La molienda en las instalaciones de tratamiento de áridos

Figura 1. Molino de bolas. https://carbosystem.com/como-funciona-un-molino-de-bolas/

El proceso de molienda es el último paso en la fragmentación del material después de la trituración. Se logra la fragmentación combinando fuerzas de compresión, corte, percusión y abrasión. Se estima que la molienda consume la mitad de la energía utilizada en los molinos.

El tamaño de salida en esta etapa de molienda puede variar entre milímetros y micras. La molienda gruesa produce tamaños de 1 a 2 mm, la molienda media produce tamaños de 200 a 500 micras, la molienda fina produce tamaños de 50 a 100 micras, y la molienda ultrafina produce tamaños de 10 micras.

Los molinos de rodamiento de carga, también conocidos simplemente como molinos, realizan este proceso tanto en seco como en húmedo. Estos incluyen cuerpos molturantes como barras, bolas, guijarros de sílex, o incluso fragmentos gruesos del material para ayudar en la fragmentación. Por lo tanto, una primera clasificación de los molinos se puede hacer según el tipo de cuerpos molturantes utilizados:

  • Molinos de barras: se emplean para moliendas más gruesas. Las barras se fabrican en acero de alto contenido en carbono y límite elástico.
  • Molinos de bolas: se emplean en moliendas finas. Las bolas se fabrican en acero de fundición o acero forjado aleado al Cr-Mo para ser resistentes al desgaste por impacto, o aleado al Ni para ser resistentes a la abrasión. A veces tienen formas cilíndricas o troncocónicas.
  • Molinos autógenos o semiautógenos: Los cuerpos de molienda pueden ser el propio mineral (AG) o un porcentaje de mineral y otro de bolas u otro tipo (SAG).
  • Molinos de pebbles: se utilizan cuerpos no metálicos; naturales o fabricados. Es el caso de guijarros de silex o porcelana para evitar la contaminación del mineral a causa del desgaste del acero.

La molienda se puede realizar por volcamiento, por agitación o por vibración, tal y como se puede observar en la Figura 2.

Figura 2. Tipos de molienda

La molienda por vía seca no debería tener un contenido de agua superior al 2%, ya que si el nivel de humedad supera un valor del 8 % al 9 %%, la pasta pegajosa resultante impedirá los choques y la abrasión, disminuyendo el rendimiento del proceso. El mejor rendimiento se logra con una humedad baja (1%), que ayuda a la rotura de los granos. La vía seca es necesaria cuando se trata de sustancias que reaccionan con el agua, como el clinker del cemento. Sin embargo, requiere una gran extensión de terreno para incluir un clasificador, transportadores, captadores de polvo, etc. Si la humedad es alta, es necesario efectuar un secado previo. Además, la molienda por vía seca aumenta la temperatura, por lo que no se pueden usar revestimientos de goma.

La molienda por vía húmeda presenta ventajas sobre la molienda en seco, siempre y cuando se cuente con agua y un adecuado tratamiento de esta tras el proceso de molienda. Además, requiere menos energía (1,3 veces menos), ya que el agua reduce la resistencia de los fragmentos. Sin embargo, la molienda por vía húmeda requiere un mayor consumo de revestimientos y cuerpos moledores debido a los ataques químicos por corrosión causados por los minerales con sulfuro (un desgaste hasta 6 – 8 veces superior a la vía seca por la corrosión). La molienda por vía semi-húmeda requiere un contenido de agua en el producto de entre un 2% y un 20%, mientras que la vía húmeda requiere un contenido de agua de entre un 30% y un 300%.

Los molinos pueden operar en forma discontinua o continua. En el modo intermitente, después de cargar material y cerrar el molino para que gire, se abre el molino para separar el material de los cuerpos molturantes. Este enfoque requiere máquinas pequeñas y una gran cantidad de manejo de materiales. Por lo tanto, es más común operar de manera continua, descargando el material y los cuerpos molturantes simultáneamente, deteniendo la operación solo para reabastecer los cuerpos molturantes o para mantenimiento. En la producción de áridos, se trabaja siempre de manera continua.

La molienda en circuito abierto tiene menos control sobre la distribución de tamaños de partículas en el producto, lo que resulta en una distribución más amplia. La velocidad de alimentación debe ser más baja y el tiempo de permanencia de las partículas debe ser más largo para garantizar una molienda adecuada. Esto lleva a un mayor porcentaje de partículas sobremolidas y un mayor consumo de energía (1,5 veces más que en el circuito cerrado).

Por otro lado, la molienda en circuito cerrado es la opción predominante en la industria minera. El producto se clasifica después de ser descargado del molino, lo que resulta en un menor consumo de energía en comparación con el circuito abierto, un mayor control sobre el tamaño máximo del producto y la capacidad de usar tanto la vía seca como la vía húmeda. Los molinos de bolas y los autógenos son los tipos más comúnmente utilizados en el circuito cerrado.

El revestimiento o blindaje del interior del tambor de los molinos se diseña para proteger la carcasa del molino contra la abrasión, la corrosión y el desgaste. Está compuesto de piezas intercambiables y debe ser resistente a impactos y tener la capacidad de minimizar el deslizamiento entre los cuerpos molturantes y el tambor. Los diseños con resaltes o nervios mejoran el movimiento de la carga y se fabrican en acero fundido o laminado por su alta resistencia, pero también pueden ser de cerámica. En el caso de molinos que traten materiales muy duros, es recomendable emplear caucho como revestimiento, siempre que la temperatura no supere los 80 °C y no haya contacto con reactivos de flotación.

Os dejo un vídeo en el que os explico este tema. Espero que os sea de interés.

Referencias:

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Coordinador del monográfico: Urbanismo, Construcción y Desarrollo. Yachana Revista Científica

Anuncio mi participación como coordinador, junto con el profesor Pedro A. Martínez Osorio, de un monográfico de la revista científica Yachana sobre “Urbanismo, Construcción y Desarrollo”, que se publicará en el Vol. 12. No.2 julio-diciembre 2023. Esta participación se debe a una invitación personal del Departamento de Investigación Científica, Tecnológica e Innovación de la Universidad Laica VICENTE ROCAFUERTE de Guayaquil (Ecuador).

El monográfico espera reunir un conjunto de artículos originales, revisiones de la literatura (estado del arte), ensayos o reseñas que contribuyan a la reflexión sobre las nuevas tendencias del urbanismo, la construcción y el desarrollo. Este enfoque pretende generar una perspectiva comparada sobre las teorías, metodologías y estudios de caso que tienen las Ciencias de la Ingeniería y la Construcción en el contexto hispanoamericano.

Para eventuales colaboraciones hay que resaltar que la revista cuenta con varias indexaciones (Para más información véase: http://revistas.ulvr.edu.ec/index.php/yachana/indexaciones) como: Google Scholar, Index Copernicus, EuroPub, Miar, Latindex Catálogo 2.0, LatinRev, Refseesk, DOAJ, World Wide Science, Exalead, Aura Amelica, Clase y otras.

Yachana Revista Científica [ISSN: 1390-7778|ISSNe: 2528-8148] es una publicación científica bilingüe editada desde diciembre de 2012 de forma ininterrumpida. Actualmente, cuenta con una periodicidad semestral (enero-junio, julio-diciembre), con estilo multidisciplinario y tiene como misión difundir la producción científica de resultados de investigaciones originales e inéditas en las áreas temáticas relacionadas con las Ciencias del Diseño y la Construcción, Ciencias Sociales y Humanas, Ciencias Económicas y Administrativas y Ciencias de la Educación. La revista se encuentra indexada en repositorios, bibliotecas y catálogos especializados a nivel internacional.

Para más información sobre el presente llamado, véase: http://revistas.ulvr.edu.ec/index.php/yachana/announcement

Para más información sobre las directrices para autores, véase: http://revistas.ulvr.edu.ec/index.php/yachana/about/submissions

Líneas temáticas.

  • Reflexiones urbanísticas.
  • Dimensiones urbanas, técnica y ciencia.
  • Técnicas constructivas.
  • Tecnologías de la construcción.
  • Construcción ecoeficiente.
  • Desarrollo sostenible.
  • Proyectos de desarrollo.
  • Planificación y ordenamiento territorial.

FECHAS CLAVES DE LA CONVOCATORIA

10 de enero de 2023— Inicio del Call for Papers para la presentación de contribuciones.

20 de mayo de 2023— Cierre del llamado a artículos.

Junio de 2023— Envío de cartas de aceptación.

Julio de 2023— Subida de metadatos de los artículos en el OJS de la revista.

El envío de las propuestas se realizará SOLAMENTE a través del OJS de la revista http://revistas.ulvr.edu.ec/index.php/yachana

Equipo de Coordinadores

Víctor Yepes Piqueras. https://orcid.org/0000-0001-5488-6001 Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de Ingeniería de la Construcción en la Universitat Politècnica de València. Subdirector del Departamento de Ingeniería de la Construcción. Miembro de las Comisiones Académicas de los Másteres Universitarios en Ingeniería del Hormigón, en Prevención de Riesgos Laborales y en Planificación y Gestión en la Ingeniería Civil. Miembro de la Comisión Académica de los Programas de Doctorado en Ingeniería de la Construcción y en Infraestructuras de Transporte y Territorio.

Pedro Arturo Martínez Osorio. https://orcid.org/0000-0002-9024-0918, Universidade Estadual Paulista, UNESP. Doctor en Design. Bauru (Brasil) Arquitecto, Universidad Católica de Colombia. Bogotá, D. C., Colombia. Magíster en educación, Universidad Simón Bolívar. Barranquilla, Colombia, Profesor Programa de Arquitectura, Corporación Universitaria del Caribe. Editor de la Revista Científica Procesos Urbanos.

Densidad espectral de potencia en la detección de daños por ataque de cloruros en un puente en ambiente marino

Acaban de publicarnos un artículo en la revista Structural Engineering and Mechanics, revista indexada en el JCR. En este caso se ha analizado el rendimiento del método de la densidad espectral de potencia para detectar daños por ataque de cloruros en un puente de hormigón situado en un ambiente marino. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El deterioro causado por la penetración de cloruros y la carbonatación desempeña un papel importante en una estructura de hormigón en un entorno marino. La corrosión por cloruros en algunas estructuras en ambientes costeros puede ser peligrosa en caso de colapso repentino. Por lo tanto, como novedad, esta investigación estudia la capacidad de un método no destructivo de detección de daños denominado Densidad Espectral de Potencia (PSD) para diagnosticar daños causados únicamente por iones cloruro en estructuras de hormigón. Además, se investigó la precisión de este método para estimar la cantidad de daños anuales causados por el cloruro en diversas partes y posiciones expuestas al agua de mar. Para ello, se modeló y analizó numéricamente el puente de Arosa, en España, que conecta la isla con el continente a través del agua de mar. Como primer paso, se calculó la posición de puente de cada elemento, junto con el porcentaje de corrosión por cloruros en las armaduras. A continuación, se predijo la existencia, localización y momento de los daños en toda la parte de hormigón del puente en función de la cantidad de corrosión de las armaduras cada año. El método PSD se utilizó para controlar la pérdida anual del área de la sección transversal de las armaduras, los cambios en las características dinámicas, como la rigidez y la masa, y cada año de la vida útil de la estructura del puente mediante ecuaciones de sensibilidad y el algoritmo de mínimos cuadrados lineales. Este estudio demostró que la utilización de diferentes enfoques del método PSD basados en la corrosión por cloruros de las armaduras y la asunción de errores del 10% en el análisis del software pueden ayudar a predecir la ubicación y la cantidad casi exacta de las zonas dañadas a lo largo del tiempo.

Se puede solicitar una copia del artículo a los autores a través del siguiente enlace: https://www.researchgate.net/publication/367283962_Hadizadeh-Bazaz_et_al_2023

Abstract:

The deterioration caused by chloride penetration and carbonation plays a significant role in a concrete structure in a marine environment. The chloride corrosion in some marine concrete structures is invisible but can be dangerous in a sudden collapse. Therefore, as a novelty, this research investigates the ability of a non-destructive damage detection method named the Power Spectral Density (PSD) to diagnose damages caused only by chloride ions in concrete structures. Furthermore, the accuracy of this method in estimating the amount of annual damage caused by chloride in various parts and positions exposed to seawater was investigated. For this purpose, the RC Arosa bridge in Spain, which connects the island to the mainland via seawater, was numerically modeled and analyzed. As the first step, each element’s bridge position was calculated, along with the chloride corrosion percentage in the reinforcements. The next step predicted the existence, location, and timing of damage to the entire concrete part of the bridge based on the amount of rebar corrosion each year. The PSD method was used to monitor the annual loss of reinforcement cross-section area, changes in dynamic characteristics such as stiffness and mass, and each year of the bridge structure’s life using sensitivity equations and the linear least squares algorithm. This study showed that using different approaches to the PSD method based on rebar chloride corrosion and assuming 10% errors in software analysis can help predict the location and almost exact amount of damage zones over time.

Keywords:

Damage identification; Concrete bridge; Chloride attack; Steel corrosion; Power Spectral Density method (PSD); Non-destructive technique.

Reference:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Structural Engineering and Mechanics, 85(2):197-206. DOI:10.12989/sem.2023.85.2.197

Evolución de las perforadoras con martillo en cabeza

Perforadora con martillo en cabeza. https://psvperforacion.com/productos-bburg/

La perforación con martillo en cabeza es un sistema clásico que ha utilizado el accionamiento neumático. De este tipo de perforadora ya hemos hablado en un artículo anterior. Sin embargo, hoy en día está siendo desplazado por los martillos en fondo y equipos rotativos. De hecho, desde la aparición de los martillos hidráulicos en la década de los 70, este sistema ha visto resurgir su utilidad y campo de aplicación.

¿Cuál es la razón por este cambio de tendencia? La justificación es muy sencilla. Basta emplear las ecuaciones básicas de la energía y la potencia desarrollada por el pistón de este tipo de perforadoras. En efecto, la energía cinética que alcanza el pistón es proporcional a la presión de aire, a la superficie del pistón y a la longitud de carrera. Para calcular la potencia bastará calcular el número de impactos (energía cedida) en la unidad de tiempo (impactos por minuto).

Por tanto, ante dos perforadoras de la misma potencia, una produciendo pocos impactos por minuto (n), pero de gran energía, y otra con un elevado número de impactos por minuto (N), pero de pequeña energía, tendremos que la primera perforadora romperá más roca a cada golpe, pero la barrena sufrirá mucho, llegando en algunos casos a clavarse en la roca. La segunda cortará menos roca por impacto, de modo que no fatigará el varillaje ni clavará la barrena, siempre que su impacto supere la energía necesaria para romper esa menor cantidad de roca.

Por tanto, las perforadoras con un gran pistón, gran carrera y presiones bajas son una tendencia antigua que se sustituye por perforadoras hidráulicas, con altas presiones, pistones y carrera pequeños y gran número de impactos por minuto.

Os dejo a continuación la demostración de esta formulación que, espero, os sea de utilidad.

Descargar (PDF, 90KB)

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estudio paramétrico de marcos prefabricados óptimos mediante metaheurísticas híbridas

Acaban de publicarnos un artículo en Materials, revista indexada en el primer cuartil del JCR. En este caso se ha realizado un estudio paramétrico de un marco prefabricado, articulado, de sección en U, empleando para ello tres metaheurísticas híbridas. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En este artículo se aborda un estudio de las estructuras articuladas modulares viarias de coste óptimo. Se evalúa el rendimiento de tres metaheurísticas híbridas mediante un diseño factorial fraccionado de experimentos. Los resultados permiten seleccionar y calibrar el recocido simulado híbrido para resolver el problema de optimización combinatoria. Variando la luz horizontal de 8 a 16 m y la cobertura de tierra de 1 a 5 m, se estudian 25 configuraciones estructurales diferentes. La metodología calibrada se aplica para obtener nueve pórticos diferentes con costes óptimos para cada configuración. El estudio de las características económicas, medioambientales y geométricas de las 225 estructuras óptimas permite desarrollar un análisis de regresión. Con R2 cercanos a la unidad, las expresiones constituyen una valiosa herramienta para calcular el coste final, las emisiones asociadas, la energía incorporada y las características geométricas particulares. Las estructuras óptimas presentan diseños esbeltos y densamente reforzados. Además, algunas estructuras muestran reducciones considerables del refuerzo a cortante, algo que se soluciona con aumentos localizados del refuerzo longitudinal.

Marco articulado. https://bortubo.com/marcos-prefabricados-de-hormigon-armado-junta-plana-y-articulados/

Abstract:

This paper addresses a study of cost-optimal road modular hinged frames. The performance of three hybrid metaheuristics is assessed through a fractional factorial design of experiments. The results allow selecting and calibrating the hybrid simulated annealing to solve the combinatorial optimization problem. By varying the horizontal span from 8 to 16 meters and the earth cover from 1 to 5 meters, 25 different structural configurations are studied. The calibrated methodology is applied to obtain nine different frames with optimal costs for each configuration. The study of the economic, environmental, and geometrical characteristics of the 225 optimum structures allows for the development of a regression analysis. With R2 correlation coefficients close to the unit, the expressions form a valuable tool for calculating the final cost, associated emissions, embodied energy, and particular geometric characteristics. The optimum structures present slender and densely reinforced designs. In addition, some structures show considerable reductions in the shear reinforcement, something solved by localized increases in longitudinal reinforcement.

Keywords:

Reinforced concrete; modular; hinged frame; hybrid metaheuristic; parametric; regression.

Reference:

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). A parametric study of optimum road modular hinged frames by hybrid metaheuristics. Materials, 16(3):931. DOI:10.3390/ma16030931

Descargar (PDF, 5.42MB)

 

Influencia de los factores atmosféricos en el rendimiento de un motor atmosférico

https://www.nitro.pe/mecanico-nitro/por-que-nuestro-coche-pierde-potencia-en-la-altura.html

Una disminución en la presión ambiental o un aumento en la temperatura o la humedad relativa reducirían el oxígeno disponible para la combustión interna. Un motor con aspiración natural se vería más afectado que uno turboalimentado. Como regla orientativa, por cada 100 m de aumento de altitud, un motor de aspiración natural pierde un 1,2 % de potencia, mientras que si es turboalimentado, un 0,8 %. Además, por cada 10 °C de aumento de temperatura, las pérdidas son de un 3,6% y un 5,4 %, respectivamente.

El factor de reducción para los motores de aspiración natural es, aproximadamente (Atlas Copco Manual, 1976):

Donde:

r              es el factor de reducción

p0           es la presión absoluta a la altitud de referencia (bar)

pA           es la presión absoluta a la altitud dad (bar)

pH           es la presión de vapor de la humedad del aire (bar) a la temperatura y humedad relativa reales

T0            es la temperatura absoluta al nivel de referencia (K)

TA           es la temperatura absoluta a la altitud real (K)

La presión de vapor pH se obtiene de la siguiente tabla:

Tabla. Presión de vapor de la humedad del aire en milibar (Atlas Copco Manual, 1976)

Temperatura °C Humedad relativa en %
10 20 30 40 50 60 70 80 90 100
—10 0 1 1 1 1 2 2 2 2 3
—5 0 1 1 2 2 2 3 3 4 4
0 1 1 2 2 3 4 4 5 5 6
5 1 2 2 3 4 5 6 7 7 8
10 1 2 4 5 6 7 9 10 11 12
15 2 3 5 7 9 10 12 14 15 17
20 2 5 7 9 12 14 15 19 21 23
25 3 6 10 13 16 19 22 25 29 32
30 4 8 13 17 21 25 30 34 38 42
35 6 11 17 22 28 34 39 45 51 56
40 7 15 22 30 37 44 52 59 66 74
45 10 19 29 38 48 57 67 77 86 96
50 12 25 37 49 62 74 86 99 111 123

A continuación os doy un problema resuelto que, espero, os resulte de interés.

Descargar (PDF, 94KB)

Referencias:

ATLAS COPCO (1976). Atlas Copco Manual. Técnica del aire comprimido. 2ª edición, Madrid.

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El radio hidráulico y el perímetro mojado de una sección

En un artículo anterior presentamos el cálculo de una cuneta de carretera. Es un caso común de cálculo hidráulico donde se utilizan dos parámetros de interés, como son el radio hidráulico y el perímetro mojado de una sección. Un caso frecuente es la determinación del movimiento permanente uniforme en canales abiertos, donde se emplea con mucha frecuencia la fórmula de Manning-Strickler.

El perímetro mojado de un conducto es la porción del perímetro donde la pared está en contacto con el fluido (excluida la superficie libre del líquido). El radio hidráulico es el cociente entre la sección por donde circula el fluido y el perímetro mojado. Este radio se emplea en el cálculo de pérdidas de carga en la fórmula de Manning.

A continuación os dejo un problema donde se calculan estos parámetros en función de la geometría de la sección. Se han aplicado a secciones rectangulares, trapezoidales y triangulares simétricas, a secciones circulares o en forma de parábola. Espero que os sea de interés.

Descargar (PDF, 139KB)

Referencias:

DIRECCIÓN GENERAL DE CARRETERAS (2018). Norma 5.2-IC de la Instrucción de Carreteras. Drenaje superficial. Ministerio de Fomento.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión de costes y producción de maquinaria de construcción

Os presento una novedad editorial que he publicado sobre la gestión de costes y producción de maquinaria de construcción. Este manual trata de los fundamentos de la gestión del coste y la producción de la maquinaria empleada en la construcción. Se desarrollan los aspectos relacionados con la selección de las máquinas, su vida económica y estructura de coste. Se introducen los conceptos básicos sobre disponibilidad, fiabilidad y mantenimiento de equipos, así como otros referentes a la gestión de inventarios y parques de maquinaria. Se analizan los aspectos fundamentales del estudio del trabajo aplicables a los equipos. Se desarrollan los conceptos relacionados con la constructividad y constructabilidad, la medida y los incentivos a la productividad, el fenómeno del aprendizaje. Además, se explican aspectos necesarios para el cálculo de la producción de máquinas y conceptos relacionados con el estudio de métodos y medición del trabajo, el cronometraje, el rendimiento y los factores de producción, entre otros. El libro se complementa con un listado de referencias, así como numerosas cuestiones de autoevaluación y problemas resueltos que permiten al estudiante ampliar y aplicar los conocimientos desarrollados. Este manual tiene como objetivo apoyar los contenidos lectivos de los programas de los estudios de grado relacionados con la ingeniería civil, la edificación y las obras públicas. No obstante, también resulta útil en otros estudios relacionados con la ingeniería de la construcción y la minería y a aquellos profesionales que desarrollan sus tareas en estos ámbitos.

El libro tiene 254 páginas, 85 figuras y fotografías, 54 problemas resueltos, así como 149 cuestiones de autoevaluación resueltas. Los contenidos de esta publicación han sido evaluados mediante el sistema doble ciego, siguiendo el procedimiento que se recoge en: http://www.upv.es/entidades/AEUPV/info/891747normalc.html

Este Manual de Referencia lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_442-6-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de Valéncia. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Es investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE). Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 2.34MB)

Tesis doctoral: Life cycle optimization analysis of bridge sustainable development

Hoy 13 de enero de 2023 ha tenido lugar la defensa de la tesis doctoral de D. Zhi Wu Zhou titulada “Life cycle optimization analysis of bridge sustainable development“, dirigida por Víctor Yepes Piqueras y Julián Alcalá González. La tesis recibió la máxima calificación de sobresaliente “cum laude”. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

En el núcleo de la industria mundial de la construcción radica el uso excesivo de materiales, especialmente de combustibles fósiles. En esta línea de investigación, muchos investigadores y diseñadores han reducido significativamente la proporción de materiales y han minimizado la cantidad destinada al diseño en función de los criterios de investigación y las especificaciones de diseño. Teniendo en cuenta que las medidas anteriores pueden reducir los materiales de manera efectiva, es necesario investigar más a fondo algunas cuestiones: a) ¿En qué etapas del ciclo de vida de los materiales de construcción se consumen más?, b) ¿Cómo utilizar el método científico más adecuado para reducir el consumo de materiales en la fase de mayor uso?, c) ¿Cómo completar científicamente la evaluación de la optimización del consumo de materiales bajo la influencia de la superación de muchos eventos discretos y factores de influencia externos durante la etapa de diseño?, d) En la fase de construcción, ¿cómo optimizar al máximo el proceso de gestión del proyecto y lograr el mayor ahorro de material para garantizar la calidad, la seguridad y el coste?, e) ¿Cuánto material se puede ahorrar mediante la optimización del diseño y la gestión del proyecto?, f) ¿Cuál es el impacto final del sistema teórico de investigación y de los datos de análisis mencionados en el desarrollo sostenible de la industria de la construcción?
Al examinar publicaciones relevantes sobre el ciclo de vida completo de la industria de la construcción (Capítulo 2), la tesis encontró que las etapas de diseño y construcción son clave para reducir efectivamente el consumo de materiales. El objetivo principal de esta tesis es resolver los problemas de optimización propuestos. Mediante el establecimiento de un marco de modelo de investigación multidimensional y un modelo de optimización de gestión de proyectos sistemático, la tesis reduce el peso de varios componentes estructurales del puente estáticamente indeterminado y realiza la optimización ligera de la estructura del puente.

La tesis establece varios modelos teóricos básicos de innovación en el marco del modelo de investigación: el modelo de acoplamiento bibliométrico, el modelo matemático ComplexPlot; el modelo matemático integral multifactorial; el modelo de optimización de acoplamiento micro y macrodimensional de elementos finitos, y el modelo de evaluación de optimización de la gestión de proyectos dominó del método de la entropía. El sistema de investigación teórica supera la interferencia de la discreción del objeto de investigación, la complejidad y los factores de influencia inciertos y analiza la solidez de la evaluación y la mejora. El sistema de investigación teórica supera la interferencia de la discreción del objeto de investigación, la complejidad y los factores de influencia inciertos y consigue la solidez de la evaluación y la mejora. Asimismo, mejora ampliamente la resistencia del modelo a los factores naturales, humanos, accidentales e inciertos y el problema de la interferencia externa de las emergencias. Por último, el sistema formó un conjunto completo de sistemas de modelos de optimización de prevención y control conjuntos maduros y alcanzó los objetivos y enfoques de la investigación.

El estudio de caso demuestra la solidez del sistema del modelo teórico establecido, que reduce el coste del ciclo de vida (LCC) = 1.081.248,68 Chino yuan (CNY); Evaluación del ciclo de vida (LCA) = 212.566,94 tonelada (t); Evaluación del impacto social (SIA) = 17.783.505,12 hora de riesgo medio (Mrh) del análisis del estudio de impacto económico. Reducción del coste del ciclo de vida (LCC) = 739.612,19 Chino yuan (CNY); Evaluación del ciclo de vida (LCA) = 278.455,12 tonelada (t); Evaluación del impacto social (SIA) = 23.262.239,52 hora de riesgo medio (Mrh) del análisis del impacto en el desarrollo sostenible. Las preguntas formuladas en esta tesis están correctamente planteadas desde la perspectiva teórica y están fuertemente respaldadas por los datos.

El valor de la investigación de esta tesis: a) llena el vacío de la investigación en este campo. b) innova en una variedad de nuevos modelos teóricos de investigación. c) resuelve los problemas de discreción, incertidumbre e interferencia de factores externos en la optimización de la topología y la optimización de la gestión de proyectos. Las interferencias de los factores externos de mutación y la sensibilidad de las emergencias se compensan y corrigen. d) La investigación mejora la captura de datos discretos y la escasez de compensación del sistema de análisis de software Monte Carlo. En esta tesis, se aplican varios tipos de métodos avanzados de gestión de proyectos y esquemas de construcción avanzados en el caso de estudio, lo que proporciona un importante valor de referencia para la optimización de puentes estáticamente indeterminados del mismo tipo. Hay algunas dificultades para los lectores sin una experiencia práctica para comprender y aplicar el modelo. El lector debe leer atentamente este caso, que es también una de las limitaciones de este trabajo.

La futura dirección de la investigación del autor es continuar investigando en profundidad el desarrollo sostenible de los puentes de gran tamaño y la optimización de la prevención de problemas, los materiales avanzados y la investigación de recuperación de energía renovable en el desarrollo sostenible de los puentes y otros campos.

Referencias:

  1. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Experimental Research on Diseases of Emulsified Asphalt Mortar Board for Ballastless Tracks. Journal of Materials in Civil Engineering (accepted, in press)
  2. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645
  3. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on the optimized environment of large bridges based on multi-constraint coupling. Environmental Impact Assessment Review, 97:106914. DOI:10.1016/j.eiar.2022.106914
  4. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimizationStructures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047
  5. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633
  6. ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916
  7. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122
  8. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

Sostenimiento de un túnel según el índice Q de Barton

Los sistemas de clasificación del macizo rocoso se basan fundamentalmente en un enfoque empírico y se desarrollaron como una herramienta de diseño sistemática en la ingeniería civil y minera. Tratan de ordenar y sistematizar los procedimientos de las investigaciones en campo. La mayoría de estos sistemas clasifican las condiciones geomecánicas en varios grupos diferentes que representan diferentes capacidades portantes de la roca. Sin embargo, no deberían ser utilizadas como sustitutos de los estudios analíticos, las observaciones y mediciones en campo o aportaciones de expertos, sino en conjunción con otras técnicas. La clasificación Q de Barton es una de las clasificaciones geomecánicas más empleadas en los macizos rocosos, junto con la clasificación RMR de Bieniawski.

La clasificación Q fue desarrollada por Barton, Lien y Lunde en 1974 a partir de un estudio empírico de un gran número de túneles. Esta clasificación permite estimar parámetros geotécnicos del macizo y diseñar sostenimientos para túneles y cavernas subterráneas. El índice Q se basa en seis parámetros que indican el tamaño de los bloques, la resistencia a corte entre los bloques y la influencia del estado tensional:

Donde:

RQD       Índice de calidad de la roca (Rock Quality Designation)

Jn            Índice de diaclasado, que indica el grado de fracturación del macizo rocoso

Ja            Índice que indica la alteración de las discontinuidades

Jw            Coeficiente reductor por la presencia de agua

SRF        Coeficiente que tiene en cuenta la influencia del estado tensional del macizo rocoso (Stress Reduction Factor)

El índice Q varía entre 0,001 y 1.000, correspondiendo los valores bajos a rocas malas y los altos a las rocas buenas.

Una de las aplicaciones que tiene este índice es que permite establecer qué tipo de sostenimiento debería tener un túnel excavado en un macizo rocoso. A continuación os dejo un problema resuelto que, espero, os sea de interés. Un problema similar lo resolvimos en un artículo anterior, en particular el que calculaba la longitud de avance sin sostenimiento de un túnel.

Descargar (PDF, 438KB)

También os dejo un documento que creo que os puede resultar de muchísimo interés:

Descargar (PDF, 2.44MB)

Referencias:

BARTON, N.; GRIMSTAD, E. (2000). (C.L. Jimeno et al.) El sistema Q en el método Noruega de excavación de túneles. Ingeo Tuneles, Madrid.

BARTON, N.; LIEN, R.; LUNDE, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, Springer Verlag, vol. 6, pp. 189-236.

BIENIAWSKI, Z. T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley-Interscience, pp. 40–47.

GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco. Bilbao, España, 277 pp.

GRIMSTAD, E.; BARTON, N. (1993). Updating the Q-Sytem for NMT. Proceedings of the International Symposium on Sprayed Concrete – Modern Use of Wet Mix Sprayed Concrete for Underground Support. Fagemes, Norway. Ed. Kompen, Opsahi and Berg. Norwegian Concrete Association. Oslo.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.