Impacto ambiental del hormigón con cementos con adiciones: ¿menos emisiones, pero menor durabilidad?

Uno de los artículos más citados en nuestro grupo de investigación es el que vamos a explicar a continuación. El artículo de García-Segura, Yepes y Alcalá examina en profundidad si la reducción de las emisiones de gases de efecto invernadero derivadas del uso de cementos con adiciones compensa la disminución de su durabilidad y la reducción de la captura de CO₂ en comparación con el cemento Portland convencional.

Esta pregunta define con precisión el problema de investigación y estructuró el estudio en torno al impacto ambiental de diferentes mezclas de cemento, desde la producción hasta la demolición. La formulación de esta pregunta permite establecer objetivos específicos y una metodología rigurosa que garantice una evaluación cuantitativa y cualitativa de los efectos de la carbonatación y de la vida útil de las estructuras construidas con estos materiales.

El estudio se basa en un análisis del ciclo de vida (LCA, por sus siglas en inglés) aplicado a una columna de hormigón armado de 3 metros de altura y sección transversal de 30 x 30 cm², reforzada con cuatro barras de acero de 20 mm de diámetro y con un recubrimiento de hormigón de 30 mm. Se evalúa el impacto ambiental de diferentes mezclas de cemento: Portland (CEM I), cementos adicionados con cenizas volantes (CEM II/A-V y CEM II/B-V) y cementos con escoria de alto horno (CEM II/B-S, CEM III/A y CEM III/B). La metodología incluye:

  1. Producción: Se calculan las emisiones derivadas de la extracción y procesamiento de materias primas, incluyendo el transporte hasta la planta de hormigón y la fabricación de barras de acero, considerando tasas de reciclaje.
  2. Construcción: Se incluyen las emisiones por bombeo y vibrado del hormigón.
  3. Uso: Se determina la durabilidad mediante el modelo de Tuutti, diferenciando las etapas de iniciación y propagación de la corrosión del acero embebido en función de la carbonatación.
  4. Demolición y reciclaje: Se evalúa la captura de CO₂ tras la demolición, considerando el impacto del tamaño del árido reciclado y el entorno de exposición.

La captura de CO₂ se cuantifica mediante ecuaciones basadas en la difusión de carbonatación, considerando coeficientes de carbonatación variables en función de la composición del cemento y del nivel de exposición ambiental.

El trabajo aporta datos cuantitativos sobre la relación entre las emisiones iniciales y la captura de CO₂ en cada etapa del ciclo de vida del hormigón. Se identifican las siguientes contribuciones clave:

  • Reducción de emisiones en la producción: CEM III/B (80% BFS) emite 70% menos CO₂ en su fabricación comparado con el cemento Portland.
  • Durabilidad reducida: Cementos con alto reemplazo de clinker presentan una vida útil 10% menor debido a una mayor tasa de carbonatación.
  • Captura de CO₂: Durante su uso, CEM III/B captura solo el 22% del CO₂ capturado por el cemento Portland. Considerando la demolición, el porcentaje asciende a 20%.
  • Impacto de reciclaje: Si el hormigón demolido se expone al aire, la captura de CO₂ puede reducir las emisiones totales en un 47%.

Los resultados muestran que, si bien los cementos con adiciones reducen las emisiones en la etapa de producción, su menor durabilidad aumenta las emisiones anuales. El cemento CEM III/B reduce inicialmente las emisiones en un 70 %, pero solo logra una disminución del 20 % cuando se consideran las emisiones anuales. Esto sugiere que, a la hora de seleccionar cemento, hay que equilibrar la reducción de emisiones iniciales con la vida útil de la estructura. La investigación también destaca la importancia de garantizar la exposición del hormigón reciclado al aire para maximizar su capacidad de secuestro de carbono.

Se identifican tres áreas clave para futuras investigaciones:

  1. Optimización de cementos adicionados: Investigación sobre el uso de aditivos y ajustes en la dosificación para mejorar la durabilidad sin comprometer la reducción de emisiones.
  2. Impacto ambiental de diferentes climas: Evaluación de la carbonatación y la vida útil del hormigón en condiciones climáticas diversas.
  3. Estrategias para maximizar la captura de CO₂ post-demolición: Desarrollo de procesos para incrementar la exposición del agregado reciclado al aire y mejorar la captura de carbono.

En resumen, el estudio ofrece un análisis exhaustivo de las emisiones de gases de efecto invernadero asociadas al uso de cementos modificados. Aunque la reducción de emisiones en la producción de estos cementos es significativa, la menor durabilidad y la reducida captura de CO₂ requieren un análisis cuidadoso para garantizar la sostenibilidad del hormigón a largo plazo. La investigación subraya la necesidad de estrategias complementarias que optimicen la combinación entre las emisiones iniciales y la vida útil estructural para reducir el impacto ambiental global del sector de la construcción.

Referencia:

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0

Esta es la versión post-print de autor. La publicación se encuentra en: https://riunet.upv.es/handle/10251/49057, siendo el Copyright de Springer Verlag (Germany).

Descargar (PDF, 413KB)

Evaluación del índice de daño estructural en entornos BIM

Acaban de publicar nuestro artículo en la revista Structures, de la editorial Elsevier, indexada en Q1 del JCR. El estudio desarrolla una metodología para evaluar un índice de daño estructural en entornos BIM, con el fin de optimizar los procesos de rehabilitación.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.

El artículo contextualiza la necesidad de integrar herramientas digitales en la evaluación de daños estructurales como respuesta a las exigencias de sostenibilidad y eficiencia en el sector de la construcción. Se menciona que el envejecimiento del parque edificatorio y las nuevas exigencias en materia de mantenimiento requieren un enfoque innovador. Se destaca la implementación de BIM como una solución para mejorar la gestión de activos y prolongar la vida útil de las estructuras. En este contexto, el artículo presenta Endurify, una herramienta diseñada para evaluar la durabilidad de elementos estructurales de hormigón mediante indicadores de deterioro, con el fin de optimizar los procesos de rehabilitación.

El artículo enfatiza que la rehabilitación de edificios es una estrategia fundamental para mejorar la sostenibilidad en el sector de la construcción. Al renovar estructuras existentes, se reduce el impacto ambiental al disminuir la necesidad de utilizar nuevos materiales y procesos constructivos. Además, la rehabilitación mejora el rendimiento energético de los edificios, lo que contribuye a los objetivos de desarrollo sostenible establecidos por organismos internacionales. En el contexto europeo, iniciativas como el Pacto Verde Europeo subrayan la relevancia de estas medidas para reducir las emisiones de carbono y mejorar la eficiencia en el uso de recursos.

La metodología BIM se ha convertido en un estándar en la industria de la construcción, facilitando la integración de múltiples capas de información en un único modelo digital. BIM permite almacenar y gestionar datos estructurales, materiales y operacionales, optimizando así la planificación y el mantenimiento de edificios. La literatura reciente ha demostrado que el uso de BIM mejora la sostenibilidad en la construcción, facilita la gestión de riesgos y permite realizar análisis avanzados, como simulaciones de desempeño estructural. Además, la incorporación de gemelos digitales y herramientas de simulación refuerza su capacidad para la toma de decisiones fundamentadas en datos.

El mantenimiento estructural es fundamental para garantizar la seguridad y la eficiencia de los edificios a lo largo de su vida útil. A pesar de la importancia del seguimiento del estado estructural, la investigación en este ámbito ha sido menos extensa que la dedicada al diseño y la construcción. En este contexto, BIM se presenta como una plataforma idónea para integrar estrategias de mantenimiento predictivo, ya que permite evaluar el estado real de las estructuras y anticipar las intervenciones necesarias. Sin embargo, la implementación de BIM en este ámbito enfrenta desafíos como la precisión de los datos, los costes asociados y la capacitación del personal especializado.

El desarrollo de Endurify se basó en una metodología de investigación-acción de doble ciclo, lo que permitió realizar iteraciones sucesivas para optimizar la herramienta. El proceso constó de siete etapas, que iban desde la identificación del problema hasta la validación del software en entornos reales. La herramienta se diseñó específicamente para el mercado de la vivienda en España y cumple con los requisitos del Código Estructural.

Para evaluar la durabilidad, se seleccionaron cuatro indicadores principales: carbonatación, fisuración transversal, fluencia y deformación. La metodología utilizada para determinar cada uno de estos indicadores se basa en modelos normativos y en la recopilación de datos mediante inspección visual. Los resultados se almacenan dentro del modelo BIM, lo que permite su análisis comparativo y la planificación de intervenciones de mantenimiento.

La implantación de Endurify en BIM se realizó mediante un complemento para Autodesk Revit que permite extraer datos de los elementos estructurales y realizar el análisis de daños en tiempo real. La herramienta se diseñó para trabajar con parámetros predefinidos en el modelo BIM y almacenar los resultados como atributos de los elementos analizados.

El artículo presenta Endurify, un complemento para entornos BIM que permite analizar el estado de conservación de los elementos estructurales de hormigón. La herramienta emplea cuatro indicadores de daño: carbonatación, fisuración transversal, fluencia y deformación. Su integración en BIM facilita la gestión de datos, ya que permite almacenar los resultados del análisis dentro del modelo digital. Esto posibilita una evaluación más precisa del estado estructural y contribuye a la toma de decisiones sobre el mantenimiento y la rehabilitación de edificios existentes. Cabe destacar que la herramienta evita pruebas destructivas y se ajusta a normativas como el Código Estructural de España (CE-2021).

Los estudios de caso presentados en el artículo muestran cómo se ha aplicado Endurify en elementos estructurales con distintos grados de exposición ambiental. En un primer caso, se analizó una viga interior con fisuras visibles y se determinó que la carbonatación era el factor predominante en su deterioro. En el segundo caso, se evaluó un soporte en un corredor exterior sin daños aparentes con el mismo procedimiento, confirmándose un estado avanzado de carbonatación. Los resultados demuestran que la herramienta permite identificar patrones de degradación en distintos elementos y facilita la programación de intervenciones específicas. No obstante, se reconoce que la precisión del análisis depende de la calidad de los datos de entrada y de su compatibilidad con diferentes normativas y condiciones ambientales.

El artículo sugiere que la incorporación de nuevos enfoques podría mejorar la herramienta Endurify. Se menciona la posibilidad de desarrollar un índice de daño estructural que combine los cuatro indicadores en un solo valor ponderado, aunque los autores advierten de que esto podría ocultar información relevante sobre las causas del deterioro. Asimismo, se plantea la necesidad de adaptar la metodología a distintos contextos normativos e integrar sensores IoT para obtener datos en tiempo real. Además, se destaca que una mejor definición de los parámetros de análisis podría optimizar la precisión del modelo y ampliar su aplicación a proyectos de rehabilitación a gran escala.

Por tanto, el artículo demuestra que la integración de herramientas de análisis de durabilidad en entornos BIM puede mejorar la evaluación del estado estructural de los edificios. Endurify permite almacenar y visualizar datos de deterioro en el modelo digital, lo que facilita la toma de decisiones sobre el mantenimiento y la rehabilitación. Sin embargo, su implementación depende de la calidad de los datos de entrada y de su adaptación a distintas normativas. Se identifican oportunidades para mejorar la herramienta mediante el uso de modelos predictivos y la incorporación de tecnologías emergentes, lo que podría consolidar su aplicación en la ingeniería civil.

Referencia:

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2025). Structural damage index evaluation in BIM environmentsStructures, 74:108544. DOI:10.1016/j.istruc.2025.108544

 

Indicador de daños que afectan a la durabilidad de las estructuras en entornos BIM

El Building Information Modelling (BIM) se está adoptando cada vez más en empresas privadas del sector de Arquitectura, Ingeniería, Construcción y Operación (AECO), y con ello surgen nuevas herramientas y funcionalidades. En el mercado español, los proyectos de reforma son cada vez más solicitados debido al envejecimiento del stock de viviendas y la necesidad de analizar la durabilidad de las estructuras existentes.

Este nuevo estudio presenta una herramienta integrada en BIM que permite evaluar el índice de durabilidad en elementos estructurales específicos a través de una inspección visual automatizada, lo que mejora la sostenibilidad del sector y determina el momento crítico para rehabilitar la estructura.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Abstract:

As Building Information Modelling (BIM) is increasingly adopted through private businesses in the Architecture, Engineering, Construction, and Operation (AECO) Industries, new tools, procedures, and functionalities appear. In the last years, BIM has proven its advantages by providing benefits to professionals and guiding them towards a new horizon. Currently, the industry is changing in the Spanish market, and refurbishment projects are more demanded than construction projects involving the design of buildings from scratch. As Spanish housing stock grows older, durability and damage in existing structures need to be analyzed during the refurbishment project’s early stages. Structural durability is a critical factor in extending the life span of a building and improving the industry’s sustainability. This paper presents a tool integrated into BIM environments that can evaluate the durability index in a specific structural element based on data from a visual inspection. This automated analysis shows if any damage is caused by durability factors, such as steel rebar corrosion, and how much time is left until the damage is critical. This tool enables new functionality in BIM environments to control durability and determine when it is critical to rehabilitating the structure.

Referencia:

FERNÁNDEZ-MORA, V.; YEPES, V.; NAVARRO, I.J. (2022). Durability damage indicator in BIM environments. Proceedings of 3rd Valencia International Biennial of Research in Architecture. Changing priorities. 9-11 November 2022, Valencia, Spain. https://doi.org/10.4995/VIBRArch2022.2022.15191

Os paso, para su descarga, el artículo completo, pues está publicado en abierto.

Descargar (PDF, 905KB)

Redes neuronales aplicadas al diseño multiobjetivo de puentes postesados

Nos acaban de publicar en línea en la revista Structural and Multidisciplinary Optimization (revista indexada en JCR en el primer cuartil) un trabajo de investigación en el que utilizamos las redes neuronales artificiales junto para el diseño multiobjetivo de puentes postesados de carreteras. Os paso a continuación el resumen y el enlace al artículo por si os resulta de interés. El enlace del artículo es el siguiente: http://link.springer.com/article/10.1007%2Fs00158-017-1653-0

Referencia:

García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, doi:10.1007/s00158-017-1653-0

Abstract:

In order to minimize the total expected cost, bridges have to be designed for safety and durability. This paper considers the cost, the safety, and the corrosion initiation time to design post-tensioned concrete box-girder road bridges. The deck is modeled by finite elements based on problem variables such as the cross-section geometry, the concrete grade, and the reinforcing and post-tensioning steel. An integrated multi-objective harmony search with artificial neural networks (ANNs) is proposed to reduce the high computing time required for the finite-element analysis and the increment in conflicting objectives. ANNs are trained through the results of previous bridge performance evaluations. Then, ANNs are used to evaluate the constraints and provide a direction towards the Pareto front. Finally, exact methods actualize and improve the Pareto set. The results show that the harmony search parameters should be progressively changed in a diversification-intensification strategy. This methodology provides trade-off solutions that are the cheapest ones for the safety and durability levels considered. Therefore, it is possible to choose an alternative that can be easily adjusted to each need.

Keywords:

Multi-objective harmony search; Artificial neural networks; Post-tensioned concrete bridges; Durability; Safety.

Os dejo a continuación la versión autor del artículo.

Descargar (PDF, 1.14MB)

Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability

Esta es la versión post-print de autor. La publicación se encuentra en: https://riunet.upv.es/handle/10251/49057, siendo el Copyright de Springer Verlag (Germany).

El artículo debe ser citado de la siguiente forma:

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0

Descargar (PDF, 413KB)