A. (2025). Determination of the social contribution of sustainable additives for asphalt mixes through fuzzy cognitive mapping. Applied Sciences, 15(7):3994. DOI:10.3390/app15073994

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Descargar (PDF, 3.36MB)

Conferencia: Gestión de riesgos en infraestructuras. Estrategias y medidas de resiliencia

Os anuncio mi participación como ponente en la jornada inaugural del curso «Infraestructuras resilientes al clima», que se celebrará el 4 de abril de 2025, de forma presencial y telemática. Se celebrará a las 10:30 h en el Auditorio Agustín de Betancourt de la institución. Este curso está organizado por el Colegio de Ingenieros de Caminos, Canales y Puertos y está patrocinado por FCC Construcción y el Ministerio para la Transición Ecológica y el Reto Demográfico.

La inscripción es gratuita y se puede seguir por streaming. El enlace de inscripción es: Inscripción a la jornada (acceso gratuito)

Durante este acto, de acceso libre, los directores del curso presentarán los contenidos que se abordarán a lo largo de las diversas sesiones formativas. Además, se debatirán los riesgos de las infraestructuras frente al cambio climático, así como las estrategias y medidas de resiliencia que pueden adoptarse.

Esta formación, organizada por el Comité Técnico de Agua, Energía y Cambio Climático del Colegio, tiene como objetivo analizar el impacto del cambio climático y explorar enfoques que faciliten la planificación, diseño, construcción y operación de infraestructuras resilientes al clima.

Os paso mi participación en este vídeo. Espero que os sea de interés.

Eugenio Beltrami: de la geometría no euclidiana a la teoría de estructuras

Eugenio Beltrami (1835-1900) https://www.ecured.cu/

Eugenio Beltrami fue un matemático italiano reconocido por sus contribuciones a la geometría diferencial y la física matemática, por la claridad expositiva de sus escritos. Nació en Cremona el 16 de noviembre de 1835, en el seno de una familia de tradición artística, en el entonces Imperio austríaco. Su padre, Eugenio Beltrami, era pintor de miniaturas y, tras los acontecimientos políticos de 1848, emigró a París, donde se convirtió en conservador de un museo de arte. Desde temprana edad, Beltrami mostró inclinación por la música, que desempeñó un papel importante en su vida junto con las matemáticas.

En 1853, inició sus estudios de matemáticas en la Universidad de Pavía, donde fue discípulo de Francesco Brioschi. Sin embargo, en 1856 fue expulsado del Colegio Ghislieri debido a sus opiniones políticas, ya que simpatizaba con el movimiento del Risorgimento. Las dificultades económicas lo obligaron a interrumpir sus estudios y, durante varios años, trabajó como secretario en la administración del Ferrocarril Lombardía-Venecia, lo que lo llevó a trasladarse a Verona y, posteriormente, a Milán. Esta experiencia le brindó una perspectiva única sobre la aplicación de las matemáticas en campos como la ingeniería y la física, lo que le permitió comprender mejor la relación entre estos dos campos de estudio y su aplicación en diferentes contextos.

A los 25 años, pudo retomar su educación bajo la tutela de Brioschi y, en 1861, publicó su primer artículo matemático. Al año siguiente, en 1862, fue nombrado profesor en la Universidad de Bolonia, ocupando la cátedra de álgebra y geometría analítica. Gracias a la intervención de Enrico Betti, en 1863 fue designado profesor en la Universidad de Pisa, donde asumió la presidencia de la sección de geodesia. Entre 1863 y 1866, compaginó la docencia con la investigación antes de regresar a la Universidad de Bolonia, donde ocupó la cátedra de mecánica teórica hasta 1873.

En 1868, publicó dos memorias fundamentales sobre la consistencia e interpretaciones de la geometría no euclidiana de Bolyai y Lobachevski. En su Ensayo sobre una interpretación de la geometría no euclidiana, propuso que esta geometría podía modelarse en una superficie de curvatura negativa constante: la pseudoesfera. Consideró la curva conocida como tractriz, cuya rotación alrededor de su asíntota genera la pseudoesfera, y demostró que la geometría intrínseca de esta superficie coincide con la geometría del plano de Lobachevski. Gracias a este modelo, Beltrami proporcionó una base tangible para la geometría no euclidiana en el espacio euclidiano tridimensional ordinario. Además, desarrolló el modelo de Beltrami-Klein, que ofrecía otra representación de la geometría no euclidiana en el interior de una esfera unitaria tridimensional.

Tras la proclamación de Roma como capital del Reino de Italia en 1870, se impulsó la creación de una universidad de referencia nacional con los científicos más destacados. Gracias a su prestigio internacional, Beltrami fue invitado a formar parte de este proyecto y, entre 1873 y 1876, impartió clases de mecánica teórica y análisis superior en la Universidad de Roma. Durante este período, su interés se desplazó hacia la física matemática, lo que lo llevó a ser nombrado profesor de esta disciplina en la Universidad de Pavía en 1876, donde trabajó con gran éxito hasta 1891. En esta etapa, abordó prácticamente todas las áreas de la física matemática y publicó 60 tratados sobre electricidad, magnetismo, teoría del potencial, óptica, calor y elasticidad. Su uso del cálculo diferencial en problemas de física matemática influyó en el desarrollo del cálculo tensorial llevado a cabo por Gregorio Ricci-Curbastro y Tullio Levi-Civita. Asimismo, desarrolló la descomposición de valores singulares para matrices, que posteriormente fue redescubierta en varias ocasiones.

En 1891, Beltrami regresó a la Universidad de Roma, donde permanecería hasta su fallecimiento. En 1898 fue elegido presidente de la Accademia dei Lincei y, en 1899, se convirtió en senador del Reino de Italia. Falleció en Roma el 18 de febrero de 1900, conservando hasta el final la serenidad y el equilibrio que caracterizaron su vida, como un auténtico filósofo de la antigüedad.

Principales contribuciones a la teoría de estructuras:

  • Sulle equazioni generali dell’elasticità (1881)
  • Sulle condizioni di resistenza dei corpi elastici (1885)
  • Sull’interpretazione meccanica delle formule de Maxwell (1886)
  • Note fisico-matematiche (2a parte) (1889/1)
  • Sur la théorie de la déformation infiniment petite d’un milieu (1889/2)
  • Opere matematiche (1902-1920)

 

Evaluación de la sostenibilidad social en infraestructuras: un análisis multicriterio y sus desafíos

A continuación, explicaremos el contenido de uno de los artículos más citados en nuestro grupo de investigación. El artículo plantea la siguiente pregunta de investigación: ¿Cómo se tratan los aspectos sociales en la evaluación multicriterio de infraestructuras? Esta cuestión se estructura en tres subpreguntas que buscan determinar qué aspectos sociales se valoran en la evaluación de infraestructuras, qué métodos multicriterio se utilizan para evaluar su contribución social y qué enfoques se aplican en la evaluación social multicriterio. La pregunta principal permite dar una respuesta clara en función de los hallazgos del estudio, que se centran en identificar métodos, criterios y limitaciones en la evaluación social de infraestructuras.

El artículo realiza una revisión sistemática de la literatura existente en el campo de la evaluación social de infraestructuras mediante métodos multicriterio. Para ello, se identificaron 94 estudios relevantes mediante una búsqueda en la base de datos Web of Science, que abarca publicaciones entre 1995 y 2017. La metodología de selección se desarrolló en dos fases. La primera consistió en seleccionar inicialmente los estudios, basándose en criterios de pertinencia y revisión por pares. En la segunda fase, se analizaron las referencias y citas de los estudios seleccionados para ampliar la muestra y obtener una visión más completa del tema. Posteriormente, los estudios fueron categorizados según los criterios sociales evaluados, los métodos multicriterio utilizados y las consideraciones de contexto, equidad y aprendizaje social en la evaluación.

El trabajo sistematiza los criterios sociales utilizados en la evaluación de infraestructuras y los clasifica en siete dimensiones. La primera es el capital humano, que abarca las necesidades básicas, la educación y la salud. La segunda dimensión es el capital comunitario, que incluye la opinión pública, la estética y la seguridad. En tercer lugar, se encuentra el capital cultural, relacionado con la preservación de valores culturales tangibles e intangibles. La cuarta dimensión es el capital productivo, que tiene en cuenta la movilidad, la accesibilidad y la urbanización. En quinto lugar, el capital social e institucional se refiere a la participación de los actores y su capacidad de gestión. La sexta dimensión, el sistema socioeconómico, comprende el desarrollo económico regional y el empleo. Finalmente, la séptima dimensión es la relación entre la empresa y la comunidad, que engloba el diseño centrado en el usuario y las prácticas laborales éticas.

Además, el estudio analiza los métodos multicriterio más empleados, entre los que destacan el Analytic Hierarchy Process (AHP), el Simple Additive Weighting (SAW) y el Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Se identifican brechas en la consideración de equidad, incertidumbre y aprendizaje social en las evaluaciones existentes, lo que sugiere la necesidad de mejorar los enfoques actuales para una evaluación más integral.

Los hallazgos revelan que la evaluación de la sostenibilidad social en infraestructuras ha recibido menos atención que las dimensiones económica y ambiental. Ciertos criterios, como la movilidad, la seguridad y el desarrollo local, se tienen en cuenta recurrentemente en los estudios analizados, mientras que otros, como la equidad en la distribución de beneficios y la participación comunitaria, se abordan menos. Además, los métodos actuales no abordan de manera adecuada la incertidumbre inherente a los aspectos sociales, lo que limita su aplicabilidad en contextos dinámicos y diversos. Ante esta situación, el artículo propone utilizar herramientas como la teoría de conjuntos difusos y los sistemas grises para mejorar la representación de estos factores en los modelos de evaluación.

El artículo plantea varias líneas de investigación futuras para mejorar la evaluación de la sostenibilidad social en infraestructuras. En primer lugar, se recomienda el desarrollo de métodos que tengan en cuenta la equidad en la distribución de beneficios. En segundo lugar, se plantea la integración de técnicas de gestión de incertidumbre en los modelos multicriterio para mejorar su aplicabilidad en distintos contextos. Asimismo, se enfatiza la necesidad de fortalecer la participación de los interesados en los procesos de evaluación para promover modelos de toma de decisiones más inclusivos. Por último, se sugiere la aplicación de enfoques de aprendizaje social para mejorar la adaptabilidad de las evaluaciones a distintos contextos y garantizar una toma de decisiones más informada y eficaz.

En resumen, el estudio ofrece un análisis detallado sobre la evaluación de la sostenibilidad social en infraestructuras mediante métodos multicriterio. Se destaca la necesidad de mejorar la representación de la equidad y la incertidumbre en los modelos existentes, así como la oportunidad de desarrollar metodologías que fomenten la inclusión de los actores implicados en el proceso de evaluación. Además, se subraya la importancia de promover procesos de aprendizaje social que permitan adaptar mejor las evaluaciones a los distintos contextos en los que se desarrollan las infraestructuras. En este sentido, el artículo supone un avance significativo en la comprensión de la evaluación social de infraestructuras y sentará las bases para futuras investigaciones en este campo.

Glosario de términos clave

  • Evaluación multicriterio: Un conjunto de métodos y técnicas que permiten analizar problemas complejos en los que se deben considerar múltiples criterios, a menudo conflictivos, para tomar una decisión o realizar una valoración.
  • Infraestructura: Las estructuras físicas y organizativas básicas necesarias para el funcionamiento de una sociedad o empresa, como carreteras, puentes, sistemas de energía, comunicaciones, etc.
  • Sostenibilidad Social: Una dimensión de la sostenibilidad que se centra en el impacto de las actividades humanas en las personas y en la sociedad en general, incluyendo aspectos como la equidad, la justicia social, la salud, la seguridad y la participación comunitaria.
  • Revisión sistemática de la literatura: Un método riguroso y transparente para identificar, seleccionar, evaluar y sintetizar todas las evidencias empíricas relevantes para responder a una pregunta de investigación específica.
  • Capital humano: Los conocimientos, habilidades, competencias y atributos incorporados en los individuos que facilitan la creación de valor económico y social.
  • Capital comunitario: Los recursos y relaciones sociales dentro de una comunidad que fomentan la cooperación y el beneficio mutuo, incluyendo aspectos como la confianza, las normas y las redes sociales.
  • Capital cultural: Los activos culturales, tanto tangibles (patrimonio físico, obras de arte) como intangibles (tradiciones, conocimientos, expresiones artísticas), que tienen valor social, económico e histórico.
  • Equidad: La cualidad de ser justo e imparcial, asegurando que los beneficios y las cargas se distribuyan de manera proporcional y considerando las diferentes necesidades y circunstancias.
  • Incertidumbre: La falta de certeza o conocimiento preciso sobre eventos futuros, sus probabilidades y sus posibles consecuencias.
  • Aprendizaje social: Un proceso colectivo a través del cual los individuos y los grupos adquieren nuevos conocimientos, habilidades y comprensiones a través de la interacción, la experiencia y la reflexión conjunta.
  • Analytic Hierarchy Process (AHP): Un método multicriterio que estructura un problema de decisión en una jerarquía de criterios, subcriterios y alternativas, y utiliza comparaciones pareadas para determinar las prioridades relativas.
  • Simple Additive Weighting (SAW): Un método multicriterio que asigna pesos a cada criterio y calcula una puntuación total para cada alternativa multiplicando su rendimiento en cada criterio por el peso del criterio y sumando los resultados.
  • Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS): Un método multicriterio que identifica la alternativa con la distancia más corta a la solución ideal positiva y la distancia más larga a la solución ideal negativa.
  • Teoría de conjuntos difusos: Un marco matemático que permite representar y manejar la imprecisión y la vaguedad en la información, utilizando grados de pertenencia en lugar de la lógica binaria tradicional.
  • Sistemas grises: Un enfoque metodológico diseñado para analizar y modelar sistemas con información incompleta o incierta, utilizando conceptos como intervalos numéricos y números grises para representar la incertidumbre.
  • Partes interesadas (Stakeholders): Individuos, grupos u organizaciones que pueden afectar o ser afectados por las decisiones o actividades de un proyecto o política.

Os dejo un pequeño programa de radio sobre este tema (en inglés).

Os dejo un mapa mental del trabajo.

Referencia:

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:10.1016/j.jclepro.2018.03.022

Como el artículo se publicó en abierto, lo dejo por si lo queréis consultar.

Descargar (PDF, 3.16MB)

Christian Otto Mohr: Pionero de la mecánica estructural y la resistencia de materiales

Christian Otto Mohr (1835-1918). https://es.wikipedia.org/wiki/Christian_Otto_Mohr

Christian Otto Mohr nació el 8 de octubre de 1835 en Wesselburen (Holstein), en el seno de una familia terrateniente, y falleció el 2 de octubre de 1918 en Dresde, en el Imperio alemán. Descendiente de propietarios de tierras en Holstein, Mohr ingresó en 1851 en la Escuela Politécnica de Hannover para estudiar ingeniería. Durante la infancia de Mohr, su padre ejerció como alcalde de su localidad, lo que le permitió conocer a Friedrich Hebbel, quien más tarde alcanzaría renombre como escritor, pero que en ese entonces era un joven de 14 años empleado como escribiente en la oficina municipal.

A principios de 1855, comenzó a trabajar en proyectos ferroviarios para los estados de Hannover y Oldemburgo, donde diseñó algunos puentes de gran relevancia y participó en la creación de algunas de las primeras armaduras de acero. Durante estos años, comenzó a publicar investigaciones originales, una práctica que mantendría hasta bien entrada su vejez. Mientras continuaba su trabajo en la construcción de líneas ferroviarias, desarrolló un gran interés por las teorías de la mecánica y la resistencia de materiales, que influiría en el curso de su carrera académica y científica.

Hacia 1860, mientras colaboraba en el diseño del primer puente de hierro de estructura triangular simple en Lüneburg, se le atribuye el desarrollo del método de secciones, asociado normalmente a August Ritter, que se emplea para el análisis de estructuras isostáticas articuladas. Poco después, publicó un estudio sobre el efecto de los desplazamientos en los apoyos en el cálculo de fuerzas internas en vigas continuas, en el que formuló la ecuación de los tres momentos en su forma general, incorporando términos para variaciones verticales en los apoyos, y así amplió el trabajo previo de Clapeyron y Bertot. Este trabajo le otorgó reconocimiento profesional.

En 1867, fue nombrado profesor de mecánica estructural e ingeniería civil en la Escuela Politécnica de Stuttgart. Su estilo de enseñanza, caracterizado por su claridad y enfoque directo, le hizo muy popular entre sus estudiantes, entre los que se encontraba Ludwig Föppl, quien lo consideraba su profesor más notable. En 1868, de manera simultánea a Winkler, Mohr introdujo las líneas de influencia, una herramienta clave para evaluar cargas móviles en estructuras. Al reconocer que la ecuación diferencial de la línea elástica tenía la misma forma que la ecuación de la curva funicular, logró desarrollar este método sin necesidad de resolver integrales diferenciales. Asimismo, descubrió la analogía que hoy lleva su nombre, un avance fundamental en la estática gráfica. Seis años después, en 1873, aceptó una cátedra en la Escuela Politécnica de Dresde en sustitución de Claus Köpcke (1831-1911), donde impartió docencia en estática gráfica, ingeniería ferroviaria e hidráulica hasta 1893.

En 1874, Mohr formalizó la idea, que hasta entonces era solo intuitiva, de una estructura estáticamente indeterminada. Independientemente, redescubrió un método para determinar esfuerzos en estructuras hiperestáticas que Maxwell había publicado una década antes en un trabajo poco conocido. Además, fue un entusiasta de las herramientas gráficas y desarrolló un método para representar visualmente tensiones en tres dimensiones, que había sido propuesto previamente por Carl Culmann.

Círculo de Mohr. https://es.wikipedia.org/wiki/C%C3%ADrculo_de_Mohr

Durante su estancia en Dresde, amplió su campo de enseñanza. En 1882, desarrolló el método gráfico bidimensional para el análisis de tensiones conocido como círculo de Mohr y lo utilizó para proponer una nueva teoría de resistencia de materiales basada en el esfuerzo cortante. Su teoría del fallo, derivada del concepto del círculo de tensiones, tuvo una gran aceptación en la práctica de la ingeniería. También desarrolló el diagrama de Williot-Mohr para el desplazamiento de armaduras y la teoría de Maxwell-Mohr para el análisis de estructuras estáticamente indeterminadas. En 1894, tras la salida de Gustav Zeuner, asumió la responsabilidad de impartir las materias de mecánica aplicada y resistencia de materiales, combinándolas con sus estudios de estática gráfica. Su trabajo sobre los fundamentos de la teoría de estructuras, basado en el principio de fuerzas virtuales (1874-1875), representó una de las aportaciones más significativas a la disciplina, comparable con las investigaciones previas de Maxwell (1864). Sus contribuciones impulsaron el desarrollo de la teoría clásica de estructuras, consolidándola como un campo autónomo dentro de la ingeniería.

Además de su labor académica, Mohr participó activamente en el debate científico de su época, enfrentándose a Müller-Breslau en cuestiones fundamentales sobre la teoría de estructuras y la prioridad en la formulación de conceptos y teoremas clave. A lo largo de su carrera, recibió numerosos reconocimientos y honores, acorde con su creciente prestigio. Su personalidad se distinguía por su porte imponente y su carácter reservado. En la enseñanza y en la escritura, perseguía la simplicidad, la claridad y la concisión como principios fundamentales.

En el ámbito de la docencia y la investigación, Mohr influyó en numerosas figuras destacadas de la ingeniería y la ciencia, como Robert Land, Georg Christoph Mehrtens, Willy Gehler, Kurt Beyer y Gustav Bürger, quienes se formaron bajo su tutela en la Escuela de Mecánica Aplicada de Dresde. En reconocimiento a su trayectoria, la Universidad Técnica de Hannover le concedió un doctorado honoris causa. Tras años de deliberaciones, aceptó el cargo de consejero privado en activo, con el título honorífico de «Excelencia», otorgado por el gobierno de Sajonia. Se retiró formalmente de la enseñanza en 1900 y falleció en Dresde en 1918.

Principales contribuciones a la teoría de estructuras:

  • Beitrag zur Theorie der Holz- und Eisenkonstruktionen (1868)
  • Beitrag zur Theorie des Erddrucks (1871)
  • Zur Theorie des Erddrucks (1872)
  • Beitrag zur Theorie der Bogenfachwerksträger (1874)
  • Beitrag zur Theorie des Fachwerks (1874)
  • Beiträge zur Theorie des Fachwerks (1875)
  • Über die Zusammensetzung der Kräfte im Raume (1876)
  • Über die Darstellung des Spannungszustandes und des Deformationszustandes eines Körperelements und über die Anwendung derselben in der Festigkeitslehre (1882)
  • Über das sogenannte Prinzip der kleinsten Deformationsarbeit (1883)
  • Beitrag zur Theorie des Fachwerkes (1885)
  • Über die Elastizität der Deformationsarbeit (1886)
  • Die Berechnung der Fachwerke mit starren Knotenverbindungen (1892/93)
  • Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials? (1900)
  • Abhandlungen aus dem Gebiete der Technischen Mechanik (1906, 1914, 1928)

Otto Mohr dejó una huella imborrable en la ingeniería estructural y en la mecánica aplicada. Sus teorías y métodos continúan siendo herramientas fundamentales en la práctica y la enseñanza de la ingeniería, consolidándose como una de las figuras más influyentes en la historia de la disciplina.

Os dejo algún vídeo sobre la construcción del círculo de Mohr y sobre los teoremas de Mohr.