Reconocimiento especial por la divulgación científica de la DANA de 2024

Figura 1. De izquierda a derecha: Julián Alcalá, José Capilla (rector de la UPV), Víctor Yepes y Eugenio Pellicer

Quisiera expresar mi más sincero agradecimiento a la Universitat Politècnica de València (UPV) por el reconocimiento especial recibido por

«el firme compromiso con la divulgación científica y la exquisita atención a los medios de comunicación en la cobertura periodística vinculada a la DANA que asoló la provincia de Valencia en octubre de 2024».

Este reconocimiento ha sido otorgado a varios profesores de la UPV que, desde el primer momento, han intentado aportar explicaciones rigurosas y fundamentadas desde los ámbitos técnico y científico sobre este trágico fenómeno meteorológico. En la Figura 1 se pueden ver a los profesores Julián Alcalá, Víctor Yepes y Eugenio Pellicer, junto con el rector de la Universitat Politècnica de València, José Capilla. En la imagen aparecemos quienes hemos centrado nuestra labor divulgativa en los aspectos relacionados con las infraestructuras, como los puentes, las vías de comunicación, los procesos de reconstrucción y la resiliencia estructural ante eventos extremos.

Otros compañeros del Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), como Félix FrancésFrancisco VallésManuel PulidoMiguel Ángel Eguibar y Juan Marco, también han contribuido de forma ejemplar desde la perspectiva de los fenómenos hidrológico e hidráulico, aportando información valiosa para entender las causas y consecuencias de la DANA.

De izquierda a derecha: Francisco Vallés, Manuel Pulido, Juan Marco, José Capilla (rector de la UPV), Miguel Ángel Eguibar y Félix Francés.

En el ámbito del urbanismo y la ordenación del territorio, fueron reconocidos los profesores Sergio Palencia y María Jesús Romero. Y otros tantos de otras áreas de conocimiento de nuestra universidad. Tampoco quisiera olvidarme de algunos profesores, ya jubilados de la UPV y que no estuvieron en el acto de ayer, que también han contribuido a la divulgación científica de la DANA, como Federico Bonet y Vicent Esteban Chapapría.

De izquierda a derecha: Sergio Palencia, José Capilla (rector de la UPV) y María Jesús Romero.

En mi caso, recibo con gratitud este reconocimiento, pero considero que es una obligación profesional y ética ofrecer a la opinión pública explicaciones claras, basadas en la ciencia y la ingeniería, sobre un tema tan complejo y delicado. La divulgación técnica rigurosa es esencial para construir una sociedad más informada, capaz de afrontar los desafíos que nos plantea el cambio climático y sus efectos sobre nuestras infraestructuras.

Por tanto, mi agradecimiento es doble: a la institución, por valorar este trabajo, y a todos los compañeros que comparten la convicción de que la ciencia debe estar al servicio de la sociedad, especialmente en los momentos más difíciles.

Algunas de las intervenciones en prensa del mismo día del primer aniversario de la DANA las podéis ver en este enlace: https://victoryepes.blogs.upv.es/2025/10/29/primer-aniversario-de-la-dana-de-valencia-anatomia-de-un-desastre/

 

5 lecciones sorprendentes de ingeniería avanzada para construir puentes más sostenibles y económicos

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, a menudo nos viene a la mente una imagen de fuerza bruta: toneladas de hormigón y acero ensambladas con una precisión monumental. Se trata de una proeza de la ingeniería física, un testimonio de la capacidad humana para dominar los materiales y la geografía.

Sin embargo, detrás de esta fachada de poderío industrial se está produciendo una revolución silenciosa. La inteligencia artificial y los modelos computacionales avanzados, que pueden ejecutar el equivalente a décadas de diseño y pruebas de ingeniería en cuestión de horas, están redefiniendo las reglas del juego. Lejos de ser un mero ejercicio teórico, estas herramientas permiten a los ingenieros diseñar puentes que son no solo más resistentes, sino también sorprendentemente más económicos y respetuosos con el medio ambiente.

Las lecciones que siguen se basan en los hallazgos de una tesis doctoral, defendida por la profesora Lorena Yepes Bellver, innovadora en la optimización de puentes. La tesis obtuvo la máxima calificación de sobresaliente «cum laude». Las lecciones demuestran que el futuro de la construcción no radica únicamente en nuevos materiales milagrosos, sino en la aplicación de una inteligencia que permita aprovechar los ya existentes de forma mucho más eficiente.

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

1. El pequeño coste de un gran impacto ecológico: pagar un 1 % más para emitir un 2 % menos de CO₂.

Uno de los principales obstáculos para la adopción de prácticas sostenibles ha sido siempre la creencia de que «ser verde» es significativamente más caro. Sin embargo, la investigación en optimización de puentes revela una realidad mucho más alentadora. Gracias a los diseños perfeccionados mediante metamodelos, es posible lograr reducciones significativas de la huella de carbono con un impacto económico mínimo.

El dato clave del estudio es contundente: «Un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %)». Este hallazgo demuestra que la sostenibilidad no tiene por qué ser un lujo, sino el resultado de una ingeniería más inteligente.

 

«Esto demuestra que el diseño de puentes sostenibles puede ser económicamente viable».

Esta lección es fundamental, ya que pone fin a una falsa dicotomía entre la economía y la ecología. Demuestra que no es necesario elegir entre un puente asequible y otro respetuoso con el medio ambiente. Gracias a las decisiones de diseño inteligentes, guiadas por la optimización avanzada, es posible alcanzar ambos objetivos simultáneamente, de modo que la sostenibilidad se convierte en una ventaja competitiva y no en una carga.

2. La paradoja de los materiales: añadir más componentes para reducir el consumo global.

La lógica convencional nos diría que, para construir de forma más sostenible, el objetivo debería ser reducir la cantidad total de materiales utilizados. Menos hormigón, menos acero, menos de todo. Sin embargo, uno de los hallazgos más sorprendentes de la tesis es una paradoja que desafía esta idea tan simple.

El diseño óptimo y más sostenible aumenta, de hecho, la cantidad de uno de sus componentes: la armadura pasiva (el acero de refuerzo convencional). A primera vista, esto parece contradictorio: ¿cómo puede ser más ecológico añadir más material?

La explicación se debe a un enfoque sistémico. Este aumento estratégico y calculado del refuerzo pasivo permite reducir considerablemente el consumo de otros dos materiales clave: el hormigón y la armadura activa (el acero de pretensado). La producción de estos materiales, especialmente la del cemento y del acero de alta resistencia, es intensiva en energía y, por tanto, genera numerosas emisiones de CO₂. En esencia, se sacrifica una pequeña cantidad de un material de menor impacto para ahorrar una cantidad mucho mayor de materiales de alto impacto.

Este enfoque, que podría describirse como «sacrificar una pieza para ganar el juego», es un ejemplo perfecto de cómo la optimización avanzada supera las reglas simplistas de reducción. En lugar de aplicar un recorte general, se analiza el sistema en su conjunto y se determina el equilibrio más eficiente. Este equilibrio inteligente de materiales solo es posible si se afina otro factor clave: la geometría de la estructura.

Retos en la optimización de puentes con metamodelos

3. Más esbelto es mejor: el secreto de la «delgadez» estructural para la sostenibilidad.

En el ámbito de la ingeniería de puentes, el concepto de «esbeltez» es fundamental. En términos sencillos, se refiere a la relación entre el canto de la losa y la luz que debe cubrir. Una mayor esbeltez implica un diseño estructural, en palabras comunes, más «delgado» o «fino».

La investigación revela un hallazgo crucial: los diseños que son óptimos tanto en términos de emisiones de CO₂ como de energía incorporada se logran con relaciones de esbeltez altas, concretamente de entre 1/30 y 1/28. En otras palabras, los puentes más sostenibles son también los más delgados y se complementan con hormigones óptimos situados entre 35 y 40 MPa de resistencia característica.

¿Por qué es esto tan beneficioso? Un diseño más esbelto requiere, inherentemente, una menor cantidad de materiales, principalmente de hormigón. Lo realmente notable es cómo se consigue. Los métodos tradicionales suelen basarse en reglas generales y márgenes de seguridad amplios, mientras que la optimización computacional permite a los ingenieros explorar miles, e incluso millones, de variaciones para acercarse al límite físico de la eficiencia sin sacrificar la seguridad. El resultado es una elegancia estructural casi contraintuitiva: puentes que alcanzan su fuerza no a través de la masa bruta, sino mediante una delgadez inteligentemente calculada, donde la sostenibilidad es una consecuencia natural de la eficiencia.

4. La optimización inteligente genera ahorros reales: una reducción de costes de hasta un 6,5 %.

Más allá de los beneficios medioambientales, la aplicación de estas técnicas de optimización tiene un impacto económico directo y medible. El diseño de infraestructuras deja de ser un arte basado únicamente en la experiencia para convertirse en una ciencia precisa que busca la máxima eficiencia económica.

El resultado principal del estudio sobre la optimización de costes es claro: el uso de modelos sustitutos (metamodelos Kriging) guiados por algoritmos heurísticos, como el recocido simulado, logró una reducción de costes del 6,54 % en comparación con un diseño de referencia.

Estos ahorros no son teóricos, sino que provienen directamente de la reducción de materiales. En concreto, se consiguió una disminución del 14,8 % en el uso de hormigón y del 11,25 % en el acero activo (pretensado). Es crucial destacar que estas reducciones se consiguieron sin afectar a la integridad estructural ni a la capacidad de servicio del puente. No se trata de sacrificar la calidad por el precio, sino de diseñar de manera más inteligente. Esta metodología convierte la optimización del diseño en una tarea académica en una herramienta práctica y altamente eficaz para la gestión económica de grandes proyectos de ingeniería civil.

5. No todos los cerebros artificiales piensan igual; la clave está en elegir el modelo computacional adecuado.

Una de las lecciones más importantes de esta investigación es que no basta con aplicar «inteligencia artificial» de forma genérica. El éxito de la optimización depende de elegir la herramienta computacional adecuada para cada tarea específica.

La tesis comparó dos potentes metamodelos: las redes neuronales artificiales (RNA) y los modelos de Kriging. Se descubrió una diferencia crucial en su rendimiento: si bien las RNA ofrecían predicciones absolutas más precisas sobre el comportamiento de un diseño concreto, el modelo de Kriging demostró ser mucho más eficaz para identificar los «óptimos locales», es decir, las zonas del mapa de diseño donde se encontraban las mejores soluciones.

Esto revela una capa más profunda de la optimización inteligente. Un modelo puede ser excelente para predecir un resultado (RNA), mientras que otro es más eficaz para guiar la búsqueda del mejor resultado posible (Kriging). No se trata solo de utilizar IA, sino de comprender qué «tipo de pensamiento» artificial es el más adecuado para cada fase del problema: predecir frente a optimizar. La verdadera maestría de la ingeniería moderna consiste en saber elegir las herramientas adecuadas para cada fase del problema.

Conclusión: la nueva frontera del diseño de infraestructuras.

La construcción de nuestras infraestructuras entra en una nueva era. La combinación de la ingeniería estructural clásica con el poder de los modelos computacionales avanzados, como el metamodelado Kriging y las redes neuronales artificiales, está abriendo una nueva frontera en la que la eficiencia y la sostenibilidad no son objetivos opcionales, sino resultados intrínsecos de un buen diseño.

Como hemos visto, los grandes avances no siempre provienen de materiales revolucionarios. A menudo, los «secretos» mejor guardados residen en la optimización inteligente de los diseños y materiales que ya conocemos. Obtener un mayor beneficio ecológico pagando menos, utilizar estratégicamente más de un material para reducir el consumo global o diseñar estructuras más esbeltas y elegantes son lecciones que van más allá de la construcción de puentes.

Nos dejan con una pregunta final que invita a la reflexión: si podemos lograr esto con los puentes, ¿qué otras áreas de la construcción y la industria están esperando a ser reinventadas por el poder de la optimización inteligente?

Os dejo un audio en el que se discuten las ideas de la tesis doctoral. Espero que os guste.

Y en este vídeo, tenemos resumidas las ideas principales de esta tesis.

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Primer aniversario de la DANA de Valencia: Anatomía de un desastre

Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes

Hoy, 29 de octubre de 2025, se cumple el primer aniversario de la DANA de Valencia de 2024, un evento que ha sido catalogado como una de las mayores catástrofes naturales ocurridas en España en décadas. La tragedia se produjo por unas precipitaciones históricas que pulverizaron récords nacionales, con máximos de más de 770 l/m² acumulados en 24 horas en Turís, lo que demuestra que el riesgo cero no existe en un contexto de cambio climático. El desastre no se explica únicamente por la cantidad de lluvia caída, sino por la trágica multiplicación entre el evento extremo, sobrealimentado por el calentamiento global, y el fallo estructural de un urbanismo que, durante décadas, ha ignorado las zonas de riesgo. Aunque la respuesta inmediata y los esfuerzos por restablecer las infraestructuras críticas han sido notables, la ingeniería de la reconstrucción no puede limitarse a reponer lo perdido, ya que replicar el estado previo implica aceptar que los efectos se repetirán. En este contexto, un medio de comunicación me ha solicitado una entrevista para abordar si, un año después, hemos avanzado hacia las soluciones de resiliencia y prevención que el conocimiento técnico lleva tiempo demandando. Os dejo la entrevista completa, por si os resulta de interés.

¿Cómo describiría desde un punto de vista técnico lo que ocurrió el 29 de octubre en Valencia? ¿Qué falló?

Desde el punto de vista técnico e ingenieril, el suceso del 29 de octubre en Valencia fue un evento de inundación extremo provocado por una DANA con un carácter pluviométrico extraordinario, ya que se registraron cifras extremas, como los 771,8 l/m² en 24 horas en Turís, y caudales en la Rambla del Poyo de hasta 2.283 m³/s antes de que los sensores fueran arrastrados, superando con creces cualquier expectativa de diseño y demostrando que el riesgo cero no existe. La magnitud del impacto fue consecuencia de una serie de factores concurrentes. El factor principal se produjo en la cuenca de la Rambla del Poyo, donde la virulencia del agua (con caudales medidos superiores a 2.200 m³/s y estimaciones simuladas que superan los 3.500 m³/s) se encontró con la ausencia de infraestructuras hidráulicas suficientes para la laminación de avenidas y otras medidas complementarias. Los proyectos de defensa contra inundaciones, que llevaban años planificados y con estudios previos, no se ejecutaron a tiempo. En contraste, el Nuevo Cauce del Turia y las presas de Forata y Buseo funcionaron eficazmente, protegiendo la ciudad de Valencia y otras poblaciones. Además de estas vulnerabilidades latentes, el impacto humano y material se vio agravado por desafíos en la respuesta, incluyendo la efectividad en los sistemas de alerta temprana (SAIH) bajo condiciones tan extremas y en la implantación de los planes de emergencia municipales, así como en la emisión de avisos con suficiente antelación a la población, impidiendo que esta pudiera reaccionar a tiempo.

¿Qué papel jugaron las infraestructuras y la planificación urbana en la magnitud de los daños? ¿Hubo zonas especialmente vulnerables o mal planificadas?

Las infraestructuras y la planificación urbana jugaron un papel determinante en la magnitud de los daños. Por un lado, las obras estructurales, como el Nuevo Cauce del Turia y las presas de Forata y Buseo, resultaron fundamentales, mitigando las inundaciones y protegiendo la ciudad de Valencia y otras poblaciones. Sin embargo, la magnitud de los daños se vio agravada por la ausencia de medidas integrales de defensa diseñadas para la laminación de avenidas, especialmente en la cuenca de la Rambla del Poyo, donde los proyectos planificados no se ejecutaron a tiempo. Los caudales extraordinarios superaron con creces la capacidad existente. Además, las infraestructuras lineales (carreteras, ferrocarriles y puentes) actuaron como puntos de estrangulamiento, reteniendo arrastres y aumentando el nivel de destrucción. Las zonas más vulnerables se concentraron en el cono aluvial de L’Horta Sud, una zona de alto riesgo urbanizada principalmente entre la riada de 1957 y la década de 1970, sin planificación adecuada ni infraestructuras de saneamiento suficientes. La falta de unidad de criterio en la ordenación territorial municipal y la prevalencia de intereses de desarrollo sobre las directrices de restricción de usos en zonas inundables (a pesar de instrumentos como el PATRICOVA) aumentaron la vulnerabilidad social y material del territorio. Aunque algunos hablan de emergencia hidrológica, probablemente sea más adecuado hablar de un profundo desafío urbanístico y de ordenación territorial.

Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes

Desde entonces, ¿qué medidas reales se han tomado —si las hay— para reducir el riesgo de que vuelva a suceder algo similar?

Desde la DANA de octubre de 2024, las medidas adoptadas se han enfocado en la reconstrucción con criterios de resiliencia y atención a urgencias, aunque las soluciones estructurales de gran calado, que requieren plazos de ejecución más largos, siguen mayormente pendientes. En la fase inmediata, se activaron obras de emergencia, destacando la reparación y refuerzo de infraestructuras críticas como las presas de Forata y Buseo, y la recuperación de cauces y del canal Júcar-Turia. Un ejemplo de reconstrucción en curso es la mejora de la red de drenaje de Paiporta, que forma parte de las primeras actuaciones tras la catástrofe. En el ámbito normativo, el Consell aprobó el Decreto-ley 20/2024 de medidas urbanísticas urgentes y se ha puesto sobre la mesa la revisión de normativas como el Código Técnico de la Edificación (CTE) para incluir requisitos para edificaciones en zonas inundables. También se prevé que los sistemas de comunicación y alerta estén coordinados en todas las cuencas mediterráneas, lo que podría evitar muertes en caso de repetirse el fenómeno. Sin embargo, es un hecho que, meses después, la legislación urbanística de fondo sigue sin cambios estructurales y que, en cuanto a las obras hidráulicas estructurales de prevención, como las presas de laminación, sus plazos de tramitación y ejecución impiden que se hayan materializado avances significativos todavía, dificultando el avance de proyectos críticos. Por tanto, existe una etapa de reconstrucción que debería ser inteligente y no dejar las infraestructuras como estaban antes de la DANA, pues eso implicaría asumir los mismos riesgos, y otra a medio y largo plazo que permita defender a la población, minimizando los riesgos.

¿Qué actuaciones considera urgentes o prioritarias para evitar repetir los errores del pasado?

Para evitar repetir los errores del pasado, es necesario un cambio de modelo que combine inversión estructural urgente con planificación territorial resiliente. En ingeniería hidráulica, la acción prioritaria es acelerar e implementar las obras de laminación contempladas en la planificación hidrológica, como la construcción de presas en las cuencas de la Rambla del Poyo y el río Magro, y destinar recursos extraordinarios para construir las estructuras de prevención necesarias y corregir el déficit de infraestructuras de prevención. También es prioritario eliminar obstáculos urbanísticos, como puentes y terraplenes insuficientes, y reconstruir infraestructuras lineales con criterios resilientes, permitiendo el paso seguro del agua. En urbanismo, la enseñanza principal es devolverle el espacio al agua, retirando estratégicamente infraestructuras de las zonas de flujo preferente para reducir la exposición al riesgo más elevado e iniciando un plan a largo plazo para reubicar infraestructuras críticas y viviendas vulnerables. Se recomienda revisar la normativa sobre garajes subterráneos en llanuras de inundación. Asimismo, es esencial invertir en sistemas de alerta hidrológica robustos, con más sensores y modelos predictivos que traduzcan la predicción en avisos concretos y accionables. Por último, es fundamental que la gobernanza supere la inercia burocrática mediante un modelo de ejecución de urgencia que priorice el conocimiento técnico y garantice que el riesgo no se convierta de nuevo en catástrofe humana.

Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes

¿Hasta qué punto Valencia está preparada para afrontar lluvias torrenciales o fenómenos extremos de este tipo en el futuro?

Desde una perspectiva técnica e ingenieril, a día de hoy, la vulnerabilidad de fondo persiste y no estamos preparados para afrontar una nueva DANA de la magnitud de la ocurrida en 2024. La situación es similar a la de una familia que circula en coche por la autopista a 120 km/h sin cinturones de seguridad: bastaría un obstáculo inesperado (una DANA) para que el accidente fuera mortal. Aceptar la reposición de lo perdido sin añadir nuevas medidas de protección estructural implicaría aceptar que los efectos del desastre se repetirán, algo inasumible. El problema principal es que prácticamente no se han ejecutado las grandes obras de laminación planificadas, especialmente en las cuencas de la Rambla del Poyo y del Magro, que constituyen la medida más eficaz para proteger zonas densamente pobladas mediante contención en cabecera. La DANA expuso un problema urbanístico severo. Meses después, mientras no se modifique la legislación territorial de fondo y se actúe sobre el territorio, el riesgo latente de la mala planificación persiste ante el próximo fenómeno extremo. La única forma de eliminar esta vulnerabilidad es mediante una acción integral que combine inversión urgente en obras estructurales con retirada estratégica de zonas de flujo preferente.

Os dejo un pequeño vídeo didáctico donde se resume lo acontecido en la DANA del 29 de octubre de 2024.

En las noticias de hoy, aparezco en varios reportajes:

En el Telediario de TVE, en horario de máxima audiencia, a las 21:00 h, se hizo un programa especial sobre la DANA donde tuve la ocasión de participar. Os dejo un trozo del vídeo.

 

Reconstruir Valencia un año después: «cirugía urbana» y zonas verdes para protegerse de futuras danas

Un año después de la DANA del 29-O, los expertos advierten: «Podría volver a pasar»

Valencia: expertos advierten que la región aún no está preparada para afrontar otro episodio climático extremo

Valencia se blinda frente al agua: garajes elevados e ingeniería verde tras la DANA

One year after Valencia’s deadly flooding experts warn ‘it could happen again’

Një vit pas përmbytjeve vdekjeprurëse në Valencia, ekspertët paralajmërojnë se ‘mund të ndodhë përsëri’

Egy évvel a valenciai árvíz után a szakértők figyelmeztetnek: «Ez újra megtörténhet»

Egy évvel a spanyol árvizek után: Tanulságok és kihívások a Valenciai Közösség számára

 

También os dejo los artículos que he ido escribiendo sobre este tema en este blog. Espero que os resulten de interés.

Lo que la catástrofe de Valencia nos obliga a repensar: cuatro lecciones. 30 de septiembre de 2025.

Resiliencia en las infraestructuras: cómo prepararnos para un futuro de incertidumbre. 26 de septiembre de 2025.

Iniciativa Legislativa Popular para la Modificación de la Ley de Aguas. 17 de julio de 2025.

Posibles consecuencias de una nueva DANA en el otoño de 2025. 16 de julio de 2025.

Discurso de apertura en el evento Innotransfer “Infraestructuras resilientes frente a eventos climáticos extremos”. 26 de mayo de 2025.

Ya son 6 meses desde el desastre de la DANA en Valencia. 29 de abril de 2025.

Jornada sobre infraestructuras resilientes al clima. 8 de abril de 2025.

Entrevista en Levante-EMV sobre la reconstrucción tras la DANA. 17 de marzo de 2025.

La ingeniería de la reconstrucción. 6 de marzo de 2025.

Lecciones aprendidas: proteger a la población es la prioridad. 25 de diciembre de 2024.

DANA 2024. Causas, consecuencias y soluciones. 3 de diciembre de 2024.

Qué es una presa. «La via verda», À Punt. 28 de noviembre de 2024.

Aplicación del modelo del queso suizo en la gestión de desastres. 10 de noviembre de 2024.

Gestión del riesgo de inundación en infraestructuras críticas: estrategias y medidas de resiliencia. 8 de noviembre de 2024.

Presas y control de inundaciones: estrategias integradas para la reducción de riesgos hídricos. 7 de noviembre de 2024.

Defensa integral contra inundaciones: un esbozo de las estrategias para la gestión de riesgos. 6 de noviembre de 2024.

Introducción a las crecidas en ingeniería hidráulica. 5 de noviembre de 2024.

Precipitación en ingeniería hidráulica: conceptos, medición y análisis. 4 de noviembre de 2024.

Efectos de las inundaciones en las estructuras de las edificaciones. 2 de noviembre de 2024.

Valencia frente a la amenaza de una nueva inundación: análisis, antecedentes y estrategias para mitigar el riesgo. 1 de noviembre de 2024.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más allá de la resistencia: cinco claves sorprendentes sobre la infraestructura del futuro.

En el mundo de la ingeniería y la construcción, hay una pregunta fundamental que guía todo el proceso de diseño: «¿Qué tan seguro es “bastante seguro”?». Durante décadas, la respuesta parecía sencilla: construir estructuras lo bastante fuertes para soportar las fuerzas esperadas. El objetivo principal era la resistencia, es decir, la capacidad de mantenerse sin romperse.

Sin embargo, en un mundo cada vez más marcado por eventos extremos e impredecibles, desde huracanes más intensos hasta fallos en cadena en redes complejas, esta filosofía ya no es suficiente. La simple resistencia no tiene en cuenta lo que sucede después de un desastre. Es aquí donde surge un concepto mucho más relevante para nuestro tiempo: la resiliencia.

La resiliencia no se limita a soportar un golpe, sino que se centra en la capacidad de recuperación de un sistema tras recibirlo. Supone una nueva frontera en el diseño de ingeniería que va más allá de la fuerza bruta, ya que incorpora la rapidez, la creatividad y la capacidad de recuperación como características de diseño medibles.

Este artículo explorará cinco de los descubrimientos más sorprendentes e impactantes que nos ofrece esta filosofía emergente sobre cómo construir la infraestructura del mañana.

Los cinco descubrimientos clave sobre la resiliencia en ingeniería

1 .La noción de «seguridad» ha evolucionado drásticamente. Ya no se trata solo de resistir.

La forma en que los ingenieros definen la «seguridad» ha cambiado profundamente. Los métodos tradicionales, como el diseño por esfuerzos admisibles (ASD) o el diseño por factores de carga y resistencia (LRFD), se basaban en un principio sencillo: garantizar que la capacidad del sistema superara la demanda esperada. Aunque eran eficaces, estos enfoques no evaluaban la seguridad a nivel del sistema completo y no siempre producían los diseños más eficientes desde el punto de vista económico.

El primer gran avance fue el diseño basado en el desempeño (PBD). Esta filosofía cambió el enfoque de simplemente «no fallar» a evaluar el comportamiento de una estructura durante un evento extremo. El PBD introdujo métricas críticas de rendimiento, como las pérdidas económicas, el tiempo de inactividad y el número de víctimas. Aunque supuso un gran avance, aún dejaba fuera una parte esencial: la capacidad de recuperación del sistema.

El paso más reciente y transformador es el diseño basado en la resiliencia (RBD). La diferencia clave es que el RBD incorpora formalmente el proceso de recuperación del sistema tras un evento. Ya no solo importa cómo resiste el impacto, sino también cuán rápido y eficientemente puede volver a funcionar. Esto supone un cambio de paradigma fundamental en ingeniería, donde la resiliencia se convierte en una métrica tan importante como la resistencia.

La clave del cambio es que un análisis de resiliencia no solo considera los riesgos, sino también la capacidad de recuperación, integrando así la prevención, el impacto y la rehabilitación en una visión holística del diseño.

2. No se trata de ser irrompible. Recuperarse rápido es el nuevo superpoder.

Una de las ideas más contraintuitivas del diseño basado en la resiliencia es que la invulnerabilidad no es el objetivo final. En lugar de buscar estructuras que nunca fallen, la verdadera prioridad es la capacidad de un sistema para recuperarse rápidamente de un fallo, un atributo de diseño tan importante como su resistencia inicial.

Imaginemos dos estructuras, la «Estructura A» y la «Estructura B», ambas sometidas a un evento severo que supera sus límites de diseño. Como resultado, el rendimiento de ambas cae drásticamente. A primera vista, podrían parecer igualmente fallidas. Sin embargo, la resiliencia marca la diferencia.

La «Estructura A» ha sido diseñada de manera que, en caso de fallo, sus componentes puedan ser reparados o reemplazados de forma rápida y eficiente, lo que le permite recuperar su funcionalidad original en mucho menos tiempo. Por el contrario, la «Estructura B» tarda considerablemente más en volver a operar. Según la filosofía de la resiliencia, el diseño de la Estructura A es superior, ya que minimiza el tiempo total de interrupción del servicio.

La lección es clara: el diseño moderno ya no solo se pregunta «¿Qué tan fuerte es?», sino también «¿Qué tan rápido se recupera después de caer?». La rapidez de recuperación no es un extra, sino una característica de diseño fundamental.

3. La resiliencia no es una cualidad única, sino una combinación de cuatro «ingredientes» medibles.

Aunque la resiliencia puede parecer un concepto abstracto, los ingenieros la han desglosado en cuatro propiedades distintas y medibles. Comprender estos cuatro «ingredientes» es clave para diseñar sistemas verdaderamente resilientes.

  • La robustez es la capacidad de un sistema para soportar un cierto nivel de interrupción sin perder eficiencia. Representa la resistencia inherente para absorber el impacto inicial. Cuanto más robusto es un sistema, menos daño sufre desde el comienzo del evento.
  • La rapidez es la capacidad de un sistema para recuperar rápidamente su funcionamiento normal después de una interrupción. Este componente se centra en minimizar las pérdidas y evitar futuras interrupciones, de modo que el sistema vuelva a operar en el menor tiempo posible.
  • El ingenio es la capacidad de identificar problemas, establecer prioridades y movilizar recursos de manera eficaz. Un sistema con ingenio puede reducir el tiempo necesario para evaluar daños y organizar una respuesta eficaz, lo que facilita una recuperación más rápida. Es como un equipo de urgencias experto que sabe exactamente qué especialistas llamar y qué equipo utilizar, minimizando el tiempo entre la detección del problema y la solución eficaz.
  • La redundancia es la capacidad de los elementos dañados del sistema para ser sustituidos por otros. La redundancia permite que el sistema siga funcionando, aunque sea con capacidad reducida, redirigiendo la carga de los componentes fallidos a elementos auxiliares. Piénselo como la rueda de repuesto de un coche o los servidores de respaldo de un sitio web: recursos listos para asumir la función de un componente principal en caso de fallo.

4. La recuperación no es instantánea. Existe una «fase de evaluación» crítica tras el desastre.

Cuando un sistema se ve interrumpido, su rendimiento no mejora de forma inmediata una vez que el evento ha terminado. El análisis de resiliencia muestra que la recuperación sigue una curva con distintas fases críticas. Inicialmente, el rendimiento del sistema empeora durante el evento (de t1 a t2).

A continuación, aparece un período a menudo pasado por alto, pero crucial: la fase de evaluación (de t2 a t3). Durante esta etapa, la funcionalidad del sistema permanece baja y casi plana. No se observa una mejora significativa, ya que en este tiempo se evalúan los daños, se reúnen los recursos, se organizan los equipos de respuesta y se establece un plan de acción efectivo.

Un objetivo clave del diseño resiliente es acortar la duración de esta fase de «línea plana». Mediante una planificación previa más sólida, planes de respuesta a emergencias claros y una movilización eficiente de recursos, es posible reducir significativamente este período de inactividad.

Solo después de esta fase de evaluación comienza la fase de recuperación (de t3 a t4), durante la cual la funcionalidad del sistema empieza a restaurarse hasta alcanzar un nivel aceptable y recuperar gradualmente su capacidad total de operación.

Figura 2. Rendimiento del sistema bajo interrupción

5. La resiliencia no es solo un concepto, sino una cifra que se puede calcular.

Uno de los descubrimientos más importantes del diseño basado en la resiliencia es que esta no solo es un concepto cualitativo, sino también una métrica cuantificable. Los ingenieros pueden calcular un «índice de resiliencia», que a menudo se define como el área bajo la curva de rendimiento del sistema a lo largo del tiempo. Cuanto mayor sea esta área, mayor será la resiliencia del sistema.

Un ejemplo concreto proviene de un estudio realizado en el túnel del metro de Shanghái. Tras ser sometido a una sobrecarga extrema, el túnel perdió entre un 70 % y un 80 % de su rendimiento. Lo revelador del estudio fue que la simple eliminación de la sobrecarga, es decir, una recuperación pasiva, solo restauró el 1 % del rendimiento. Esto demuestra que esperar a que el problema desaparezca no es una estrategia de recuperación viable.

Para recuperar la funcionalidad, fue necesaria una intervención activa: la inyección de lechada de cemento en el suelo alrededor del túnel. No obstante, esta solución no fue inmediata, ya que se necesitaron cuatro años para recuperar un 12,4 % adicional del rendimiento. El estudio concluyó que, al mejorar y acelerar este proceso, el índice de resiliencia del túnel podría aumentar hasta un 73 %.

La capacidad de cuantificar la resiliencia transforma el enfoque de la ingeniería. Permite comparar objetivamente distintas opciones de diseño, justificar inversiones en estrategias de recuperación más rápidas y, en última instancia, tomar decisiones basadas en datos para construir infraestructuras más eficaces y seguras.

Conclusión: Diseñando para el mañana

El debate sobre la infraestructura del futuro está experimentando un profundo cambio. Hemos pasado de una obsesión por la fuerza y la resistencia a un enfoque más inteligente y holístico centrado en la recuperación. La resiliencia nos enseña que la forma en que un sistema se recupera de una avería es tan importante, si no más, que su capacidad para resistir el impacto inicial.

Al entender la resiliencia como una combinación medible de robustez, rapidez, ingenio y redundancia, podemos diseñar sistemas que no solo sobrevivan a los desafíos del siglo XXI, sino que también se recuperen de ellos de manera rápida, eficiente y predecible.

Ahora que la recuperación se considera un factor de diseño, surge una pregunta crítica: ¿qué infraestructura esencial de tu comunidad —eléctrica, de agua o de transporte— necesita ser rediseñada para ser no solo más fuerte, sino también más rápidamente recuperable?

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ingeniería y resiliencia: la clave de los sistemas de apoyo a la decisión en la gestión de desastres.

En el panorama actual, marcado por una mayor complejidad e interconexión a nivel mundial, los efectos de los desastres son cada vez más graves. El cambio climático, por ejemplo, actúa como un multiplicador de riesgos, intensificando los peligros existentes y generando otros nuevos. Ante esta realidad, el concepto de resiliencia comunitaria se ha convertido en un elemento clave de las estrategias de gestión del riesgo de desastres. La misión de la ingeniería es proporcionar a las comunidades las herramientas necesarias para resistir, adaptarse y recuperarse de estos eventos. En este contexto, los sistemas de apoyo a la decisión (DSS) emergen como herramientas indispensables que transforman la manera en que abordamos la protección de las ciudades y sus ciudadanos.

¿Qué entendemos por resiliencia comunitaria?

En el ámbito de la ingeniería civil y la planificación urbana, la resiliencia se define como la capacidad de un sistema, comunidad o sociedad expuesta a peligros para resistir, absorber, adaptarse, transformarse y recuperarse de manera oportuna y eficiente de los efectos de un evento adverso. Esto incluye la preservación y restauración de sus estructuras y funciones básicas esenciales mediante una gestión de riesgos adecuada. Una comunidad resiliente es aquella que, tras un terremoto, una inundación o una ola de calor extrema, logra mantener operativas o recuperar rápidamente sus infraestructuras críticas —desde la red eléctrica hasta los hospitales—, minimizando el impacto en la vida de sus habitantes.

La gestión del riesgo de desastres (DRM) incluye las fases de prevención, preparación, respuesta y recuperación. La resiliencia está intrínsecamente vinculada a todas estas fases. Por ejemplo, la implementación de códigos de construcción más estrictos o sistemas de control de inundaciones es una medida de prevención que aumenta la resiliencia. La preparación, por su parte, permite que las comunidades se adapten mejor a una situación de desastre y se recuperen con mayor rapidez.

Sistemas de apoyo a la decisión (DSS): herramientas inteligentes para la gestión de crisis.

Los DSS son herramientas informáticas diseñadas para ayudar a los responsables de la toma de decisiones, ya que proporcionan análisis, información y recomendaciones, e incluso permiten simular diferentes escenarios. Son fundamentales para mejorar la resiliencia comunitaria, puesto que ofrecen soluciones rápidas y eficientes a los problemas relacionados con los desastres, integrando diversas fuentes de datos y perspectivas de múltiples interesados. Además, los DSS facilitan la operacionalización de la resiliencia, es decir, permiten traducir este concepto abstracto en acciones y modelos analíticos concretos en los que están implicados todos los actores clave, lo que ofrece una comprensión más profunda del proceso de resiliencia. Esto, a su vez, conduce a una toma de decisiones más objetiva y basada en pruebas, que mitiga la subjetividad humana.

Las técnicas de modelización en los DSS: un arsenal de estrategias.

Los DSS se construyen utilizando diversas técnicas de modelización, cada una con sus propias fortalezas. Entre ellas, las técnicas de optimización son las más utilizadas. Estas técnicas permiten encontrar la mejor solución a un problema teniendo en cuenta múltiples factores y restricciones, a menudo mediante algoritmos matemáticos que identifican la opción más eficiente o efectiva. Por ejemplo, se utilizan para decidir la asignación óptima de recursos para la reparación de infraestructuras tras un terremoto o para la gestión de intervenciones en infraestructuras interdependientes.

Otras técnicas destacadas incluyen:

  • Modelado espacial (SIG): utiliza sistemas de información geográfica (SIG) para capturar relaciones espaciales, analizar, predecir y visualizar la influencia de los factores geográficos en los procesos y las decisiones. Esta técnica resulta muy útil para visualizar la distribución de riesgos y recursos en una ubicación específica, lo que facilita la comprensión del estado de resiliencia.
  • Análisis de decisiones multicriterio (MCDA): ayuda a los responsables de la toma de decisiones a ponderar diferentes factores y evaluar alternativas frente a múltiples criterios, a menudo conflictivos, para identificar la opción más adecuada en función de las prioridades y los objetivos. Es idóneo para la toma de decisiones en grupo y para capturar aspectos cualitativos de un problema.
  • Simulación: crea un modelo digital para imitar sistemas o procesos del mundo real, lo que permite la experimentación y el análisis en un entorno controlado. Es excelente para probar el impacto de diversas políticas y decisiones en el comportamiento del sistema antes de su implementación real.
  • Teoría de grafos: estudia las relaciones entre objetos, que se representan como nodos y aristas en un grafo. Es fundamental para analizar la conectividad de las redes interdependientes, como las infraestructuras de transporte o suministro, y para encontrar rutas óptimas, por ejemplo, para la distribución de ayuda humanitaria.
  • Minería de texto: extrae conocimiento e información de grandes volúmenes de datos textuales mediante métodos computacionales. Un ejemplo práctico es el uso de chatbots que procesan datos de redes sociales para ofrecer información en tiempo real durante un desastre.

Aplicación de los DSS en las fases de gestión de desastres.

Es interesante observar que los DSS tienden a centrarse más en las fases de preparación y respuesta que en las de recuperación y mitigación. Por ejemplo, el modelado espacial se utiliza mucho en la fase de preparación (en el 80 % de los artículos consultados) para tomar decisiones estratégicas, como determinar la ubicación óptima de los refugios o cómo distribuir los recursos. Durante la fase de respuesta, los DSS espaciales permiten visualizar la situación en tiempo real, identificar rutas bloqueadas y distribuir la ayuda humanitaria de manera eficiente mediante algoritmos que calculan la ruta más corta.

La optimización, por su parte, se utiliza principalmente en la fase de recuperación (en el 75 % de los artículos consultados), particularmente en las decisiones relativas a la rehabilitación y reconstrucción de infraestructuras dañadas. Las técnicas de MCDA son adecuadas para la fase de preparación (el 75 % de los artículos), ya que permiten comparar planes y políticas alternativas con el tiempo necesario para su análisis. Los modelos de simulación también se utilizan en la fase de respuesta para imitar el comportamiento del sistema y de los individuos durante una catástrofe.

Desafíos en el desarrollo y la implementación de los DSS.

A pesar de su potencial, el desarrollo e implementación de sistemas de apoyo a la decisión para la resiliencia no están exentos de desafíos significativos. Uno de los principales desafíos es la disponibilidad y calidad de los datos. La modelización de la resiliencia es un proceso complejo en el que los datos, tanto cuantitativos como cualitativos, son fundamentales. A menudo, la información proviene de múltiples fuentes con diferentes niveles de precisión, lo que dificulta su integración. En los países menos desarrollados, el acceso a los datos públicos (censos, informes, etc.) es aún más complicado, lo que limita la aplicación de ciertos modelos.

Otro obstáculo es la incertidumbre inherente al contexto de un desastre y la necesidad de gestionar cambios en tiempo real. También es una preocupación crucial la privacidad de los datos sensibles sobre infraestructuras críticas o planes de emergencia.

Por último, la colaboración interdisciplinar es imprescindible, pero difícil de conseguir, y la integración de estos sistemas en las operaciones diarias de las organizaciones de emergencia sigue siendo un reto considerable.

La colaboración con los interesados es clave para el éxito.

La implicación de los diversos actores o partes interesadas (stakeholders) es fundamental en el ciclo de vida de un DSS para la resiliencia. Se identifican tres enfoques principales:

  1. Como fuente de datos: recopilando sus opiniones y datos (mediante entrevistas, encuestas o incluso información compartida en redes sociales).
  2. Participación en el diseño: involucrándolos en la identificación de problemas, la construcción del modelo y el desarrollo del sistema para garantizar que la herramienta sea relevante y práctica para sus necesidades reales
  3. Incorporación de preferencias en el modelo: reflejando sus prioridades como parámetros o funciones objetivo en los modelos matemáticos, lo que influirá directamente en las soluciones propuestas. Por ejemplo, se pueden integrar las preferencias comunitarias como restricciones en un modelo de optimización.

Conclusiones y futuras direcciones en ingeniería resiliente.

Los sistemas de apoyo a la decisión suponen un avance significativo en nuestra capacidad para crear comunidades más resilientes frente a los desastres. Aunque hemos logrado grandes avances, especialmente en las fases de preparación y respuesta, y con el uso intensivo de modelos de optimización, aún queda mucho por hacer. Es imperativo ampliar el enfoque a las fases de recuperación y mitigación e investigar cómo integrar fuentes de datos en tiempo real y tecnologías IoT para mejorar la capacidad de respuesta de los DSS en entornos dinámicos. Además, debemos seguir profundizando en la modelización de las interacciones entre los diversos actores de la comunidad para fomentar una colaboración más sólida y, en última instancia, crear un entorno más seguro y resiliente para todos.

Referencias:

Elkady, S., Hernantes, J., & Labaka, L. (2024). Decision-making for community resilience: A review of decision support systems and their applicationsHeliyon10(12).

Salas, J., & Yepes, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planningInternational Journal of Environmental Research and Public Health17(3), 962.

Zhou, Z. W., Alcalà, J., & Yepes, V. (2023). Carbon impact assessment of bridge construction based on resilience theoryJournal of Civil Engineering and Management29(6), 561-576.

Os dejo un audio que resume bien el artículo anterior. Espero que os sea de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Javier Rui-Wamba Martija: Ingeniero, humanista y visionario

Con motivo del homenaje a Javier Rui-Wamba que se celebrará esta tarde en el Colegio de Ingenieros de Caminos, Canales y Puertos, en el que participaré en una de las mesas redondas dedicadas a su trayectoria académica, he escrito unas notas sobre su figura.

Desgraciadamente, no tuve la ocasión de conocer a Javier personalmente y parece que esta visión externa es lo que buscaban los organizadores para esa mesa redonda. Si queréis participar en este homenaje, podéis seguirlo por streaming.

Javier Rui-Wamba Martija (Gernika, 1942 – Barcelona, 10 de julio de 2025) fue una figura preeminente de la ingeniería española, reconocida por su excepcional capacidad para combinar el rigor técnico con una profunda sensibilidad humanista. Fundó y presidió la empresa de ingeniería Esteyco en 1970, liderando más de 800 proyectos en 30 países, lo que dejó una huella indeleble en las áreas de infraestructuras, edificación y energía. Su obra se caracteriza por la innovación, como el desarrollo de torres eólicas telescópicas de hormigón, y por su participación en proyectos emblemáticos, como la transformación de la plaza de las Glorias de Barcelona y el análisis histórico-estructural de la ría de Bilbao y sus puentes.

Además de su faceta como constructor, Rui-Wamba fue un influyente académico y pensador. Durante diecisiete años fue profesor de Estructuras y Puentes Metálicos en la Escuela de Ingenieros de Caminos de Madrid, donde promovió un enfoque didáctico y conceptual. Su legado intelectual se consolida a través de la Fundación Esteyco, que ha editado más de cien libros para fomentar el diálogo entre la ingeniería y la arquitectura, y de sus propias publicaciones. Entre estas últimas destacan la monumental Teoría unificada de estructuras y cimientos (TUEC) y los célebres Aforismos estructurales, donde utiliza principios de ingeniería para explicar el comportamiento humano. Su visión de la ingeniería como una disciplina al servicio de la sociedad, que debe ser resistente, dúctil y tenaz, define su duradero impacto en la profesión.

Javier Rui-Wamba Martija (1942-2025). Foto cortesía de Esteyco

1. Perfil biográfico y trayectoria profesional.

Javier Ruiz-Wamba Martija nació en Guernica el 27 de septiembre de 1942. Cursó el bachillerato en el Colegio de los Jesuitas de Bilbao entre 1949 y 1959. Se graduó como ingeniero de Caminos, Canales y Puertos en 1966 por la Escuela de Ingenieros de Caminos de Madrid.

Comenzó su carrera profesional con proyectos como las cubiertas de MZOV y los puentes del Plan Sur de Valencia. En 1969 trabajó en París en la empresa de ingeniería Europe-Etudes. Un punto de inflexión en su carrera fue la fundación de su propia empresa, Esteyco, en enero de 1970. Desde esta plataforma, desarrolló una prolífica carrera en la que llevó a cabo más de 800 proyectos en 30 países, entre ellos Argelia, Argentina, Francia, la India y Catar.

Su trayectoria profesional fue reconocida con los más altos honores, entre los que se encuentran el Premio Nacional de Ingeniería Civil (2016), la Medalla de Honor del Colegio de Ingenieros de Caminos, Canales y Puertos y la Medalla Ildefons Cerdá. Fue miembro de la Real Academia de Ingenieros de España, de la que tomó posesión el 17 de marzo de 1998, y miembro correspondiente de la Real Academia de Bellas Artes de San Fernando desde 2002. Falleció el 10 de julio de 2025 y, en su memoria, el Colegio de Ingenieros de Caminos, Canales y Puertos organizó un homenaje el 1 de octubre de 2025.

Hito Año Descripción
Nacimiento 1942 Nace en Gernika, el 27 de septiembre.
Graduación 1966 Ingeniero de Caminos, Canales y Puertos por la Escuela de Caminos de Madrid.
Experiencia en París 1969 Trabaja en la ingeniería Europe-Etudes.
Fundación de Esteyco 1970 Crea su propia empresa de ingeniería.
Inicio de docencia 1974 Comienza su labor como profesor de Estructuras y Puentes Metálicos, que duraría 17 años.
Fundación Esteyco 1991 Constituye la Fundación Esteyco para el progreso de la Arquitectura y la Ingeniería.
Ingreso en la Academia 1998 Toma de posesión como Miembro Numerario Electo de la Real Academia de Ingeniería.
Fallecimiento 2025 Fallece en Barcelona el 10 de julio.

2. Filosofía de la ingeniería y el humanismo.

La visión de Rui-Wamba trascendía la mera aplicación técnica. Concebía la ingeniería como una disciplina profundamente humana, una herramienta para transformar la sociedad de manera reflexiva y sostenible.

2.1. El ingeniero como humanista.

Rui-Wamba defendía que la ingeniería y la arquitectura no debían verse como campos antagónicos, sino complementarios. Consideraba que la «competencia entre profesionales era cosa de mediocres» y fomentó la integración de arquitectos en Esteyco, valorando su visión espacial. A través de la Fundación Esteyco, buscó crear un «ámbito de encuentro en el que ambas disciplinas se someten a la exigencia común del rigor científico, la excelencia literaria y la belleza visual».

Su lema en Esteyco, «trabajar para saber, saber para trabajar», resume su creencia en que el conocimiento es el pilar de la práctica profesional. Argumentaba que «el ingeniero no se caracteriza por lo que sabe, sino por lo que tarda en aprender lo que necesita saber».

2.2. Aforismos estructurales: un puente entre la técnica y la vida.

Su discurso de ingreso en la Real Academia de Ingeniería, titulado «Aforismos estructurales que pueden ser de utilidad para comprender determinados comportamientos de los seres humanos», constituye la máxima expresión de su filosofía. En esta obra, establece paralelismos entre los principios de la estática y la dinámica de estructuras y la complejidad de la conducta humana.

Los ocho aforismos:

  1. La inestabilidad estructural tiene mucha similitud con la inestabilidad del comportamiento de los seres humanos.
  2. El conocimiento de las reacciones de los apoyos de una estructura es esencial para comprender su comportamiento y evaluar su seguridad.
  3. La fatiga estructural depende, prioritariamente, de la amplitud y frecuencia de las variaciones tensionales.
  4. No es posible conocer el estado tensional de una estructura.
  5. Los ingenieros somos gestores de incertidumbres.
  6. Los materiales y las estructuras que construimos con ellos deben ser resistentes, dúctiles y tenaces. La ductilidad es un puente sobre nuestra ignorancia y la tenacidad estructural expresa su tolerancia al daño.
  7. No se debe calcular una estructura que no se sepa dibujar. No se deben utilizar fórmulas cuyo significado físico se desconoce. No se debe dimensionar con ordenador una estructura que no se sepa calcular manualmente.
  8. Las patologías estructurales son el modo en que nuestras estructuras manifiestan su disgusto por el trato que han recibido en su concepción, proyecto, construcción o utilización.

Una de sus analogías más citadas es la de la amistad: «Cuando tienes un soporte que pandea, que flexiona, si pones una mano con un 1 % de fuerza vertical, aumentas cuatro veces la capacidad de carga de ese soporte. Esa es la amistad». Del mismo modo, define la fatiga en los seres humanos como «los recuerdos que pesan».

2.3. Visión sobre la formación y la docencia.

Javier Rui-Wamba ejerció como profesor en la Escuela de Ingenieros de Caminos de Madrid, donde impartió la asignatura de Estructuras y Puentes Metálicos durante 17 años. Su etapa docente se extendió desde 1974 hasta principios de los años noventa. Comenzó como profesor auxiliar y mantuvo este puesto durante toda su trayectoria en la escuela, ubicada entonces en el madrileño parque del Retiro. Además, entre 1992 y 1994 fue profesor honorífico de la Universidad Politécnica de Cataluña (UPC).

Desde el principio, Rui-Wamba mostró un compromiso excepcional con la enseñanza. Se entregaba a la preparación de sus clases con disciplina, llegando a levantarse a las cinco o seis de la mañana para preparar el material. Su objetivo era transformar una asignatura que hasta entonces se consideraba una «María»: apenas seis alumnos asistían regularmente a sus clases. Gracias a su rigor, dedicación y a su estilo pedagógico, consiguió que aquella materia se convirtiera en un curso exigente y respetado y llegó a congregar hasta doscientos estudiantes en el aula. Solía recordarles: «Venís a aprender, no a aprobar».

Su filosofía docente se basaba en la idea de que enseñar es la mejor forma de aprender. Creía firmemente que «para formar ingenieros hay que ser ingeniero» y lamentaba que muchos catedráticos carecieran de experiencia práctica. Rechazaba la rutina de quienes repetían el mismo temario cada año y criticaba la ausencia de un sistema de evaluación del profesorado, que comparaba con modelos más avanzados, como el de la Universidad de Harvard. Defendía que la enseñanza debía fomentar la comprensión profunda y no solo la aplicación de fórmulas, siguiendo la inspiración del libro Razón y ser de los tipos estructurales, de Eduardo Torroja. Por ello, insistía en que los estudiantes resolvieran problemas con enunciados imperfectos, similares a los que se encuentran en la práctica profesional.

Entre los principios que guiaban su enseñanza, destacaban varios aspectos. En primer lugar, el enfoque en el aprendizaje: los alumnos debían asistir a clase para comprender, no para aprobar exámenes. En segundo lugar, la contextualización práctica: consideraba fundamental entender los conocimientos micro, como el diagrama hierro-carbono, que inicialmente atemorizaba a los estudiantes, para interpretar el comportamiento macro de las estructuras. También subrayaba la heteroestructuralidad, resaltando la estrecha relación entre el acero y el hormigón armado, que no se puede comprender sin el primero.

En lo que respecta a los materiales de estudio, en 1983 promovió la elaboración de apuntes colectivos entre los profesores de la escuela. Él mismo redactó unos voluminosos apuntes sobre torsión, que consideraba especialmente valiosos por su esfuerzo de síntesis en conceptos complejos como el centro de esfuerzos cortantes. En ocasiones, estos apuntes eran manuscritos, lo que reflejaba la cercanía y el empeño personal de Rui-Wamba en su labor docente.

A Javier le preocupaba tanto que la universidad fuese una torre de marfil como que la empresa ignorara el conocimiento generado en ella. En suma, Javier Rui-Wamba fue un profesor entregado, crítico con el sistema universitario y profundamente convencido de la importancia de vincular el aprendizaje con la práctica real de la ingeniería. Gracias a su rigor y pasión por la enseñanza, logró transformar la percepción y el impacto de su asignatura, dejando una huella perdurable en la formación de generaciones de ingenieros.

3. Obras y proyectos relevantes

La obra de Rui-Wamba es extensa y diversa y abarca desde grandes infraestructuras urbanas hasta innovaciones en energías renovables.

3.1. La transformación de Barcelona: el caso de la plaza de las Glorias.

Rui-Wamba desempeñó un papel central en la remodelación de Barcelona para los Juegos Olímpicos de 1992, contribuyendo a «abrir la ciudad hacia el mar». Su proyecto más emblemático y complejo fue el anillo viario de la plaza de las Glorias (1990-1992). Diseñada para solucionar un nudo de tráfico y dignificar una zona degradada, esta estructura cumplió su función durante más de dos décadas.

Paradójicamente, fue su propia empresa, Esteyco, la encargada de dirigir la deconstrucción del anillo a partir de 2014 para dar paso a un nuevo parque y al soterramiento del tráfico. Rui-Wamba, aunque no compartía la decisión de derribarlo, afrontó el proceso con un profundo respeto por la estructura, describiéndolo como una «muerte asistida y controlada». Relató que se había despedido personalmente de la obra: «Me acerqué a solas a un pilar y le expliqué que quien tenía poder para hacerlo había decidido derribarlo, pero que lo íbamos a cortar con mucha atención y cuidado».

3.2. La ría de Bilbao y sus puentes.

Rui-Wamba dedicó un extenso análisis a la ría de Bilbao, un entorno que conocía desde su infancia. En su obra La ría de Bilbao y sus puentes, describe la evolución de la ría desde un puerto fluvial industrial hasta una avenida urbana. En ella, analiza la historia tipológica de sus puentes, desde el medieval de San Antón, de mampostería, hasta los puentes colgantes del siglo XIX, inspirados en la ingeniería inglesa, y los puentes móviles, que cedieron ante la primacía del tráfico de vehículos.

Realizó un profundo análisis sociológico del Puente Colgante de Bizkaia, que considera:

  • Un «fruto tardío de la Revolución Industrial».
  • Un símbolo de la Ría y testimonio de su época.
  • Un ejemplo de iniciativa privada bajo un modelo concesional.
  • Una estructura que, a pesar de su «funcionalidad discutible», preservó su entorno de agresiones urbanísticas.
  • Un ejemplo de que «la belleza ha contribuido decisivamente a preservar su destino».

3.3. Innovación en materiales: acero, hormigón y energía eólica.

Su relación con los materiales se basó en un aprendizaje constante y en la aplicación innovadora. En su conferencia «El acero y yo», narra su evolución desde el rechazo inicial al diagrama hierro-carbono en la universidad hasta alcanzar una profunda comprensión de cualidades como la ductilidad y la fragilidad. Definió el acero como «el hierro genéticamente modificado» y destacó cómo pequeñas adiciones de carbono cambian sustancialmente el comportamiento del material.

Esta maestría le permitió proyectar estructuras metálicas complejas, como:

  • El Nudo de la Trinidad en Barcelona, construido en un plazo muy breve.
  • El Puente de Tablate (Granada), un arco metálico de 142 metros de luz en una zona de alta sismicidad.
  • El puente sobre el río Cadagua en Bilbao, utilizando acero corten.
  • La rehabilitación del puente sobre el Duero en Zamora, donde aplicó por primera vez conceptos de mecánica de la fractura en colaboración con el departamento de Manuel Elices.

En el sector de la energía, fue un pionero al introducir el hormigón en el diseño de aerogeneradores. Su empresa desarrolló y patentó un sistema de torres prefabricadas de hormigón que alcanzan alturas de 100, 120 y 140 metros, superando así la limitación de 80 metros de las torres de acero. En China, construyó con esta técnica la torre telescópica terrestre más alta del mundo (170 metros) sin sistemas auxiliares de sujeción.

4. Legado intelectual y publicaciones

El impacto de Javier Rui-Wamba se extiende a través de sus escritos y la labor de difusión de la Fundación Esteyco.

4.1. Publicaciones clave

  • Teoría unificada de estructuras y cimientos (TUEC): Considerada la obra de su vida, es un tratado de 3.000 páginas manuscritas durante 12 años. En ella, unifica los fundamentos de la ingeniería estructural con un enfoque didáctico y transversal.
  • Aforismos Estructurales: Su discurso de ingreso en la Real Academia de Ingeniería, publicado en 1998.
  • La Ría de Bilbao y sus Puentes: Un análisis exhaustivo sobre la historia y la ingeniería de este enclave.
  • Redactor de normativas: Participó en la elaboración de documentos técnicos de gran influencia, como el Código Modelo 1990 del Comité Europeo del Hormigón (CEB), las Recomendaciones españolas para el proyecto de puentes metálicos y mixtos (RPM-RPX/95) y fue el representante español para el Eurocódigo 4.

4.2. La Fundación Esteyco

Creada en mayo de 1991, la Fundación Esteyco es un pilar fundamental de su legado. Con la publicación de más de 100 libros, se ha convertido en un referente para «fomentar un clima propicio de creatividad en el que se exija y valore el trabajo bien hecho». La fundación ha servido de plataforma para tender puentes entre la ingeniería, la arquitectura y la cultura en general, reflejando la visión integradora de su fundador.

Este vídeo os puede servir para sintetizar información interesante de Javier. Pero seguro que en el homenaje tendremos mucha más información de interés que la que puede aportarnos la inteligencia artificial de este vídeo.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Lo que la catástrofe de Valencia nos obliga a repensar: cuatro lecciones

Ayer, cuando se cumplían 11 meses de la catástrofe de la DANA de 2024, volvimos a estar en alerta roja en Valencia. No se trató de un evento tan catastrófico como el que vivimos hace menos de un año. Pero volvieron los fantasmas y se volvió a poner a prueba todo el esfuerzo, con mayor o menor acierto, que se está realizando para evitar este tipo de catástrofes.

Queda mucho por hacer: necesitamos consenso en la gobernanza de los proyectos de futuro, desarrollo sostenible de los territorios, un mejor conocimiento para actuar de manera más eficaz por parte de las autoridades y los ciudadanos, y finalmente, aprender a convivir con las inundaciones.

A continuación, os resumo algunos pensamientos sobre este tema que he ido publicando en este blog. Espero que sirvan para reflexionar sobre este tema.

Introducción: cuando la «naturaleza» no es la única culpable.

Tras la devastadora DANA que asoló la provincia de Valencia en octubre de 2024, dejando una estela de dolor y destrucción, es natural buscar explicaciones. La tendencia humana nos lleva a señalar a la «furia de la naturaleza», a la «mala suerte» o a un evento tan extraordinario que era imposible de prever. Nos sentimos víctimas de una fuerza incontrolable.

Sin embargo, un análisis técnico y sereno nos obliga a mirar más allá del barro y el agua. Como se argumenta en foros de expertos, los desastres no son naturales, sino que son siempre el resultado de acciones y decisiones humanas que, acumuladas con el paso del tiempo, crean las condiciones perfectas para la tragedia. Esta idea no es nueva. Ya en 1755, tras el terremoto de Lisboa, Jean-Jacques Rousseau le escribía a Voltaire: «Convenga usted que la naturaleza no construyó las 20.000 casas de seis y siete pisos, y que, si los habitantes de esta gran ciudad hubieran vivido menos hacinados, con mayor igualdad y modestia, los estragos del terremoto hubieran sido menores, o quizá inexistentes».

Este artículo explora cuatro de las ideas menos obvias y más impactantes que surgen del análisis técnico del desastre. Cuatro revelaciones que nos invitan a dejar de buscar un único culpable para empezar a entender las verdaderas raíces del riesgo, repensar cómo nos preparamos para él y, sobre todo, cómo lo reconstruimos de forma más inteligente.

Primera revelación: un desastre no es azar, es la coincidencia de errores en cadena (el modelo del queso suizo).

La primera revelación consiste en abandonar la búsqueda de un único culpable. Un desastre no es un rayo que cae, sino una tormenta perfecta de debilidades sistémicas.

1. Las catástrofes no se producen por un único fallo, sino por una tormenta perfecta de pequeñas debilidades.

Para entender por qué un fenómeno meteorológico extremo se convierte en una catástrofe, los analistas de riesgos utilizan el «modelo del queso suizo» de James T. Reason. La idea es sencilla: nuestro sistema de protección es como una pila de lonchas de queso. Cada loncha representa una capa de defensa (infraestructuras, planes de emergencia, normativas urbanísticas) y los agujeros en cada una de ellas simbolizan fallos o debilidades. Ocurre un desastre cuando los agujeros de varias capas se alinean, creando una «trayectoria de oportunidad de accidente» que permite al peligro atravesar todas las barreras.

Aplicado a la gestión de inundaciones, este modelo identifica cuatro áreas principales donde se producen estos fallos:

  • Influencias organizativas: decisiones políticas a largo plazo, como «un contexto de austeridad» en el que las instituciones «reducen la inversión en infraestructuras de protección». Esto crea agujeros latentes en nuestras defensas.
  • Fallos de supervisión: falta de control efectivo sobre el cumplimiento de normativas, como la construcción en zonas inundables o el mantenimiento de infraestructuras de contención.
  • Condiciones latentes: Debilidades preexistentes que permanecen ocultas hasta que se produce la crisis. Un sistema de drenaje obsoleto, planes de evacuación anticuados o la «falta de concienciación y preparación en la comunidad» son ejemplos de condiciones latentes.
  • Acciones inseguras: errores activos cometidos durante la emergencia, como retrasos en la emisión de alertas o una comunicación deficiente con el público.

Esta perspectiva nos saca del juego de la culpa lineal —una presa que falló, una alerta que no llegó— y nos obliga a entender el desastre como un fallo sistémico acumulado, resultado de años de pequeñas decisiones, omisiones y debilidades que finalmente se alinearon en el peor momento posible.

Segunda revelación: La trampa de la reconstrucción apresurada.

2. Volver a construir lo mismo que se destruyó es programar la siguiente catástrofe.

Tras la conmoción, la presión política y social exige una respuesta inmediata: limpiar, reparar y reconstruir. Sin embargo, este impulso esconde una de las trampas más peligrosas. Si la reconstrucción se limita a la reposición de lo perdido, ignoramos la lección más importante y perpetuamos las mismas vulnerabilidades.

La forma en que se afronta la reconstrucción tras un desastre no puede limitarse a la reposición de lo perdido.

Aquí surge un conflicto fundamental. Por un lado, está el «enfoque táctico» de los políticos, que necesitan acciones rápidas y visibles. Como explican los análisis de ingeniería, «la rapidez en la ejecución de ciertas obras genera la percepción de una gestión eficaz, pero este proceder puede ocultar la ausencia de una estrategia que optimice las actuaciones a largo plazo». Por otro lado, está la necesidad técnica de llevar a cabo una reflexión estratégica que requiere tiempo para analizar qué ha fallado y diseñar soluciones resilientes que no repitan los errores del pasado.

Para evitar que la urgencia impida esta reflexión, es esencial contar con un equipo de análisis, una especie de «ministerio del pensamiento», que establezca directrices fundamentadas. Esta «trampa de la reconstrucción» es común porque la reflexión es lenta y políticamente menos rentable que una foto posando en la inauguración de un puente reparado. Evitarla tras la DANA de Valencia es crucial. No se trata solo de levantar muros, sino de aprovechar esta dolorosa oportunidad para reordenar el territorio, rediseñar las infraestructuras y construir una sociedad más segura.

Tercera revelación: El clima ha roto las reglas del juego.

3. Ya no podemos utilizar el pasado como guía infalible para diseñar el futuro de nuestras infraestructuras.

Durante un siglo, la ingeniería se ha basado en una premisa fundamental que hoy es una peligrosa falsedad: que el clima del pasado era una guía fiable para el futuro. Este principio, conocido como «estacionariedad climática», ha dejado de ser válido. Esta hipótesis partía de la base de que, aunque el clima es variable, sus patrones a largo plazo se mantenían estables, lo que permitía utilizar registros históricos para calcular estadísticamente los «periodos de retorno» y diseñar infraestructuras capaces de soportar, por ejemplo, la «tormenta de los 100 años», un evento que no ocurre cada 100 años, sino que tiene un 1 % de probabilidad de suceder en cualquier año.

El cambio climático ha invalidado esta hipótesis. El clima ya no es estacionario. La frecuencia e intensidad de los fenómenos meteorológicos extremos están aumentando a un ritmo que hace que los datos históricos dejen de ser una referencia fiable. Esta no estacionariedad aumenta los «agujeros» en nuestro queso suizo de defensas, haciendo que las vulnerabilidades sistémicas sean aún más críticas.

La consecuencia es alarmante: muchas de nuestras infraestructuras (puentes, sistemas de drenaje, presas) pueden haber sido diseñadas para unas condiciones que ya no existen, lo que aumenta drásticamente el riesgo estructural. La adaptación al cambio climático no es una opción ideológica, sino una necesidad inaplazable. Esto exige una revisión completa de los códigos de diseño y los planes de ordenación del territorio. Debemos dejar de mirar exclusivamente por el retrovisor para empezar a diseñar con la vista puesta en el futuro.

Cuarta revelación: Los argumentos técnicos no ganan batallas culturales.

4. El obstáculo más grande no es técnico ni económico, sino nuestra propia mente.

Ingenieros y científicos llevan años advirtiendo sobre los riesgos. Sin embargo, estas advertencias a menudo no se traducen en la voluntad política y social necesaria para actuar. La respuesta se halla en la psicología humana. El fenómeno de la «disonancia cognitiva» explica nuestra tendencia a rechazar información que contradiga nuestras creencias más profundas. A esto se suma la «asimetría cognitiva»: la brecha de comunicación existente entre los distintos «estratos» de la sociedad (científicos, técnicos, políticos y la opinión pública). Cada grupo opera con su propia percepción de la realidad, su lenguaje y sus prioridades, lo que crea mundos paralelos que rara vez se tocan.

Esto nos lleva a una de las ideas más frustrantes para los técnicos: la creencia de que es posible convencer a alguien solo con datos es, en muchos casos, una falacia.

«Cuando intentas convencer a alguien con argumentos respecto a un prejuicio que tiene, es imposible. Es un tema mental, es la disonancia cognitiva».

Cuando un dato choca con un interés o una creencia, lo más habitual no es cambiar de opinión, sino rechazar el dato. Esto explica por qué, a pesar de la evidencia sobre ciertos riesgos, se posponen las decisiones o se toman decisiones que van en direcciones contrarias. El problema no es la falta de conocimiento técnico, sino la enorme dificultad para comunicarlo de manera que sea aceptado eficazmente por quienes toman las decisiones y por la sociedad en su conjunto. Superar esta barrera mental es, quizás, el mayor desafío de todos.

Conclusión: reconstruir algo más que edificios y puentes.

Las lecciones de la DANA de 2024 nos obligan a conectar los puntos: los desastres son fallos sistémicos (como el queso suizo), cuyas debilidades se multiplican porque el clima ha cambiado las reglas del juego (no estacionariedad); la reconstrucción debe suponer una reinvención estratégica, no una copia; y las barreras humanas, alimentadas por la disonancia cognitiva, a menudo son más difíciles de superar que cualquier obstáculo técnico.

La verdadera lección, por tanto, no se limita a la hidráulica o al urbanismo. Se trata de cómo tomamos decisiones como sociedad frente a riesgos complejos y sistémicos. Se trata de nuestra capacidad para aprender, adaptarnos y actuar con valentía y visión de futuro.

Ahora que conocemos mejor las causas profundas del desastre, ¿estamos dispuestos como sociedad a adoptar las decisiones valientes que exige una reconstrucción inteligente o la urgencia nos hará tropezar de nuevo con la misma piedra?

En este audio hay ideas que os pueden servir para entender el problema.

Os dejo un vídeo que os puede ayudar a entender las ideas principales de este artículo.

Y por último, os dejo una intervención que tuve sobre este tema en el Colegio de Ingenieros de Caminos. Espero que os interese.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas sobre ciclos de trabajo y producción de la maquinaria de construcción

Figura 1. Pala sobre neumáticos cargando dúmper. Imagen: V. Yepes

1. ¿Qué es un ciclo de trabajo y cuáles son sus componentes principales?

Un ciclo de trabajo se define como la secuencia de operaciones elementales necesarias para completar una tarea. El tiempo total necesario para realizar estas operaciones se denomina «tiempo del ciclo». Se descompone en tres tipos principales:

  1. Tiempo fijo: Duración de operaciones que requieren un tiempo determinado, como la carga, la descarga y las maniobras.
  2. Tiempo variable: Duración de las operaciones que dependen de las condiciones de trabajo, como la distancia en un ciclo de transporte.
  3. Tiempo muerto de inactividad: Tiempo de espera de una máquina mientras otra está realizando una operación en un equipo coordinado.
Figura 2. Esquema de los ciclos acoplados de máquinas trabajando en equipo. Tiempo muerto en la máquina principal

2. ¿Cómo se calcula la producción de un equipo por unidad de tiempo y qué factores la afectan?

La producción por unidad de tiempo o rendimiento de un equipo se calcula multiplicando la capacidad de producción en un ciclo por el número de ciclos realizados en ese período.

La producción de una máquina o conjunto de máquinas está influenciada por múltiples factores, como el clima, la dureza del trabajo, los turnos, el estado de las máquinas, el dimensionamiento de los equipos, la habilidad del operador y la existencia de incentivos. Para estimar la producción real a partir de la producción teórica, hay que multiplicar la producción teórica por una serie de factores de producción.

3. ¿Qué es el «cuello de botella» en un equipo de máquinas y por qué es importante identificarlo?

El «cuello de botella» es el recurso o máquina que limita la producción total del equipo. Identificarlo es fundamental porque cualquier cambio en su funcionamiento afectará directamente a la capacidad de producción de todo el equipo. Por ejemplo, en un sistema de cargadora y camiones, si la cargadora espera a los camiones, estos son el cuello de botella. Si los camiones esperan a la cargadora, entonces la cargadora es el cuello de botella.

4. ¿Qué es el factor de acoplamiento (match factor) y cuál es su valor óptimo para el coste de producción?

El factor de acoplamiento es la relación entre la producción máxima posible de los equipos auxiliares y la producción máxima posible de los equipos principales, suponiendo que no hay tiempos de espera. El coste de producción más bajo se logra con factores de acoplamiento cercanos a la unidad, pero ligeramente por debajo de ella. Esto se debe a las variaciones estadísticas en los ciclos de trabajo, por lo que, incluso con un equipo bien dimensionado y un factor de acoplamiento de uno, siempre habrá tiempos de espera.

5. ¿Cómo se determina el número de máquinas principales y auxiliares necesarias para un trabajo concreto?

Este número se puede estimar conociendo los tiempos de ciclo de cada tipo de máquina. En una unidad de tiempo (por ejemplo, una hora), el número total de ciclos realizados por las máquinas principales debe ser igual al número total de ciclos realizados por las máquinas auxiliares. Esta relación se puede generalizar para múltiples tipos de máquinas.

6. ¿Cuáles son los tiempos improductivos necesarios para operar una máquina?

Se trata de tiempos imprescindibles para el desarrollo normal de un trabajo, aunque no contribuyen directamente a la producción. Incluyen:

  • Tiempo preparativo-conclusivo: Revisión, arranque, traslado y protección de la máquina.
  • Tiempo de interrupciones tecnológicas: Necesidades de la tecnología implicada, como el cambio de posición de una cuchilla.
  • Tiempo de servicio: Mantenimiento y atención diaria del equipo durante la jornada.
  • Tiempo de descanso y necesidades personales: Tiempo para prevenir la fatiga del operador y atender sus necesidades básicas.

7. ¿Qué es la «producción tipo» y cómo se relaciona con la producción real?

La «producción tipo» es la producción obtenida durante 54 minutos ininterrumpidos de trabajo, siguiendo un método específico, en condiciones determinadas y con una habilidad media del operador. Se utilizan 54 minutos por hora para estimar las pérdidas de tiempo ajenas al trabajo. En esencia, se trata de una producción teórica en condiciones específicas.

Para estimar la producción real a partir de la producción tipo, se multiplica la producción tipo por una serie de factores de producción que tienen en cuenta las condiciones reales. La producción por hora de trabajo productivo en una obra concreta se relaciona con la producción tipo mediante el factor de eficacia.

Figura 3. Determinación del tiempo tipo de un trabajo

8. ¿Cuáles son los principales factores que modifican la producción tipo y de qué depende?

Los principales factores que modifican la producción tipo para estimar la producción real son los siguientes:

  • Factor de disponibilidad: Relación entre el tiempo disponible y el tiempo laborable real. Depende de la máquina y del equipo de mantenimiento.
  • Factor de utilización: Vincula el tiempo de utilización con el de disposición. Indica la calidad de la organización y planificación de la obra.
  • Eficiencia horaria, factor de eficacia o factor operacional: Cociente entre la producción media por hora de utilización y la producción tipo. Considera tiempos no productivos como traslados y preparación. Depende de la selección del personal y el método de trabajo.

Es importante señalar que solo el factor de disponibilidad depende directamente de la máquina; los demás están vinculados a la organización de la obra, la selección del personal y el método de trabajo.

Os dejo un audio que recoge estas ideas. Espero que os sea interesante.

También un vídeo explicativo del contenido.

Glosario de términos clave

  • Ciclo de trabajo: Serie completa de operaciones elementales necesarias para realizar una tarea o labor.
  • Tiempo del ciclo: Duración total invertida en completar un ciclo de trabajo.
  • Tiempo fijo: Parte del tiempo del ciclo que corresponde a operaciones de duración constante, independientemente de las condiciones de trabajo (ej., carga, descarga).
  • Tiempo variable: Parte del tiempo del ciclo que depende de las condiciones específicas de la operación (ej., distancia de transporte).
  • Tiempo muerto de inactividad: Período de espera de una máquina, usualmente debido a la necesidad de sincronización con otra máquina en una operación conjunta.
  • Cuello de botella: El recurso dentro de un equipo de trabajo que limita la producción total del conjunto.
  • Factor de acoplamiento (Match Factor): Relación entre la máxima producción posible de los equipos auxiliares y la máxima producción posible de los equipos principales, idealmente sin tiempos de espera.
  • Producción: La transformación de elementos para obtener productos terminados o resultados útiles, a menudo asociados a unidades de obra en construcción.
  • Capacidad de producción: Cantidad de producto generado en un solo ciclo de trabajo.
  • Rendimiento: Producción por unidad de tiempo de un equipo.
  • Producción teórica: La producción esperada de un equipo bajo condiciones ideales o de diseño.
  • Producción real: La producción efectiva de un equipo, considerando las condiciones y factores operativos reales en una obra.
  • Factores de producción: Coeficientes utilizados para ajustar la producción teórica y obtener una estimación más precisa de la producción real, considerando diversas variables de la obra.
  • Tiempo productivo: Tiempo en el que el equipo trabaja directamente en la ejecución de una operación, ya sea principal o auxiliar.
  • Tiempos improductivos necesarios: Tiempos no productivos, pero esenciales para el desarrollo normal del trabajo (ej., preparativo-conclusivo, interrupciones tecnológicas, servicio, descanso).
  • Producción tipo: Producción obtenida en 54 minutos ininterrumpidos de trabajo bajo un método y condiciones específicas, con un operador de habilidad media. (Referencia a la hora reducida de 54 minutos útiles).
  • Factor de disponibilidad: Relación entre el tiempo que una máquina está disponible para trabajar y el tiempo laborable real. Refleja el estado mecánico y de mantenimiento.
  • Factor de utilización: Relación entre el tiempo que una máquina es utilizada efectivamente y el tiempo que está disponible. Refleja la organización y planificación de la obra.
  • Eficiencia horaria / Factor de eficacia: Cociente entre la producción media por hora de utilización y la producción tipo. Considera los tiempos de trabajo no productivo dedicados a tareas auxiliares y la habilidad del personal.
  • Producción media por hora laborable real: La producción promedio de un equipo durante una hora efectiva de trabajo, considerando todos los factores de corrección.
  • Índice de paralizaciones: Relación entre las interrupciones debidas a la organización, mal acoplamiento o averías de otras máquinas, y el tiempo laborable real.
  • Factor de aprovechamiento: Cociente entre el tiempo de utilización de una máquina y el tiempo laborable real. Es el producto del factor de disponibilidad y el factor de utilización.
  • Equipo en cadena: Un conjunto de máquinas donde la producción de una está ligada al trabajo de la que le precede, y la paralización de una detiene toda la cadena.
  • Equipo en paralelo: Un conjunto de máquinas iguales que trabajan simultáneamente, y la producción total es la suma de las producciones individuales o la probabilidad de que un cierto número de ellas esté activa.
  • Disponibilidad intrínseca: La disponibilidad de una máquina individual en un conjunto paralelo, sin considerar las interrupciones por organización.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas preguntas sobre los muros pantalla

Figura 1. Cuchara bivalva para construir pantallas. Por GK Bloemsma – Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/

1. ¿Qué es un muro pantalla y qué funciones principales tiene en el campo de la cimentación?

Un muro pantalla es una técnica de cimentación profunda que se empezó a desarrollar en la década de 1950. Su principal característica es que se trata de una contención flexible que también cumple una función de cimentación. Las funciones principales de los muros pantalla son las siguientes:

  • Contención de tierras: Especialmente útil en situaciones donde la estabilidad de la excavación es difícil y existe preocupación por la seguridad de edificios colindantes.
  • Cimentación profunda: Proporciona una base sólida para estructuras.
  • Impermeabilización: Existen pantallas diseñadas específicamente, a menudo con cemento-bentonita, para evitar la filtración de agua.
  • Combinaciones de las anteriores: Muchos proyectos requieren una combinación de estas funciones para abordar desafíos complejos del terreno y la construcción.

Los cambios de forma y los movimientos de flexión que experimentan los muros pantalla influyen significativamente en la distribución y magnitud de los empujes del suelo, así como en las resistencias y acciones mutuas entre el suelo y la estructura.

2. ¿Cómo se clasifican los muros pantalla según su trabajo estructural y su función?

Los muros pantalla se clasifican de diversas maneras para adaptarse a distintas necesidades constructivas y geológicas.

Según su trabajo estructural, se pueden clasificar de la siguiente forma:

  • Pantallas en voladizo: Se introducen en el terreno a una profundidad suficiente para asegurar su fijación, aprovechando la resistencia pasiva del suelo.
  • Pantallas ancladas: Se utilizan cuando la profundidad de excavación es considerable (generalmente > 7-8m). Su estabilidad se confía a la resistencia pasiva de la parte enterrada y a uno o varios niveles de anclajes. Se subdividen en:
    • De soporte libre (o articuladas): El empotramiento es mínimo, comportándose como una viga doblemente apoyada.
    • De soporte fijo (o empotradas): El empotramiento es suficiente para que el movimiento en su base sea insignificante, actuando como una viga apoyada-empotrada.
  • Pantallas arriostradas: Sustituyen los anclajes por estampidores (puntales).
  • Pantallas acodaladas (entibaciones): Utilizan elementos de arriostramiento para la contención.
  • Pantallas atirantadas: Similares a las ancladas, pero el término puede implicar una mayor rigidez o elementos de tracción más permanentes.
  • Pantallas con contrafuertes: Refuerzos estructurales que aumentan su rigidez y capacidad de contención.

Según su función, se distinguen:

  • Pantallas de impermeabilización: Diseñadas para crear una barrera contra el flujo de agua (ej. con cemento-bentonita).
  • Pantallas de contención de tierras: Su propósito principal es retener el suelo.
  • Pantallas de cimentación (cimentación profunda): Actúan como elementos de apoyo para la estructura.
  • Pantallas combinaciones de las anteriores: Lo más común, buscando una solución multifuncional.

3. ¿Cuáles son los métodos de excavación de bataches para la construcción de muros pantalla y cuándo se utiliza cada uno?

La excavación de los bataches (paneles que conforman el muro pantalla) es un paso crítico que se lleva a cabo mediante dos métodos principales:

  • Medios convencionales (cuchara al cable o hidráulica). Estos métodos se utilizan en condiciones de terreno normales y profundidades típicas:
    • Cuchara de cable: El cierre es mecánico. Su ventaja es que la grúa excavadora puede usarse como auxiliar para hormigonado e izado de armaduras.
    • Cuchara hidráulica: El cierre y el giro son hidráulicos. Son más fáciles de manejar y producen menos excesos de hormigón que las de cable, aunque requieren una grúa auxiliar para armadura y hormigonado.
  • Hidrofresa. Este método se emplea en situaciones más exigentes debido a sus características de precisión y capacidad. Se utiliza cuando:
    • La dureza del terreno es excesiva.
    • Se requiere una verticalidad estricta (por debajo del 0,5 %).
    • Se alcanzan grandes profundidades (superiores a 45 metros).

Antes de la excavación, es necesario construir muretes guía que dirijan la herramienta, aseguren la verticalidad de los paneles y sirvan de soporte estable para la extracción de las juntas. Durante la excavación, puede ser necesario utilizar lodos tixotrópicos (bentoníticos) o polímeros para mantener la estabilidad de las paredes.

Figura 2. Vista de murete guía. http://www.estructurasmaqueda.com

4. ¿Qué función cumplen los lodos tixotrópicos (bentoníticos) y los polímeros en la construcción de las pantallas y en qué se diferencian?

Los lodos tixotrópicos (principalmente bentoníticos) y los polímeros son fundamentales para el sostenimiento de las excavaciones de muros pantalla, sobre todo cuando la estabilidad del terreno lo requiere.

Lodos tixotrópicos (bentoníticos):

  • Funciones: Mantener las paredes de la excavación (evitando derrumbes), mantener los sólidos en suspensión y lubricar la herramienta de perforación.
  • Mecanismo de acción: Forman una «torta» (cake) impermeable en la pared de la excavación. Esta película permite que la presión hidrostática de la columna de lodo actúe contra las paredes, estabilizándolas. Para que el «cake» se forme, es necesaria cierta filtración del lodo, por lo que son efectivos en suelos permeables (arenas) pero inútiles en arcillas.
  • Propiedades: Son fluidos no newtonianos cuya viscosidad aumenta al dejarlos en reposo (tixotropía), manteniendo los sólidos en suspensión gracias a un esfuerzo umbral (yield point).
  • Contaminación: Si se contaminan, floculan y pierden su funcionalidad. Se puede añadir polímero celulósico para protegerlos y aumentar su yield point sin incrementar excesivamente la viscosidad (útil en gravas).

Polímeros:

  • Alternativa a la bentonita: Pueden sustituir total o parcialmente a los lodos bentoníticos en condiciones particulares.
  • Ventajas medioambientales: Son biodegradables con el tiempo o se pueden destruir rápidamente con agentes oxidantes (lejía, agua oxigenada) o bacterias específicas.
  • Mecanismo de acción: A diferencia de la bentonita, no forman un «cake» externo efectivo. Las largas cadenas poliméricas se infiltran en el terreno y unen sus partículas por tracción iónica, creando un «cake» interno. Esto permite que la presión hidrostática del lodo actúe contra el terreno cohesionado.
  • Limitaciones: Carecen de un «yield-point» efectivo (salvo excepciones), por lo que solo se pueden emplear en terrenos de baja permeabilidad (10-5 a 10-6 m/seg).
  • Otras características: No necesitan desarenadores, ya que los sólidos en suspensión decantan rápidamente. Se dividen en polares (aniónicos y catiónicos) y apolares, siendo estos últimos más resistentes a ataques químicos.

En resumen, los lodos bentoníticos dependen de la formación de una «torta» externa y son adecuados para suelos permeables, mientras que los polímeros actúan por infiltración y cohesión interna, siendo idóneos para suelos de baja permeabilidad y ofreciendo ventajas medioambientales.

5. ¿Cuáles son los pasos clave en la ejecución convencional de muros pantalla después de la excavación y qué consideraciones son importantes en cada uno?

Una vez completada la excavación del batache y, si es necesario, sostenida con lodos, los siguientes pasos en la ejecución convencional de muros pantalla son los siguientes:

  • Desarenado de los lodos: Si se utilizaron lodos y su contenido de arena supera el 5 %, es imprescindible desarenarlos mediante centrifugado en hidrociclones. De no hacerlo, la arena decantaría sobre el hormigón, formando bolsas que comprometerían la calidad del muro.
  • Colocación de la armadura: La armadura debe atender a varias consideraciones:
    • Debe tener un esqueleto suficientemente rígido para mantener su forma durante la manipulación.
    • Para armaduras de gran longitud, se debe eslingar por distintos puntos a lo largo de su alzado; para las cortas, disponer de asas de izado.
    • Debe dejar espacio suficiente para la tubería tremie que se usará para el hormigonado.
    • Se deben colocar separadores (metálicos o de hormigón) para asegurar el recubrimiento mínimo de 75 mm según la normativa UNE.
  • Hormigonado de las pantallas: Se utiliza la técnica del hormigón sumergido, necesaria cuando no es posible vibrar el hormigón (como ocurre bajo lodos).
    • El hormigón se introduce a través de una tubería tremie que debe permanecer introducida 5m en el hormigón (o 3m en seco), subiéndose a medida que el hormigonado avanza.
    • Para paneles de más de 5 m de longitud, se usan dos tuberías tremie.
    • Los lodos se van evacuando a medida que el hormigón asciende.
    • La duración total del hormigonado debe ser inferior al 70 % del tiempo de inicio de fraguado.
    • Se utiliza un hormigón de consistencia líquida (cono 16-20 NTE o 18-21 UNE-EN-1538).
    • El hormigón debe subir lo más horizontal posible dentro del panel.
  • Extracción de la junta: Existen diferentes tipos de juntas para asegurar la continuidad entre paneles:
    • Junta trapezoidal: No necesita retirarse antes del fraguado del hormigón. Se extrae con un cabestrante o gatos.
    • Junta circular y tricilíndrica (Stein): Deben extraerse durante el fraguado del hormigón, en el momento justo en que este ha endurecido lo suficiente para mantenerse, pero no tanto que impida la extracción. Se retiran con gatos hidráulicos.

El cumplimiento de las tolerancias establecidas en normativas como la UNE o el PG-3 es fundamental en cada una de estas etapas para garantizar la calidad y funcionalidad del muro pantalla.

6. ¿Qué son los anclajes en cimentaciones, cómo se clasifican y cuáles son sus principales aplicaciones?

Los anclajes son elementos de sujeción de estructuras al suelo, diseñados para colaborar en la estabilidad del conjunto suelo-estructura y que trabajan fundamentalmente a tracción.

Clasificación de los anclajes:

  • Según su forma de actuar:
    • Pasivos: Entran en tracción automáticamente cuando las cargas o fuerzas externas actúan, oponiéndose al movimiento del terreno y la estructura.
    • Activos (pretensados): Se pretensan hasta una carga admisible una vez instalados, comprimiendo el terreno entre el anclaje y la estructura. Esto evita el movimiento de la cabeza del anclaje hasta que se supere el esfuerzo de pretensado.
    • Mixtos: Se pretensan con una carga inferior a la admisible, dejando un margen para absorber movimientos imprevistos.
  • Según el tiempo de servicio previsto:
    • Provisionales: Diseñados para un uso temporal durante la fase de construcción.
    • Permanentes: Diseñados para permanecer en servicio durante toda la vida útil de la estructura.
  • Según el tipo de inyección:
    • Inyección única (IU): Inyección global del bulbo.
    • Inyección repetitiva (IR): Inyecciones a lo largo del bulbo en varias etapas.
    • Inyección repetitiva y selectiva (IRS): Inyecciones repetitivas en puntos específicos del bulbo.

Principales campos de aplicación:

  • Estabilización del terreno: Comprimir el terreno y coser diaclasas (fracturas).
  • Aumentar la resistencia al corte en taludes: Mejorar la estabilidad de laderas.
  • Sujeción de bóvedas de túneles y paredes de excavación: Proporcionar soporte en obras subterráneas o de contención.
  • Refuerzo de estructuras: Postesado de elementos estructurales, atirantado de bóvedas y arcos.
  • Arriostramiento de estructuras de contención: Estabilizar muros pantalla, tablestacados, etc.
  • Absorber esfuerzos en la cimentación de estructuras: Contrarrestar la subpresión en soleras bajo el nivel freático.
  • Anclaje de estructuras esbeltas y complejas: Proporcionar estabilidad a elementos con alta esbeltez.

Los anclajes inyectados constan de tres partes: la zona de anclaje (bulbo inyectado al terreno), la zona libre (cables protegidos por una vaina) y la cabeza y la placa de apoyo, que fijan el anclaje a la estructura.

Figura 3. Anclaje de un muro. Vía http://chuscmc.blogspot.com

7. ¿Cuáles son los principales estados límite que hay que considerar en el dimensionamiento de elementos de contención, como los muros pantalla, según la normativa española (CTE)?

Según esta normativa, el dimensionamiento de los elementos de contención debe verificar una serie de estados límite para garantizar la seguridad y funcionalidad de la estructura. Estos se dividen en estados límite últimos y estados límite de servicio.

Estados Límite Últimos (ELU): Se refieren a la capacidad portante y la estabilidad global, evitando la rotura o colapso.

  • Estabilidad:
    • Deslizamiento: La estructura se desliza sobre su base o una superficie de falla.
    • Hundimiento: El terreno bajo la cimentación de la estructura falla.
    • Vuelco: La estructura gira alrededor de su base.
  • Capacidad estructural: Fallo del material constitutivo de la pantalla (hormigón, acero).
  • Fallo combinado del terreno y del elemento estructural: Una combinación de los anteriores.

Para pantallas flexibles, se deben verificar además:

  • Estabilidad global: Del conjunto suelo-pantalla-anclajes-sobrecargas.
  • Estabilidad del fondo de la excavación: Evitar levantamiento o sifonamiento.
  • Estabilidad de la propia pantalla: Rotura por rotación o traslación, o por hundimiento.
  • Estabilidad de los elementos de sujeción: (Anclajes, puntales).
  • Estabilidad en las edificaciones próximas: No causar daños a estructuras adyacentes.
  • Estabilidad de las zanjas: Durante la excavación de la propia pantalla.

Estados Límite de Servicio (ELS): Se refieren a las condiciones de uso de la estructura, evitando movimientos o infiltraciones excesivas.

  • Movimientos o deformaciones: Excesivos de la estructura de contención o de sus elementos de sujeción, que afecten a la propia pantalla o a estructuras próximas.
  • Infiltración de agua no admisible: Problemas de estanqueidad.
  • Afección a la situación del agua freática en el entorno: Con posibles repercusiones a estructuras próximas.

En el cálculo se deben considerar acciones como los empujes activos y pasivos de las tierras, los empujes horizontales del agua freática, las sobrecargas y las acciones instantáneas o alternantes (terremotos, impactos). También se tienen en cuenta las propiedades del suelo, los coeficientes de empuje (de Rankine y de Coulomb) y la deformabilidad de la pantalla, que influye significativamente en la distribución de los empujes.

8. ¿Qué es el sifonamiento en excavaciones y cómo se puede prevenir?

El sifonamiento es un fenómeno de inestabilidad del terreno que se produce en excavaciones, especialmente cuando el nivel freático (NF) se halla por encima del fondo de la excavación y es preciso agotar el agua del interior. Se produce una filtración de agua a través del fondo o de las paredes de la excavación. Si la presión intersticial del agua (es decir, la presión en los poros del suelo) crece hasta igualar la presión total del terreno, la tensión efectiva del suelo se anula (σ’ = σ – u = 0), lo que provoca una pérdida de resistencia y un flujo ascendente de partículas finas del suelo. Este fenómeno se alcanza para un «gradiente crítico».

Figura 4. Longitud de empotramiento para evitar el sifonamiento

Los principales problemas que causa el sifonamiento son:

  • Inestabilidad del fondo de excavación: Pérdida de capacidad portante del suelo.
  • Reducción de la presión efectiva en el intradós de la pantalla: Disminuye el efecto positivo del empuje pasivo, comprometiendo gravemente la estabilidad del muro pantalla.
  • Tubificación o entubamiento: Si se dan sifonamientos localizados, se inicia una erosión interna que forma conductos por donde el agua arrastra material, pudiendo causar un colapso brusco.

Soluciones principales para prevenir el sifonamiento:

  • Dimensionar un correcto sistema de bombeo: Para liberar las presiones intersticiales, ya sea durante la excavación (agotamiento) o de forma permanente mediante soleras drenadas. Los sistemas pueden ser bombeo desde arquetas (para excavaciones pequeñas sin finos), pozos filtrantes o lanzas de drenaje (well point).
  • Incrementar la clava de la pantalla: Aumentar la profundidad de empotramiento del muro pantalla (∆l) incrementa el recorrido del agua, reduciendo el gradiente hidráulico. La clava real puede ser un 20% mayor que la profundidad del punto de rotación.
  • «Clavar» las pantallas en un sustrato impermeable: Si es posible, extender la pantalla hasta una capa de suelo con muy baja permeabilidad (k) para cortar el flujo de agua.
  • Disminuir la permeabilidad de la capa filtrante y aumentar su peso específico aparente (γ’): Esto se puede lograr mediante un tapón de Jet-grouting, que también puede actuar como un codal natural.
  • Aumentar el efecto ataguía de la clava de las pantallas: Mediante un «peine» de inyecciones que reduce la permeabilidad del suelo bajo el muro.
  • Congelación del nivel freático: En casos extremos, se puede congelar el agua del terreno para crear una barrera impermeable.

A continuación os dejo un audio que resume bien el contenido de estos temas. Espero que os sea de interés.

Glosario de términos clave

  • Muro pantalla: Técnica de cimentación profunda y contención flexible que se desarrolla a principios de los años 50, aúna ambas funciones, especialmente en excavaciones difíciles o cerca de edificios.
  • Contención flexible: Cualidad de los muros pantalla que permite cambios de forma y movimientos de flexión, influenciando la distribución de empujes y la interacción suelo-estructura.
  • Empotramiento: Profundidad a la que se introduce la pantalla en el terreno por debajo del nivel de excavación para asegurar su fijación y estabilidad.
  • Empujes activos: Presiones horizontales mínimas que ejerce el terreno sobre una estructura de contención cuando este se deforma alejándose de la estructura (descompresión horizontal).
  • Empujes pasivos: Presiones horizontales máximas que ejerce el terreno sobre una estructura de contención cuando este se deforma empujando hacia el terreno (compresión horizontal).
  • Empuje al reposo: Presión horizontal que ejerce el terreno cuando no hay deformación lateral de la estructura de contención.
  • Muretes-guía: Estructuras temporales previas a la excavación de bataches, que dirigen la herramienta de excavación, aseguran la verticalidad de los paneles y sirven de soporte.
  • Batache: Segmento o panel individual que conforma el muro pantalla continuo, excavado y posteriormente hormigonado.
  • Cuchara al cable/hidráulica: Herramientas de excavación utilizadas para la formación de los bataches en medios convencionales.
  • Hidrofresa: Máquina de excavación especializada para bataches, usada en terrenos muy duros, cuando se requiere verticalidad estricta o a grandes profundidades.
  • Lodos tixotrópicos (bentoníticos): Suspensiones de arcilla (bentonita) en agua, utilizadas para sostener las paredes de la excavación mediante la formación de un «cake» y presión hidrostática, además de lubricar la herramienta. Son fluidos no newtonianos.
  • Lodos poliméricos: Soluciones de polímeros en agua que sustituyen o complementan a los lodos bentoníticos, formando un «cake» interno y uniendo partículas del terreno por tracción iónica. Son biodegradables.
  • Cake: Película impermeable que se forma en las paredes de la excavación de un muro pantalla debido a la filtración del lodo bentonítico, esencial para el sostenimiento por presión hidrostática.
  • Yield point (esfuerzo umbral): Esfuerzo mínimo necesario para que un fluido tixotrópico comience a fluir; por debajo de él, el lodo se comporta como un sólido.
  • Floculación: Proceso por el cual las partículas de lodo se agrupan, perdiendo su estabilidad y funcionalidad, generalmente por contaminación.
  • Tubería tremie: Tubería utilizada para el hormigonado sumergido de los muros pantalla, asegurando que el hormigón se deposite por debajo de la superficie del lodo sin contaminarse.
  • Junta (en pantallas): Dispositivo o técnica utilizada para asegurar la continuidad y estanqueidad entre bataches adyacentes (circular, trapezoidal, tricilíndrica o Stein).
  • Desarenado: Proceso de separación de arena de los lodos bentoníticos, realizado con hidrociclones, necesario para evitar la decantación de arena en el hormigón.
  • Pantalla en voladizo: Muro pantalla que se introduce en el terreno a una profundidad suficiente para que se fije como un elemento estructural en voladizo, aprovechando la resistencia pasiva.
  • Pantalla anclada: Muro pantalla cuya estabilidad se confía a la resistencia pasiva de la parte enterrada y al apoyo de uno o varios niveles de anclajes, usado en excavaciones profundas.
  • Pantalla de soporte libre (articulada): Pantalla anclada con una profundidad de empotramiento pequeña, que permite movimientos significativos en su base y se comporta como una viga doblemente apoyada.
  • Pantalla de soporte fijo (empotrada): Pantalla anclada con una longitud de empotramiento suficiente para que el movimiento en su base sea insignificante, comportándose como una viga apoyada-empotrada.
  • Efecto arco: Fenómeno que ocurre en pantallas flexibles, donde las cargas se concentran en las zonas más rígidas (como anclajes o fondo de excavación) y hay una descarga en las zonas de mayor movimiento.
  • Sifonamiento: Fenómeno en excavaciones con nivel freático alto, donde la presión intersticial en el fondo iguala la presión total, anulando la tensión efectiva del terreno y causando inestabilidad.
  • Gradiente crítico: Valor del gradiente hidráulico a partir del cual se produce el sifonamiento del terreno.
  • Tubificación (entubamiento): Erosión interna del terreno causada por sifonamientos localizados, formando conductos en el suelo.
  • Pozos filtrantes: Sistema de drenaje que utiliza bombas lapicero dentro de pozos para abatir el nivel freático.
  • Sistema de agujas filtrantes (well-point): Drenaje basado en la hinca de minipozos alrededor de una excavación, utilizando bombas de vacío para aspirar aire y agua, adecuado para terrenos arenosos.
  • Anclaje: Elemento de sujeción que transmite cargas de una estructura al terreno, generalmente trabajando a tracción.
  • Bulbo de inyección (zona de anclaje): Parte del anclaje inyectado que se fija al terreno, donde se desarrolla la transferencia de carga.
  • Zona libre: Parte del anclaje (cables o torones) que se encuentra protegida y no está en contacto directo con el terreno, permitiendo el pretensado sin fricción.
  • Cabeza y placa de apoyo: Elementos del anclaje que lo fijan a la estructura y mediante cuñas inmovilizan los torones.
  • Método de Kranz: Método de cálculo para anclajes que evalúa la estabilidad global frente al deslizamiento de la cuña de terreno soportada por los anclajes.
  • Entibación: Conjunto de elementos (tablestacas, puntales, codales) que se utilizan para contener las paredes de una excavación, evitando su colapso.
  • Método berlinés: Tipo de entibación donde se hincan perfiles metálicos aislados antes de excavar, y luego se va entibando progresivamente con elementos de contención y puntales.
  • Levantamiento de fondo: Problema de inestabilidad característico de excavaciones entibadas en suelos arcillosos blandos, donde el fondo de la excavación asciende debido a la presión del terreno.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, n.º 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and applications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

John Loudon McAdam: vida y legado del ingeniero que revolucionó las carreteras

John Loudon McAdam (1756 – 1836). https://ca.wikipedia.org/wiki/

John Loudon McAdam (1756-1836) fue un ingeniero escocés que transformó para siempre la construcción de carreteras. Su método, conocido como macadamización, o simplemente «macadán», supuso un hito en la ingeniería civil, permitió el auge del transporte moderno en el siglo XIX y sentó las bases de la pavimentación contemporánea. Nació el 21 de septiembre de 1756 en Ayr, capital del condado histórico de Ayrshire (Escocia), en la casa de lady Cathcart. Pertenecía a la baja nobleza local y era el menor de los diez hijos de James McAdam y Susanna Cochrane, sobrina del séptimo conde de Dundonald.

En 1760, la familia se mudó al castillo de Lagwyne, en Carsphairn, y más tarde al castillo de Whitefoord. Su padre, James, llevaba un estilo de vida elevado y gestionó de manera deficiente el negocio familiar, el Banco de Ayr, lo que provocó grandes pérdidas económicas. Finalmente, se vio obligado a vender la finca ancestral de la familia, Waterhead, y quedó prácticamente arruinado.

John estudió en la escuela del señor Doick, en Maybole, hasta 1770. Ese mismo año, con tan solo 14 años, murió su padre tras la bancarrota del banco familiar. Con la familia en la ruina, John fue enviado a Nueva York para vivir con su tío William McAdam, un próspero comerciante, y con su tía Ann Dey, hija de Dirck Dey, otro neoyorquino. William McAdam era propietario de la empresa McAdam & Co. y poseía más de 30 000 acres en Middlesex, conocidos como Kilby Grant. En este entorno, John se formó como mercader y contable, y estableció relaciones comerciales con personas como Robert Gilmore, de Northfork.

Durante la guerra de la Independencia de las Trece Colonias (1775-1783), John apoyó la causa británica desde el principio. Se convirtió en un mercader de éxito y contratista del Gobierno, y amasó una considerable fortuna. Fue socio propietario del barco privado General Mathew y actuó como agente de premios de guerra: revendía las mercancías y materiales capturados a los rebeldes, lo que le reportó importantes beneficios personales. Se casó con Gloriana Nicoll, hija de William Nicoll de Suffolk, descendiente del coronel Nicoll, en Nueva York. El matrimonio heredó un tercio de las propiedades de West Neck, en Shelter Island, así como terrenos en Blue Point (Islip).

Sin embargo, en 1783, tras la derrota británica, él y su familia sufrieron las consecuencias de haber sido realistas. El nuevo gobierno estadounidense confiscó sus propiedades y activos en América, y él, su esposa y sus dos hijos fueron obligados a regresar a Escocia. Una vez en Escocia, McAdam aún conservaba suficiente capital como para comprar una finca en Sauchrie, cerca de Maybole. Gracias a sus lazos familiares, se asoció con el almirante lord Cochrane y con el conde de Dundonald en negocios de hierro y alquitrán. Estos productos, derivados del carbón, eran fundamentales para sellar los barcos de vela. Sin embargo, la introducción del cobre en los cascos redujo la demanda de alquitrán, lo que debilitó la industria en la que John había invertido.

Con el tiempo, McAdam se volcó en una nueva actividad que marcaría su vida: la construcción de carreteras. Empezó haciendo pruebas con piedras en caminos cercanos a su finca y acabó construyendo una carretera que conectaba Alloway con Maybole, que seguía en uso en 1936. En 1787 fue nombrado administrador de carreteras y, durante los siguientes quince años, ejerció como vicealmirante de Ayrshire, consolidando su experiencia en este campo. En 1798, gracias a un nombramiento oficial, se trasladó a Falmouth (Inglaterra) y, en 1801, con 45 años, fue designado inspector de carreteras de Bristol. Allí perfeccionó sus ideas y puso en práctica un sistema radicalmente distinto al habitual.

El método de MacAdam consistía en lo siguiente:

  • Carreteras de unos seis metros de ancho, con la parte central elevada ocho centímetros sobre los bordes para facilitar el drenaje del agua.
  • Cunetas laterales para evacuar el agua de lluvia y evitar encharcamientos.
  • Tres capas: la más profunda, de tierra compactada; una intermedia, de piedras grandes y regulares; y una superior, de piedra triturada, que quedaba perfectamente compactada con el paso de los carruajes.

El resultado era una superficie lisa, dura, resistente y barata, mucho más duradera y menos proclive a embarrarse que los caminos de tierra o los adoquinados.

Construcción de la primera carretera de macadán en Estados Unidos de América (1823).  https://es.wikipedia.org/wiki/Macad%C3%A1n

McAdam recogió sus ideas en dos tratados fundamentales, en los que defendía la importancia de elevar las carreteras respecto al suelo circundante, asegurar un buen drenaje y emplear materiales seleccionados en capas sistemáticas:

  • Remarks on the Present System of Road-Making (1816)
  • Practical Essay on the Scientific Repair and Preservation of Roads (1819)

El prestigio de McAdam creció rápidamente. En 1815 fue nombrado inspector del Bristol Turnpike Trust y, en la década de 1820, alrededor de 70 patronatos de carreteras lo contrataron como consultor. En 1819, un comité parlamentario elogió públicamente su trabajo. En 1823, el Parlamento británico encargó un estudio sobre el deficiente estado de las carreteras del país, que estaban obsoletas para una nación en plena industrialización. Como resultado, McAdam fue nombrado inspector general de carreteras metropolitanas de Gran Bretaña. Desde este cargo, su método se estandarizó y extendió rápidamente no solo en el Reino Unido, sino también en Europa y Norteamérica. El impacto fue inmediato: gracias a la suavidad y durabilidad de las carreteras macadamizadas, el transporte en diligencia experimentó un auge sin precedentes. Poco tiempo después de su fallecimiento, en Inglaterra ya existían 35 000 kilómetros de carreteras construidas con su método.

Aunque McAdam recibió subvenciones del Parlamento (2000 libras para gastos en 1820 y 5000 libras por su trabajo en Bristol), nunca fue plenamente recompensado. Se le ofreció un título de caballero, pero lo rechazó por su avanzada edad. El macadán supuso el mayor avance en la construcción de carreteras desde el Imperio romano. Con el tiempo, su sistema dio origen a mejoras posteriores. La más significativa se produjo en 1901, cuando Edgar Purnell Hooley patentó el uso del alquitrán para ligar los áridos, creando el tarmac o tarmacadam, antecesor del asfalto moderno. Es curioso que McAdam, a pesar de haber sido propietario de una fábrica de alquitrán de hulla, nunca aplicara este material a su método. Desde la perspectiva actual, puede resultar llamativo, pero en su época su innovación ya era revolucionaria. Hoy en día, aunque las carreteras modernas emplean asfaltos derivados del petróleo sobre bases de hormigón armado, el uso de capas de piedra triturada sigue siendo heredero directo de la innovación de McAdam.

En sus últimos años, McAdam permaneció activo en el ámbito de la ingeniería viaria junto a sus hijos, quienes abandonaron sus ocupaciones en Escocia para ayudarle en Inglaterra. Finalmente, John Loudon McAdam murió el 20 de noviembre de 1836 en Moffat, un balneario del consejo de Dumfries y Galloway, a los 80 años. Fue enterrado en el cementerio local. Su apellido quedó inmortalizado en el lenguaje técnico y en la historia de la ingeniería civil.

Os dejo algunos vídeos de este ingeniero.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.