Índice de huecos de un suelo ideal formado por esferas de igual tamaño

En un artículo previo, se describieron las propiedades volumétricas y gravimétricas de un suelo, específicamente, los conceptos de índice de huecos y porosidad. El índice de huecos, también llamado relación de vacíos, es el cociente entre el volumen de vacíos y el volumen sólido de un suelo. La porosidad es la fracción entre el volumen de huecos respecto al total.

En este artículo, abordaremos el cálculo del índice de huecos y la porosidad de un suelo ideal compuesto por esferas del mismo tamaño. También calcularemos la reducción en el espesor de una capa de esferas desde su estado más suelto hasta su estado más compacto. Este ejercicio es meramente teórico, pero tiene como objetivo clarificar conceptos importantes.

Este problema es un ejemplo de lo que se imparte en el curso en línea sobre “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”, que podéis encontrar aquí: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/

 

Descargar (PDF, 200KB)

Referencias:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nomograma para el cálculo del peso específico aparente de un suelo

El “peso específico de un suelo“, como relación entre el peso y su volumen, es un valor dependiente de la humedad, de los huecos de aire y del peso específico de las partículas sólidas. Para evitar confusiones, las determinaciones de los ensayos de laboratorio facilitan, por un lado, el “peso específico seco” y por otro la humedad. El peso específico natural de un suelo granular suele variar entre 12 y 25 kN/m3, de 14 a 25 kN/m3 en suelos finos y de 1 a 10 kN/m3 en suelos orgánicos. El peso específico seco de un suelo suele variar entre 18 y 27 kN/m3 en arcillas y entre 14 y 18 kN/m3 en suelos granulares. Es importante tener en cuenta que estos valores son solo una guía general y pueden variar dependiendo de las características específicas del suelo y las condiciones ambientales.

Además, presentamos un nomograma original elaborado en colaboración con el profesor Pedro Martínez-Pagán y un ejercicio resuelto donde se demuestra la relación entre el peso específico aparente de un suelo en función de su humedad, el índice de huecos y el peso específico de las partículas sólidas. Espero que esta información sea de vuestro interés.

Descargar (PDF, 948KB)

Referencias:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Repercusión en prensa de nuestra investigación en optimización de aerogeneradores

Es de agradecer al área de comunicación de la Universitat Politècnica de València, y en especial, a Luis Zurano, su labor en la difusión del trabajo de investigación realizado en nuestra universidad.

En este caso, se ha hecho eco de uno de nuestros trabajos relacionados con la optimización de la cimentación de aerogeneradores mediante metamodelos tipo kriging. Os paso la noticia, tal y como ha salido en la web de nuestra universidad, así como en otros medios de prensa.

UPV Study Revolutionizes Wind Turbine Design

También tenéis un corte de la noticia emitida por Radio Nacional de España:

Y en este otro corte, podéis ver la noticia en la SER:

 

Diseño revolucionario

Un estudio de la Universitat Politècnica de València revoluciona el diseño de los aerogeneradores

Un estudio realizado por investigadores de la Universitat Politècnica de València (UPV), pertenecientes al Instituto de Ciencia y Tecnología del Hormigón (ICITECH), en colaboración con la Universidad Tecnológica Chalmers de Goteborg (Suecia), promete revolucionar el diseño estructural de los aerogeneradores. Su trabajo ofrece soluciones entre un 8 y un 15 % más sostenibles que los diseños tradicionales de estas infraestructuras,

Este estudio presenta un método innovador y eficiente para optimizar el diseño de cimentaciones de aerogeneradores, mejorando así la eficiencia energética en su construcción. Los resultados obtenidos en el estudio, publicados en la revista Structural and Multidisciplinary Optimization, demuestran su aplicabilidad en proyectos grandes y complejos y su potencial para ser utilizado en otras estructuras civiles.

Nuestro método permite diseñar estructuras de manera más sostenible y facilitar su construcción, a través de un software que puede analizar diferentes condiciones y optimizar así el producto final. Utiliza metamodelos, como Kriging, para mejorar la eficiencia y reducir el costo computacional del proceso de optimización del diseño”, explica Víctor Yepes, investigador del Instituto ICITECH de la Universitat Politècnica de València.

En su estudio, el equipo de la Universitat Politècnica de València y la Universidad Tecnológica Chalmers aplicaron el método a un ejemplo real de cimientos para turbinas eólicas en Suecia. “Comprobamos que con nuestra propuesta se pueden obtener mejores diseños, analizando solo veinte en lugar de mil diseños diferentes. Además, constatamos que estos diseños son más sostenibles que los diseños convencionales”, destaca Víctor Yepes, investigador del Instituto ICITECH de la Universitat Politècnica de València.

Entre las ventajas de este “revolucionario método” destaca también una significativa reducción de los costes – tanto económicos como computacionales— y tiempos a la hora de diseñar las cimentaciones de los aerogeneradores.

Otras aplicaciones

Aunque este estudio se centra en el diseño de cimientos para turbinas eólicas, el método propuesto por los investigadores españoles y suecos puede ser aplicado a otras estructuras empleadas en la ingeniería civil o en la edificación. Además, la técnica de metamodelado de Kriging es ampliamente utilizada en la industria y puede ser aplicada a una amplia variedad de proyectos de diseño estructural.

Nuestro trabajo puede ser de gran utilidad para la optimización de otras estructuras de ingeniería civil como puentes o edificios. Además, el método propuesto podría ser aplicado en otros campos como la optimización de procesos de fabricación o el desarrollo de nuevos materiales. En definitiva, se trata de una novedosa técnica con un gran potencial para afrontar y resolver una amplia variedad de problemas de diseño de ingeniería”, concluye Víctor Yepes.

El desarrollo de este método se enmarca dentro del proyecto de investigación HYDELIFE, financiado por el Ministerio de Ciencia e Innovación y el Fondo Europeo de Desarrollo Regional (FEDER).

Referencia

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

https://link.springer.com/article/10.1007/s00158-021-03154-0

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El artículo más citado de nuestro grupo de investigación en la Web of Science: Optimización de muros de hormigón

En 2008, publiqué un artículo en la revista Engineering Structures, la cual está indexada en el primer cuartil del JCR. El artículo, titulado “A parametric study of optimum earth-retaining walls by simulated annealing”, fue uno de los primeros que publicamos en nuestro grupo de investigación sobre optimización de estructuras. Desde entonces, ha seguido siendo muy citado por la comunidad científica, con un total de 112 citas hasta la fecha y una media de 7 citas por año. Estas cifras son notables dado que la optimización estructural es un campo de especialización pequeño en comparación con otros ámbitos del conocimiento. Además, en numerosas ocasiones, son los artículos de revisión del estado del arte los que más se citan. No es este el caso, que es un artículo de investigación. Por ese motivo, me gustaría compartir el contenido del artículo y proporcionar la referencia para aquellos interesados en echar un vistazo.

Este artículo se centra en la optimización económica de los muros de contención de tierras construidos con hormigón armado, que se utilizan comúnmente en la construcción de carreteras. El método propuesto para optimizar los muros es el algoritmo de recocido simulado. El problema se formula con 20 variables de diseño, que incluyen cuatro variables geométricas relacionadas con el espesor del alzado y la zapata, así como la longitud de la punta y el talón en la cimentación; cuatro tipos de materiales; y 12 variables para la disposición de las armaduras. El estudio evalúa la importancia relativa de factores como el coeficiente de fricción de la base, el ángulo de fricción muro-relleno y la limitación de las deflexiones del bordillo.

Además, el documento presenta un estudio paramétrico de muros comunes de 4 a 10 metros de altura, bajo diferentes condiciones portantes y rellenos. Se calculan expresiones medias para el coste total, el volumen de hormigón, el espesor del bordillo y la zapata, y la longitud de la zapata y el talón, que pueden ser útiles para el diseño práctico de muros. El estudio también establece un límite superior de 50 kg/m³ de armadura en el bordillo y 60 kg/m³ para todo el muro.

Lo más interesante de este estudio es que permite extraer fórmulas de predimensionamiento óptimo. Estas fórmulas las podéis ver en el artículo, pero también en el siguiente enlace: https://victoryepes.blogs.upv.es/2015/02/28/%c2%bfcomo-predimensionar-un-muro-sin-calculadora/

Podéis pedir el artículo en el siguiente enlace: https://www.researchgate.net/publication/222227130_A_parametric_study_of_optimum_earth-retaining_walls_by_simulated_annealing

Abstract:

This paper examines the economic optimization of reinforced concrete earth-retaining walls used in road construction. The simulated annealing algorithm is the proposed method to optimize walls. The formulation of the problem includes 20 design variables: four geometrical ones dealing with the thickness of the kerb and the footing, as well as the toe and the heel lengths; four material types; and 12 variables for the reinforcement set-up. The study estimates the relative importance of factors such as the base friction coefficient, the wall-fill friction angle and the limitation of kerb deflections. Finally, the paper presents a parametric study of commonly used walls from 4 to 10 m in height for different fills and bearing conditions. Average expressions are calculated for the total cost, the volume of concrete, the thickness of the kerb and the footing, the lengths of the footing and the heel, which may be useful for the practical design of walls. An upper bound of 50 kg/m3 of reinforcement in the kerb and 60 kg/m3 for the overall wall is reported.

Keywords:

Structural design; Economic optimization; Heuristics; Concrete structures

Reference:

YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. DOI:10.1016/j.engstruct.2007.05.023

 

 

Visibilidad para el grupo de investigación CONSTRUCTION OPTIMIZATION – ICITECH UPV

En mi blog personal, suelo destacar los logros personales de los miembros de nuestro grupo de investigación, compuesto por profesores e investigadores jóvenes de varios países, que tienen su sede en el ICITECH (Instituto de Ciencia y Tecnología del Hormigón) de la Universitat Politècnica de València. Sin embargo, estos logros a menudo pasan desapercibidos debido a la falta de una vía de comunicación propia.

Desde 2006, nuestro grupo ha centrado sus investigaciones en la optimización multiobjetivo y la toma de decisiones multicriterio para garantizar la sostenibilidad económica, social y medioambiental a lo largo del ciclo de vida de puentes e infraestructuras. Hasta la fecha, hemos publicado unos 150 artículos científicos indexados en el JCR y hemos presentado numerosas comunicaciones en congresos nacionales e internacionales. Ya se han leído 15 tesis doctorales y, en este momento, se encuentran otras 10 en marcha.

No obstante, consideramos que es crucial aumentar la visibilidad de nuestro trabajo para acercarlo a la sociedad. De esta manera, esperamos que nuestra investigación pueda contribuir a la construcción de infraestructuras más sostenibles y eficientes en el futuro.

Como podréis observar, hemos diseñado un logotipo para identificar nuestro trabajo. El diseño sigue el estilo institucional de los grupos de investigación de nuestra universidad. En la parte inferior, en color rojo destacado, aparece el acrónimo de la UPV, mientras que encima figuran dos palabras que consideramos fundamentales: “CONSTRUCTION” y “OPTIMIZATION”. Las hemos escrito en inglés porque queremos comunicar nuestro trabajo a nivel internacional.

La primera de ellas transmite que nuestro objeto de investigación no se limita a las estructuras de hormigón o puentes, sino que abarcamos un amplio espectro de infraestructuras, como edificios, carreteras, ferrocarriles, puertos y presas, entre otros. Además, la palabra “optimización” resume la base y los inicios de nuestro grupo, ya que buscamos mejorar la sostenibilidad integral de las infraestructuras a lo largo de su ciclo de vida.

Sin lugar a dudas, lo más complicado para nosotros ha sido crear una silueta que capture, a modo de paraguas, el núcleo central de nuestro mensaje. Hemos creado un arco que simboliza un puente y también tiene la intención de representar una cúpula de un edificio, un tramo de carretera o una sección de una presa bóveda. En resumen, hemos buscado un diseño que sea fácil de comprender y que simbolice el trabajo que llevamos a cabo en nuestro grupo.

Pues bien, podéis encontrar toda la información que vaya generando el grupo en las siguientes redes de comunicación. Os invito a que las sigáis para estar al tanto de lo que está ocurriendo en la punta de lanza del conocimiento en este ámbito de la ingeniería de la construcción.

Twitter: https://twitter.com/ConstOptUPV

Facebook: https://www.facebook.com/groups/231497652653826

LinkedIn: https://www.linkedin.com/groups/12794089/

 

Nomograma para el cálculo de la perforación a percusión con cable

Perforación a percusión con cable. https://www.massenzaperforadoras.es/la-perforacion-de-percusion/

La perforación a percusión con cable es un método de perforación vertical que se basa en el golpeteo de un trépano pesado que se eleva con un cable y cae por gravedad, fragmentando el suelo. Este método se utiliza en terrenos de dureza media a baja o en terrenos duros que sean frágiles, pero se desaconseja en terrenos detríticos no cohesionados, muy duros, abrasivos y plásticos. La frecuencia de golpeo se encuentra en el rango de 40 a 50 impactos por minuto, y se logran rendimientos medios de 2 a 4 m/día en materiales duros y de 10 a 20 m/día en materiales blandos. La altura de caída del trépano depende de la dureza del terreno y de la profundidad del fondo de perforación.

Aquí os traigo un nomograma original, elaborado en colaboración con los profesores Pedro Martínez-Pagán y Daniel Boulet, en el que se puede calcular las características propias de este método de perforación, tales como el peso de la sarta de perforación, la velocidad media de la herramienta o la potencia necesaria de la máquina. También os paso un problema resuelto, que espero sea de vuestro interés.

Descargar (PDF, 351KB)

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 2009.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Celda unidad y área tributaria de una columna de grava

Figura 1. Diámetro equivalente del área tributaria en función de la distribución espacial de las columnas de grava

Al conjunto de una única columna central y el anillo de suelo circundantes se le denomina “celda unidad” o “celda unitaria”. Se transforma la porción de terreno que se encuentra alrededor de la columna por el área de un cilindro de diámetro tal que la sección de ambas sea la misma, según se puede ver en la Figura 1.

Por cierto, la Figura 1 es correcta, aunque en un primer momento pueda generar confusiones.  En efecto, la malla triangular es la encargada de determinar la ubicación de las columnas de grava, formando así un área hexagonal tributaria en torno a dicha columna. De igual manera, la malla hexagonal cumple con una función similar.

Os dejo un problema resuelto donde se calcula el diámetro equivalente del área tributaria en función de la malla donde se disponen las columnas de grava. Espero que os sea de interés.

Descargar (PDF, 281KB)

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sostenimiento de un túnel según el índice Q de Barton

Los sistemas de clasificación del macizo rocoso se basan fundamentalmente en un enfoque empírico y se desarrollaron como una herramienta de diseño sistemática en la ingeniería civil y minera. Tratan de ordenar y sistematizar los procedimientos de las investigaciones en campo. La mayoría de estos sistemas clasifican las condiciones geomecánicas en varios grupos diferentes que representan diferentes capacidades portantes de la roca. Sin embargo, no deberían ser utilizadas como sustitutos de los estudios analíticos, las observaciones y mediciones en campo o aportaciones de expertos, sino en conjunción con otras técnicas. La clasificación Q de Barton es una de las clasificaciones geomecánicas más empleadas en los macizos rocosos, junto con la clasificación RMR de Bieniawski.

La clasificación Q fue desarrollada por Barton, Lien y Lunde en 1974 a partir de un estudio empírico de un gran número de túneles. Esta clasificación permite estimar parámetros geotécnicos del macizo y diseñar sostenimientos para túneles y cavernas subterráneas. El índice Q se basa en seis parámetros que indican el tamaño de los bloques, la resistencia a corte entre los bloques y la influencia del estado tensional:

Donde:

RQD       Índice de calidad de la roca (Rock Quality Designation)

Jn            Índice de diaclasado, que indica el grado de fracturación del macizo rocoso

Ja            Índice que indica la alteración de las discontinuidades

Jw            Coeficiente reductor por la presencia de agua

SRF        Coeficiente que tiene en cuenta la influencia del estado tensional del macizo rocoso (Stress Reduction Factor)

El índice Q varía entre 0,001 y 1.000, correspondiendo los valores bajos a rocas malas y los altos a las rocas buenas.

Una de las aplicaciones que tiene este índice es que permite establecer qué tipo de sostenimiento debería tener un túnel excavado en un macizo rocoso. A continuación os dejo un problema resuelto que, espero, os sea de interés. Un problema similar lo resolvimos en un artículo anterior, en particular el que calculaba la longitud de avance sin sostenimiento de un túnel.

Descargar (PDF, 438KB)

También os dejo un documento que creo que os puede resultar de muchísimo interés:

Descargar (PDF, 2.44MB)

Referencias:

BARTON, N.; GRIMSTAD, E. (2000). (C.L. Jimeno et al.) El sistema Q en el método Noruega de excavación de túneles. Ingeo Tuneles, Madrid.

BARTON, N.; LIEN, R.; LUNDE, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, Springer Verlag, vol. 6, pp. 189-236.

BIENIAWSKI, Z. T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley-Interscience, pp. 40–47.

GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco. Bilbao, España, 277 pp.

GRIMSTAD, E.; BARTON, N. (1993). Updating the Q-Sytem for NMT. Proceedings of the International Symposium on Sprayed Concrete – Modern Use of Wet Mix Sprayed Concrete for Underground Support. Fagemes, Norway. Ed. Kompen, Opsahi and Berg. Norwegian Concrete Association. Oslo.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo del peso específico saturado de un suelo mediante un nomograma

Figura 1. Nomograma para el cálculo del peso específico saturado de un suelo. Pesos específicos en kN/m3. Elaborado por Pedro Martínez Pagán.

El otro día estuve hablando con el profesor Pedro Martínez Pagán (Universidad Politécnica de Cartagena) sobre la utilidad actual de los nomogramas para el cálculo en la ingeniería. Un nomograma, ábaco o nomógrafo, es un instrumento gráfico de cálculo, un diagrama bidimensional que permite el cómputo gráfico y aproximado de una función de cualquier número de variables. Permite representar las ecuaciones que gobiernan un problema y el rango de las soluciones.

La nomografía se define como una rama de las matemáticas en la que se estudian métodos de representación gráfica de las dependencias funcionales. A lo largo del siglo pasado, esta rama de la ciencia experimentó un amplio desarrollo y uso en muchos contextos para ayudar a científicos e ingenieros con cálculos exactos y rápidos de fórmulas complejas con una precisión práctica. Sin embargo, la nomografía decayó a finales del siglo XX con el desarrollo y popularización de ordenadores personales y calculadoras de mano más capaces y potentes. A pesar de este contexto, la nomografía sigue siendo atractiva por su potencial para realizar cálculos gráficos rápidos y precisos que contribuyen a una mejor comprensión de las fórmulas complejas. No obstante, es posible que la repetición de un cálculo en numerosas ocasiones o bien el aprendizaje de los estudiantes de un tema determinado, hacen interesante su uso.

De hecho, puede desempeñar un papel importante en la aplicación práctica de la formulación de las ciencias y la ingeniería en una actividad de aprendizaje atractiva y creativa. Además, los estudiantes de ciencias e ingeniería podrían beneficiarse del hecho de que los nomogramas pueden ayudar a estudiar los efectos de las distintas variables de una fórmula. Estos nomogramas son útiles para efectuar estudios preliminares de sensibilidad y proporcionar las habilidades necesarias para interpretar aquellos nomogramas que aún están en uso.

A continuación os paso una pequeña demostración del cálculo de la fórmula que permite conocer el peso específico saturado de un suelo en función del índice de huecos y del peso específico de las partículas sólidas. Además, os paso un ábaco (Figura 1), realizado por el profesor Martínez-Pagán, que permite solucionar fácilmente este tipo de problemas. Espero que os sea de interés.

Descargar (PDF, 556KB)

Referencias:

MARTÍNEZ-PAGÁN, P.; ROSCHIER, L. (2022). Nomography: A renewed pedagogical tool to sciences and engineering high-education studies. Heliyon, 8(6):e09731. https://doi.org/10.1016/j.heliyon.2022.e09731

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rendimiento en una perforación rotativa con triconos

Tricono con insertos. https://www.talleresegovia.com

En un artículo anterior se describió la perforación rotativa de rocas y la perforación con triconos. El principio utilizado por las perforadoras rotativas consiste en aplicar energía a la roca haciendo rotar un útil de corte o destroza conjuntamente con la acción de una gran fuerza de empuje. Actualmente, se emplean con frecuencia los trépanos triturantes o triconos, para lograr un alto rendimiento, alcanzando entre 60-100 m/turno, en profundidades de hasta los 200 m. Se usa en ingeniería civil con diámetros entre 100 y 300 mm. Sin embargo, en la industria petrolera, se han superado estos límites, alcanzando hasta 4500 metros de profundidad en España.

En este artículo vamos a presentar un problema resuelto de rendimientos y plazos en una perforación rotativa con triconos sobre una roca. Como podréis ver, muchas de las formulaciones empleadas son empíricas y, en este sector, sigue empleándose frecuentemente el sistema de unidades anglosajón.

 

Descargar (PDF, 173KB)

Referencias:

INSTITUTO TECNOLÓGICO Y GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie: Tecnología y Seguridad Minera. Segunda edición, Madrid, 541 pp.

LÓPEZ JIMENO, C. (Ed.) (2000). Manual de sondeos. E.T.S. de Ingenieros de Minas de Madrid, 699 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.