Diseño optimizado de edificios de pórticos de hormigón armado frente al colapso progresivo mediante metamodelos

El diseño estructural de los edificios plantea importantes retos para garantizar su seguridad y sostenibilidad. El colapso progresivo, provocado por eventos extremos como terremotos o explosiones, puede ocasionar daños catastróficos. Para reducir este riesgo, se propone una metodología de diseño apoyada en metamodelos que combina optimización estructural y criterios de seguridad, y que tiene en cuenta elementos que a menudo se pasan por alto, como los forjados, las pantallas de arriostramiento y la interacción suelo-estructura (SSI, por sus siglas en inglés).

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. También es fruto de la colaboración con investigadores de Brasil y Cuba.

Metodología

Descripción del problema

Se estudiaron cinco edificios de pórticos de hormigón armado con diferentes configuraciones de plantas y luces. Las estructuras incluyen vigas, columnas, forjados y pantallas de arriostramiento. Además, se incorporó el diseño optimizado de cimentaciones, considerando la interacción con el suelo mediante modelos de elasticidad lineal. Las dimensiones de los elementos estructurales se ajustaron siguiendo las normas internacionales de diseño y se consideraron distintas combinaciones de carga para evaluar escenarios críticos.

Se realizaron simulaciones numéricas avanzadas que tuvieron en cuenta escenarios de carga extremos, incluyendo la pérdida de columnas críticas en diversas posiciones. En el análisis se tuvieron en cuenta factores de seguridad, límites de servicio y fallos estructurales para determinar los diseños óptimos. También se tuvieron en cuenta criterios de sostenibilidad y se midieron las emisiones de CO₂ asociadas a cada solución.

Optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC)

La metodología ObRDPC se centra en minimizar las emisiones de CO₂ como función objetivo, garantizando simultáneamente la robustez estructural mediante restricciones de seguridad. Para evaluar el colapso progresivo y simular la pérdida de columnas críticas, así como analizar la redistribución de cargas, se empleó el método de camino alternativo (AP). La metodología incluye la verificación de estados límite últimos y de servicio, lo que garantiza el cumplimiento de los requisitos normativos.

El proceso de optimización incluye la definición precisa de las variables de diseño, como las dimensiones de las vigas, columnas y cimentaciones, así como el tipo de hormigón utilizado. Para maximizar la eficiencia estructural y minimizar los costos ambientales, se aplican técnicas de programación matemática.

Modelización de forjados y pantallas de arriostramiento

  • Forjados: se modelaron como elementos tipo placa de 12 cm de espesor y se conectaron a las vigas mediante nodos rígidos para asegurar la continuidad estructural. Se realizó una discretización adecuada para representar su comportamiento realista ante cargas verticales y horizontales. El análisis incluyó el comportamiento a flexión, los efectos de cargas concentradas y la interacción con los elementos perimetrales. Se consideraron diferentes configuraciones de refuerzo para maximizar la resistencia y minimizar las deformaciones.
  • Pantallas de arriostramiento: representadas mediante diagonales equivalentes elásticas, según las especificaciones normativas. Se definieron sus propiedades mecánicas mediante modelos experimentales previos, incluyendo el módulo de elasticidad y la resistencia a compresión. Se estudiaron distintos tipos de mampostería y su influencia en la resistencia general. Las pantallas de arriostramiento también se evaluaron como elementos activos en la redistribución de cargas después de eventos que provocan la pérdida de soporte, lo que mejora la estabilidad global del sistema estructural.

Interacción suelo-estructura (SSI)

Se consideró el asentamiento diferencial de las cimentaciones mediante coeficientes de rigidez calculados según modelos elásticos. El suelo se modeló como un medio elástico semiespacial. En el análisis se incluyó la interacción entre la superestructura y el terreno para capturar los efectos de asentamientos desiguales y su impacto en el estado de esfuerzos y deformaciones.

En el análisis se tuvieron en cuenta diferentes tipos de suelos, desde arcillas de baja resistencia hasta suelos granulares compactados. Se realizaron estudios paramétricos para evaluar la sensibilidad del sistema a variaciones en la rigidez del terreno y el módulo de elasticidad del hormigón.

Cinco estudios de casos que consideran la modelización de cimientos, forjados y pantallas de arriostramiento.

Optimización asistida por metamodelos

Se utilizaron técnicas avanzadas de optimización asistida por metamodelos para reducir la carga computacional. El proceso incluyó un muestreo inicial mediante muestreo hipercúbico latino para cubrir eficientemente el espacio de diseño, seguido de la construcción del metamodelo a través de técnicas de interpolación Kriging para aproximar las respuestas estructurales, evaluando múltiples configuraciones para garantizar la precisión. Posteriormente, se aplicó una optimización global utilizando algoritmos evolutivos, como la Biogeography-based Optimization (BBO), para explorar soluciones factibles y un método iterativo para refinar las soluciones y garantizar su viabilidad en condiciones críticas.

Resultados

Impacto de forjados y pantallas de arriostramiento

La inclusión de forjados y pantallas de arriostramiento mejoró significativamente la redistribución de cargas y la resistencia al colapso progresivo. El análisis mostró una reducción del 11 % en el impacto ambiental para diseños resistentes al colapso, en comparación con modelos que solo consideran vigas y columnas.

Se observó una mejora notable en la capacidad de redistribución de cargas después de la pérdida de columnas críticas. Las pantallas de arriostramiento actuaron como elementos resistentes adicionales, mitigando fallos en los elementos primarios y reduciendo los desplazamientos globales.

Comparación de enfoques de diseño

Se observó que aumentar el número de niveles incrementa la robustez estructural debido a la mayor redundancia de elementos. Sin embargo, el incremento de la longitud de las luces de las vigas reduce esta capacidad, por lo que es necesario utilizar secciones más robustas y aplicar mayores refuerzos.

Los modelos con luces de 8 m presentaron un aumento del 50 % en las emisiones de CO₂ cuando no se incluyeron forjados ni pantallas de arriostramiento. Al incorporarlos, se consiguió reducir este incremento a la mitad.

Recomendaciones prácticas para el diseño estructural

  1. Incluir forjados y pantallas de arriostramiento: Su integración mejora significativamente la resistencia al colapso progresivo, particularmente en edificios con luces amplias.
  2. Optimizar secciones estructurales: Diseñar secciones de vigas y columnas equilibrando rigidez y eficiencia económica.
  3. Evaluar diferentes tipos de cimentaciones: Incorporar análisis de interacción suelo-estructura para definir bases óptimas.
  4. Aplicar análisis paramétricos: Evaluar la sensibilidad de los diseños a variaciones en la resistencia del hormigón y las condiciones geotécnicas.
  5. Considerar combinaciones de carga extremas: Simular múltiples fallos para garantizar diseños robustos y seguros.

Conclusión

La optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC) permite diseñar estructuras resistentes al colapso progresivo con menor impacto medioambiental. El uso de metamodelos y la consideración de forjados, pantallas de arriostramiento y la interacción suelo-estructura mejoran significativamente la seguridad estructural y la sostenibilidad del diseño. Se recomienda ampliar esta investigación a otros tipos de estructuras y condiciones geotécnicas complejas para validar y perfeccionar la metodología propuesta.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementation. Engineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

El artículo os lo podéis descargar gratuitamente, hasta el 1 de febrero de 2025, en el siguiente enlace: https://authors.elsevier.com/c/1kFtRW4G4f7uC

Gestión y sostenibilidad de las playas en la Comunidad Valenciana: un análisis del turismo y la erosión costera

De Siocaw – Trabajo propio, Dominio público, https://commons.wikimedia.org/w/index.php?curid=3782634

El turismo es un pilar económico esencial para España, ya que representa el 12,8 % del Producto Interior Bruto (PNB) y el 12,6 % del empleo directo en 2023. Entre las distintas formas de turismo, el modelo de «sol y playa» ocupa un lugar privilegiado gracias a las favorables condiciones climáticas y a la riqueza natural de sus costas. En este contexto, la Comunidad Valenciana se posiciona como una de las principales zonas receptoras de turistas nacionales e internacionales gracias a sus playas, que suponen un recurso tanto económico como medioambiental.

Sin embargo, este modelo de desarrollo se enfrenta a importantes desafíos. La erosión costera, la presión urbanística y la sobreexplotación de recursos están poniendo en peligro la sostenibilidad de las playas, que constituyen el núcleo de la oferta turística de la región. Este informe, basado en el análisis de Yepes y Medina (2005), profundiza en los modelos turísticos, identifica las causas principales de la erosión costera y propone soluciones para garantizar el equilibrio entre desarrollo económico y conservación ambiental. Aunque este artículo tiene 20 años, algunos datos deberían actualizarse, su contenido sigue siendo plenamente vigente. No obstante, algunas de las conclusiones del estudio pueden sorprender a quienes no conocen este sector. Por tanto, recomiendo leer el artículo completo para comprenderlo mejor.

El turismo como motor económico

España es uno de los destinos turísticos más visitados del mundo, compitiendo con Estados Unidos y Francia, que en 2004 recibieron 85,7 millones de turistas extranjeros y generaron 37 250 millones de euros, lo que convierte al turismo en un sector clave para la economía nacional, ya que cubre más de la mitad del déficit comercial. En este contexto, la Comunidad Valenciana destaca por su litoral de 454 km y su clima privilegiado, con 4,9 millones de turistas internacionales y 15,9 millones de viajeros nacionales en 2004, que sumaron más de 151 millones de pernoctaciones, gracias a sus playas, sus 3000 horas de sol anuales y las temperaturas del agua, entre 13 °C y 29 °C.

Modelos de desarrollo turístico

El desarrollo turístico de las zonas litorales de la Comunidad Valenciana se puede dividir en dos modelos principales: intensivo y extensivo. Ambos tienen características distintivas que afectan a su impacto económico, medioambiental y social.

El modelo intensivo se caracteriza por estancias cortas en hoteles o apartamentos de alquiler, con alta densidad urbana y elevados niveles de gasto diario. Benidorm es un ejemplo destacado por su rentabilidad y sostenibilidad. Entre sus principales ventajas se encuentran una alta productividad económica, con ingresos de hasta 12 000 €/m², un menor consumo de recursos como agua, energía y suelo por turista, y la capacidad de operar durante todo el año, lo que reduce significativamente la estacionalidad.

El modelo extensivo se basa en estancias prolongadas en segundas residencias, con baja densidad urbana y un gasto diario reducido. Torrevieja es un ejemplo destacado por su predominio de viviendas vacacionales. Entre sus principales desventajas se encuentran un uso ineficiente de recursos, ya que se requieren hasta catorce veces más suelo por turista que en el modelo intensivo, altos costes en servicios públicos debido a la dispersión geográfica y baja densidad poblacional, así como una limitada capacidad para generar empleo y dinamismo económico local.

El análisis de Yepes y Medina demuestra que los modelos intensivos son superiores desde las perspectivas económica y medioambiental. Por ejemplo, un turista en un modelo intensivo consume cuatro veces menos agua y requiere un 93 % menos de superficie que un turista en un modelo extensivo. Además, los gastos diarios del modelo intensivo son un 60 % más altos, lo que contribuye a dinamizar el sector servicios y a crear empleo.

Erosión costera: una amenaza crítica

La erosión costera es uno de los mayores desafíos para el turismo y la sostenibilidad ambiental en la Comunidad Valenciana, donde se ha perdido arena a un ritmo de 3 millones de m³ al año desde la década de 1950, lo que supone la reducción de 200 000 m² de playas cada año y afecta al 58 % de sus 178 km de playas arenosas. Entre sus principales causas se incluyen la construcción de represas, como los 187 embalses del río Ebro, que han reducido casi totalmente su aporte de sedimentos, antes de 15 millones de m³ anuales; las barreras costeras, como espigones y rompeolas en los puertos de Valencia, Sagunto y Castellón, que generan desequilibrios sedimentarios; y la urbanización, que disminuye los reservorios naturales de sedimentos y agrava la erosión durante tormentas.

Propuestas de soluciones sostenibles

Las soluciones sostenibles para mitigar la erosión costera incluyen la recuperación de sedimentos fluviales mediante sistemas de bypass en presas y el drenaje de sedimentos acumulados en embalses para reabastecer las playas. También se proponen proyectos de regeneración de playas mediante la alimentación artificial con sedimentos marinos y fluviales, priorizando zonas críticas como la costa sur de Benidorm, que cuenta con 20 millones de m³ disponibles. Además, se recomienda restringir el desarrollo urbano en áreas vírgenes de la costa, implementando planes de ordenación territorial que equilibren turismo y conservación ambiental. Finalmente, se sugiere promover el modelo intensivo, replicando casos de éxito como el de Benidorm, e incentivar el uso eficiente de recursos mediante políticas y normativas específicas.

Impacto futuro de la inacción

La falta de medidas efectivas para abordar la erosión y la presión urbanística podría tener consecuencias desastrosas. Si no se actúa, las playas continuarán retrocediendo a un ritmo alarmante, y los recursos críticos, como el espacio litoral y la arena, se agotarán. Esto no solo afectará al turismo, sino también a la biodiversidad costera y al bienestar de las comunidades locales.

Conclusiones

El turismo costero en la Comunidad Valenciana es un recurso de incalculable valor económico y ambiental. Sin embargo, la erosión costera, la presión urbanística y la falta de estrategias de manejo sostenible están poniendo en peligro este modelo. Las soluciones deben centrarse en:

  • Restablecer el transporte natural de sedimentos.
  • Limitar la expansión urbana en áreas críticas.
  • Promover modelos turísticos intensivos más eficientes.

Si se implementan estas medidas, se puede garantizar la sostenibilidad a largo plazo de las playas valencianas, protegiendo su riqueza natural y asegurando su viabilidad económica para futuras generaciones.

Referencias

  • Yepes, V. & Medina, J.R. (2005). Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49, 83-88.
  • Organización Mundial del Turismo (2004). Tourism Highlights Edition 2004.

Os dejo el artículo completo para su consulta:

Descargar (PDF, 72KB)

Construcción en América Latina y el Caribe: digitalización e innovación como claves para la sostenibilidad

El sector de la construcción en América Latina y el Caribe (ALC) es uno de los pilares fundamentales de la economía regional, pero también se enfrenta a desafíos significativos en términos de sostenibilidad, productividad y digitalización.

A continuación nos hacemos eco de un informe donde se detallan las claves para transformar el sector basándose en datos, análisis de tendencias y recomendaciones prácticas. El informe lo tenéis al final de este resumen.

 

1. Introducción: importancia del sector y sus retos

El sector de la construcción genera aproximadamente 300 000 millones de dólares en América Latina y el Caribe, lo que representa el 6 % del producto interior bruto (PIB) regional y más de 20 millones de empleos directos. A nivel mundial, contribuye al 13 % del PIB y da empleo a 250 millones de personas. Sin embargo, su productividad ha crecido solo un 1 % anual en las últimas dos décadas, lo que la sitúa muy por debajo de sectores como la manufactura (3,6 %) y la agricultura (2,8 %).

El sector de la construcción es uno de los mayores consumidores de recursos naturales y contribuye significativamente al cambio climático. Según el World Green Building Council (2023):

  • Representa el 50 % del consumo global de recursos extraídos.
  • Utiliza el 15 % del agua potable mundial.
  • Es responsable del 37 % de las emisiones globales de CO₂ relacionadas con la energía.
  • Genera el 35 % de los residuos sólidos producidos anualmente en el planeta.

Además, las proyecciones indican que el sector crecerá considerablemente en los próximos años. Se estima que para 2050 aún no se ha construido el 60 % de los edificios necesarios y que el 20 % de las estructuras existentes requieren renovaciones para cumplir los objetivos de sostenibilidad y cero emisiones netas.

2. Soluciones habilitantes para la construcción sostenible

El documento identifica seis categorías fundamentales de soluciones que pueden transformar el sector hacia la sostenibilidad. Estas soluciones integran tecnologías digitales, diseño innovador, materiales sostenibles y enfoques de gestión eficientes.

  • Tecnologías digitales avanzadas: Las tecnologías digitales son esenciales para mejorar la eficiencia, la transparencia y la sostenibilidad en todas las etapas del ciclo de vida de los proyectos de construcción.
    1. Building Information Modeling (BIM): permite el diseño colaborativo de infraestructuras en un entorno digital. Sus beneficios incluyen:
      • Incremento de la productividad en un 13%.
      • Reducción de costos en un 4% y de los plazos en un 6%.
      • Automatización de procesos como la simulación de consumo energético y la evaluación de impactos climáticos.
      • Caso de éxito: en Uruguay, el uso de BIM y LEAN Construction en el proyecto CAIF Aeroparque resultó en un ahorro del 50% en tiempos de respuesta y un 63% menos en sobrecostos durante la pandemia​.
    2. Inteligencia artificial (IA): mejora la planificación, el diseño y la operación de los activos construidos. Ejemplos:
      • Simulaciones para evaluar el rendimiento energético y el comportamiento estructural ante desastres.
      • Optimización de rutas de transporte y logística en obra, reduciendo costos y emisiones.
    3. Internet de las cosas (IoT):
      • Sensores inteligentes monitorean el uso de energía, agua y recursos en tiempo real, ajustando automáticamente los sistemas para maximizar la eficiencia.
      • Aplicaciones como Building Resilience ayudan a evaluar riesgos climáticos y seleccionar ubicaciones óptimas para proyectos.
    4. Impresión 3D:
      • Permite fabricar componentes en obra o en fábricas cercanas, reduciendo los residuos y las emisiones de transporte.
      • Facilita el uso de materiales reciclados, disminuyendo la dependencia de recursos vírgenes.
    5. Blockchain:
      • Asegura la trazabilidad de materiales, verifica certificaciones ambientales y gestiona residuos con mayor transparencia.
    6. Gestión en la nube:
      • Reduce el empleo de papel, mejora la colaboración en tiempo real y almacena datos clave para optimizar la sostenibilidad.

  • Diseño sostenible: El diseño sostenible aborda el impacto ambiental desde la concepción del proyecto, empleando enfoques como el diseño bioclimático, que optimiza la orientación solar, el aislamiento térmico y la ventilación pasiva para reducir la demanda energética. Un ejemplo de ello son los edificios pasivos, que minimizan el uso de climatización activa; la eficiencia energética y la generación de energía renovable mediante paneles solares, sistemas LED y edificaciones de carbono neutro o positivas que producen más energía de la que consumen; y la flexibilidad en el diseño, con espacios modulares que se adaptan a diferentes usos y disminuyen la necesidad de futuras demoliciones.
  • Materiales sostenibles: El uso de materiales con bajas emisiones de carbono es fundamental para reducir el impacto ambiental. Entre estos materiales destacan la madera certificada, que tiene una huella de carbono negativa, es renovable, reciclable y eficiente energéticamente, y constituye una alternativa clave al hormigón en Chile, que representa el 54 % de las emisiones de carbono de un edificio; el bambú, un material resistente y de rápido crecimiento utilizado en zonas tropicales; y los materiales reciclados, que disminuyen la extracción de recursos naturales y los residuos de construcción.
  • Sistemas de construcción industrializada: La prefabricación, la construcción modular y la impresión 3D contribuyen a reducir los residuos en obra y el tiempo de construcción, y permiten finalizar las obras hasta un 50 % más rápido que con los métodos tradicionales.
  • Medición y verificación del impacto ambiental: Certificaciones como LEED, EDGE y BREEAM permiten evaluar y validar la sostenibilidad de los proyectos.
  • Enfoques de gestión eficientes: Metodologías como LEAN Construction y Advanced Work Packaging optimizan los procesos y reducen retrasos.

3. Experiencias, retos y oportunidades en Latinoamérica y el Caribe

El análisis en Brasil, Chile, Costa Rica y Uruguay revela 44 iniciativas identificadas desde 2015, la mayoría lideradas por el sector público. Entre los retos a los que se enfrentan destacan la falta de integración entre soluciones digitales y sostenibles, la baja percepción del valor económico de la sostenibilidad y los altos niveles de informalidad en el sector. Entre las buenas prácticas destacan el uso de estrategias internacionales de benchmarking, la capacitación técnica en metodologías digitales y la compra pública innovadora y ecológica para estimular la demanda de tecnologías sostenibles.

4. Claves para el futuro

Para transformar el sector, se recomiendan políticas de liderazgo público que promuevan la digitalización y la sostenibilidad, así como incentivos financieros y no financieros, como subsidios, créditos y regulaciones, para fomentar la adopción de prácticas sostenibles. También se recomienda fomentar la colaboración multisectorial mediante alianzas entre los sectores público, privado y académico para compartir conocimientos y recursos, y ofrecer programas de capacitación y educación en habilidades digitales para los trabajadores del sector.

5. Conclusión

La adopción masiva de tecnologías digitales, materiales sostenibles y enfoques innovadores puede situar a Latinoamérica y el Caribe a la vanguardia de la construcción sostenible a escala mundial. Para transformar el sector de la construcción, es necesario adoptar un enfoque holístico que combine innovación tecnológica, gestión eficiente y políticas públicas. La adopción generalizada de soluciones digitales y sostenibles no solo mejorará la productividad, sino que también reducirá el impacto ambiental, lo que hará que el sector sea más resiliente y competitivo en el contexto global.

Os dejo el siguiente documento, donde tenéis toda la información. Espero que os sea de interés.

Descargar (PDF, 4.11MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Losas aligeradas con análisis multivariante: innovación, eficiencia y sostenibilidad en los Métodos Modernos de Construcción

Innovación y optimización en el diseño estructural: losas aligeradas con análisis multivariante

La construcción moderna está en constante evolución para superar los retos asociados al alto consumo de materiales, la sostenibilidad ambiental y los costes elevados. En este contexto, las losas aligeradas con esferas o discos plásticos presurizados se presentan como una solución estructural innovadora que combina eficiencia, sostenibilidad y funcionalidad. Este artículo detalla, basándose en el análisis exhaustivo del documento presentado, cómo la metodología de análisis multivariante permite dimensionar con precisión este tipo de losas, optimizando recursos y reduciendo el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Losas de hormigón armado sin vigas, aligeradas con esferas o discos plásticos. https://www.prenovaglobal.com/index.php/es/losas-sin-vigas-con-esferas-o-discos/

Introducción a las losas aligeradas

Las losas de hormigón armado son elementos clave en cualquier edificación, diseñadas para soportar cargas verticales y transferirlas a los soportes principales. Sin embargo, su peso propio plantea un desafío técnico y económico, especialmente cuando hay grandes luces entre apoyos, ya que se necesitan más materiales y refuerzos, lo que aumenta los costos y el impacto ambiental.

El concepto de losas aligeradas

Este sistema estructural combina los Métodos Modernos de Construcción (MMC) con la sostenibilidad ambiental e integra aligeradores huecos de materiales reciclados, como discos o esferas plásticas presurizadas, en el núcleo de las losas. Estas estructuras reducen el peso propio, optimizan las cargas transmitidas y permiten utilizar menos hormigón y acero sin comprometer la resistencia estructural.

Innovación técnica: metodología para el dimensionamiento

Base del estudio

La metodología presentada analiza 67 edificios construidos con losas aligeradas y registra 75 observaciones de forjados. Estos datos se procesaron mediante análisis estadístico y modelos de regresión multivariante, lo que permitió desarrollar ecuaciones predictivas altamente precisas para calcular el espesor de las losas en función de sus características estructurales.

Variables clave

  1. Luz principal (L): Distancia entre los apoyos principales.
  2. Espesor de la losa (E): Variable dependiente del modelo.
  3. Altura del disco o diámetro de la esfera (H): Elemento aligerante.
  4. Sobrecarga (Q): Definida por el uso del edificio.
  5. Superficie construida: Influye en la carga total transferida.
  6. Número de plantas: Relacionado con la distribución de cargas.

Resultados del análisis

El estudio identificó una fuerte correlación entre estas variables, especialmente entre el espesor de la losa y la luz entre apoyos. Esto permitió formular una ecuación que explica hasta el 98,34 % de la variabilidad del espesor de las losas aligeradas.

Ecuación ajustada del modelo final:

Aspectos destacados:

  • La relación cuadrática entre la luz y el espesor refleja la carga que predomina en la sección.
  • La altura del disco aligerante influye directamente en el diseño, que está condicionada por los espesores comerciales disponibles.

Validación estadística

Se realizaron pruebas de normalidad (Shapiro-Wilk y Kolmogorov-Smirnov) y análisis de residuos. Los residuos siguieron una distribución normal, confirmando la robustez y validez del modelo propuesto.

Criterios de diseño

  • Para luces mayores de 7,2 m o sobrecargas superiores a 2 kN/m², el modelo proporciona cálculos más precisos que las reglas tradicionales.
  • Se recomienda utilizar este modelo como guía inicial para seleccionar el tamaño adecuado de los aligeradores.

Beneficios económicos y ambientales

El uso de losas aligeradas supone una mejora sustancial en términos de costes y sostenibilidad:

Ahorro de materiales

  • Se ha reducido el consumo de hormigón hasta en un 30 %, lo que equivale a 1000 m³ menos por cada 10 000 m² de losas construidas.
  • Disminución del uso de acero en un 20 %, lo que optimiza los refuerzos y las cimentaciones.

Impacto ambiental

  • Reducción de emisiones de CO₂: por cada 10 000 m² de losas, se evita la emisión de 220 toneladas de CO₂.
  • Uso de materiales reciclados para los aligeradores, lo que promueve la economía circular.
  • Se consume menos agua y energía durante la construcción.

Optimización de costes

  • Las estructuras más ligeras reducen la demanda de cimentaciones y elementos de soporte.
  • Se necesita menos cimbrado y los tiempos de construcción son más cortos.
  • Aumento de la eficiencia global del proyecto.

Aplicaciones y comparativas estructurales

Las losas aligeradas son particularmente útiles en edificios residenciales, comerciales e industriales donde se requieren luces amplias (de 5 a 16 m). Su flexibilidad y adaptabilidad permiten su uso en una amplia variedad de aplicaciones.

Comparación con losas macizas

  1. Peso y carga:
    • Las losas aligeradas reducen el peso propio hasta en un 30 %.
    • Al transferir menos cargas a los pilares y cimentaciones, se reduce el riesgo de daños.
  2. Resistencia estructural:
    • Ofrece una resistencia a la flexión y al punzonamiento comparable a la de las losas macizas.
    • Incorporación de zonas macizas alrededor de los pilares para mejorar la capacidad cortante.
  3. Flexibilidad en el diseño:
    • Permite mayores luces y diseños arquitectónicos más libres.
    • Facilita la apertura de huecos para instalaciones o reformas en el futuro.

Desafíos y perspectivas futuras

Aunque este sistema presenta numerosos beneficios, aún enfrenta ciertos retos que deben abordarse:

  1. Estandarización del diseño:
    • Es necesario desarrollar normas que regulen el uso de aligeradores en distintos contextos.
    • Hay que incorporar criterios adicionales, como la resistencia al fuego y la durabilidad, en los modelos de diseño.
  2. Optimización del sistema:
    • Explorar nuevos materiales reciclados para mejorar la sostenibilidad del sistema.
    • Desarrollar herramientas digitales basadas en dicho modelo para facilitar su aplicación.
  3. Estudios comparativos ampliados:
    • Evaluar el rendimiento de las losas aligeradas frente a sistemas tradicionales, como los forjados reticulares.
    • Realizar un análisis del ciclo de vida completo que tenga en cuenta el impacto económico, ambiental y social.

Conclusiones

Este estudio ofrece una herramienta innovadora para el dimensionamiento eficiente de losas aligeradas, basada en el análisis multivariante y en criterios estadísticos rigurosos. Estas estructuras no solo optimizan el uso de materiales, sino que también reducen el impacto ambiental y fomentan la sostenibilidad en la construcción.

Con un enfoque que combina diseño avanzado, ahorro de recursos y flexibilidad arquitectónica, las losas aligeradas están transformando la forma de construir edificios modernos. A medida que se perfeccionen los modelos y se amplíen sus aplicaciones, este sistema se perfilará como una solución fundamental para construir un futuro más sostenible y eficiente.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 1.39MB)

Referencia:

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 445-459. DOI:10.61547/2402013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Losas aligeradas multiaxiales: innovación y sostenibilidad en los Métodos Modernos de Construcción

Vivienda unifamiliar con losas aligeradas multiaxiales «Unidome»

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Sánchez-Garrido, Yepes-Bellver, Saiz y Yepes es un análisis de losas aligeradas multiaxiales empleadas en edificación.

En la actualidad, el sector de la construcción se enfrenta a desafíos significativos relacionados con la necesidad de optimizar recursos, minimizar el impacto ambiental y satisfacer demandas estructurales complejas. Ante este panorama, los Métodos Modernos de Construcción (MMC) han surgido como una alternativa disruptiva a las técnicas tradicionales. Este artículo analiza la implementación de losas aligeradas multiaxiales, y destaca su diseño, beneficios, impacto en la sostenibilidad y su comparación con estructuras convencionales.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El auge de los Métodos Modernos de Construcción

Los MMC, también conocidos como «construcción inteligente», introducen un enfoque industrializado que revoluciona la forma de diseñar y construir edificios. Este concepto, inicialmente popularizado en el Reino Unido, abarca tecnologías modulares y procesos automatizados que hacen que la construcción sea más rápida, económica y sostenible.

A diferencia de los métodos tradicionales, los MMC integran disciplinas como la ingeniería estructural, la arquitectura y la gestión de proyectos. Estas técnicas permiten aprovechar al máximo los materiales, reducir los residuos y acortar los plazos de ejecución. Dentro de este enfoque, destacan las losas aligeradas multiaxiales, una solución que combina eficiencia estructural y sostenibilidad.

Características técnicas de las losas aligeradas

Las losas aligeradas multiaxiales suponen una evolución frente a las losas macizas tradicionales. Su diseño incorpora elementos huecos, como los formadores «Unidome», que sustituyen el hormigón en áreas de baja capacidad portante, lo que genera importantes beneficios estructurales y medioambientales.

  1. Materiales:
    • Hormigón armado.
    • Aligeradores de plástico reciclado (HDPE o PP).
    • Barras de acero para refuerzo y fijación.
  2. Diseño:
    • Reducción de hasta el 35 % del hormigón empleado.
    • Aligeramiento del peso propio de la losa, lo que facilita su transporte y montaje.
    • Incorporación de zonas macizas en áreas críticas, como las cercanas a pilares, para garantizar la resistencia a cortante y al punzonamiento.
  3. Flexibilidad estructural:
    • Reducción de entre un 5-10 % en el canto del forjado.
    • Aumento de luces hasta un 40 % más respecto a las losas macizas.
    • Mejora en la distribución de cargas y en el comportamiento frente a sismos.
  4. Durabilidad:
    • Diseño optimizado para prevenir fallos estructurales por flexión, cortante o cargas axiales.
    • Resistencia al fuego gracias a recubrimientos específicos y diseño uniaxial o biaxial.

Comparativa: estructura convencional frente a MMC

Para evaluar el impacto de las losas aligeradas, se realizó un estudio de caso en un edificio residencial público de Chiclana (Cádiz), donde se compararon dos alternativas estructurales: una convencional y otra basada en MMC.

Opción A: Estructura convencional

  • Características:
    • 10 pilares para luces de 6,6 m.
    • Losas macizas de hormigón armado con espesores de 26-28 cm.
    • Mayor peso propio, que requiere cimentaciones más robustas.
  • Materiales utilizados:
    • 509,87 m³ de hormigón.
    • 59.837 kg de acero.

Opción B: Estructura MMC con losas aligeradas

  • Características:
    • 6 pilares soportan luces de hasta 13,2 m, eliminando filas intermedias.
    • Losas aligeradas de 40-44 cm con un 35 % menos de peso propio en áreas no críticas.
  • Materiales utilizados:
    • 532,60 m³ de hormigón (4,5 % más que la opción A).
    • 69.892 kg de acero (16 % más que la opción A).

Aunque la opción B requiere más materiales, su diseño permite reducir significativamente los elementos estructurales, como los pilares, lo que da como resultado una estructura más esbelta y eficiente. Además, al eliminar soportes intermedios, se obtienen beneficios adicionales como espacios diáfanos, flexibilidad en el diseño interior y menores tiempos de ejecución.

Sostenibilidad: Un enfoque imprescindible

La sostenibilidad es uno de los pilares de los MMC y las losas aligeradas no son una excepción. La implementación de estas losas tiene un impacto positivo que se refleja en diversos aspectos:

  1. Reducción de CO₂:
    • Cada módulo aligerado sustituye hasta un 35% del hormigón, lo que equivale a una reducción promedio de 46 toneladas de CO₂ por módulo construido.
    • Uso de plástico reciclado para los aligeradores, disminuyendo la dependencia de materiales vírgenes.
  2. Eficiencia energética:
    • Menor consumo de energía en la producción y transporte de materiales.
    • Reducción del 20% en el gasto energético durante la construcción.
  3. Optimización de recursos:
    • Ahorro de agua en el proceso de fabricación del hormigón.
    • Disminución del peso propio, lo que optimiza cimentaciones y reduce la cantidad de acero requerido.

Resultados concretos

En el estudio comparativo, las losas MMC redujeron las emisiones de CO₂ en un 25 % por metro cuadrado, mientras que su transporte requirió un 30 % menos de camiones en comparación con las losas macizas tradicionales.

Aplicaciones prácticas y retos futuros

Las losas aligeradas tienen un amplio rango de aplicaciones, desde edificios residenciales hasta rascacielos y escuelas. Su adaptabilidad permite implementarlas en forjados y cimentaciones con espesores que van desde los 20 cm hasta los 80 cm. No obstante, todavía enfrentan ciertos desafíos:

  • Aceptación del mercado: La estandarización y la capacitación de los profesionales son esenciales para su adopción masiva.
  • Optimización del diseño: Futuras investigaciones buscan extender las aplicaciones a cargas y luces mayores, comparando su desempeño con otras soluciones como forjados reticulares o postensados.

Beneficios adicionales para los proyectos

Además de los aspectos técnicos y sostenibles, las losas aligeradas ofrecen ventajas tangibles para los equipos de diseño y construcción:

  1. Simplificación del proyecto:
    • Geometrías más sencillas y menos complejas.
    • Reducción de cargas estructurales, lo que facilita el cálculo estático.
  2. Velocidad de construcción:
    • Los formadores de huecos llegan preensamblados o listos para instalar, reduciendo los tiempos de montaje.
    • El menor peso de los elementos acelera el proceso de hormigonado.
  3. Versatilidad arquitectónica:
    • Mayor libertad en la distribución de espacios interiores.
    • Facilidad para abrir huecos adicionales o modificar diseños.

Conclusiones

Los Métodos Modernos de Construcción, y específicamente las losas aligeradas multiaxiales, representan un cambio de paradigma en la ingeniería civil. Al reducir el uso de materiales y optimizar recursos, así como al mejorar el desempeño estructural, estas soluciones no solo son más sostenibles, sino también más adaptables a las necesidades contemporáneas de diseño y construcción.

Al combinar eficiencia, flexibilidad y sostenibilidad, las losas aligeradas ofrecen una respuesta sólida a los retos actuales del sector. Su implementación masiva tiene el potencial de transformar el panorama de la construcción y alinearse con objetivos globales como la reducción de emisiones y la industrialización sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 3.56MB)

Referencia:

SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 392-406. DOI:10.61547/2402009

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Efectos de las inundaciones en las estructuras de las edificaciones

Figura 1. Efectos de la DANA en Valencia. https://www.diariodesevilla.es/sociedad/catastrofe-inundaciones-valencia-directo_10_2002684877.html

Para comprender los efectos de las inundaciones en las estructuras de las edificaciones y cómo responder ante ellas, es fundamental entender tanto los factores que incrementan la vulnerabilidad de los edificios como las acciones preventivas y correctivas necesarias. Las inundaciones pueden afectar seriamente a las estructuras, dependiendo de la magnitud de las aguas, su salinidad, la saturación del suelo y la calidad de los materiales y prácticas constructivas empleados. La identificación de estos daños requiere evaluaciones técnicas detalladas y precisas. Este conocimiento es útil tanto para los propietarios, los técnicos y el personal de emergencias que deben tomar decisiones rápidas y bien fundamentadas en situaciones críticas.

1. Efectos de las inundaciones en la estructura de las edificaciones

Las inundaciones suponen una amenaza significativa para la integridad de los edificios y pueden afectar a la estructura de diversas maneras. Estos no siempre son visibles de inmediato y pueden empeorar con el tiempo si no se toman medidas correctivas. En las zonas propensas a las inundaciones, los edificios pueden sufrir diversos daños estructurales, como:

  • Socavación y fallos en la cimentación: La erosión causada por la corriente de agua disminuye la estabilidad de los cimientos. Cuando una inundación causa socavones cerca de una edificación, esto afecta directamente a la capacidad portante de los cimientos, ya que se pierde el soporte horizontal y lateral del suelo. Esto puede causar inclinaciones en las estructuras, grietas en los muros y, en casos extremos, el colapso parcial o total del edificio.
  • Erosión del suelo y pérdida de capacidad portante: La capacidad del suelo para soportar cargas se ve reducida debido a la erosión, lo que puede llevar al fallo de la cimentación.
  • Saturación del suelo: La acumulación de agua provoca saturación, lo que aumenta el riesgo de deslizamientos, derrumbes y avalanchas y afecta a la estabilidad del conjunto de cimentación y estructura. El suelo que rodea los cimientos de una edificación, al saturarse con agua, pierde densidad y estabilidad. Este fenómeno es especialmente crítico en áreas cercanas a cuerpos de agua (ríos, lagos o mares), donde el agua puede hacer que el suelo pierda su capacidad de soporte. Esto puede provocar fenómenos como deslizamientos, derrumbes y licuefacción. En casos graves, el terreno bajo la edificación se comporta casi como un líquido, perdiendo su capacidad para soportar el peso de la estructura y poniendo en riesgo su estabilidad.
  • Pérdida de soporte lateral y horizontal: Al disminuir la capacidad portante del suelo, la estructura pierde los soportes laterales y horizontales, lo que compromete su estabilidad y capacidad de carga.
  • Deterioro de los muros exteriores: Cuando el nivel de las inundaciones supera el metro de altura, la descompensación de presiones puede provocar fallos en los muros exteriores..
  • Inestabilidad estructural por impacto de escombros: Los escombros arrastrados por el agua, combinados con la presión hidrostática o hidrodinámica, pueden impactar en elementos estructurales y causar inestabilidad.
  • Aparición de grietas en muros, losas y columnas: Dependerá de la magnitud de la inundación y podría ocasionar daños que van desde reparables hasta irreparables.
  • Daños por capilaridad y humedad en las paredes: El fenómeno de capilaridad permite que el agua suba a través de los materiales porosos de los muros, debilitándolos progresivamente. Este problema es más frecuente en estructuras construidas directamente sobre el suelo sin barreras de impermeabilización o sobrecimientos. El agua absorbida por capilaridad puede afectar a la durabilidad y la resistencia de los materiales, provocando grietas y desprendimientos del revestimiento.
  • Deterioro de materiales de construcción: La exposición al agua contaminada o salina provoca corrosión en los materiales, especialmente en elementos metálicos no protegidos, galvanizados o inoxidables.
Figura 2. Presión hidrostática.

Para reducir estos riesgos, las nuevas construcciones en zonas de inundación deben ser diseñadas y construidas con especificaciones a prueba de inundaciones. Estas mejoras en la resistencia estructural no solo reducen el riesgo de fallos, sino que también disminuyen significativamente la probabilidad de víctimas en escenarios de inundación.

2. Problemática: daños y consecuencias

  • Daños estructurales: Las inundaciones generan múltiples efectos en la estabilidad de los edificios, afectando su integridad estructural. Entre estos daños destacan:
    • Presión hidrostática: La acumulación de agua en el perímetro de la edificación ejerce presión horizontal sobre los muros, proporcional al calado de la inundación. Este tipo de presión puede levantar los suelos o cimentación cuando el agua se acumula de un solo lado del edificio. En casos donde el agua ingresa al edificio, esta presión se neutraliza, pero introduce una carga gravitatoria que afecta elementos horizontales como forjados y soleras, pudiendo conducir al colapso de la estructura.
    • Presión hidrodinámica: El flujo de agua de un río desbordado puede alcanzar velocidades considerables y generar impactos en los muros, los cuales deben ser diseñados para soportar estas cargas dinámicas.
    • Impactos de objetos arrastrados: El agua arrastra escombros, vehículos y mobiliario urbano que impactan contra la edificación, generando daños considerables en sus elementos​.
    • Durabilidad y corrosión: El agua, especialmente si contiene minerales y sales, puede corroer el acero de refuerzo en estructuras de hormigón, debilitando su capacidad de carga. En materiales como la madera, la humedad reduce significativamente su resistencia estructural. Estos daños son más difíciles de detectar cuando los elementos están cubiertos o enterrados.
    • Erosión del material y del terreno: La exposición prolongada al agua, especialmente si el flujo es constante, puede erosionar materiales como ladrillo y bloque, deteriorando el mortero de unión y comprometiendo la estabilidad del edificio. El terreno también se ve afectado, sobre todo en su capacidad de soporte, agravando el riesgo de asentamientos diferenciales en la cimentación​.
  • Daños constructivos y estéticos: Las inundaciones afectan no solo a los elementos estructurales, sino también a los acabados y componentes funcionales de los edificios:
    • Daños en cerramientos y tabiques: Los paramentos exteriores e interiores pueden experimentar corrosión en elementos metálicos, pérdida de adhesión en revestimientos y daños en aplacados​.
    • Pérdida de estabilidad en fachadas y tabiques: Los impactos de objetos arrastrados por el agua o la reducción en las propiedades de los materiales debido a la humedad pueden hacer que las fachadas o tabiques colapsen​.
    • Daños en pavimentos: La prolongada presencia de agua produce abombamientos y deformaciones en los suelos, especialmente en los pavimentos de madera, causando el levantado de los materiales de agarre​.
    • Desperfectos estéticos: La humedad genera manchas y decoloración en superficies, mientras que los impactos pueden provocar la rotura de elementos ornamentales​.
    • Disfunción de instalaciones: Las instalaciones eléctricas, redes de saneamiento, sistemas de agua potable y equipos de ventilación y climatización pueden colapsar o fallar debido a la exposición a la humedad y obstrucción por residuos, lo cual compromete la funcionalidad del edificio​.
  • Daños al contenido: El ingreso de agua en el interior de un edificio provoca, inevitablemente, daños en su contenido, desde pérdidas materiales como aparatos electrónicos, mobiliario y documentos, hasta daños económicos significativos en edificaciones comerciales e industriales. Además, los edificios que almacenan bienes sensibles, como bibliotecas o museos, pueden sufrir daños irreparables en sus colecciones culturales o documentales.
  • Daños funcionales: Las inundaciones pueden afectar gravemente al funcionamiento de los edificios, especialmente en instalaciones críticas como hospitales o estaciones de bomberos, donde cualquier interrupción implica riesgos adicionales. Esto incluye la interrupción de servicios esenciales que comprometen la capacidad de respuesta en situaciones de crisis, la inactividad prolongada en edificaciones comerciales o industriales que ocasiona pérdidas económicas y la obstrucción de vías de acceso y evacuación, lo que dificulta las operaciones de emergencia y la seguridad de los ocupantes.
  • Daños relacionados con el entorno: Además de los daños directos a la estructura, las inundaciones pueden afectar a la parcela circundante y a los elementos del entorno inmediato, provocando erosión y desgaste en áreas sin edificación, como jardines o zonas comunes, donde se acumulan sedimentos y residuos que deterioran el terreno, el mobiliario y la vegetación. Asimismo, elementos del entorno, como vehículos o vegetación arrastrada, pueden afectar a la edificación y provocar asientos diferenciales por los desplazamientos del terreno. Finalmente, los residuos y contaminantes de instalaciones industriales o agrícolas arrastrados por el agua pueden afectar tanto al entorno natural como a la propia edificación.
  • Daños a largo plazo: Además de los daños inmediatos, las inundaciones pueden causar problemas que se manifiestan con el tiempo, como la corrosión en elementos estructurales debido a la humedad residual en materiales como el hormigón, lo que debilita las armaduras de acero y compromete la estructura gradualmente; también pueden surgir problemas de humedad persistente en áreas de difícil acceso, como los forjados sanitarios, donde el agua estancada crea condiciones favorables para el crecimiento de hongos y otros problemas fitosanitarios.

Estos puntos resaltan la complejidad de los efectos de una inundación en las edificaciones y su entorno, subrayando la importancia de contar con medidas preventivas y de rehabilitación efectivas para mitigar las consecuencias.

3. Identificación de los posibles daños en edificaciones debido a inundaciones

Este capítulo detalla los daños que pueden producirse en una edificación cuando ocurre una inundación. Abarca la identificación de puntos vulnerables, la inspección de elementos de valor, y la evaluación de daños en función del nivel de agua.

  • Identificación e inventario de puntos débiles: La ubicación y el riesgo del edificio son determinantes para identificar sus puntos débiles y reducir la vulnerabilidad ante las inundaciones. Los principales puntos de entrada del agua en las construcciones son los defectos en el mortero de ladrillo o mampostería, que facilitan la infiltración; las grietas en fachadas y juntas estructurales, especialmente en las uniones entre materiales diferentes, como paredes y losas; las ventanas y puertas, donde las fallas en el sellado y el contacto de los marcos permiten filtraciones; y las escaleras y entradas a sótanos, que al estar en niveles inferiores favorecen la acumulación de agua.
  • Comprobación de estabilidad estructural: Es crucial evaluar la capacidad de resistencia de los elementos estructurales a las fuerzas del agua, ya que las presiones desiguales pueden dañar paredes y pisos. La diferencia en la rapidez de entrada y salida del agua entre el exterior y el interior del edificio puede generar presión adicional, ocasionando daños estructurales importantes en muros y suelos.
  • Inspección de los elementos de valor del edificio: Realizar un inventario de los elementos importantes en el edificio permite diagnosticar daños potenciales y planificar su aseguramiento. Estos elementos se clasifican en: seres vivos (personas, mascotas y animales en actividades agropecuarias), continente (que abarca la estructura y el equipamiento, como cimientos, muros, sistemas de electricidad, agua y ventilación) y contenido (que varía según el uso del edificio e incluye mobiliario, documentos y materiales peligrosos).
  • Diagnóstico de daños en función de la altura del agua: El nivel del agua en el edificio influye directamente en el grado de daño. Ejemplos de daños según el nivel son:
    • 0 a 0,3 m (debajo del nivel de la planta baja): Posibles erosiones en cimientos, corrosión en elementos metálicos, acumulación de limo, y formación de moho.
    • 0,3 a 0,5 m: Saturación de revestimientos de paredes y suelos, problemas de humedad, y daños en puertas internas y externas.
    • Más de 0,5 m: Daños estructurales graves debido a la presión del agua, corrosión y fallos generalizados en sistemas eléctricos y sanitarios.

Estos daños muestran la importancia de realizar un diagnóstico exhaustivo para implementar medidas de mitigación eficientes, que garanticen la seguridad estructural del edificio y la protección de sus ocupantes y contenido.

Figura 3. Inventario de puntos de entrada del agua de inundación. Fuente: Preparing for Flood, Interim guidance for improving the flood resistance of domestic and small business properties. Office of the Deputy Prime Minister. 2003. Environment Agency – UK.

4. Factores de vulnerabilidad que agravan los daños por inundaciones

Las características constructivas y de mantenimiento de una edificación influyen en su vulnerabilidad frente a las inundaciones. Algunos factores clave incluyen:

  • Ausencia de sobrecimiento e impermeabilización: El sobrecimiento es una barrera de 30-50 cm de altura que se coloca en la base de los muros, y su función es proteger contra la humedad que asciende del suelo. La ausencia de este elemento en una construcción permite que el agua entre en contacto directo con las paredes, lo que facilita la absorción de agua por capilaridad. Además del sobrecimiento, la impermeabilización de cimientos y muros de la planta baja es vital para prevenir que el agua dañe las estructuras.
  • Calidad de los materiales: Cada material de construcción reacciona de manera distinta a la exposición prolongada al agua. La calidad del cemento, la arena y otros materiales utilizados en la construcción de los bloques y los cimientos influye en la resistencia de la edificación frente a las inundaciones. Los materiales de baja calidad se desintegran más rápidamente cuando entran en contacto con el agua. En áreas con edificaciones antiguas de tapial, por ejemplo, estos tienden a disolverse tras un contacto prolongado con el agua, provocando la descomposición de la estructura. El bahareque, compuesto tradicionalmente por madera, cañas y barro, presenta baja resistencia a la humedad y se deteriora rápidamente, con desprendimientos de revestimiento y deformaciones en la estructura de madera o caña, lo que puede causar inclinaciones o incluso el desplome de las viviendas. En el caso de la mampostería, aunque aparenta ser resistente, los bloques de cemento, por su porosidad y la falta de cocción de algunos materiales, son vulnerables al agua. La humedad puede deteriorar las primeras hiladas, debilitar la base y provocar el desplome parcial o total de la estructura, especialmente en zonas donde los bloques son de baja calidad o con una proporción insuficiente de cemento.
  • Errores en la construcción: En algunas construcciones, se cometen errores técnicos que comprometen la estabilidad de la estructura, especialmente en zonas inundables. Por ejemplo, el uso incorrecto de aparejos en mampostería o la falta de conocimientos técnicos en la ejecución de los cimientos puede resultar en problemas estructurales graves cuando la edificación enfrenta una inundación.

5. Medidas preventivas para minimizar daños en situaciones de inundación

La implementación de medidas preventivas ayuda a minimizar el impacto de las inundaciones en las edificaciones. Estas son algunas acciones recomendadas:

  • Inspección y mantenimiento regulares: Es crucial que las edificaciones en zonas propensas a inundaciones reciban mantenimiento constante y revisiones estructurales periódicas. Las inspecciones técnicas pueden identificar signos de desgaste o debilidades estructurales antes de que se conviertan en problemas graves. Esto incluye revisar cimientos, paredes y elementos de soporte clave.
  • Empleo de materiales resistentes al agua: Al construir o rehabilitar una vivienda en una zona propensa a las inundaciones, se recomienda usar materiales menos porosos y resistentes al agua. Asimismo, en áreas vulnerables, se recomienda aplicar revestimientos y pinturas impermeables en paredes y cimientos para evitar la absorción de humedad.
  • Adecuación del terreno y del sistema de drenaje: El sistema de drenaje del terreno circundante a una edificación es fundamental para evitar que el agua se acumule y afecte a los cimientos. En zonas propensas a las inundaciones, es importante crear canales de drenaje y pendientes que faciliten la salida del agua hacia áreas de menor riesgo.

6. Recomendaciones de emergencia para responder a inundaciones en edificaciones

En caso de inundación, estas son algunas recomendaciones prácticas para garantizar la seguridad de las personas y proteger, en la medida de lo posible, la estructura del edificio:

  • Inspección inmediata de daños: Una vez que el nivel del agua haya descendido, es fundamental realizar una inspección detallada del edificio para identificar daños visibles y ocultos. Los técnicos deben evaluar los cimientos y la estabilidad de las paredes para identificar signos de debilitamiento estructural que puedan suponer un riesgo.
  • Secado y limpieza de estructuras: Es crucial crucial eliminar el agua acumulada y permitir que las estructuras afectadas se sequen. El secado evita que la humedad siga dañando los materiales de construcción. Además, se debe limpiar la suciedad y los restos dejados por la inundación, ya que estos pueden acelerar el deterioro de los materiales.
  • Refuerzo y reparación de cimientos y paredes: Si las inspecciones revelan daños en los cimientos o paredes, es necesario realizar refuerzos inmediatos para evitar colapsos. Los cimientos debilitados pueden reforzarse con elementos estructurales adicionales y las paredes pueden requerir tratamientos impermeabilizantes o refuerzos de mampostería.

Conclusión

Entender los efectos de las inundaciones en las edificaciones es fundamental para aplicar medidas de prevención y reparación efectivas. Estos eventos pueden causar daños severos en la estructura, la estabilidad y el contenido de los edificios, lo que subraya la necesidad de realizar un diagnóstico preciso y de llevar a cabo acciones correctivas. La identificación de las áreas vulnerables, junto con el uso de materiales adecuados y sistemas de drenaje eficientes, es esencial para reducir los riesgos. Asimismo, el mantenimiento regular y una respuesta rápida ante las inundaciones son cruciales para proteger tanto la seguridad de los ocupantes como la integridad del edificio. La implementación de técnicas constructivas apropiadas mejora la resistencia de las estructuras frente a estos desastres.

A continuación, dejo algunos documentos que creo que pueden ser de interés.

Descargar (PDF, 24.19MB)

Descargar (PDF, 50.33MB)

Descargar (PDF, 1.26MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 8.18MB)

Edificios modulares de acero: una opción sostenible y resistente en zonas sísmicas

Un estudio reciente, titulado «Life cycle assessment of seismic resistant prefabricated modular buildings» y publicado en la prestigiosa revista Heliyon, ha evaluado los beneficios de los edificios modulares prefabricados (PVMB) diseñados para resistir terremotos.

La investigación, liderada por expertos de la Universitat Politècnica de València y la Universidad Central del Ecuador, se llevó a cabo en el marco del proyecto RESILIFE y comparó cuatro sistemas estructurales, tres de ellos basados en tecnología modular (dos de hormigón armado y uno de acero), y un sistema convencional de hormigón armado in situ, en una zona de alto riesgo sísmico.

El análisis tuvo en cuenta tanto los impactos económicos como ambientales a lo largo de todo el ciclo de vida de los edificios, desde la fabricación hasta la fase final de demolición.

 

Contexto del estudio

El sector de la construcción es responsable de una parte importante del consumo de recursos y de las emisiones de gases de efecto invernadero a nivel global. Dado que el crecimiento poblacional y la demanda de infraestructuras siguen aumentando, las tecnologías como los edificios modulares prefabricados ofrecen una alternativa innovadora para reducir el impacto ambiental. Estos sistemas, que permiten construir fuera del emplazamiento y ensamblar los módulos en la obra, prometen reducir los tiempos y los costes de construcción en un 50 % y un 30 %, respectivamente, lo que los convierte en una opción atractiva en términos de sostenibilidad y eficiencia.

Sin embargo, la adopción de estas tecnologías en áreas sísmicas aún se enfrenta a barreras, principalmente por la necesidad de demostrar su capacidad para resistir cargas sísmicas y por la percepción de altos costes iniciales. Por ello, el estudio se centró en realizar un análisis integral de la vida útil para cuantificar estos beneficios y compararlos con las técnicas de construcción convencionales.

Metodología

El estudio evaluó un hospital de cuatro pisos situado en Quito, Ecuador, una región con un alto nivel de actividad sísmica debido a la presencia de dos fuentes principales de terremotos: una zona de subducción y un sistema de fallas activas. Se evaluaron cuatro soluciones estructurales:

  1. Un sistema convencional de hormigón armado construido in situ.
  2. Un sistema modular de hormigón armado con conexiones húmedas (prefabricación con ensamblaje mediante hormigonado en obra).
  3. Un sistema modular de hormigón armado con conexiones secas (ensamblaje mediante pernos y juntas metálicas).
  4. Un sistema modular de acero.

El análisis abarcó las etapas de fabricación, construcción, uso y fin de vida, y evaluó tanto el impacto ambiental como el coste económico. Para ello, se utilizaron indicadores como la cantidad de materiales empleados, las emisiones de gases de efecto invernadero y los costes asociados a cada etapa, desde la producción de los módulos hasta su mantenimiento y demolición.

Resultados principales

Los resultados revelaron que, aunque el sistema modular de acero es el más costoso en términos de construcción inicial (un 60 % más caro que el sistema convencional), presenta los mejores resultados en términos de sostenibilidad. Este sistema mostró una reducción significativa en los impactos ambientales, con una disminución del 43 % en las emisiones de gases de efecto invernadero en comparación con el sistema tradicional de hormigón. Además, los ciclos de mantenimiento fueron menores, lo que implica una mayor durabilidad y menos intervenciones durante su vida útil.

Por otro lado, las alternativas de hormigón modular, si bien también ofrecían beneficios en cuanto a reducción del tiempo de construcción, presentaban mayores impactos ambientales debido al uso intensivo de hormigón y acero de refuerzo. De hecho, el sistema modular con conexiones húmedas resultó ser el menos favorable desde el punto de vista ambiental, con un impacto un 52 % mayor que el sistema convencional.

Implicaciones del estudio

Este trabajo tiene importantes implicaciones para la construcción en zonas sísmicas. Los autores sugieren que los métodos de construcción modulares no solo son viables desde el punto de vista técnico, sino también en términos de sostenibilidad ambiental, siempre y cuando se adopten las soluciones más eficientes, como el uso de estructuras de acero. Aunque los sistemas modulares de acero son más caros, ofrecen ventajas claras en cuanto a durabilidad, menor impacto ambiental y reducción de los costos de mantenimiento a lo largo de su vida útil.

El estudio también pone de relieve la importancia de evaluar no solo los costes iniciales de construcción, sino todo el ciclo de vida de las infraestructuras. Las decisiones basadas únicamente en el precio de construcción pueden dar como resultado infraestructuras menos sostenibles a largo plazo, mientras que un enfoque integral, que tenga en cuenta el impacto ambiental y los costes futuros, puede conducir a mejores decisiones tanto para el medio ambiente como para la economía.

Conclusiones

En resumen, este estudio aporta valiosas evidencias a favor del uso de edificios modulares prefabricados, especialmente en zonas de alto riesgo sísmico. Los resultados indican que el uso de sistemas modulares de acero puede ser clave para mejorar la sostenibilidad de las infraestructuras, reducir las emisiones y asegurar una mayor durabilidad de los edificios. Las conclusiones de esta investigación son relevantes no solo para el ámbito académico, sino también para los responsables de las políticas públicas y los profesionales de la construcción que buscan soluciones más sostenibles y eficientes para las ciudades del futuro.

Referencia:

GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). Life cycle assessment of seismic resistant prefabricated modular buildingsHeliyon, 10(20), e39458. DOI:10.1016/j.heliyon.2024.e39458

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 7.1MB)

 

Métodos modernos de construcción mejoran la sostenibilidad de estructuras en entornos costeros agresivos

Un estudio reciente, titulado «Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment» ha sido publicado en el Journal of Building Engineering, una de las revistas de mayor prestigio en el ámbito de la ingeniería civil. Desarrollado en el marco del proyecto RESILIFE, investiga la sostenibilidad del mantenimiento preventivo de estructuras de hormigón armado en entornos agresivos, como las zonas costeras, donde la corrosión por cloruros representa una amenaza constante.

El trabajo se centra en aplicar métodos modernos de construcción (MMC) para optimizar el impacto ambiental, económico y social de las estructuras a lo largo de su ciclo de vida.

Contexto del estudio

La industria de la construcción es una de las mayores consumidoras de recursos no renovables y genera un impacto significativo en el medio ambiente. En la Unión Europea, el sector es responsable de más del 40 % del consumo energético y de un 36 % de las emisiones de CO₂. Ante este escenario, iniciativas como el Green Deal Europeo buscan mitigar estos impactos y alcanzar la neutralidad de carbono para 2050. En este contexto, los métodos de construcción sostenibles y eficientes han adquirido una gran relevancia. En este contexto, los MMC emergen como una alternativa innovadora que combina materiales convencionales con técnicas constructivas no convencionales, enfocadas en mejorar la eficiencia y reducir el impacto ambiental.

El objetivo de la investigación fue aplicar estos métodos a la construcción de estructuras de hormigón en áreas costeras, específicamente un edificio residencial público situado frente al mar en Sancti Petri (Cádiz). En el estudio se analizaron diez opciones de diseño para las losas de hormigón armado, considerando factores como la economía, el impacto ambiental y social, y los ciclos de mantenimiento preventivo que cada opción requeriría durante la vida útil del edificio, estimada en 50 años.

Metodología y opciones de diseño

El estudio se centró en evaluar la durabilidad y sostenibilidad de diferentes alternativas de diseño en condiciones adversas, como la exposición constante a cloruros, que aceleran la corrosión del refuerzo de acero en el hormigón. Para ello, se evaluaron varias técnicas, entre ellas la adición de humo de sílice al 5 %, cenizas volantes, el uso de cemento sulforresistente o el incremento de la capa de recubrimiento del hormigón. También se consideraron medidas como la protección catódica y el uso de inhibidores de corrosión hidrofóbicos, con el fin de minimizar los ciclos de mantenimiento necesarios para preservar la estructura.

Resultados más relevantes

Los resultados indicaron que el empleo de hormigón con un 5 % de humo de sílice fue la opción más sostenible en términos económicos y ambientales, ya que redujo significativamente los ciclos de mantenimiento. Este material mostró una excelente resistencia a la corrosión, por lo que se redujeron las reparaciones necesarias durante los 50 años de vida útil del edificio. Además, la impregnación hidrofóbica resultó eficaz para reducir los impactos sociales, puesto que requiere menos intervenciones durante la fase de mantenimiento, lo que reduce los riesgos laborales y los costes sociales asociados.

El estudio también subraya la importancia de adoptar un enfoque holístico en la evaluación de la sostenibilidad. En lugar de centrarse solo en los aspectos económicos o ambientales, los autores emplearon un método de toma de decisiones multicriterio que integra estos factores junto con el impacto social. De hecho, la investigación reveló que una opción basada en el uso de cemento sulforresistente logró un aumento del 86 % en su calificación de sostenibilidad en comparación con el diseño de referencia.

Implicaciones y conclusiones

Este trabajo tiene importantes implicaciones para el diseño y el mantenimiento de infraestructuras en entornos expuestos a condiciones agresivas. Los autores sugieren que el enfoque tradicional, que a menudo se centra en minimizar los costes iniciales de construcción, debe reorientarse hacia una estrategia a largo plazo que considere todo el ciclo de vida de la estructura. De este modo, no solo se puede garantizar la viabilidad económica, sino también la reducción del impacto ambiental y social de las construcciones.

Además, el estudio pone de relieve la necesidad de promover políticas y normativas que incentiven el uso de materiales duraderos y métodos de mantenimiento preventivo, especialmente en zonas costeras, donde los edificios son particularmente vulnerables a la corrosión. El uso de métodos modernos de construcción (MMC) y la evaluación integral del ciclo de vida podrían ser claves para cumplir con los objetivos de sostenibilidad globales y garantizar la durabilidad de las infraestructuras frente a los desafíos ambientales futuros.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2024). Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment. Journal of Building Engineering, 95:110155. DOI:10.1016/j.jobe.2024.110155

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 5.43MB)

Os dejo un podcast (en inglés) sobre este artículo. Espero que os guste.

Mantenimiento preventivo sostenible de estructuras de edificios de hormigón tipo MMC en un entorno adverso

Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo sobre el mantenimiento preventivo y sostenible de los métodos modernos de construcción en entornos hostiles. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción desempeña un papel significativo en la presión medioambiental, atribuido principalmente a su importante consumo de recursos, impulsado sobre todo por el auge de la construcción residencial. Los Métodos Modernos de Construcción (MMC) presentan un paradigma innovador para diseñar y construir infraestructuras y edificios de forma más eficiente, utilizando materiales convencionales con técnicas no convencionales. El artículo pretende aplicar este enfoque a una estructura de edificación basada en MMC, minimizando el impacto de su ciclo de vida mediante la optimización del consumo de materiales de construcción, con especial atención a los efectos de la fase de mantenimiento desde un punto de vista preventivo. Este estudio se centra en la evaluación de la sostenibilidad de los forjados planos de hormigón armado que emplean un sistema de cuerpo estructural hueco, haciendo hincapié explícitamente en los factores de agresividad ambiental que contribuyen a la corrosión, como la carbonatación y los cloruros. La investigación explora diez opciones de diseño para un edificio residencial público frente al mar, examinando su impacto en la economía, el medio ambiente e incluso la sociedad en lo que respecta a los ciclos de mantenimiento necesarios a lo largo de la vida útil de la estructura, en función de la estrategia preventiva empleada para cada diseño. Para evaluar la sostenibilidad de estas opciones, los investigadores emplearon una combinación del método del mejor-peor (BWM) y la técnica VIKOR, teniendo en cuenta nueve criterios relacionados con la sostenibilidad. El estudio concluyó que el hormigón con un 5% de humo de sílice es la opción más rentable y respetuosa con el medio ambiente, y que la impregnación hidrófoba reduce el impacto social. Sin embargo, en comparación con las evaluaciones unidimensionales y bidimensionales, el estudio demuestra la importancia de considerar simultáneamente los impactos económicos, medioambientales y sociales del ciclo de vida de un diseño para lograr la sostenibilidad en el mantenimiento con una visión holística. Este enfoque condujo a una calificación de sostenibilidad un 86% más alta para un diseño que utilizaba cemento sulforresistente en la mezcla de hormigón que la opción de partida.

Aspectos destacables:

  • El estudio evalúa el impacto en el ciclo de vida de diez opciones de diseño mejoradas para un módulo hotelero de tres pisos en un entorno costero, con el objetivo de mejorar la durabilidad y reducir las necesidades de mantenimiento a lo largo de la vida útil de la estructura.
  • Los resultados óptimos se obtienen del intervalo de mantenimiento preventivo, lo que hace hincapié en la importancia de las estrategias de mantenimiento proactivo para mejorar la sostenibilidad y la longevidad de las estructuras de construcción de hormigón basadas en MMC.
  • El documento proporciona evaluaciones exhaustivas del ciclo de vida según las normas ISO 14040, que abordan las tres dimensiones simultáneamente, ofreciendo una visión holística del desempeño en materia de sostenibilidad en los proyectos de construcción.
  • Al centrarse en el mantenimiento preventivo, la investigación destaca el potencial de obtener beneficios ambientales y económicos a largo de un período de 50 años, ya que contribuyen a la sostenibilidad general de las estructuras de los edificios en entornos hostiles.
  • Al incorporar las opiniones de expertos a través del método de toma de decisiones multicriterio de BMW, el estudio proporciona un análisis completo de varios aspectos de la sostenibilidad en los proyectos de construcción, promoviendo prácticas de toma de decisiones sostenibles en la industria.
  • Los resultados subrayan la importancia de la toma de decisiones sostenibles en la construcción, en consonancia con los esfuerzos mundiales para reducir el impacto ambiental y promover prácticas ecológicas en la industria.
  • La investigación hace hincapié en la importancia de las estrategias de mantenimiento preventivo sostenibles para mejorar la longevidad y la sostenibilidad de las estructuras de construcción de hormigón basadas en el MMC, y destaca los beneficios de los enfoques de mantenimiento proactivo.

Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:

https://www.sciencedirect.com/science/article/pii/S2352710224017236

Abstract:

The construction industry plays a significant role in environmental strain, attributed mainly to its substantial resource consumption, primarily driven by the surge in residential construction. Modern Methods of Construction (MMC) presents an innovative paradigm for designing and constructing infrastructure and buildings more efficiently, using conventional materials with unconventional techniques. The article aims to apply this approach to an MMC-based building structure, minimizing its life cycle impact by optimizing the consumption of building materials, with particular attention to the effects of the maintenance phase from a preventive point of view. This study focuses on assessing the sustainability of reinforced concrete flat slabs, employing a hollow structural body system, explicitly emphasizing environmental aggressiveness factors contributing to corrosion, such as carbonation and chlorides. The research explores ten design options for a waterfront public residential building, examining their impact on the economy, the environment, and even society, regarding the maintenance cycles required over the structure’s lifetime, depending on the preventive strategy employed for each design. In assessing the sustainability of these options, researchers employed a combination of the best-worst method (BWM) and the VIKOR technique, considering nine criteria related to sustainability. The study found that 5% silica fume concrete is the most cost-effective and environmentally friendly option, with hydrophobic impregnation reducing social impacts. However, compared to one— and two-dimensional evaluations, the study demonstrates the importance of simultaneously considering a design’s life cycle’s economic, environmental, and social impacts to achieve sustainability in maintenance with a holistic view. This approach led to an 86% higher sustainability rating for a design using sulforesistant cement in the concrete mix than the baseline.

Keywords:

Modern Methods of Construction; Life Cycle Assessment; Sustainable design; Multi-criteria Decision-making; Preventive maintenance; Corrosion

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2024). Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment. Journal of Building Engineering,95:110155. DOI:10.1016/j.jobe.2024.110155

Como el artículo se encuentra en abierto, os lo podéis descargar aquí:

Descargar (PDF, 5.43MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.