14 de julio de 1824, 200 años del fallecimiento de Agustín de Betancourt

Agustín de Betancourt (1758-1824)

Hoy domingo 14 de julio de 2024 no podía dejar de escribir sobre Agustín de Betancourt y Molina, pues se cumplen 200 años de su fallecimiento en San Petersburgo. Agustín José Pedro del Carmen Domingo de Candelaria de Betancourt y Molina, que era su nombre completo, nació el 1 de febrero de 1758 en Puerto de la Cruz (Tenerife). Su padre, Agustín de Betancourt y Castro, mayorazgo de su casa, caballero de la Orden de Calatrava y teniente coronel de los Reales Ejércitos, se casó en 1755 en La Orotava con Leonor de Molina y Briones, hija de los marqueses de Villafuerte, nacida en Garachico.

La trayectoria de Agustín de Betancourt se desarrolló a través de una geografía singular. Desde La Laguna, se trasladó a Madrid y viajó en varias ocasiones a París e Inglaterra, donde pasó largas temporadas. Incluso planeó un viaje a Cuba que finalmente no se concretó. Sus últimos años de vida transcurrieron en Rusia. Este ilustre ingeniero llevó a cabo una extraordinaria labor en el ámbito de la ingeniería civil, obteniendo el reconocimiento de destacadas autoridades políticas y científicas de la Europa de las Luces. Trabajó para reyes y ministros y se relacionó con técnicos y emprendedores de distintos países. Estudió nuevas máquinas e inventó muchas otras. Fundó las primeras escuelas y museos de ingeniería en España y Rusia. Un aspecto determinante es su papel decisivo en la creación de un nuevo cuerpo profesional con gran proyección posterior: los ingenieros de caminos y canales.

Betancourt, junto con otras personalidades insignes, fue el propulsor del nacimiento de la Escuela de Ingenieros de Caminos. Este ilustre ingeniero venía propugnando su creación desde 1785 y había definido incluso las cualidades deseables de un Ingeniero de Caminos en la Memoria que presentó al Conde de Floridablanca sobre los medios para facilitar el comercio interior (año 1791).

Viajes, libros, inventos, proyectos y realizaciones desglosan las significativas contribuciones de Betancourt a la ingeniería civil y su posición en la Europa de la Ilustración. La excepcional trayectoria de Agustín de Betancourt mostró nuevos caminos que se abrieron entonces para las comunicaciones y las infraestructuras de abastecimiento, los mecanismos que permitieron que estas innovaciones se difundieran por todo el continente y los horizontes que se perseguían. A pesar de las tensiones de la Europa en la que vivió Betancourt, destaca el carácter cosmopolita de este personaje y su contribución a la formación de un amplio espacio geográfico por el que se transmitió y desarrolló el saber técnico y de la ingeniería.

El Colegio de Ingenieros de Caminos, Canales y Puertos inauguró la exposición sobre la figura de Agustín de Betancourt, que se pudo visitar en la Biblioteca Nacional entre el 7 de marzo y el 19 de mayo del 2024.

Os dejo un par de vídeos para esbozar, mínimamente, el gran calado de este personaje tan influyente en la ingeniería española. Espero que os gusten.

Primicia editorial: Nuevo Manual de Referencia sobre Estructuras Auxiliares en la Construcción

Estoy en proceso de revisión de las pruebas de imprenta del nuevo Manual de Referencia denominado: “Estructuras auxiliares de construcción: andamios, apeos, entibaciones, encofrados y cimbras”. Estará disponible en las librerías durante el mes de septiembre del 2024.

Este libro aborda de manera amplia las estructuras auxiliares utilizadas en la construcción, abarcando tanto el ámbito de la edificación como el de las obras de ingeniería civil. El libro trata de los aspectos relacionados con los apeos y apuntalamientos, las entibaciones, los andamios, los encofrados y las cimbras. La novedad de esta obra radica en el tratamiento constructivo de estas técnicas, donde las fotografías e ilustraciones añaden valor a las explicaciones realizadas en el texto. Además de incluir una amplia bibliografía, se aportan cuestiones de autoevaluación con respuestas para el aprendizaje de los conceptos más importantes, así como problemas resueltos. Es un libro de texto dirigido a estudiantes de ingeniería y arquitectura, con una fuerte orientación hacia la construcción. No obstante, también se estructura como un manual de consulta para los profesionales relacionados con el proyecto y la construcción de obras. Además, este libro complementa los aspectos constructivos de otro tipo de textos estructurales o geotécnicos, más orientados a la teoría y los problemas.

¿Qué es un Manual de Referencia en la Universitat Politècnica de València?

Colección de carácter multidisciplinar, orientada a la formación y al ejercicio profesional. Los contenidos han sido seleccionados por el comité editorial atendiendo a la oportunidad de la obra por su originalidad en el estudio y aplicación de una materia, el apoyo gráfico y práctico con ejercicios demostrativos que sustentan la teoría, la adecuación de su metodología y la revisión bibliográfica actualizada. Los títulos de la colección se clasifican en distintas series según el área de conocimiento y la mayoría de ellos están disponibles tanto en formato papel como electrónico.

Todos los títulos de la colección están evaluados por especialistas en la materia según el método doble ciego, tal como se recoge en la página web de la Editorial (http://www.upv.es/entidades/AEUPV/info/891747normalc.html), garantizando la transparencia en todo el proceso.

Para conocer más información sobre la colección, los títulos que la componen y cómo adquirirlos puede visitar la web, enlace a la página de la colección en www.lalibreria.upv.es

Referencia:

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

SOBRE EL AUTOR:

Víctor Yepes Piqueras. Catedrático de universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social de la UPV. Es investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE). Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Mantenimiento preventivo sostenible de estructuras de edificios de hormigón tipo MMC en un entorno adverso

Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo sobre el mantenimiento preventivo y sostenible de los métodos modernos de construcción en entornos hostiles. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción desempeña un papel significativo en la presión medioambiental, atribuido principalmente a su importante consumo de recursos, impulsado sobre todo por el auge de la construcción residencial. Los Métodos Modernos de Construcción (MMC) presentan un paradigma innovador para diseñar y construir infraestructuras y edificios de forma más eficiente, utilizando materiales convencionales con técnicas no convencionales. El artículo pretende aplicar este enfoque a una estructura de edificación basada en MMC, minimizando el impacto de su ciclo de vida mediante la optimización del consumo de materiales de construcción, con especial atención a los efectos de la fase de mantenimiento desde un punto de vista preventivo. Este estudio se centra en la evaluación de la sostenibilidad de los forjados planos de hormigón armado que emplean un sistema de cuerpo estructural hueco, haciendo hincapié explícitamente en los factores de agresividad ambiental que contribuyen a la corrosión, como la carbonatación y los cloruros. La investigación explora diez opciones de diseño para un edificio residencial público frente al mar, examinando su impacto en la economía, el medio ambiente e incluso la sociedad en lo que respecta a los ciclos de mantenimiento necesarios a lo largo de la vida útil de la estructura, en función de la estrategia preventiva empleada para cada diseño. Para evaluar la sostenibilidad de estas opciones, los investigadores emplearon una combinación del método del mejor-peor (BWM) y la técnica VIKOR, teniendo en cuenta nueve criterios relacionados con la sostenibilidad. El estudio concluyó que el hormigón con un 5% de humo de sílice es la opción más rentable y respetuosa con el medio ambiente, y que la impregnación hidrófoba reduce el impacto social. Sin embargo, en comparación con las evaluaciones unidimensionales y bidimensionales, el estudio demuestra la importancia de considerar simultáneamente los impactos económicos, medioambientales y sociales del ciclo de vida de un diseño para lograr la sostenibilidad en el mantenimiento con una visión holística. Este enfoque condujo a una calificación de sostenibilidad un 86% más alta para un diseño que utilizaba cemento sulforresistente en la mezcla de hormigón que la opción de partida.

Aspectos destacables:

  • El estudio evalúa el impacto en el ciclo de vida de diez opciones de diseño mejoradas para un módulo hotelero de tres pisos en un entorno costero, con el objetivo de mejorar la durabilidad y reducir las necesidades de mantenimiento a lo largo de la vida útil de la estructura.
  • Los resultados óptimos se obtienen del intervalo de mantenimiento preventivo, lo que hace hincapié en la importancia de las estrategias de mantenimiento proactivo para mejorar la sostenibilidad y la longevidad de las estructuras de construcción de hormigón basadas en MMC.
  • El documento proporciona evaluaciones exhaustivas del ciclo de vida según las normas ISO 14040, que abordan las tres dimensiones simultáneamente, ofreciendo una visión holística del desempeño en materia de sostenibilidad en los proyectos de construcción.
  • Al centrarse en el mantenimiento preventivo, la investigación destaca el potencial de obtener beneficios ambientales y económicos a largo de un período de 50 años, ya que contribuyen a la sostenibilidad general de las estructuras de los edificios en entornos hostiles.
  • Al incorporar las opiniones de expertos a través del método de toma de decisiones multicriterio de BMW, el estudio proporciona un análisis completo de varios aspectos de la sostenibilidad en los proyectos de construcción, promoviendo prácticas de toma de decisiones sostenibles en la industria.
  • Los resultados subrayan la importancia de la toma de decisiones sostenibles en la construcción, en consonancia con los esfuerzos mundiales para reducir el impacto ambiental y promover prácticas ecológicas en la industria.
  • La investigación hace hincapié en la importancia de las estrategias de mantenimiento preventivo sostenibles para mejorar la longevidad y la sostenibilidad de las estructuras de construcción de hormigón basadas en el MMC, y destaca los beneficios de los enfoques de mantenimiento proactivo.

Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:

https://www.sciencedirect.com/science/article/pii/S2352710224017236

Abstract:

The construction industry plays a significant role in environmental strain, attributed mainly to its substantial resource consumption, primarily driven by the surge in residential construction. Modern Methods of Construction (MMC) presents an innovative paradigm for designing and constructing infrastructure and buildings more efficiently, using conventional materials with unconventional techniques. The article aims to apply this approach to an MMC-based building structure, minimizing its life cycle impact by optimizing the consumption of building materials, with particular attention to the effects of the maintenance phase from a preventive point of view. This study focuses on assessing the sustainability of reinforced concrete flat slabs, employing a hollow structural body system, explicitly emphasizing environmental aggressiveness factors contributing to corrosion, such as carbonation and chlorides. The research explores ten design options for a waterfront public residential building, examining their impact on the economy, the environment, and even society, regarding the maintenance cycles required over the structure’s lifetime, depending on the preventive strategy employed for each design. In assessing the sustainability of these options, researchers employed a combination of the best-worst method (BWM) and the VIKOR technique, considering nine criteria related to sustainability. The study found that 5% silica fume concrete is the most cost-effective and environmentally friendly option, with hydrophobic impregnation reducing social impacts. However, compared to one— and two-dimensional evaluations, the study demonstrates the importance of simultaneously considering a design’s life cycle’s economic, environmental, and social impacts to achieve sustainability in maintenance with a holistic view. This approach led to an 86% higher sustainability rating for a design using sulforesistant cement in the concrete mix than the baseline.

Keywords:

Modern Methods of Construction; Life Cycle Assessment; Sustainable design; Multi-criteria Decision-making; Preventive maintenance; Corrosion

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2024). Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment. Journal of Building Engineering,95:110155. DOI:10.1016/j.jobe.2024.110155

Como el artículo se encuentra en abierto, os lo podéis descargar aquí:

Descargar (PDF, 5.43MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Recomendaciones para el vertido del hormigón

Figura 1. Vertido del hormigón. https://constructivo.com/noticia/siga-estos-pasos-para-llevar-a-cabo-un-correcto-proceso-de-vibrado-en-la-fundicion-de-concreto-1582900765

Una vez que el hormigón se encuentra en el lugar de colocación, se procede a su puesta en obra, la cual se realizará de acuerdo con el tipo de hormigón y las condiciones del espacio y los medios de colocación disponibles. El método más sencillo de colocación consiste en verter el hormigón directamente desde el dispositivo de transporte al encofrado, molde o lugar designado. En ocasiones, el acceso del transporte al punto de colocación puede ser difícil; en estos casos, el bombeo soluciona el problema y, además, proporciona un flujo continuo de hormigón que aumenta la eficiencia del trabajo.

Antes del vertido, es necesario prever la ubicación de las juntas de hormigonado. Asimismo, es fundamental verificar si los encofrados podrán resistir las presiones generadas por el hormigón fresco, considerando la consistencia del hormigón, el tipo de cemento utilizado, la altura del hormigonado, la temperatura ambiente, entre otros factores. La velocidad de colocación debe ser lo suficientemente alta para evitar la formación de juntas frías, pero no tan alta que cause una segregación excesiva o genere altas presiones sobre los encofrados. Las juntas frías se producen cuando una capa de hormigón se ha fraguado antes de que se vierta otra capa sobre ella, lo que da como resultado una unión débil entre ambas capas.

El vertido puede considerarse como la operación final del transporte del hormigón antes de su colocación definitiva. Al llegar a la obra, el punto de vertido puede encontrarse al mismo nivel del terreno o a mayor altura. En ambos casos, lo más conveniente es que la descarga se realice directamente desde el medio de transporte utilizado, como camiones hormigonera, camiones abiertos o autobombas. Sin embargo, en ocasiones es necesario verter el hormigón en recipientes auxiliares para luego acercarlo y dirigirlo mediante tolvas o canaletas hasta el molde o encofrado. En cualquier caso, como norma general, debe procurarse que el punto de descarga esté lo más cercano posible al de colocación, evitando operaciones innecesarias que puedan aumentar la segregación del hormigón fresco.

El ritmo de vertido debe ser uniforme y compatible con el equipo y los trabajadores presentes en el proceso de colocación y acabado. Cuando exista la posibilidad de una interrupción en el vertido del hormigón, se debe considerar el aprovisionamiento de un equipo de apoyo.

Para garantizar la calidad y uniformidad del hormigón durante el vertido, es fundamental evitar su segregación. Además, se debe tener cuidado para no desplazar las armaduras, las vainas del pretensado o el atado de los encofrados, para lo cual se deben adoptar las medidas oportunas. El hormigón se debe verter verticalmente, lo más cerca posible de su posición definitiva, sin obstáculos que tamicen el flujo y evitando desplazamientos laterales una vez colocado. Además, nunca se deberán verter masas que acusen el principio de fraguado, la segregación o la desecación.

A continuación, se ofrecen recomendaciones para las operaciones de vertido.

  • El material no debe verterse desde una gran altura (como máximo 2 m de caída libre). Se debe procurar que la dirección de caída sea vertical, evitando desplazamientos horizontales de la masa. Durante el vertido, el hormigón debe dirigirse para impedir que choque libremente contra el encofrado o las armaduras. Para lograr esto, se utilizarán canaletas que permitan encauzar el hormigón como si fuera un embudo. Por ello, la carga de cubas, carretillas y tolvas no debe hacerse directamente desde la amasadora.
  • El hormigón se debe colocar en capas horizontales de espesor inferior al que permita una buena compactación de la masa (generalmente entre 20 y 70 cm), facilitando así el «cosido» de las capas. Las distintas capas se consolidarán sucesivamente, uniendo cada capa a la anterior con el medio de compactación elegido (normalmente un vibrador) y sin que transcurra mucho tiempo entre ellas para evitar que la masa se seque o empiece a fraguar, a menos que esté prevista una junta de hormigonado. Por ello, el espesor de la capa debe ser algo inferior a la longitud del elemento vibrador, de manera que este atraviese todo el espesor de la capa y llegue a introducirse lo suficiente en la siguiente.
  • No se debe arrojar el hormigón con pala ni a gran distancia, ni distribuirlo con rastrillos o vibradores que provoquen su disgregación. No se debe hacer avanzar más de un metro de hormigón dentro de los encofrados.
  • En el hormigonado de superficies inclinadas, se deben tener en cuenta los siguientes aspectos:
    • El hormigón fresco tiende a correr o deslizar hacia abajo, especialmente bajo el efecto del vibrado.
    • Se produce segregación por la distinta velocidad de los áridos en la superficie inclinada.
    • Es preferible hormigonar de abajo hacia arriba, colocando una superficie que contenga el hormigón y lo encauce a modo de embudo. Si se utiliza vibrado, su acción debe ser lo más breve posible.
    • Para minimizar los efectos del vibrado, también es recomendable hormigonar de abajo hacia arriba, en secciones cuyo volumen y distancia de la parte compactada sean tales que el hormigón ocupe su lugar después de una breve acción de vibrado.
    • Hay que ajustar la velocidad de vertido al espesor de las capas, a los períodos necesarios de vibración y a las juntas de hormigonado previstas.

A continuación, se recogen algunas figuras que permiten conocer algunas de las malas prácticas en la colocación incorrecta del hormigón.

Figura 2. Cargas y descargas en vertical y centradas

 

Figura 3. Las compuertas inclinadas de las tolvas son en realidad canaletas con un final sin control que origina segregación al llenar las carretillas

 

Figura 4. El empleo de una cacera elimina los riesgos de segregación al vaciar una hormigonera

 

Figura 5. Falta de control al final de la cinta. La pantalla simplemente cambia la dirección de la segregación

El hormigón no debe encontrar restricciones antes de colocarlo en el encofrado. Si se vierte la masa en la parte superior mediante una tubería flexible de caída o un tubo central, se evita la segregación y los encofrados y las armaduras se mantienen limpios hasta que el hormigón los cubre (Figura 6).

Figura 6. Hormigonado en parte superior con un tubo central.

Cuando se utiliza una lámina de plástico que se enrolla a medida que se vierte el hormigón, se logra un efecto similar (Figura 7). No se debe permitir que el faldón se sumerja más de 500 mm en el hormigón para facilitar su extracción.

Figura 7. Hormigonado en parte superior con láminas de plástico.

No se debe permitir que el hormigón choque y rebote contra el encofrado y las armaduras, pues origina la segregación y la formación de nidos de grava en el fondo (Figura 8).

Figura 8. Vertido incorrecto del hormigón

Como se puede comprobar en la Figura 9, en las losas es conveniente que el avance del frente de hormigonado abarque todo el espesor. En estas superficies horizontales, la colocación del hormigón debe realizarse contra la masa ya colocada. El vertido correcto se produce cuando el operario coloca el hormigón retrocediendo, aunque resulta algo incómodo. De esta forma, atraviesa solo una capa, amortigua la capa viscosa y se produce cierta compactación.

Figura 9. Recomendación de vertido contra el hormigón

En la Figura 10 se puede observar que, en caso de detectarse segregación, es posible añadir el árido grueso al hormigón y mezclarlo con una pala. Es importante no añadir mortero ni hormigón al árido grueso.

Figura 10. Forma correcta de añadir árido grueso al hormigón

En artículos anteriores hemos explicado con cierto detalle la puesta en obra del hormigón para casos especiales como el hormigonado en tiempo caluroso, hormigonado en condiciones de viento, hormigonado de pilares y muros, hormigonado mediante bombeo, grandes vertidos de hormigón, hormigonado bajo el agua, o el hormigonado en tiempo frío, entre otros. Dejo los enlaces para los lectores interesados.

El Artículo 52.1 del Código Estructural establece las condiciones de vertido y colocación del hormigón.

“En ningún caso se tolerará la colocación en obra de masas que acusen un principio de fraguado.

En el vertido y colocación de las masas, incluso cuando estas operaciones se realicen de un modo continuo mediante conducciones apropiadas, se adoptarán las debidas precauciones para evitar la disgregación de la mezcla.

No se colocarán en obra capas o tongadas de hormigón cuyo espesor sea superior al que permita una compactación completa de la masa.

No se efectuará el hormigonado en tanto no se obtenga la conformidad de la dirección facultativa, una vez que se hayan revisado las armaduras ya colocadas en su posición definitiva.

El hormigonado de cada elemento se realizará de acuerdo con un plan previamente establecido en el que deberán tenerse en cuenta las deformaciones previsibles de encofrados y cimbras”.

Los comentarios de este artículo son los siguientes:

“El vertido en grandes montones y su posterior distribución por medio de vibradores noes, en absoluto, recomendable, ya que produce una notable segregación en la masa del hormigón.

Se tendrá especial cuidado en evitar el desplazamiento de armaduras, conductos de pretensado, anclajes y encofrados, así como el producir daños en la superficie de estos últimos, especialmente cuando se permita la caída libre del hormigón.

El vertido del hormigón en caída libre, si no se realiza desde pequeña altura (inferior a dos metros), produce inevitablemente la disgregación de la masa, y puede incluso dañar la superficie de los encofrados o desplazar éstos y las armaduras o conductos de pretensado, debiéndose adoptar las medidas oportunas para evitarlo.

El empleo de aditivos superplastificantes y el elevado contenido de finos en hormiones de alta resistencia, los hace muy fluidos, permitiendo unas tongadas de mayor espesor que en un hormigón convencional, si bien resultas necesaria una mayor energía de compactación”.

Os dejo una Guía de Aplicación de la puesta en obra del hormigón de consistencia fluida en edificación según el Código Estructural.

Descargar (PDF, 2.98MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Comunicaciones presentadas al 28th International Congress on Project Management and Engineering AEIPRO 2024

Durante los días 3-4 de julio de 2024 tiene lugar en Jaén (Spain) el 28th International Congress on Project Management and Engineering AEIPRO 2024. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Esta investigación propone una metodología para dimensionar losas innovadoras de hormigón armado sin vigas, que permiten el uso eficiente de materiales. Utilizando un enfoque estadístico y modelos de regresión lineal, se proporcionan criterios para calcular el espesor de la losa aligerada con esferas o discos plásticos presurizados, minimizando el número de variables. Este espesor puede estimarse a partir de la luz principal entre apoyos, la altura del disco o el diámetro de la esfera, así como el uso previsto del edificio. El modelo final ajustado logra explicar el 98% de la variabilidad en el espesor de la losa para luces comprendidas entre 5 m y 16 m. Este tipo de forjado contribuye a la reducción del consumo de hormigón y acero, lo que resulta en una disminución del peso y las cargas aplicadas. Esto impacta directamente en los costos y mejora los indicadores ambientales en comparación con los sistemas tradicionales. Se presenta como una alternativa eficiente para edificaciones, permitiendo la combinación de parámetros estructurales, constructivos y sostenibles.

SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Esta nueva forma de construir implica, necesariamente, un cambio en la forma de dirigir los proyectos, que pasan a ser industrializados, donde la eficiencia estructural, constructiva y la sostenibilidad ambiental y social son protagonistas. El objetivo del artículo es identificar los aspectos característicos de estas construcciones innovadoras que influyen en la ingeniería de proyectos, integrando a grupos multidisciplinares como arquitectos, ingenieros estructurales y empresas constructoras. Para ello se realizará un estudio para el caso de edificios construidos con losas planas aligeradas mediante elementos aligerantes multiaxiales. Los resultados muestran que estos diseños permiten integrar el proyecto, la fabricación de elementos y el procedimiento constructivo. El proyecto de estas construcciones permite aligerar y reducir las cuantías de hormigón y acero en aquellas zonas de las losas donde la capacidad portante es insignificante. Además, se ha comparado este diseño con otros tradicionales, destacando una reducción de costes y un aumento de la sostenibilidad a lo largo del ciclo de vida.

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

El proyecto estructural normalmente se basa en la experiencia del proyectista. En ocasiones, dicha experiencia se plasma en fórmulas de predimensionamiento que, si bien ofrecen buenos resultados, en ocasiones arrastran ineficiencias cuando se comparan con técnicas actuales de optimización que tenga en cuenta las dimensiones económicas y ambientales. En este artículo se comparan reglas de dimensionamiento previo de estructuras basadas en la experiencia con técnicas de optimización. Se aplica al caso del proyecto de tableros de puentes tipo losa pretensados aligerados. El resultado de la investigación resalta la importancia de aplicar métodos basados en la optimización heurística y en metamodelos para actualizar la experiencia de los proyectistas y proponer nuevas fórmulas de predimensionamiento más ajustadas a la optimización económica y ambiental. Además, en el trabajo se ofrecen nomogramas de predimensionamiento, con el mínimo número de datos posible, que pueden ser de utilidad al proyectista en sus diseños previos.

Os paso el vídeo de presentación del congreso.

De «Fundación» de Asimov, a los Beatles y los atardeceres de Formentera a los desafíos de la ingeniería civil

Paola Villalba (Universidad Central del Ecuador) y Víctor Yepes (Universitat Politècnica de València)

Es muy agradable ver cómo desde la Universitat Politècnica de València se ponen en marcha iniciativas para divulgar el trabajo que realizan los que trabajamos en ella. En este caso, la iniciativa se llama “Revisado por pares”, dirigido por el periodista Luis Zurano, que presenta también con Celia Marín. Este espacio cuenta con la colaboración de la Fundación Española para la Ciencia y la Tecnología (FECYT) del Ministerio de Ciencia e Innovación. Se trata de una serie de podcasts que realiza nuestra universidad, donde:

Queremos conocer al personal investigador de la UPV: sus trayectorias profesionales, qué les decantó por la ciencia y la investigación, los entresijos de la carrera científica… Dale al play y conoce, de dos en dos, a un investigador y una investigadora de la UPV“.

Os paso el enlace y el texto donde podéis ver este tipo de publicaciones: https://podcast.upv.es/programa/revisado-por-pares/

Esta nueva entrega de Revisado por pares tiene como protagonistas a Víctor Yepes y Paola Villalba. Víctor es catedrático de la UPV e investigador del Instituto ICITECH y uno de los científicos de referencia en nuestro país de la ingeniería civil. Mientras, Paloma es doctoranda de la UPV también en el ICITECH, donde llegó procedente de la Universidad Central del Ecuador.

En este podcast, descubrimos un poco de su lado más personal, viajando a Formentera y Florencia y hablando también de los Beatles o de Fundación de Isaac Asimov, entre otras muchas cuestiones. Hablamos también de su trayectoria, de profesores y profesoras que les marcaron. Y abordamos los retos y desafíos de la ingeniería civil y las claves para dedicarse al “apasionante” mundo de la investigación.

Lo podéis escuchar aquí:

 

Respaldos a mi Candidatura para Consejero en el Sector 4: DOCENCIA e INVESTIGACIÓN

Como ya he anunciado por redes sociales, me presento como candidato a Consejero en el Sector 4 Docencia e Investigación a las próximas elecciones del Colegio de Ingenieros de Caminos, Canales y Puertos. Se trata de un compromiso personal con la candidatura de Miguel Ángel Carrillo para una nueva legislatura que, en esta ocasión, tendrá una duración de 2 años.

En algunos de estos enlaces podéis ver algunas de mis propuestas, que espero coincidan con lo que espera nuestra profesión. https://uncolegioparaavanzarjuntos.es/wp-content/uploads/2020/06/Victor-Yepes.pdf 

Sin embargo, estas propuestas no son aisladas, sino que son el fruto de debates con compañeros que, desde las distintas Escuelas Técnicas Superiores de Ingeniería de Caminos, Canales y Puertos, y desde la profesión, he tenido ocasión de fraguar en estos últimos 4 años. Especialmente satisfactorio es saber que, por ejemplo, Fermín Navarrina, amigo, pero contrincante en las anteriores elecciones, está apoyándome de forma incondicional. Pero no es el único. Os paso una lista muy reducida de algunos de esos apoyos, que no solo son para mi persona, sino también para la candidatura de Miguel Ángel Carrillo. Sin embargo, de lo que me siento en este momento más orgulloso es del apoyo incondicionado de algunos de vosotros a mi candidatura.

Dejo en mi blog el apoyo explícito de algunos de vosotros, otros me han dado muchos ánimos y, mi mayor reto, va a ser no defraudaros. No son todos los que son, pero sí todos los que están (he puesto el orden de forma aleatoria). Muchísimas gracias a todos, de corazón. Nunca sabréis la deuda que tengo con todos vosotros. Si alguien quiere estar en la lista, que me lo diga y lo incluyo.

  • Íñigo J. Losada Rodríguez. Catedrático de Ingeniería Hidráulica. Universidad de Cantabria.
  • Antonio Martínez Cutillas. Profesor Titular de Universidad. Universidad Politécnica de Madrid.
  • Enrique Mirambell Arrizabalaga. Catedrático en ingeniería de la construcción. Universitat Politècnica de Catalunya.
  • Eugenio Pellicer Armiñana. Catedrático de Proyectos de Ingeniería – E.T.S. Ingeniería de Caminos, Canales y Puertos de Valencia
  • Fermín Luis Navarrina Martínez. Catedrático en el Grupo de Métodos Numéricos en Ingeniería. Universidad de A Coruña
  • Vicente Negro Valdecantos. Catedrático de Tecnologías del Medio Ambiente e Ingeniería Marítima. Universidad Politécnica de Madrid.
  • Andrés Monzón de Cáceres. Catedrático en Ingeniería del Transporte. Universidad Politécnica de Madrid.
  • Esther Real Saladrigas. Catedrática de Universidad. Universitat Politècnica de Catalunya.
  • Carlos Nárdiz Ortiz. Profesor Titular de Universidad en Urbanística y Ordenación del Territorio. Universidad de A Coruña.
  • Alfredo García García. Catedrático de Ingeniería de Carreteras, Director del Instituto del Transporte y Territorio, Universitat Politècnica de València.
  • Jorge Bernabeu Larena. Profesor Titular de Universidad. Universidad Politécnica de Madrid.
  • Cristina Vázquez Herrero. Profesora Titular de Universidad de Ingeniería de la Construcción. Universidad de A Coruña.
  • Alejandro Castillo Linares. Profesor Asociado. Universidad de Granada.
  • Antonio Tomás Espín. Profesor Titular de Universidad. Universidad Politécnica de Cartagena.
  • Julián Alcalá González. Profesor Titular de Universidad. Universitat Politécnica de València.

Votar es muy sencillo, sobre todo si se hace electrónicamente. Os dejo un enlace donde se explica fácilmente: file:///C:/Users/V%C3%ADctor/Downloads/Manual%20de%20votaci%C3%B3n%20electr%C3%B3nica.pdf

También os paso un vídeo donde explico algunas de las razones por las que me presento en esta candidatura.

Y, por último, os paso tanto un documento con algunas de mis intenciones. Estoy abierto al debate y a recibir cuantas indicaciones me deis. Tanto antes como después de las elecciones, independientemente del resultado. Es lo menos que puedo hacer por una profesión que amo profundamente.

Descargar (PDF, 311KB)

 

David Martínez Muñoz y Zhiwu Zhou, Premios Extraordinarios 2024 a sus tesis doctorales

Foto de la izquierda: Lectura de tesis doctoral del Zhou. Foto de la derecha: Lectura de tesis doctoral de David.

No es fácil obtener el Premio Extraordinario a la tesis doctoral en la Universitat Politècnica de València. De hecho, solo se han premiado tres tesis doctorales en el área de ingeniería civil. Pues bien, de esas tres premiadas, dos son de nuestro grupo de investigación. Tuve el honor de dirigir, junto con el profesor Julián Alcalá, la tesis al Dr. Zhiwu Zhou, cuyo título fue “Life Cycle Optimization Analysis of Bridge Sustainable Development”, y que se defendió el 13 de enero de 2023. Asimismo, también tuve ese mismo honor de dirigir, junto con el profesor José V. Martí, la tesis al Dr. David Martínez Muñoz, cuyo título fue “Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets”, y que se defendió el 19 de julio de 2023.

Este premio extraordinario se suma al ya conseguido por otros de mis doctorandos como Ignacio Payá, Cristina Torres, Leonardo Sierra, Jorge Salas o Ignacio Navarro. Seguro que no serán los únicos.

Desde mi blog quiero expresar mi enhorabuena tanto a Zhou como a David por dichos premios, merecidos, sin duda. En artículos anteriores ya presenté tanto el resumen de una tesis como de la otra. Ahora os paso también algunas de las publicaciones de mayor impacto fruto de dichos trabajos de investigación. Lo mejor está por venir.

Referencias de Zhou:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Environmental Impact Assessment Review, 104:107316. DOI:10.1016/j.eiar.2023.107316

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Journal of Civil Engineering and Management, 29(6):561-576. DOI:10.3846/JCEM.2023.19565

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Experimental Research on Diseases of Emulsified Asphalt Mortar Board for Ballastless Tracks. Journal of Materials in Civil Engineering, 35(6):04023156. DOI:10.1061/JMCEE7.MTENG-15149

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on the optimized environment of large bridges based on multi-constraint coupling. Environmental Impact Assessment Review, 97:106914. DOI:10.1016/j.eiar.2022.106914

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimizationStructures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

 

Referencias de David:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Deep learning classifier for life cycle optimization of steel-concrete composite bridges. Structures, 57:105347. DOI:10.1016/j.istruc.2023.105347

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges. Mathematics, 11(1):140. DOI:10.3390/math11010140

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Structural and Multidisciplinary Optimization, 65:312. DOI:10.1007/s00158-022-03393-9

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Engineering Structures, 266:114607. DOI:10.1016/j.engstruct.2022.114607

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Applied Sciences, 9(16), 3253; DOI:10.3390/app9163253

Grandes vertidos de hormigón

Figura 1. Vertido de 16 200 m³ de hormigón en la losa de cimentación del rascacielos Wilshire Grand Center. https://ycivilengineering.blogspot.com/2014/02/record-mundial-en-vertido-continuo-de.html

Se considera un gran vertido la colocación de más de 200 m³ de hormigón en un mismo elemento. Es el caso del hormigonado en presas o en grandes losas de cimentación, entre otros. Por ejemplo, en la losa de cimentación del rascacielos Wilshire Grand Center (Los Ángeles, Estados Unidos), se vertieron 16 200 m³ de hormigón en un lapso de 18 horas y media, empleando 208 camiones que realizaron más de 2100 viajes. Se llenó un enorme hueco de 5,5 m de profundidad que está revestido con 3180 toneladas de armaduras de acero.

Los principales problemas asociados a los grandes vertidos son la liberación de una gran cantidad de calor de hidratación y la consiguiente contracción del hormigón al enfriarse, lo que puede causar fisuras. En estructuras de gran envergadura, como las presas, los espesores son tan significativos que la pérdida de calor de la masa a través de su superficie es extremadamente lenta, a menudo tardando varios meses. Este prolongado período de elevación de la temperatura provocan fisuras considerables debido a la retracción térmica. A continuación, se presentan algunas recomendaciones para mitigar los efectos de la colocación de grandes masas de hormigón.

Las medidas a adoptar para este tipo de hormigonado empiezan en el proceso de dosificación, en el que se deben utilizar cementos de bajo calor de hidratación (inferiores a 65 cal/g a los cinco días de edad), sustituir parte del cemento por cenizas volantes o escorias de alto horno y enfriar los componentes. En cuanto al procedimiento de construcción, se recomienda evitar diferencias de temperatura superiores a 20 °C entre dos puntos cualesquiera, evitar restricciones externas y hormigonar de forma continua.

El cemento de bajo calor de hidratación, a veces llamado «cemento frío», resulta especialmente útil en la producción de grandes volúmenes de hormigón concentrado, dado que reduce significativamente el calor liberado durante la reacción de hidratación, evitando así la formación de fisuras térmicas debido al rápido secado que puede provocar el intenso desprendimiento de calor. Por otro lado, debido a esta misma razón, son altamente susceptibles a las bajas temperaturas, las cuales retrasan significativamente su proceso de endurecimiento. Por lo tanto, no se recomienda su uso cuando la temperatura desciende por debajo de +5 °C. En general, se debe minimizar la cantidad de cemento utilizada. Un exceso de cemento conlleva la necesidad de incrementar la cantidad de agua, lo que puede provocar problemas de fisuración y pérdida de resistencia. Es esencial recordar que los mejores hormigones son aquellos que proporcionan las características de resistencia y durabilidad deseadas con el menor consumo posible de cemento. Un exceso de cemento, especialmente si es rico en silicato tricálcico, genera una considerable liberación de calor. Esto puede provocar tensiones térmicas diferenciales que superen la resistencia a la tracción del hormigón, sobre todo en las etapas tempranas de fraguado.

Además de reducir la cantidad de cemento y, por tanto, el calor de fraguado (y, en consecuencia, el riesgo de fisuración), la inclusión de puzolanas y cenizas conlleva otros beneficios significativos. Estos materiales no solo mejoran la trabajabilidad de la mezcla fresca, lo que se traduce en una reducción del contenido de agua necesario para el amasado (entre un 5 % y un 8 %), sino que también aumentan la resistencia y promueven una mayor durabilidad del hormigón.

El control de la temperatura se realiza mediante termopares colocados a 25 mm de la superficie exterior del hormigón y en el centro del elemento. Si la diferencia de temperaturas supera los 20 °C, se debe elevar la temperatura de la zona más fría utilizando una capa de arena, láminas de polietileno, cartón aislante, mantas aislantes, lonas, etc., aplicadas durante varios días. Para reducir la temperatura máxima alcanzada, se recomienda utilizar cementos de bajo calor de hidratación y reemplazar parte del cemento por aditivos. Estas medidas son efectivas para elementos de hasta 2,5 m de espesor.

En elementos más gruesos, el hormigón permanece en condiciones adiabáticas durante muchos días, lo que acelera la hidratación del cemento debido al aumento de la temperatura. Aproximadamente, la temperatura máxima aumenta en 12 °C por cada 100 kg de cemento Portland por m³ de hormigón. En estos casos, el uso de retardadores puede retrasar el aumento de temperatura, pero no reducirlo.

Las restricciones al enfriamiento pueden surgir cuando el hormigón se coloca sobre una base ya endurecida o cuando la secuencia de vertido deja una masa significativa atrapada entre dos áreas de hormigón endurecido con armadura intermedia. En situaciones donde no se puede evitar esta restricción a la contracción o dilatación térmica, es fundamental colocar suficiente armadura de distribución para controlar la formación de fisuras.

Además, se recomienda verter el hormigón de manera continua. Esto requiere un suministro adecuado de hormigón en las proximidades y una planificación cuidadosa. La realización de vertidos en pequeñas cantidades puede ser poco recomendable debido a la creación de numerosas juntas de hormigonado.

Os dejo algunos vídeos ilustrativos. Espero que os interesen.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio para Mehrdad Hadizadeh-Bazaz en el IX Encuentro de Estudiantes de Doctorado

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del IX Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal. Es el segundo año consecutivo que Mehrdad consigue este premio.

Hoy en día, debido a los elevados costes de construcción, reparación y mantenimiento de grandes estructuras como los puentes, así como la creciente atención al ciclo de vida sostenible en todas las etapas, desde el diseño hasta el final de su vida útil, es crucial emplear diversos métodos para identificar daños y evaluar su eficacia en diferentes estructuras y condiciones. Esto no solo puede aumentar la vida útil de las estructuras y reducir los costes, sino también minimizar el impacto ambiental y social.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Descargar (PDF, 830KB)

Referencias:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Structural Engineering and Mechanics, 85(2):197-206. DOI:10.12989/sem.2023.85.2.197

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2022). Performance comparison of structural damage detection methods based on Frequency Response Function and Power Spectral Density. DYNA, 97(5):493-500. DOI:10.6036/10504

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.