Más allá de la resistencia: cinco claves sorprendentes sobre la infraestructura del futuro.

En el mundo de la ingeniería y la construcción, hay una pregunta fundamental que guía todo el proceso de diseño: «¿Qué tan seguro es “bastante seguro”?». Durante décadas, la respuesta parecía sencilla: construir estructuras lo bastante fuertes para soportar las fuerzas esperadas. El objetivo principal era la resistencia, es decir, la capacidad de mantenerse sin romperse.

Sin embargo, en un mundo cada vez más marcado por eventos extremos e impredecibles, desde huracanes más intensos hasta fallos en cadena en redes complejas, esta filosofía ya no es suficiente. La simple resistencia no tiene en cuenta lo que sucede después de un desastre. Es aquí donde surge un concepto mucho más relevante para nuestro tiempo: la resiliencia.

La resiliencia no se limita a soportar un golpe, sino que se centra en la capacidad de recuperación de un sistema tras recibirlo. Supone una nueva frontera en el diseño de ingeniería que va más allá de la fuerza bruta, ya que incorpora la rapidez, la creatividad y la capacidad de recuperación como características de diseño medibles.

Este artículo explorará cinco de los descubrimientos más sorprendentes e impactantes que nos ofrece esta filosofía emergente sobre cómo construir la infraestructura del mañana.

Los cinco descubrimientos clave sobre la resiliencia en ingeniería

1 .La noción de «seguridad» ha evolucionado drásticamente. Ya no se trata solo de resistir.

La forma en que los ingenieros definen la «seguridad» ha cambiado profundamente. Los métodos tradicionales, como el diseño por esfuerzos admisibles (ASD) o el diseño por factores de carga y resistencia (LRFD), se basaban en un principio sencillo: garantizar que la capacidad del sistema superara la demanda esperada. Aunque eran eficaces, estos enfoques no evaluaban la seguridad a nivel del sistema completo y no siempre producían los diseños más eficientes desde el punto de vista económico.

El primer gran avance fue el diseño basado en el desempeño (PBD). Esta filosofía cambió el enfoque de simplemente «no fallar» a evaluar el comportamiento de una estructura durante un evento extremo. El PBD introdujo métricas críticas de rendimiento, como las pérdidas económicas, el tiempo de inactividad y el número de víctimas. Aunque supuso un gran avance, aún dejaba fuera una parte esencial: la capacidad de recuperación del sistema.

El paso más reciente y transformador es el diseño basado en la resiliencia (RBD). La diferencia clave es que el RBD incorpora formalmente el proceso de recuperación del sistema tras un evento. Ya no solo importa cómo resiste el impacto, sino también cuán rápido y eficientemente puede volver a funcionar. Esto supone un cambio de paradigma fundamental en ingeniería, donde la resiliencia se convierte en una métrica tan importante como la resistencia.

La clave del cambio es que un análisis de resiliencia no solo considera los riesgos, sino también la capacidad de recuperación, integrando así la prevención, el impacto y la rehabilitación en una visión holística del diseño.

2. No se trata de ser irrompible. Recuperarse rápido es el nuevo superpoder.

Una de las ideas más contraintuitivas del diseño basado en la resiliencia es que la invulnerabilidad no es el objetivo final. En lugar de buscar estructuras que nunca fallen, la verdadera prioridad es la capacidad de un sistema para recuperarse rápidamente de un fallo, un atributo de diseño tan importante como su resistencia inicial.

Imaginemos dos estructuras, la «Estructura A» y la «Estructura B», ambas sometidas a un evento severo que supera sus límites de diseño. Como resultado, el rendimiento de ambas cae drásticamente. A primera vista, podrían parecer igualmente fallidas. Sin embargo, la resiliencia marca la diferencia.

La «Estructura A» ha sido diseñada de manera que, en caso de fallo, sus componentes puedan ser reparados o reemplazados de forma rápida y eficiente, lo que le permite recuperar su funcionalidad original en mucho menos tiempo. Por el contrario, la «Estructura B» tarda considerablemente más en volver a operar. Según la filosofía de la resiliencia, el diseño de la Estructura A es superior, ya que minimiza el tiempo total de interrupción del servicio.

La lección es clara: el diseño moderno ya no solo se pregunta «¿Qué tan fuerte es?», sino también «¿Qué tan rápido se recupera después de caer?». La rapidez de recuperación no es un extra, sino una característica de diseño fundamental.

3. La resiliencia no es una cualidad única, sino una combinación de cuatro «ingredientes» medibles.

Aunque la resiliencia puede parecer un concepto abstracto, los ingenieros la han desglosado en cuatro propiedades distintas y medibles. Comprender estos cuatro «ingredientes» es clave para diseñar sistemas verdaderamente resilientes.

  • La robustez es la capacidad de un sistema para soportar un cierto nivel de interrupción sin perder eficiencia. Representa la resistencia inherente para absorber el impacto inicial. Cuanto más robusto es un sistema, menos daño sufre desde el comienzo del evento.
  • La rapidez es la capacidad de un sistema para recuperar rápidamente su funcionamiento normal después de una interrupción. Este componente se centra en minimizar las pérdidas y evitar futuras interrupciones, de modo que el sistema vuelva a operar en el menor tiempo posible.
  • El ingenio es la capacidad de identificar problemas, establecer prioridades y movilizar recursos de manera eficaz. Un sistema con ingenio puede reducir el tiempo necesario para evaluar daños y organizar una respuesta eficaz, lo que facilita una recuperación más rápida. Es como un equipo de urgencias experto que sabe exactamente qué especialistas llamar y qué equipo utilizar, minimizando el tiempo entre la detección del problema y la solución eficaz.
  • La redundancia es la capacidad de los elementos dañados del sistema para ser sustituidos por otros. La redundancia permite que el sistema siga funcionando, aunque sea con capacidad reducida, redirigiendo la carga de los componentes fallidos a elementos auxiliares. Piénselo como la rueda de repuesto de un coche o los servidores de respaldo de un sitio web: recursos listos para asumir la función de un componente principal en caso de fallo.

4. La recuperación no es instantánea. Existe una «fase de evaluación» crítica tras el desastre.

Cuando un sistema se ve interrumpido, su rendimiento no mejora de forma inmediata una vez que el evento ha terminado. El análisis de resiliencia muestra que la recuperación sigue una curva con distintas fases críticas. Inicialmente, el rendimiento del sistema empeora durante el evento (de t1 a t2).

A continuación, aparece un período a menudo pasado por alto, pero crucial: la fase de evaluación (de t2 a t3). Durante esta etapa, la funcionalidad del sistema permanece baja y casi plana. No se observa una mejora significativa, ya que en este tiempo se evalúan los daños, se reúnen los recursos, se organizan los equipos de respuesta y se establece un plan de acción efectivo.

Un objetivo clave del diseño resiliente es acortar la duración de esta fase de «línea plana». Mediante una planificación previa más sólida, planes de respuesta a emergencias claros y una movilización eficiente de recursos, es posible reducir significativamente este período de inactividad.

Solo después de esta fase de evaluación comienza la fase de recuperación (de t3 a t4), durante la cual la funcionalidad del sistema empieza a restaurarse hasta alcanzar un nivel aceptable y recuperar gradualmente su capacidad total de operación.

Figura 2. Rendimiento del sistema bajo interrupción

5. La resiliencia no es solo un concepto, sino una cifra que se puede calcular.

Uno de los descubrimientos más importantes del diseño basado en la resiliencia es que esta no solo es un concepto cualitativo, sino también una métrica cuantificable. Los ingenieros pueden calcular un «índice de resiliencia», que a menudo se define como el área bajo la curva de rendimiento del sistema a lo largo del tiempo. Cuanto mayor sea esta área, mayor será la resiliencia del sistema.

Un ejemplo concreto proviene de un estudio realizado en el túnel del metro de Shanghái. Tras ser sometido a una sobrecarga extrema, el túnel perdió entre un 70 % y un 80 % de su rendimiento. Lo revelador del estudio fue que la simple eliminación de la sobrecarga, es decir, una recuperación pasiva, solo restauró el 1 % del rendimiento. Esto demuestra que esperar a que el problema desaparezca no es una estrategia de recuperación viable.

Para recuperar la funcionalidad, fue necesaria una intervención activa: la inyección de lechada de cemento en el suelo alrededor del túnel. No obstante, esta solución no fue inmediata, ya que se necesitaron cuatro años para recuperar un 12,4 % adicional del rendimiento. El estudio concluyó que, al mejorar y acelerar este proceso, el índice de resiliencia del túnel podría aumentar hasta un 73 %.

La capacidad de cuantificar la resiliencia transforma el enfoque de la ingeniería. Permite comparar objetivamente distintas opciones de diseño, justificar inversiones en estrategias de recuperación más rápidas y, en última instancia, tomar decisiones basadas en datos para construir infraestructuras más eficaces y seguras.

Conclusión: Diseñando para el mañana

El debate sobre la infraestructura del futuro está experimentando un profundo cambio. Hemos pasado de una obsesión por la fuerza y la resistencia a un enfoque más inteligente y holístico centrado en la recuperación. La resiliencia nos enseña que la forma en que un sistema se recupera de una avería es tan importante, si no más, que su capacidad para resistir el impacto inicial.

Al entender la resiliencia como una combinación medible de robustez, rapidez, ingenio y redundancia, podemos diseñar sistemas que no solo sobrevivan a los desafíos del siglo XXI, sino que también se recuperen de ellos de manera rápida, eficiente y predecible.

Ahora que la recuperación se considera un factor de diseño, surge una pregunta crítica: ¿qué infraestructura esencial de tu comunidad —eléctrica, de agua o de transporte— necesita ser rediseñada para ser no solo más fuerte, sino también más rápidamente recuperable?

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.