Sir Edmund “Ted” Happold: un ingeniero que unió arte, técnica y humanidad

Sir Edmund Happold (1930 –  1996). https://www.burohappold.com/news/celebrating-30-years-of-the-happold-foundation/

Sir Edmund «Ted» Happold (Leeds, 8 de noviembre de 1930 – Bath, 12 de enero de 1996) fue una de las figuras más singulares y admiradas de la ingeniería estructural del siglo XX. Conocido como «ingeniero del arquitecto y arquitecto del ingeniero», defendía que «un mundo que ve el arte y la ingeniería como ámbitos separados no está viendo el mundo en su conjunto». Su reputación internacional se cimentó en su enfoque creativo y profundamente humano del diseño estructural, así como en su participación directa en el desarrollo de los principios estructurales de algunos de los edificios más emblemáticos de la arquitectura moderna.

Nacido en el seno de una familia académica, era hijo de Frank Happold, profesor de bioquímica en la Universidad de Leeds, y de una madre socialista convencida. Criado en un ambiente de pensamiento crítico y compromiso social, Happold estudió en el Leeds Grammar School, aunque su paso por este centro fue conflictivo, ya que se negó a unirse al cuerpo de adiestramiento militar juvenil por convicción pacifista. Posteriormente, lo enviaron al Bootham School de York, un colegio cuáquero cuyo entorno se ajustaba mejor a sus valores. Fiel a su fe cuáquera durante toda su vida, cuando fue llamado a filas, se registró como objetor de conciencia y fue destinado a trabajos agrícolas y de transporte. Esta experiencia despertó su interés por la construcción y lo llevó de nuevo a la Universidad de Leeds, donde se licenció en ingeniería civil en 1957, tras haber estudiado previamente geología.

Tras graduarse, trabajó brevemente con el arquitecto finlandés Alvar Aalto, lo que reforzó su visión integradora entre ingeniería y arquitectura. En 1956, se incorporó a Ove Arup & Partners, una de las firmas más innovadoras de la época, que en aquellos años participó en el diseño estructural de la catedral de Coventry, de Basil Spence, y de la ópera de Sídney, de Jørn Utzon. Su talento y curiosidad le llevaron a estudiar arquitectura por las noches, convencido de que la ingeniería debía dialogar con el arte y el espacio.

En 1958 viajó a Estados Unidos para trabajar con Fred Severud en la consultora Severud, Elstad y Kruger de Nueva York. Allí se vio profundamente influido por Eero Saarinen y su estadio de hockey, David S. Ingalls, de la Universidad de Yale, con sus cubiertas orgánicas y tensadas. De vuelta en Londres en 1961, retomó su carrera en Ove Arup, donde pronto destacó por su capacidad de liderazgo y su visión interdisciplinar.

Durante su etapa en Arup, Happold colaboró con equipos de arquitectos, como el de Sir Basil Spence, en los proyectos de la Universidad de Sussex y de los Knightsbridge Barracks, y con el arquitecto Ted Hollamby, en el ayuntamiento de Lambeth. Allí trabajó en proyectos de vivienda social, como Central Hill, y en equipamientos públicos, como la biblioteca y el auditorio de West Norwood, donde se casó con Evelyn Matthews en 1967.

Su progresión fue meteórica: en 1967 se convirtió en jefe del departamento Structures 3 de Ove Arup, unidad que impulsó una nueva generación de estructuras ligeras y experimentales. Desde ese puesto, participó en proyectos internacionales, como el Centro Pompidou de París, ganador del concurso de 1971, junto a Richard RogersRenzo PianoPeter Rice y su equipo. Rogers reconocería años después que «todo fue idea de Ted». También colaboró en el Teatro Crucible de Sheffield (con Renton, Howard, Wood y Levin) y en la ampliación Sainsbury del Worcester College de Oxford (con MacCormac, Jamieson y Prichard).

Centro Pompidou de París. https://de.wikipedia.org/wiki/Edmund_Happold

Durante este tiempo, Happold mantuvo una estrecha colaboración con el arquitecto e ingeniero Frei Otto, con quien fundó un laboratorio para el estudio de estructuras tensadas y neumáticas. Junto a Rolf Gutbrod y Otto, desarrolló proyectos innovadores en Oriente Medio, como el Centro de Conferencias de Riad (1966), un complejo hotelero en La Meca (1966), premiado con el Aga Khan Award, y, más tarde, el Club Diplomático de Riad (1986) y el Pabellón Deportivo del Rey Abdul Aziz en Yeda (1977). También colaboró con ellos en los pabellones de la Exposición de Jardines de Mannheim (1975) y, junto a Otto y Richard Burton (de ABK), en los experimentos con madera verde estructural en Hooke Park, Dorset (1985-1991).

Pabellón para la Exposición Federal de Jardinería de Mannheim (1975), considerado una de sus obras más emblemáticas (en colaboración con Frei Otto). https://expoarquitectura.com.ar/pabellon-multihalle-de-frei-otto-mannheim/

Entre sus innovaciones estructurales más notables se encuentran la «sombrilla de La Meca», una cubierta con forma de abanico estabilizada por el peso del cerramiento; el uso de dobles mallas reticuladas en las cubiertas de Mannheim para evitar el pandeo, y la introducción del tejido metálico inoxidable en el aviario del zoológico de Múnich, que permitió crear una envolvente orgánica capaz de soportar la carga de la nieve sin rigidez visual.

En 1976, tras el rechazo de Arup a abrir una oficina en Bath, Happold decidió fundar su propio estudio, Buro Happold, con siete compañeros e incorporarse a la Universidad de Bath como profesor de Ingeniería de la Edificación y de Diseño Arquitectónico. Allí consolidó un espacio de cooperación entre disciplinas, en el que ingenieros y arquitectos trabajaban de manera integrada. Promovió la creación del Centre for Window and Cladding Technology y de un grupo de investigación en estructuras inflables, sentando las bases del pensamiento interdisciplinar que caracteriza a la ingeniería moderna.

Su compromiso con la profesión se tradujo en una intensa actividad institucional: fue nombrado Royal Designer for Industry (RDI) en 1983, fue vicepresidente de la Institution of Structural Engineers (1982-1986), presidió el Construction Industry Council (1988-1991), fue vicepresidente de la Royal Society of Arts (1991-1996), fue nombrado Senior Fellow del Royal College of Art en 1993 y fue nombrado caballero del Imperio Británico en 1994. También fundó el Building Industry Council, germen del actual Construction Industry Council, y fomentó la colaboración entre los distintos agentes del sector, fiel a su espíritu cuáquero.

Happold era un hombre lleno de ideas, capaz de contagiar entusiasmo y encontrar soluciones brillantes a problemas complejos. Sus colegas recordaban con humor sus largas y divertidas explicaciones sobre los últimos retos estructurales, así como su capacidad para resolver cuestiones empresariales o técnicas con la misma lucidez. Falleció en su casa de Bath en 1996, mientras esperaba un trasplante de corazón.

Entre los numerosos reconocimientos que recibió figuran la Medalla Guthrie Brown (1970), la Medalla Eiffel de la École Centrale de París, la Medalla Kerensky de la Asociación Internacional de Puentes y Estructuras y la medalla de oro de la Institution of Structural Engineers (1991). Entre sus obras se encuentran proyectos como la Bootham School (1964), el Centro de Conferencias de Riad (1967), los Hyde Park Barracks de Londres (1970), la Casa de Reuniones Cuáquera de Blackheath (1971-1972), el Centro Pompidou (1971-1977), el Aviario de Múnich (1978-1982) y Hooke Park (1985-1991).

El legado de Sir Edmund Happold trasciende sus estructuras. Fue un pionero que entendió que la ingeniería y la arquitectura no son disciplinas enfrentadas, sino expresiones complementarias de una misma visión del mundo, que concibe la belleza, la técnica y la humanidad como partes inseparables del acto de construir.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción sostenible: por qué nuestra intuición nos falla.

En un mundo cada vez más consciente de la emergencia climática, la construcción sostenible ha dejado de ser una opción para convertirse en una necesidad. Arquitectos, ingenieros y promotores buscan constantemente el método constructivo «perfecto»: aquel que sea económico, ecológico y socialmente responsable. Sin embargo, ¿qué pasaría si nuestras ideas más arraigadas sobre lo que es «mejor» estuvieran equivocadas?

Un detallado estudio científico realizado por nuestro grupo de investigación, dentro del proyecto RESILIFE, ha puesto a prueba nuestras creencias. En él, los investigadores compararon de forma exhaustiva cuatro métodos de construcción para una vivienda unifamiliar: uno tradicional y tres alternativas industrializadas que prometen mayor eficiencia y sostenibilidad. Sus conclusiones no solo son sorprendentes, sino que también revelan por qué nuestra intuición sobre la construcción sostenible a menudo falla. Este artículo desvela los hallazgos que nos obligan a replantearnos qué significa realmente construir de forma sostenible.

Vivienda unifamiliar adosada analizada.

Intuición fallida n.º 1: la búsqueda de un «campeón» absoluto.

La primera gran revelación del estudio es que no existe una solución mágica que destaque en todas las categorías. Nuestra intuición busca un único «campeón» de la sostenibilidad, pero la realidad es un complejo juego de equilibrios. Cada método constructivo destacó en una dimensión diferente, lo que demuestra que la opción ideal depende de las prioridades del proyecto.

El estudio identificó un ganador claro para cada una de las tres dimensiones:

  • Dimensión económica: la alternativa «PRE» (losa de hormigón aligerada con discos huecos) fue la más económica. Su ventaja radica en su alta eficiencia estructural, ya que requiere «la mitad de material para las mismas solicitaciones estructurales» en comparación con la losa convencional.
  • Dimensión medioambiental: la alternativa «YTN» (prefabricada con hormigón celular autoclavado) obtuvo el mejor rendimiento ecológico. Esto se debe a que es un «material 100 % mineral» que necesita poca materia prima (1 m³ de materia prima produce 5 m³ de producto) y tiene un «bajo consumo de energía en su fabricación».
  • Dimensión social: la alternativa «ELE» (elementos de doble pared) fue la óptima desde una perspectiva social, impulsada en gran medida por un mayor confort de usuario, gracias a su excepcional rendimiento térmico, derivado de la gruesa capa de EPS utilizada como encofrado perdido.

Este hallazgo es fundamental. La sostenibilidad real no consiste en maximizar una única métrica, como la reducción de CO₂, sino en encontrar un equilibrio inteligente entre factores que, a menudo, están en conflicto.

Intuición fallida n.º 2: asumir que lo más «verde» es siempre lo mejor.

Podríamos pensar que la opción con menor impacto medioambiental (YTN) sería automáticamente la más sostenible, pero no es así. Sin embargo, el estudio demuestra que no es tan simple. Al combinar todos los factores en un «Índice Global de Sostenibilidad Estructural» (GSSI), la alternativa ganadora fue la «PRE» (losa aligerada).

¿Por qué ganó? La razón es el equilibrio. Aunque no fue la mejor en los ámbitos medioambiental y social, la alternativa PRE ofreció un excelente rendimiento económico y resultados muy sólidos en las otras dos áreas. El estudio la selecciona como la opción más sostenible porque, en sus palabras, presenta las respuestas más equilibradas a los criterios. Esta conclusión subraya una idea crucial: la solución más sostenible no es un extremo, sino un compromiso inteligente y equilibrado.

Los métodos «modernos» no son infalibles: sorpresas en los costes.

El estudio desveló dos realidades incómodas sobre los costes, tanto económicos como medioambientales, de algunas de las alternativas más innovadoras y puso en tela de juicio la idea de que «moderno» siempre significa «mejor».

En primer lugar, el método prefabricado (YTN), que a menudo se asocia con la eficiencia y el ahorro, resultó ser el más caro de todos. Su coste de construcción fue un 30,4 % superior al del método convencional de referencia.

Pero el sobrecoste económico no es el único precio oculto que reveló el estudio. La alternativa más tecnológica, ELE, conlleva una elevada factura medioambiental. Aunque fue la mejor valorada socialmente, su rendimiento ecológico fue pobre debido al enorme consumo de energía necesario para producir el poliestireno expandido (EPS) que utiliza como encofrado perdido. El estudio es contundente al respecto:

«Esto significa que, solo en los forjados, la alternativa ELE provoca un consumo de energía tres veces superior al necesario para obtener el EPS que requiere la solución de referencia».

Este hallazgo nos recuerda la importancia de analizar el ciclo de vida completo de los materiales y no dejarnos seducir únicamente por etiquetas como «moderno» o «tecnológico».

El mayor riesgo es el «business as usual»: el método tradicional fue el peor.

Quizás el hallazgo más importante y aleccionador del estudio es el pobre desempeño del método de construcción convencional (denominado «REF»). Al compararlo con las tres alternativas industrializadas, el sistema tradicional resultó ser la opción menos sostenible en todos los aspectos.

La conclusión de los investigadores es clara e inequívoca: «La alternativa REF es la peor opción en todos los criterios individuales y, en consecuencia, obtiene la menor prioridad en la caracterización de la sostenibilidad». Este resultado debe hacer reflexionar al sector: seguir construyendo como siempre se ha hecho, sin evaluar ni adoptar nuevas alternativas, es la decisión menos sostenible que podemos tomar.

Conclusión: repensando la construcción sostenible.

Este estudio demuestra que la sostenibilidad es un problema complejo que desafía las soluciones simplistas y las ideas preconcebidas. No se trata de encontrar una solución universal, sino de evaluar de manera integral y equilibrada las dimensiones económica, medioambiental y social de cada proyecto.

Como resumen, los propios autores: «Solo la consideración simultánea de los tres campos de la sostenibilidad […] conducirá a diseños adecuados». Esto nos obliga a cambiar nuestra pregunta fundamental: en lugar de buscar el material más ecológico o la técnica más barata, debemos preguntarnos cuál es la solución más equilibrada para un contexto específico.

Teniendo en cuenta estos resultados, ¿cómo deberíamos redefinir «la mejor forma de construir» para conseguir un futuro verdaderamente sostenible?

Aquí tenéis un audio que explica estos conceptos.

Os dejo un vídeo resumen sobre estas ideas.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vigas de acero: 4 claves de las nuevas estructuras que están revolucionando la construcción.

Figura 1. a) caso básico en 3D; b) sección transversal con algunas variables geométricas; c) viga de canto variable con 4 puntos de transición

Acabamos de publicar un artículo en la revista indexada JCR The International Journal of Advanced Manufacturing Technology (2025), que presenta una metodología de optimización metaheurística para minimizar el coste de fabricación de las vigas I de placa de acero soldada. El estudio se centra en el desarrollo de tipologías más eficientes, como las vigas híbridas transversales de sección variable (THVS), que optimizan simultáneamente la geometría y la distribución del material en los planos transversal y longitudinal. La función objetivo tiene en cuenta no solo el coste de los materiales, sino también siete actividades clave de producción (soldadura, corte, pintura, etc.) y los diseños cumplen las especificaciones del Eurocódigo 3. Los principales resultados indican que la optimización del material es más importante para las vigas de tramos cortos, mientras que la optimización geométrica lo es más para las vigas de tramos largos. En última instancia, el artículo valida el enfoque propuesto mediante un caso de estudio, que demuestra que los elementos THVS pueden reducir los costes hasta en un 70 % en comparación con los diseños tradicionales.

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.

Como futuro profesional, ¿te has preguntado alguna vez si los perfiles de acero que eliges son realmente la mejor opción? En el diseño estructural, es habitual utilizar perfiles estándar (como los «IPE») por su simplicidad y disponibilidad. Aunque son prácticos, estos perfiles de sección constante a menudo resultan ineficientes, ya que utilizan más material del necesario y generan mayores costes.

El sector de la construcción se enfrenta a una encrucijada: la necesidad de crear estructuras eficientes y la obligación de reducir su enorme consumo de recursos. En este dilema, las vigas de acero son un elemento fundamental. Pero ¿son los diseños tradicionales la opción más eficiente o existen alternativas mejores? Un estudio reciente revela hallazgos sorprendentes que desafían las convenciones del diseño estructural. La respuesta se encuentra en cuatro claves contrarias a la lógica que demuestran cómo optimizar de forma inteligente el material y la geometría puede reducir los costes de fabricación hasta en un 70 %.

1. Material frente a la geometría: la regla inesperada que depende de la distancia.

El primer descubrimiento clave del estudio es que la estrategia óptima para reducir costes depende fundamentalmente de la longitud de la viga (vano). Este hallazgo desafía el enfoque de «talla única» y da lugar a dos conclusiones interesantes:

  • Para vigas cortas (por ejemplo, de 6 metros, una medida habitual en edificios), la optimización del material resulta más eficaz. El uso de aceros de diferentes resistencias para las alas y el alma permite obtener mayores ahorros que con la modificación de la geometría.
  • En el caso de las vigas largas (por ejemplo, de 14 o 20 metros, comunes en puentes), la optimización geométrica se convierte en el factor dominante. La estrategia más decisiva para el ahorro es crear vigas de sección variable.

 

El principio de ingeniería subyacente es el momento flector. En las vigas largas, la diferencia de esfuerzos entre el centro (donde el momento es máximo) y los apoyos (donde el momento es nulo) es considerable. Adaptar el canto de la viga a esta variación permite ahorrar material de manera significativa en las zonas donde no es necesario. En las vigas cortas, el momento flector es más uniforme, por lo que el ahorro de material al variar la geometría es mínimo y no compensa el coste adicional de fabricación (cortes y soldaduras complejas).

2. La campeona del ahorro: la viga híbrida de sección variable (THVS).

La solución más rentable identificada en el estudio es la viga «híbrida transversal con sección variable» (THVS). Este diseño combina de forma inteligente las dos estrategias de optimización:

  1. Estructura híbrida: utiliza acero de alta resistencia para las alas, que, al estar más alejadas del eje neutro, soportan la mayor parte de las tensiones de flexión. Para el alma, que se encarga principalmente de los esfuerzos cortantes, se emplea un acero más económico y de menor resistencia.
  2. Geometría variable: su altura no es constante, sino que se adapta a la distribución de esfuerzos. Es más alta cerca del centro, donde el momento flector es máximo, y disminuye hacia los apoyos.

El dato más impactante del estudio es que los elementos THVS pueden reducir los costes de fabricación hasta un 70 % en comparación con los diseños tradicionales de vigas de acero de canto constante.

3. El coste real no es solo el peso: una mirada a la fabricación.

Uno de los puntos fuertes de la investigación es que se centra en el coste total de fabricación, en lugar de limitarse al peso o al coste del material. El estudio incluyó siete actividades clave de producción en su modelo de costes:

  • Montaje en obra/Izado.
  • Pintura.
  • Soldadura.
  • Granallado.
  • Corte.
  • Aserrado.
  • Transporte.

Este enfoque holístico es crucial, ya que alinea el diseño estructural con la realidad de la producción industrial. Es precisamente este análisis de costes integral el que permite al estudio concluir que, en el caso de las vigas largas, el ahorro de material de una viga THVS compensa con creces la mayor complejidad de fabricación, algo que no revelaría un análisis de peso sencillo.

4. De la teoría a la práctica: una metodología para el diseño.

La investigación no se limita a la teoría, sino que ofrece una metodología de diseño con directrices aplicables para que los ingenieros puedan implementar estas soluciones. El estudio establece parámetros prácticos sobre:

  • Relaciones óptimas entre el canto y la luz de la viga.
  • Ángulos de achaflanado ideales.
  • Posiciones óptimas para las transiciones de sección.
  • Combinaciones de tipos de acero recomendadas.

Conscientes de que la innovación teórica debe enfrentarse a la realidad industrial, los propios autores moderan el optimismo mediante una evaluación pragmática de los próximos pasos.

«Los elementos THVS pueden reducir los costes hasta en un 70 % en comparación con los diseños tradicionales. No obstante, para aprovechar plenamente el potencial de estos diseños, deben abordarse los desafíos relacionados con la disponibilidad de materiales, la complejidad de la fabricación y los riesgos de pandeo local».

Conclusión: ¿Estamos listos para construir de forma diferente?

La idea central es clara: optimizar simultáneamente la geometría y el material de las vigas de acero, especialmente en los diseños THVS, permite ahorrar recursos y dinero de forma sin precedentes. Esta investigación establece una base teórica y una metodología de diseño que abren la puerta a una nueva era de eficiencia estructural. Con ahorros potenciales de hasta el 70 % demostrados, la pregunta para la industria no es si merece la pena, sino cómo superar los desafíos de fabricación, la disponibilidad de materiales y la actualización de normativas para convertir este potencial en una nueva realidad constructiva.

En este vídeo, se resumen las ideas fundamentales de este artículo, explicadas de forma sencilla.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. The International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2

Os dejo el artículo completo para su descarga, ya que está publicado en abierto.

Pincha aquí para descargar

¿Tus cimientos se diseñan con métodos desfasados? 5 revelaciones para proyectar de forma más segura y sostenible

Como profesionales de la ingeniería y la arquitectura, convivimos con una tensión permanente: garantizar la máxima seguridad de las estructuras mientras enfrentamos la presión de optimizar costes y reducir el impacto medioambiental. En el diseño de cimentaciones, esta tensión suele traducirse en incertidumbre y en un sobredimensionamiento conservador. Pero ¿qué sucede cuando uno de los supuestos básicos de nuestros cálculos se aleja de la realidad?

Un ejemplo claro es el módulo de reacción vertical del suelo, conocido como coeficiente de balasto o módulo de Winkler (Ks), un parámetro clave en el diseño de losas de cimentación que a menudo se interpreta incorrectamente y se obtiene de tablas genéricas con poco rigor. Una investigación reciente revela hallazgos significativos que cuestionan estas prácticas habituales y plantean alternativas para obtener cimentaciones más seguras, eficientes en costes y de menor impacto medioambiental.

Este artículo sintetiza una investigación publicada en la revista del primer decil del JCR, Environmental Impact Assessment Review, en la que se presenta una metodología rigurosamente formulada para la estimación directa del módulo (Ks) en cimentaciones por losa, superando las deficiencias clave de los enfoques convencionales. Su principal aportación es un modelo directo que integra la teoría del semiespacio elástico, el análisis de asientos en suelos multicapa y la mecánica de consolidación edométrica, considerando explícitamente la profundidad de influencia y los efectos de la compensación de cargas. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.

El estudio introduce un coeficiente de seguridad específico para Ks, lo que constituye una innovación que aborda la incertidumbre geotécnica y fortalece la fiabilidad del diseño en los estados límite de servicio. Esta metodología se integra en un marco de evaluación del ciclo de vida y decisión multicriterio (MCDM) que utiliza un proceso híbrido de AHP neutrosófico en grupo (NAHP-G) y ELECTRE IS para evaluar alternativas de diseño de cimentaciones según criterios económicos, ambientales y sociales.

Aplicado a un caso de estudio real, el método propuesto (denominado 3-NEW) demuestra ser la solución más sostenible. El diseño resultante (A3) mejora el rendimiento de sostenibilidad global en un 50 % y aumenta el índice de seguridad social en 2,5 veces en comparación con las metodologías de referencia. Este trabajo establece un marco unificado que avanza en la práctica del diseño geotécnico, optimiza el uso de materiales y alinea el diseño de cimentaciones con los principios de resiliencia y de economía circular.

A continuación os dejo algunas ideas clave contenidas en este estudio.

1. El módulo de balasto (Ks) no es una propiedad del suelo, sino una consecuencia de la interacción.

La primera idea consiste en entender que el módulo de balasto (Ks) no es una constante intrínseca del terreno, como el peso específico o la cohesión, que podamos consultar en una tabla. Se trata de un concepto más complejo. Es un parámetro variable que depende de la carga y de la profundidad de su influencia.

Esto significa que el módulo de balasto es el resultado de la interacción entre la cimentación (su tamaño y rigidez) y el terreno bajo una carga específica. Depende de la carga transmitida, de la geometría de la losa y de la profundidad del bulbo de presión generado. Este cambio de perspectiva es crucial, pues nos obliga a abandonar las tablas genéricas y a realizar un cálculo adaptado a las condiciones reales de cada proyecto. Así, reconocemos que el «mismo» suelo se comportará de manera diferente bajo una pequeña zapata que bajo una gran losa de un edificio. Esta idea, conocida en el ámbito geotécnico, no debería pasarse por alto.

 

2. Los métodos tradicionales no explican ni integran la paradoja de la rigidez infinita en cimentaciones totalmente compensadas.

Cuando se proyectan cimentaciones con sótanos, la excavación compensa parte de la carga del edificio al retirar el peso del suelo existente. En estos casos, los métodos convencionales de cálculo de Ks (el 1-BAS, un método empírico, y el 2-REF, un método semidirecto) o no tienen en cuenta la «paradoja del balasto infinito» (1) o no la integran ni la armonizan (2).

Si la carga neta transmitida al terreno es próxima a cero o negativa, la deformación generada por la cimentación tiende a cero, ya que la profundidad de influencia del bulbo de tensiones tiende a cero y, por tanto, el valor del balasto vertical tiende a infinito. Con la propuesta metodológica del trabajo (3-NEW, un método directo), se resuelve esta paradoja al vincular Ks directamente con los asientos elásticos reales y con las cargas transmitidas por la estructura, lo que explica el fenómeno físico y elimina la paradoja en el cálculo mediante un límite mínimo de la profundidad de influencia (el 5 % de la carga bruta transmitida). En escenarios totalmente compensados, el método regula la respuesta mediante umbrales y el factor de seguridad (FS), evitando así resultados físicamente inconsistentes.

3. Estamos olvidando el factor de seguridad donde más importa: en los asientos.

En geotecnia, es habitual aplicar un factor de seguridad (FS) de entre 2,5 y 3,0 frente a la rotura del terreno. Sin embargo, cuando el diseño se basa en el límite de asientos (algo muy común en grandes losas), aplicamos un factor de seguridad de 1,0.

Se debería buscar una mayor coherencia en esta práctica, ya que, como señala la investigación, los límites de servicio (como los asientos) quedan desprotegidos frente a la variabilidad e incertidumbre del subsuelo. En otras palabras, no dejamos margen de seguridad para proteger la estructura frente a la fisuración, las deformaciones excesivas o los daños en los acabados, que son consecuencia directa de los asientos. La investigación propone un factor de seguridad formal para el cálculo de Ks (FS = 1,2 en condiciones estándar), lo que permite armonizar la seguridad en los estados límite últimos y de servicio.

4. El diseño más seguro resultó también el más sostenible en su ciclo de vida.

El estudio comparó tres alternativas de diseño (A1-BAS, A2-REF y A3-NEW) mediante un análisis de sostenibilidad del ciclo de vida. Inicialmente, la alternativa A1 (diseñada con el método tradicional) parecía la más rentable en términos de costes y emisiones de CO₂.

Sin embargo, al introducir el criterio social de seguridad, que cuantifica la fiabilidad estructural y la seguridad para los usuarios y se deriva del nuevo marco de cálculo, la alternativa A1 fue penalizada drásticamente. La ganadora fue la alternativa A3 (diseñada con el nuevo método), no por ser la mejor en un único aspecto, sino por ofrecer el mejor equilibrio global, destacando en el criterio clave de seguridad. De hecho, A3 consiguió una mejora relativa del 50 % en el rendimiento agregado de sostenibilidad. En la práctica, esto se tradujo en un diseño que, en comparación con la alternativa A2, redujo los costes de construcción en un 12,5 % y, en comparación con la alternativa A1, disminuyó los costes de mantenimiento a largo plazo en casi un 24 %, lo que demuestra que la seguridad y la eficiencia económica pueden ir de la mano.

5. Una mayor precisión en el cálculo no implica un sobrecoste, sino un uso más eficiente del suelo.

Un análisis más riguroso de un problema no tiene por qué dar soluciones conservadoras y, por tanto, costosas. Este estudio demuestra lo contrario. Al comparar la presión admisible bruta (Qba) que el terreno puede soportar sin exceder los asientos permitidos, los resultados fueron reveladores:

  • Método convencional (2-REF): Qba = 0,146 MPa.
  • Nuevo método propuesto (3-NEW): Qba = 0,265 MPa.

Este notable aumento no se debe a una alteración del suelo, sino a que el nuevo método modela con mayor precisión la interacción suelo-estructura, considerando la profundidad de influencia (19 metros en este caso) y los asientos elásticos reales, lo que evita el conservadurismo innecesario de los métodos simplificados. Esta mayor eficiencia se traduce directamente en un diseño más optimizado y competitivo. Esta optimización no solo reduce costes, sino que también minimiza el consumo de hormigón y acero, lo que la convierte en un pilar fundamental de la construcción sostenible.

Conclusión

Hemos visto que el módulo de balasto no es una propiedad intrínseca del suelo, sino una interacción dinámica; que los métodos tradicionales caen en paradojas; que, en algunos casos, pueden comprometer la seguridad donde más importa; y que, al corregir estos errores, el diseño más seguro también se revela como el más sostenible y eficiente. Al abandonar las simplificaciones anticuadas o demasiado conservadoras y adoptar modelos que reflejen la realidad de la interacción suelo-estructura, no solo podremos construir con mayor confianza, sino también de manera más inteligente y responsable con nuestros recursos.

Así pues, nos surge una pregunta final: si los cimientos de nuestros edificios se basan en principios desactualizados, ¿qué otras suposiciones fundamentales de la ingeniería debemos reexaminar para construir un futuro más resiliente?

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MORENO-SERRANO, J.F.; NAVARRO, I.J.; YEPES, V. (2026). Innovative safety framework and direct load–settlement method to optimize vertical subgrade modulus in sustainable mat foundations. Environmental Impact Assessment Review, 118, 108191. DOI:10.1016/j.eiar.2025.108191

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón por impresión 3D: estado técnico, retos y oportunidades

https://www.hormisa.com.ar/2018/02/05/impresion-3d-hormigon/

La impresión 3D de hormigón (3D Concrete Printing o 3DCP) se ha consolidado como una de las tecnologías emergentes más prometedoras en ingeniería civil. Consiste en fabricar elementos constructivos depositando, capa a capa, una mezcla cementicia diseñada para ser bombeada y extruida, lo que elimina la necesidad de encofrados tradicionales y reduce el consumo de materiales. Este enfoque permite una construcción más eficiente, flexible en sus formas y potencialmente más sostenible.

Propiedades del hormigón fresco: extrusibilidad, constructividad y tiempo abierto

El rendimiento de un hormigón por impresión 3D se evalúa en gran medida por sus propiedades en estado fresco. La extrusibilidad implica que la mezcla pueda fluir de manera continua por el sistema de bombeo y la boquilla sin obstruirse, lo cual se logra mediante un diseño adecuado de la granulometría y la incorporación de aditivos superplastificantes o modificadores de la viscosidad. La constructividad (buildability), por otro lado, se refiere a la capacidad de cada capa depositada para soportar las cargas de las capas sucesivas sin deformarse y está directamente relacionada con la tixotropía y la recuperación estructural de la mezcla. El tiempo abierto (open time) define el tiempo útil de aplicación o periodo de trabajabilidad durante el cual la mezcla mantiene condiciones reológicas adecuadas para la impresión. Este parámetro es crítico en proyectos de mayor escala o en entornos variables.

Adherencia intercapas, anisotropía y parámetros del proceso

Una de las limitaciones clave del hormigón impreso es la baja resistencia en los planos de unión entre capas. La adhesión entre capas depende de factores como el tiempo transcurrido desde su aplicación, la humedad superficial y las condiciones de curado. Los intervalos prolongados o las superficies secas tienden a generar juntas frías que actúan como planos de debilidad. Estudios recientes han propuesto estrategias para mitigar este efecto, como inducir condiciones termo-higrotérmicas durante la deposición, lo que puede aumentar la resistencia de la interfaz hasta en un 78 %. También se está investigando el uso de materiales compuestos especiales, como los cementicios de endurecimiento por deformación (SHCC), como materiales de unión, con los que se logran mejoras significativas en la adherencia y la resistencia a la flexión.

https://espanol.cgtn.com/n/2020-12-09/EGHDcA/el-primer-edificio-residencial-impreso-en-3d-de-alemania/index.html

Propiedades mecánicas, durabilidad y microestructura

En estado endurecido, los hormigones impresos presentan resistencias a la compresión y a la flexión comparables a las de los hormigones convencionales, pero con un marcado carácter anisótropo debido a la orientación de las capas y a la presencia de vacíos entre los filamentos. La microestructura interfacial suele presentar una mayor porosidad, lo que influye en las propiedades de durabilidad, como la penetración de cloruros, la carbonatación o la resistencia a los ciclos de hielo y deshielo. Investigaciones recientes han demostrado que tanto el tiempo entre capas como las condiciones de curado influyen notablemente en la durabilidad y pueden afectar a la sorptividad y a la conductividad del ión cloruro.

Estrategias de refuerzo y mejoras funcionales

El hormigón impreso no puede resistir esfuerzos de tracción si no se integra algún tipo de refuerzo. Las estrategias actuales incluyen la incorporación de fibras (plásticas, metálicas o de vidrio) en la propia mezcla, la inserción de mallas de acero o textiles durante el proceso de impresión o el uso de composites reforzados, como el SHCC, entre capas. Los métodos en proceso, como la colocación automatizada de refuerzos textiles durante la impresión, han demostrado mejorar significativamente la ductilidad y la resistencia final de los elementos curvos. Estas soluciones avanzadas buscan superar la principal barrera de la impresión 3D para uso estructural: garantizar la capacidad portante frente a esfuerzos de tracción y flexión.

Sostenibilidad y materiales alternativos

Una de las mayores promesas de la impresión 3D de hormigón es su potencial de sostenibilidad. La eliminación de encofrados reduce los residuos y la energía necesaria y el diseño libre permite optimizar las formas para minimizar el uso de material. No obstante, la reducción real de la huella de carbono depende del uso de adiciones minerales (SCM, supplementary cementitious materials) y de áridos reciclados. Según diversos estudios, es posible incorporar cenizas volantes, escorias y residuos industriales para mejorar la sostenibilidad y reducir el coste. Investigaciones específicas demuestran que el uso de escoria de acero como árido fino es viable y que se pueden alcanzar resistencias comparables a las de las mezclas tradicionales. Asimismo, los diseños de mezclas con altos volúmenes de ceniza volante han demostrado un buen equilibrio entre la imprimibilidad y el rendimiento estructural.

Modelización, normativa y aplicación a escala real

La investigación también avanza en la modelización de los fenómenos que afectan a la impresión. Se han propuesto modelos informáticos que predicen la formación de juntas frías en función de la humedad superficial y del tiempo de deposición. Al mismo tiempo, en conferencias internacionales como Digital Concrete, impulsadas por RILEM, se han establecido procedimientos experimentales para caracterizar las propiedades de las mezclas imprimibles y evaluar la adhesión entre capas. A pesar de ello, todavía no existen normativas consolidadas que permitan el diseño estructural con garantías, por lo que la aplicación en obras reales se limita a proyectos piloto y prototipos. Revisiones recientes señalan que la falta de normas y metodologías de control de calidad es uno de los principales obstáculos para su industrialización.

Retos principales y recomendaciones prácticas

Los principales desafíos de esta tecnología son evidentes. La adherencia entre capas sigue siendo un punto débil que debe mejorarse mediante el control del tiempo de impresión, de la humedad y de los materiales de unión. La variabilidad debida a las condiciones ambientales exige una instrumentación avanzada y el control en tiempo real de los parámetros reológicos. El refuerzo requiere soluciones automatizadas y compatibles con la impresión continua, mientras que la sostenibilidad exige el uso intensivo de subproductos y una evaluación rigurosa del ciclo de vida. Por último, la escalabilidad industrial dependerá de la normalización de las pruebas y de la estandarización de los procesos.

Conclusión

El hormigón por impresión 3D se encuentra en una fase avanzada de desarrollo, con avances significativos en reología, adherencia, refuerzo y sostenibilidad. No obstante, aún es necesario superar retos relacionados con el control de calidad, la normativa y la durabilidad para garantizar su aplicación masiva en obras civiles. Su éxito dependerá de la integración de avances materiales, mecánicos y normativos, así como de la estrecha colaboración entre la universidad, la industria y los organismos de normalización. A corto plazo, la impresión 3D no sustituirá al hormigón convencional, pero sí abrirá un nuevo campo de aplicaciones en prefabricados, prototipos y proyectos singulares de alta eficiencia en materiales.

Os dejo algunos vídeos sobre este tipo de hormigón.

Referencias

  • Arrêteau, M., Fabien, A., El Haddaji, B., Chateigner, D., Sonebi, M., & Sebaibi, N. (2023). Review of Advances in 3D Printing Technology of Cementitious Materials: Key Printing Parameters and Properties Characterization. Buildings, 13(7), 1828. https://doi.org/10.3390/buildings13071828 
  • Bentz, D. P., Jones, S. Z., Bentz, I. R., & Peltz, M. A. (2019). Towards the Formulation of Robust and Sustainable Cementitious Binders for 3D Additive Construction by Extrusion. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 307–330). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00015-2
  • Bos, F. P., Wolfs, R. J. M., Ahmed, Z., & Salet, T. A. M. (2016). Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping, 11(3), 209–225. https://doi.org/10.1080/17452759.2016.1209867
  • Dey, D., Srinivas, D., Panda, B., Suraneni, P., & Sitharam, T. G. (2022). Use of industrial waste materials for 3D printing of sustainable concrete: A review. Journal of Cleaner Production, 340, 130749. https://doi.org/10.1016/j.jclepro.2022.130749
  • Du, G., Sun, Y., & Qian, Y. (2024). 3D printed strain-hardening cementitious composites (3DP-SHCC) reticulated shell roof inspired by the water spider. Automation in Construction, 167, 105717. https://doi.org/10.1016/j.autcon.2024.105717
  • Feng, P., Meng, X., Chen, J. F., & Ye, L. (2019). Mechanical Properties of Structures 3D-Printed With Cementitious Powders. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 179–208). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00009-9
  • Gaudillière, N., Duballet, R., Bouyssou, C., Mallet, A., Roux, P., Zakeri, M., & Dirrenberger, J. (2019). Building Applications Using Lost Formworks Obtained Through Large-Scale Additive Manufacturing of Ultra-High-Performance Concrete. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 37–58). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00003-8
  • Hambach, M., & Volkmer, D. (2017). Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites, 79, 62–70. https://doi.org/10.1016/j.cemconcomp.2017.02.001
  • Irshidat, M., Cabibihan, J.-J., Fadli, F., Al-Ramahi, S., & Saadeh, M. (2025). Waste materials utilization in 3D printable concrete for sustainable construction applications: A review. Emergent Materials, 8(3), 1357–1379. https://doi.org/10.1007/s42247-024-00942-4
  • Kazemian, A., Yuan, X., Meier, R., & Khoshnevis, B. (2019). Performance-Based Testing of Portland Cement Concrete for Construction-Scale 3D Printing. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 13–36). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00002-6
  • Khoshnevis, B., Hwang, D., Yao, K.-T., & Yeh, Z. (2006). Mega-scale fabrication by contour crafting. International Journal of Industrial and Systems Engineering, 1(3), 301–320. https://doi.org/10.1504/IJISE.2006.009791
  • Li, Z., Wang, L., & Ma, G. (2019). Method for the Enhancement of Buildability and Bending Resistance of Three-Dimensional-Printable Tailing Mortar. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 161–178). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00008-7
  • Li, Z., Wang, L., Ma, G., Sanjayan, J., & Feng, D. (2020). Strength and ductility enhancement of 3D printing structure reinforced by embedding continuous micro-cables. Construction and Building Materials, 264, 120196. https://doi.org/10.1016/j.conbuildmat.2020.120196
  • Liu, D., Zhang, Z., Zhang, X., & Chen, Z. (2023). A review on 3D printing concrete structures: Mechanical properties, structural forms, optimal design and connection methods. Construction and Building Materials, 405, 133364. https://doi.org/10.1016/j.conbuildmat.2023.133364
  • Marchment, T., & Sanjayan, J. (2020). Mesh reinforcing method for 3D Concrete Printing. Automation in Construction, 109, 102992. https://doi.org/10.1016/j.autcon.2019.102992
  • Mechtcherine, V., Buswell, R., Kloft, H., Bos, F. P., Hack, N., Wolfs, R., Sanjayan, J., Nematollahi, B., Ivaniuk, E., & Neef, T. (2021). Integrating reinforcement in digital fabrication with concrete: A review and classification framework. Cement and Concrete Composites, 119, 103964. https://doi.org/10.1016/j.cemconcomp.2021.103964
  • Nam, Y. J., Hwang, Y. K., Park, J. W., & Lim, Y. M. (2018). Fiber-Reinforced Cementitious Composite Design with Controlled Distribution and Orientation of Fibers Using Three-Dimensional Printing Technology. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 59–76). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00004-X
  • Nematollahi, B., Xia, M., Vijay, P., & Sanjayan, J. (2019). Properties of Extrusion-Based 3D Printable Geopolymers for Digital Construction Applications. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 369–380). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00018-X
  • Nerella, V. N., & Mechtcherine, V. (2019). Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D). In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 333–348). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00016-6
  • Rehman, A. U., & Kim, J.-H. (2021). 3D concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials, 14(14), 3800. https://doi.org/10.3390/ma14143800
  • Salet, T. A. M., Ahmed, Z. Y., Bos, F. P., & Laagland, H. L. M. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3), 222–236. https://doi.org/10.1080/17452759.2018.1479528
  • Sanjayan, J. G., & Nematollahi, B. (2019). 3D Concrete Printing for Construction Applications. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 1–11). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00001-4
  • Tran, N., Tran, M. V., Tran, P., Nguyen, A. K., & Nguyen, C. Q. (2024). Eco-Friendly 3D-Printed Concrete Using Steel Slag Aggregate: Buildability, Printability and Mechanical Properties. International Journal of Concrete Structures and Materials, 18(66). https://doi.org/10.1186/s40069-024-00705-9
  • Weng, Y., Li, M., Tan, M. J., & Qian, S. (2019). Design 3D Printing Cementitious Materials Via Fuller Thompson Theory and Marson-Percy Model. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 285–302). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00014-0
  • Wolfs, R. J. M., Bos, F. P., & Salet, T. A. M. (2019). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research, 119, 132–140. https://doi.org/10.1016/j.cemconres.2019.02.017
  • Xia, M., Nematollahi, B., & Sanjayan, J. G. (2019). Development of Powder-Based 3D Concrete Printing Using Geopolymers. In J. G. Sanjayan, M. Xia, & B. Nematollahi (Eds.), 3D Concrete Printing Technology (pp. 235–244). Elsevier. https://doi.org/10.1016/B978-0-12-815481-6.00011-7
  • Zareiyan, B., & Khoshnevis, B. (2017). Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Automation in Construction, 83, 212–221. https://doi.org/10.1016/j.autcon.2017.08.019

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

También os dejo un documento resumen.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿El futuro de la construcción nació en 1624? 4 revelaciones sobre los edificios del mañana.

Introducción: Más allá de los ladrillos y el cemento.

Cuando pensamos en el sector de la construcción, a menudo lo imaginamos como un sector lento, tradicional y reacio al cambio. Se trata de una imagen de ladrillos, cemento y procesos que parecen haber cambiado poco en las últimas décadas. Sin embargo, bajo la superficie, una revolución silenciosa está cobrando impulso y transformando radicalmente esta percepción.

Esta revolución se conoce como Métodos Modernos de Construcción (MMC). Impulsados por las tecnologías de la Industria 4.0, como la inteligencia artificial y el diseño digital, los MMC están redefiniendo lo que es posible construir, cómo se construye y a qué velocidad. Se trata de un cambio de paradigma que promete edificios más rápidos, económicos y eficientes. Aunque esta revolución pueda parecer novedosa, algunos países ya viven este futuro: en los Países Bajos, el 50 % de las nuevas viviendas se construyen con estos métodos, seguidos de cerca por Suecia y Japón.

Componentes de la Construcción 4.0

Aunque conceptos como «automatización robótica» o «gemelos digitales» suenen a ciencia ficción, las raíces de esta transformación son sorprendentemente antiguas. Sus implicaciones van mucho más allá de la simple eficiencia, ya que apuntan a un futuro en el que los edificios no solo minimizan su impacto ambiental, sino que también lo revierten de forma positiva. A continuación, revelamos los cuatro secretos más impactantes sobre este nuevo paradigma que está transformando nuestro mundo.

Primer secreto: no es una idea nueva, sino una idea antigua que por fin funciona.

Su origen no es del siglo XXI, sino del siglo XVII.

Contrariamente a la creencia popular, la idea de prefabricar edificios no es un concepto moderno. De hecho, sus orígenes se remontan a mucho antes de la era digital. El primer caso registrado de casas prefabricadas data de 1624, cuando se fabricaron en Inglaterra para ser enviadas y ensambladas en Massachusetts.

No se trató de un hecho aislado, sino que la idea reapareció a lo largo de la historia, esperando a que la tecnología se pusiera a su altura. El siglo XX fue testigo de varios intentos clave para descifrar el código.

  • Las populares «Kit Houses» que la empresa Sears vendía por catálogo en 1908 reducían el tiempo de construcción hasta en un 40%.
  • El visionario sistema «Maison Dom-ino» de Le Corbusier, de 1914, es un armazón estructural de losas y pilares que sentó las bases de la arquitectura moderna.
  • Las «American System-Built Houses», diseñadas por Frank Lloyd Wright entre 1911 y 1917, utilizaban un sistema de producción industrializada para los componentes del edificio.

Entonces, ¿por qué esta idea centenaria está despegando ahora con tanta fuerza? La respuesta está en la convergencia tecnológica. El concepto, aunque antiguo, ha encontrado por fin sus catalizadores definitivos. Los avances en inteligencia artificial (IA), la adopción de metodologías colaborativas, como el modelado de información para la construcción (BIM), y un enfoque renovado en la sostenibilidad han creado el ecosistema perfecto para que la prefabricación alcance la precisión, la eficiencia y la sofisticación necesarias para superar a la construcción tradicional.

Segundo secreto: la velocidad es casi increíble (y se demostró en una crisis).

Puede reducir los tiempos de construcción a la mitad.

Uno de los datos más contundentes sobre la eficacia de los MMC es su impacto directo en los plazos y costes de construcción. Las investigaciones han demostrado que los sistemas industrializados y la prefabricación pueden generar ahorros de hasta el 50 % en el tiempo de construcción y del 30 % en los costes.

Esta estadística cobró vida de manera espectacular durante una de las mayores crisis globales recientes. Durante la pandemia de la enfermedad por coronavirus (Covid-19), el mundo fue testigo de la construcción de dos hospitales de emergencia en Wuhan (China) en solo 12 días. Este hito, imposible de alcanzar con métodos tradicionales, demostró el poder de los MMC para responder a las emergencias con una velocidad sin precedentes.

Esta capacidad no solo es crucial en situaciones de crisis. Permite satisfacer la creciente demanda de vivienda de manera más rápida, acelerar el desarrollo de infraestructuras críticas y aumentar drásticamente la eficiencia de un sector que históricamente ha luchado contra los retrasos y los sobrecostes.

Tercer secreto: los edificios más inteligentes no solo son sostenibles, sino «regenerativos».

La sostenibilidad está quedándose obsoleta; el futuro es el diseño regenerativo.

Durante años, la «sostenibilidad» ha sido el objetivo final en la construcción, el santo grial del diseño responsable. Pero ¿y si ya no es suficiente? La vanguardia de la innovación arquitectónica sostiene que la estrategia de «hacer menos daño» está abocada al fracaso. El futuro no solo es sostenible, sino también regenerativo.

Este nuevo paradigma, denominado «diseño regenerativo», no se conforma con minimizar el impacto negativo, un concepto que se resume en el lema «reciclar, reducir y reutilizar». El diseño regenerativo busca generar activamente impactos positivos y adopta un nuevo lema: «restaurar, renovar y reemplazar». Se trata de diseñar edificios que no solo consuman menos, sino que contribuyan a la regeneración de los ecosistemas naturales y humanos que los rodean.

El paradigma actual ya no es suficiente, como señala la investigación:

«Sin embargo, el actual paradigma de la sostenibilidad ya no es suficiente para reducir el impacto medioambiental de la actividad humana».

Los MMC son la herramienta perfecta para hacer realidad este futuro ambicioso. El control preciso de los materiales, la optimización de los procesos desde la fase de diseño y la capacidad de integrar tecnologías innovadoras convierten la construcción industrializada en la plataforma ideal para crear edificios que devuelvan a la naturaleza más de lo que consumen.

Cuarto secreto: su mayor desafío no es construir cosas nuevas, sino arreglar las antiguas.

Su gran potencial oculto radica en la rehabilitación de nuestros edificios existentes.

A pesar de que el enfoque se centra en la nueva construcción, uno de los mayores potenciales de los MMC se encuentra en un área sorprendentemente desatendida: la rehabilitación y modernización (retrofitting) de los edificios existentes. Esta es la diferencia más significativa entre el enfoque científico y la necesidad social identificada por la investigación: la mayoría de los estudios se centran en la obra nueva, pero el mayor impacto climático se consigue mejorando los edificios que ya tenemos.

La importancia de esta tarea es enorme. La industria de la construcción es responsable de aproximadamente el 40 % del consumo final de energía en la Unión Europea. La renovación energética del extenso parque de edificios existentes no es solo una opción, sino una necesidad urgente para cumplir con los objetivos climáticos.

Aquí es donde los MMC pueden cambiar las reglas del juego. Imaginemos la combinación de tecnologías como BIM para crear un mapa digital de un edificio existente, drones para inspeccionar su estado y elementos prefabricados, como paneles de fachada de alto rendimiento, fabricados a medida en una fábrica y ensamblados rápidamente in situ. Este enfoque podría acelerar masivamente la modernización energética de nuestras ciudades, un desafío que hoy parece casi insuperable con los métodos tradicionales.

Conclusión: Rediseñando nuestro mundo.

Los métodos modernos de construcción son mucho más que una simple técnica, ya que suponen un profundo cambio de paradigma. Fusionan una idea con siglos de antigüedad con tecnología de vanguardia para ofrecer soluciones a algunos de los mayores retos de nuestro tiempo: la necesidad de vivienda, la urgencia de la crisis climática y la ineficiencia de las industrias tradicionales.

Hemos visto que sus raíces son más antiguas de lo que imaginamos, que su velocidad puede ser asombrosa, que su objetivo ya no es solo ser sostenible, sino regenerativo y que su próximo gran desafío podría ser la renovación de lo ya construido.

Ahora que sabemos que podemos construir hospitales en 12 días y diseñar edificios que regeneran su entorno, la verdadera pregunta no es qué podemos construir, sino qué queremos construir.

Os dejo a continuación un audio en el que se puede escuchar una conversación sobre este tema, que espero que os resulte interesante y os aporte información valiosa.

Asimismo, en este vídeo podéis ver un resumen de las ideas principales que se tratan en el artículo, el cual os será de utilidad para comprender mejor el contenido.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Journal of Building Engineering, 73:106725. DOI:10.1016/j.jobe.2023.106725

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ni ladrillo ni hormigón: las 5 claves sorprendentes de la casa del futuro

De vez en cuando, los resultados de los trabajos de investigación de nuestro grupo tienen una gran repercusión. En algunos artículos anteriores podéis ver un ejemplo de la repercusión del proyecto RESILIFE. En este caso, se trata de una entrevista que me realizó Eduard Muñoz para el programa Un día perfecte. Se trata de un espacio donde se abre una puerta a todas aquellas personas con inquietudes culturales y científicas. Mi agradecimiento.

A continuación, os dejo un resumen de la entrevista. Al final del artículo, podréis escucharla completa. Espero que os resulte interesante.

El acceso a una vivienda digna, asequible y sostenible es uno de los grandes desafíos de nuestra era. Ante la escasez, el aumento de los costes y la necesidad de reducir el impacto medioambiental, buscar soluciones se ha convertido en una urgencia global. A menudo, las respuestas más innovadoras no provienen de las oficinas de las grandes constructoras, sino de la investigación académica. En este caso, un equipo de la Universitat Politècnica de València (UPV), dirigido por el investigador Víctor Yepes y la doctoranda Ximena Luque, ha desarrollado una nueva metodología que cambia nuestra forma de entender la construcción. Sus conclusiones, fruto de un riguroso análisis, desafían muchas de nuestras ideas preconcebidas sobre cómo debe ser la casa del futuro.

Olvida la idea del «barracón»: la prefabricación de alta calidad ya está aquí.

En España, la palabra «prefabricado» suele evocar una imagen de baja calidad, de construcciones temporales o «barracones» poco estéticos. Sin embargo, como explica Yepes, esta percepción está completamente desactualizada. Para desmontar este mito, propone una analogía contundente: las autocaravanas de gran lujo o los yates son elementos industrializados y prefabricados que alcanzan un altísimo nivel de acabado y calidad. El principio es el mismo: fabricar componentes en un entorno de fábrica controlado permite un nivel de precisión y de control de calidad difícil de lograr en una obra a la intemperie. Este nuevo enfoque de construcción industrializada no es una solución de segunda categoría, sino una tendencia en auge en los países nórdicos y en ciudades como Londres, que demuestra que la eficiencia de la fabricación en serie puede ir de la mano de la excelencia y el diseño.

La vivienda más eficiente está hecha de acero ligero.

El proyecto de investigación RESILIFE se centró en un caso de estudio en Perú, un país que se enfrenta a dos grandes desafíos en materia de vivienda: la prevalencia de la autoconstrucción de baja calidad y el alto riesgo sísmico. Tras analizar múltiples alternativas, desde los tradicionales muros de ladrillo y hormigón armado hasta paneles prefabricados, el estudio halló la solución óptima para este contexto específico: un sistema industrializado de acero ligero conocido como light steel frame.

Esta solución resultó ser superior por varias razones clave:

  • Seguridad sísmica: cumple con la estricta normativa de zonas de alto riesgo sísmico.
  • Eficiencia energética: proporciona un alto rendimiento energético, lo que reduce los costes de mantenimiento a largo plazo.
  • Estructura liviana: se basa en paneles prefabricados que conforman una estructura muy ligera.
  • Velocidad de construcción: permite una edificación extraordinariamente rápida, una ventaja crucial en situaciones de emergencia, como demostró China al construir un hospital en 15 días durante la pandemia.

Este caso demuestra que los materiales tradicionales no siempre son la respuesta más inteligente.

«El hormigón y el ladrillo son formas tradicionales de construcción en España, pero no hay que descartar otras posibilidades que, gracias a las nuevas tecnologías de inteligencia artificial, diseño asistido por ordenador, etc., harán que en el futuro sean posiblemente las más rápidas y eficientes».

— Víctor Yepes, investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH).

Reducir el coste de construcción no basta para solucionar la crisis de la vivienda.

Los sistemas industrializados, como el de acero ligero, pueden reducir los costes directos de construcción entre un 15 % y un 20 %, lo cual no es una cifra desdeñable. Sin embargo, este ahorro no es la solución mágica a la crisis de asequibilidad, al menos en España. El investigador señala una realidad estructural del mercado inmobiliario español: el suelo SUELE representa más del 50 % del precio final de una vivienda. Por lo tanto, aunque abaratar la construcción es un paso positivo, la solución fundamental para que los precios bajen pasa por otra vía: es necesario poner más suelo público en el mercado para equilibrar la oferta y la demanda.

La clave no es un tipo de casa, sino una «receta» inteligente para construirla.

Aunque la casa de acero ligero en Perú es un resultado interesante, el verdadero avance de esta investigación no es un producto, sino un proceso. El resultado más importante es la creación de una metodología universal y adaptable, un motor capaz de generar la mejor solución para cualquier lugar del mundo. El equipo ha desarrollado una herramienta objetiva e imparcial que, mediante el uso de inteligencia artificial, puede analizar las condiciones locales y determinar la solución constructiva más adecuada.

Esta metodología tiene en cuenta una gran variedad de factores para tomar la decisión más acertada.

  • Costes locales de energía, electricidad y transporte.
  • La normativa vigente en la zona.
  • Disponibilidad de materiales y mano de obra.
  • Nivel de especialización de los trabajadores locales.

Esto significa que la mejor solución para Perú no tiene por qué serlo para España o el Reino Unido. La verdadera innovación consiste en ofrecer una solución personalizada y optimizada para las circunstancias específicas de cada lugar.

El futuro de la construcción debe ser inteligente, pero también humano.

Este trabajo demuestra que el futuro de la vivienda no depende de aferrarse a un único material, sino de aplicar inteligencia y una visión holística. No obstante, los investigadores advierten contra una solución puramente tecnocrática. Un proceso industrial muy eficiente puede reducir costes, pero si deja de lado a la mano de obra local, simplemente cambia un problema por otro. Por ello, ahora estudian cómo integrar el «factor humano» en su metodología. La casa verdaderamente «inteligente» del futuro también debe tener un impacto social inteligente, equilibrando la eficiencia con el empleo.

El conocimiento para construir mejor ya existe. Como subraya Víctor Yepes, la ciencia y la universidad generan soluciones aplicables a problemas reales. Su llamamiento final es un recordatorio crucial para los responsables políticos y económicos: es hora de escuchar a la investigación y aplicar estos criterios para construir un futuro más sostenible y justo para todos.

Si la ciencia ya nos ofrece las herramientas para construir de forma más inteligente y sostenible, ¿estamos preparados como sociedad para adoptar el cambio?

Os dejo la entrevista completa. Espero que os resulte interesante.

Referencia

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rehabilitación sostenible de edificios costeros de hormigón: ¿cómo optimizar el mantenimiento?

Acaban de publicar un artículo nuestro en Environmental Impact Assessment Review, una de las revistas con mayor impacto científico, dentro del primer decil del JCR. En este trabajo se aborda, desde un enfoque innovador, la optimización de los intervalos de mantenimiento reactivo en edificios costeros construidos con métodos modernos de construcción (MMC). La investigación se enmarca dentro del proyecto RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se muestra un resumen del trabajo e información de contexto.

Quienes trabajamos en ingeniería de la construcción sabemos que los entornos costeros son un auténtico reto. La combinación de humedad, salinidad y vientos cargados de cloruros acelera la corrosión de las armaduras en el hormigón armado. Como consecuencia, estructuras tan comunes como hoteles de playa, bloques residenciales o edificios públicos junto al mar sufren un deterioro prematuro que reduce su vida útil, incrementa los costes de reparación y pone en riesgo la seguridad estructural.

Tradicionalmente, la industria de la construcción ha centrado sus esfuerzos en reducir el impacto ambiental de los materiales y de la fase inicial de obra, dejando en segundo plano la importancia del mantenimiento y la rehabilitación. Sin embargo, cada vez está más claro que prolongar la vida útil mediante estrategias de conservación es clave para lograr ciudades sostenibles.

La pregunta de partida

El equipo investigador se planteó la siguiente cuestión central: ¿qué combinación de diseño preventivo y mantenimiento reactivo permite alargar la vida útil de un edificio costero de hormigón armado de la forma más sostenible, equilibrando costes, impacto ambiental y repercusiones sociales?

Para responderla, compararon doce alternativas de diseño que mejoran la durabilidad frente a los cloruros y analizaron distintas estrategias de reparación en función del nivel de deterioro.

La aportación más destacada

Lo más novedoso del trabajo es la integración de un análisis del ciclo de vida (LCA) con un modelo de ayuda a la decisión basado en FUCOM-TOPSIS. Este enfoque híbrido no solo cuantifica los costes de construcción y mantenimiento, sino también los impactos ambientales (emisiones, recursos y salud humana) y sociales (seguridad de los trabajadores, generación de empleo, molestias a usuarios y a la comunidad local).

En otras palabras, el modelo permite determinar qué intervalos de mantenimiento reactivo son óptimos para cada diseño año tras año y compararlos desde una perspectiva de sostenibilidad global.

Cómo se ha llevado a cabo

  • Caso de estudio: un módulo de hotel en Sancti Petri (Cádiz), construido con losas aligeradas tipo Unidome mediante MMC.

  • Diseños preventivos analizados: desde adiciones (humo de sílice, cenizas volantes), cementos resistentes a sulfatos, reducción de la relación agua/cemento o mayor recubrimiento, hasta soluciones más avanzadas como aceros galvanizados o inoxidables.

  • Estrategias de mantenimiento: cuatro niveles de intervención, desde reparaciones superficiales hasta sustitución de armaduras corroídas.

  • Modelización: se aplicó el modelo de corrosión de Tuutti para estimar periodos de iniciación y propagación del daño.

  • Criterios de evaluación: ocho en total (dos económicos, dos ambientales y cuatro sociales), ponderados mediante FUCOM y evaluados con TOPSIS.

Resultados principales

Los resultados son muy ilustrativos para la práctica profesional.

  • Las soluciones más sostenibles combinaban cemento multirresistente, tratamientos hidrofóbicos anticorrosión y adiciones minerales, como el humo de sílice. Estas alcanzaron una mejora de la sostenibilidad de hasta el 86 % respecto al diseño base.
  • El cemento sulforresistente (SRC) se presentó como la alternativa más equilibrada, con un ciclo de mantenimiento cada 53 años y un ahorro del 65 % en comparación con el caso de referencia.
  • El acero inoxidable prácticamente elimina el mantenimiento durante 100 años, pero su impacto económico y medioambiental inicial lo convierte en una opción poco competitiva.
  • El acero galvanizado ofrece un buen compromiso, ya que es más duradero que el hormigón convencional y su coste es razonable, aunque su impacto ambiental es superior al de otras soluciones.
  • No siempre «menos mantenimiento» significa más sostenibilidad: la clave es intervenir en el momento adecuado para reducir costes y emisiones acumuladas a lo largo de todo el ciclo de vida.

Aplicaciones prácticas en la ingeniería

Este estudio aporta varias lecciones que se pueden aplicar directamente a la práctica:

  1. Planificación a largo plazo: las decisiones de diseño inicial deben ir acompañadas de una estrategia de mantenimiento clara, no solo de criterios de durabilidad normativa.

  2. Visión integral: al evaluar alternativas, no basta con comparar costes iniciales. También hay que tener en cuenta el impacto ambiental y social de cada opción.

  3. Aplicabilidad amplia: aunque el caso analizado es un hotel costero, la metodología es válida para puentes, puertos, depuradoras y cualquier otra estructura de hormigón expuesta a ambientes marinos.

  4. Alineación con la normativa europea: este tipo de enfoques encaja con las estrategias de descarbonización y economía circular de la UE, que exigen evaluar todo el ciclo de vida de las infraestructuras.

En definitiva, este trabajo nos recuerda que la sostenibilidad en la construcción no solo depende de lo que hacemos al levantar un edificio, sino también de cómo lo mantenemos a lo largo de su vida útil. Y, sobre todo, que la ingeniería ya cuenta con herramientas sólidas para planificar esas decisiones de manera objetiva, transparente y alineada con los Objetivos de Desarrollo Sostenible.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Optimizing reactive maintenance intervals for the sustainable rehabilitation of chloride-exposed coastal buildings with MMC-based concrete structure. Environmental Impact Assessment Review, 116, 108110. DOI:10.1016/j.eiar.2025.108110

Como el artículo está publicado en abierto, os lo dejo para su descarga:

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas preguntas sobre los muros pantalla

Figura 1. Cuchara bivalva para construir pantallas. Por GK Bloemsma – Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/

1. ¿Qué es un muro pantalla y qué funciones principales tiene en el campo de la cimentación?

Un muro pantalla es una técnica de cimentación profunda que se empezó a desarrollar en la década de 1950. Su principal característica es que se trata de una contención flexible que también cumple una función de cimentación. Las funciones principales de los muros pantalla son las siguientes:

  • Contención de tierras: Especialmente útil en situaciones donde la estabilidad de la excavación es difícil y existe preocupación por la seguridad de edificios colindantes.
  • Cimentación profunda: Proporciona una base sólida para estructuras.
  • Impermeabilización: Existen pantallas diseñadas específicamente, a menudo con cemento-bentonita, para evitar la filtración de agua.
  • Combinaciones de las anteriores: Muchos proyectos requieren una combinación de estas funciones para abordar desafíos complejos del terreno y la construcción.

Los cambios de forma y los movimientos de flexión que experimentan los muros pantalla influyen significativamente en la distribución y magnitud de los empujes del suelo, así como en las resistencias y acciones mutuas entre el suelo y la estructura.

2. ¿Cómo se clasifican los muros pantalla según su trabajo estructural y su función?

Los muros pantalla se clasifican de diversas maneras para adaptarse a distintas necesidades constructivas y geológicas.

Según su trabajo estructural, se pueden clasificar de la siguiente forma:

  • Pantallas en voladizo: Se introducen en el terreno a una profundidad suficiente para asegurar su fijación, aprovechando la resistencia pasiva del suelo.
  • Pantallas ancladas: Se utilizan cuando la profundidad de excavación es considerable (generalmente > 7-8m). Su estabilidad se confía a la resistencia pasiva de la parte enterrada y a uno o varios niveles de anclajes. Se subdividen en:
    • De soporte libre (o articuladas): El empotramiento es mínimo, comportándose como una viga doblemente apoyada.
    • De soporte fijo (o empotradas): El empotramiento es suficiente para que el movimiento en su base sea insignificante, actuando como una viga apoyada-empotrada.
  • Pantallas arriostradas: Sustituyen los anclajes por estampidores (puntales).
  • Pantallas acodaladas (entibaciones): Utilizan elementos de arriostramiento para la contención.
  • Pantallas atirantadas: Similares a las ancladas, pero el término puede implicar una mayor rigidez o elementos de tracción más permanentes.
  • Pantallas con contrafuertes: Refuerzos estructurales que aumentan su rigidez y capacidad de contención.

Según su función, se distinguen:

  • Pantallas de impermeabilización: Diseñadas para crear una barrera contra el flujo de agua (ej. con cemento-bentonita).
  • Pantallas de contención de tierras: Su propósito principal es retener el suelo.
  • Pantallas de cimentación (cimentación profunda): Actúan como elementos de apoyo para la estructura.
  • Pantallas combinaciones de las anteriores: Lo más común, buscando una solución multifuncional.

3. ¿Cuáles son los métodos de excavación de bataches para la construcción de muros pantalla y cuándo se utiliza cada uno?

La excavación de los bataches (paneles que conforman el muro pantalla) es un paso crítico que se lleva a cabo mediante dos métodos principales:

  • Medios convencionales (cuchara al cable o hidráulica). Estos métodos se utilizan en condiciones de terreno normales y profundidades típicas:
    • Cuchara de cable: El cierre es mecánico. Su ventaja es que la grúa excavadora puede usarse como auxiliar para hormigonado e izado de armaduras.
    • Cuchara hidráulica: El cierre y el giro son hidráulicos. Son más fáciles de manejar y producen menos excesos de hormigón que las de cable, aunque requieren una grúa auxiliar para armadura y hormigonado.
  • Hidrofresa. Este método se emplea en situaciones más exigentes debido a sus características de precisión y capacidad. Se utiliza cuando:
    • La dureza del terreno es excesiva.
    • Se requiere una verticalidad estricta (por debajo del 0,5 %).
    • Se alcanzan grandes profundidades (superiores a 45 metros).

Antes de la excavación, es necesario construir muretes guía que dirijan la herramienta, aseguren la verticalidad de los paneles y sirvan de soporte estable para la extracción de las juntas. Durante la excavación, puede ser necesario utilizar lodos tixotrópicos (bentoníticos) o polímeros para mantener la estabilidad de las paredes.

Figura 2. Vista de murete guía. http://www.estructurasmaqueda.com

4. ¿Qué función cumplen los lodos tixotrópicos (bentoníticos) y los polímeros en la construcción de las pantallas y en qué se diferencian?

Los lodos tixotrópicos (principalmente bentoníticos) y los polímeros son fundamentales para el sostenimiento de las excavaciones de muros pantalla, sobre todo cuando la estabilidad del terreno lo requiere.

Lodos tixotrópicos (bentoníticos):

  • Funciones: Mantener las paredes de la excavación (evitando derrumbes), mantener los sólidos en suspensión y lubricar la herramienta de perforación.
  • Mecanismo de acción: Forman una «torta» (cake) impermeable en la pared de la excavación. Esta película permite que la presión hidrostática de la columna de lodo actúe contra las paredes, estabilizándolas. Para que el «cake» se forme, es necesaria cierta filtración del lodo, por lo que son efectivos en suelos permeables (arenas) pero inútiles en arcillas.
  • Propiedades: Son fluidos no newtonianos cuya viscosidad aumenta al dejarlos en reposo (tixotropía), manteniendo los sólidos en suspensión gracias a un esfuerzo umbral (yield point).
  • Contaminación: Si se contaminan, floculan y pierden su funcionalidad. Se puede añadir polímero celulósico para protegerlos y aumentar su yield point sin incrementar excesivamente la viscosidad (útil en gravas).

Polímeros:

  • Alternativa a la bentonita: Pueden sustituir total o parcialmente a los lodos bentoníticos en condiciones particulares.
  • Ventajas medioambientales: Son biodegradables con el tiempo o se pueden destruir rápidamente con agentes oxidantes (lejía, agua oxigenada) o bacterias específicas.
  • Mecanismo de acción: A diferencia de la bentonita, no forman un «cake» externo efectivo. Las largas cadenas poliméricas se infiltran en el terreno y unen sus partículas por tracción iónica, creando un «cake» interno. Esto permite que la presión hidrostática del lodo actúe contra el terreno cohesionado.
  • Limitaciones: Carecen de un «yield-point» efectivo (salvo excepciones), por lo que solo se pueden emplear en terrenos de baja permeabilidad (10-5 a 10-6 m/seg).
  • Otras características: No necesitan desarenadores, ya que los sólidos en suspensión decantan rápidamente. Se dividen en polares (aniónicos y catiónicos) y apolares, siendo estos últimos más resistentes a ataques químicos.

En resumen, los lodos bentoníticos dependen de la formación de una «torta» externa y son adecuados para suelos permeables, mientras que los polímeros actúan por infiltración y cohesión interna, siendo idóneos para suelos de baja permeabilidad y ofreciendo ventajas medioambientales.

5. ¿Cuáles son los pasos clave en la ejecución convencional de muros pantalla después de la excavación y qué consideraciones son importantes en cada uno?

Una vez completada la excavación del batache y, si es necesario, sostenida con lodos, los siguientes pasos en la ejecución convencional de muros pantalla son los siguientes:

  • Desarenado de los lodos: Si se utilizaron lodos y su contenido de arena supera el 5 %, es imprescindible desarenarlos mediante centrifugado en hidrociclones. De no hacerlo, la arena decantaría sobre el hormigón, formando bolsas que comprometerían la calidad del muro.
  • Colocación de la armadura: La armadura debe atender a varias consideraciones:
    • Debe tener un esqueleto suficientemente rígido para mantener su forma durante la manipulación.
    • Para armaduras de gran longitud, se debe eslingar por distintos puntos a lo largo de su alzado; para las cortas, disponer de asas de izado.
    • Debe dejar espacio suficiente para la tubería tremie que se usará para el hormigonado.
    • Se deben colocar separadores (metálicos o de hormigón) para asegurar el recubrimiento mínimo de 75 mm según la normativa UNE.
  • Hormigonado de las pantallas: Se utiliza la técnica del hormigón sumergido, necesaria cuando no es posible vibrar el hormigón (como ocurre bajo lodos).
    • El hormigón se introduce a través de una tubería tremie que debe permanecer introducida 5m en el hormigón (o 3m en seco), subiéndose a medida que el hormigonado avanza.
    • Para paneles de más de 5 m de longitud, se usan dos tuberías tremie.
    • Los lodos se van evacuando a medida que el hormigón asciende.
    • La duración total del hormigonado debe ser inferior al 70 % del tiempo de inicio de fraguado.
    • Se utiliza un hormigón de consistencia líquida (cono 16-20 NTE o 18-21 UNE-EN-1538).
    • El hormigón debe subir lo más horizontal posible dentro del panel.
  • Extracción de la junta: Existen diferentes tipos de juntas para asegurar la continuidad entre paneles:
    • Junta trapezoidal: No necesita retirarse antes del fraguado del hormigón. Se extrae con un cabestrante o gatos.
    • Junta circular y tricilíndrica (Stein): Deben extraerse durante el fraguado del hormigón, en el momento justo en que este ha endurecido lo suficiente para mantenerse, pero no tanto que impida la extracción. Se retiran con gatos hidráulicos.

El cumplimiento de las tolerancias establecidas en normativas como la UNE o el PG-3 es fundamental en cada una de estas etapas para garantizar la calidad y funcionalidad del muro pantalla.

6. ¿Qué son los anclajes en cimentaciones, cómo se clasifican y cuáles son sus principales aplicaciones?

Los anclajes son elementos de sujeción de estructuras al suelo, diseñados para colaborar en la estabilidad del conjunto suelo-estructura y que trabajan fundamentalmente a tracción.

Clasificación de los anclajes:

  • Según su forma de actuar:
    • Pasivos: Entran en tracción automáticamente cuando las cargas o fuerzas externas actúan, oponiéndose al movimiento del terreno y la estructura.
    • Activos (pretensados): Se pretensan hasta una carga admisible una vez instalados, comprimiendo el terreno entre el anclaje y la estructura. Esto evita el movimiento de la cabeza del anclaje hasta que se supere el esfuerzo de pretensado.
    • Mixtos: Se pretensan con una carga inferior a la admisible, dejando un margen para absorber movimientos imprevistos.
  • Según el tiempo de servicio previsto:
    • Provisionales: Diseñados para un uso temporal durante la fase de construcción.
    • Permanentes: Diseñados para permanecer en servicio durante toda la vida útil de la estructura.
  • Según el tipo de inyección:
    • Inyección única (IU): Inyección global del bulbo.
    • Inyección repetitiva (IR): Inyecciones a lo largo del bulbo en varias etapas.
    • Inyección repetitiva y selectiva (IRS): Inyecciones repetitivas en puntos específicos del bulbo.

Principales campos de aplicación:

  • Estabilización del terreno: Comprimir el terreno y coser diaclasas (fracturas).
  • Aumentar la resistencia al corte en taludes: Mejorar la estabilidad de laderas.
  • Sujeción de bóvedas de túneles y paredes de excavación: Proporcionar soporte en obras subterráneas o de contención.
  • Refuerzo de estructuras: Postesado de elementos estructurales, atirantado de bóvedas y arcos.
  • Arriostramiento de estructuras de contención: Estabilizar muros pantalla, tablestacados, etc.
  • Absorber esfuerzos en la cimentación de estructuras: Contrarrestar la subpresión en soleras bajo el nivel freático.
  • Anclaje de estructuras esbeltas y complejas: Proporcionar estabilidad a elementos con alta esbeltez.

Los anclajes inyectados constan de tres partes: la zona de anclaje (bulbo inyectado al terreno), la zona libre (cables protegidos por una vaina) y la cabeza y la placa de apoyo, que fijan el anclaje a la estructura.

Figura 3. Anclaje de un muro. Vía http://chuscmc.blogspot.com

7. ¿Cuáles son los principales estados límite que hay que considerar en el dimensionamiento de elementos de contención, como los muros pantalla, según la normativa española (CTE)?

Según esta normativa, el dimensionamiento de los elementos de contención debe verificar una serie de estados límite para garantizar la seguridad y funcionalidad de la estructura. Estos se dividen en estados límite últimos y estados límite de servicio.

Estados Límite Últimos (ELU): Se refieren a la capacidad portante y la estabilidad global, evitando la rotura o colapso.

  • Estabilidad:
    • Deslizamiento: La estructura se desliza sobre su base o una superficie de falla.
    • Hundimiento: El terreno bajo la cimentación de la estructura falla.
    • Vuelco: La estructura gira alrededor de su base.
  • Capacidad estructural: Fallo del material constitutivo de la pantalla (hormigón, acero).
  • Fallo combinado del terreno y del elemento estructural: Una combinación de los anteriores.

Para pantallas flexibles, se deben verificar además:

  • Estabilidad global: Del conjunto suelo-pantalla-anclajes-sobrecargas.
  • Estabilidad del fondo de la excavación: Evitar levantamiento o sifonamiento.
  • Estabilidad de la propia pantalla: Rotura por rotación o traslación, o por hundimiento.
  • Estabilidad de los elementos de sujeción: (Anclajes, puntales).
  • Estabilidad en las edificaciones próximas: No causar daños a estructuras adyacentes.
  • Estabilidad de las zanjas: Durante la excavación de la propia pantalla.

Estados Límite de Servicio (ELS): Se refieren a las condiciones de uso de la estructura, evitando movimientos o infiltraciones excesivas.

  • Movimientos o deformaciones: Excesivos de la estructura de contención o de sus elementos de sujeción, que afecten a la propia pantalla o a estructuras próximas.
  • Infiltración de agua no admisible: Problemas de estanqueidad.
  • Afección a la situación del agua freática en el entorno: Con posibles repercusiones a estructuras próximas.

En el cálculo se deben considerar acciones como los empujes activos y pasivos de las tierras, los empujes horizontales del agua freática, las sobrecargas y las acciones instantáneas o alternantes (terremotos, impactos). También se tienen en cuenta las propiedades del suelo, los coeficientes de empuje (de Rankine y de Coulomb) y la deformabilidad de la pantalla, que influye significativamente en la distribución de los empujes.

8. ¿Qué es el sifonamiento en excavaciones y cómo se puede prevenir?

El sifonamiento es un fenómeno de inestabilidad del terreno que se produce en excavaciones, especialmente cuando el nivel freático (NF) se halla por encima del fondo de la excavación y es preciso agotar el agua del interior. Se produce una filtración de agua a través del fondo o de las paredes de la excavación. Si la presión intersticial del agua (es decir, la presión en los poros del suelo) crece hasta igualar la presión total del terreno, la tensión efectiva del suelo se anula (σ’ = σ – u = 0), lo que provoca una pérdida de resistencia y un flujo ascendente de partículas finas del suelo. Este fenómeno se alcanza para un «gradiente crítico».

Figura 4. Longitud de empotramiento para evitar el sifonamiento

Los principales problemas que causa el sifonamiento son:

  • Inestabilidad del fondo de excavación: Pérdida de capacidad portante del suelo.
  • Reducción de la presión efectiva en el intradós de la pantalla: Disminuye el efecto positivo del empuje pasivo, comprometiendo gravemente la estabilidad del muro pantalla.
  • Tubificación o entubamiento: Si se dan sifonamientos localizados, se inicia una erosión interna que forma conductos por donde el agua arrastra material, pudiendo causar un colapso brusco.

Soluciones principales para prevenir el sifonamiento:

  • Dimensionar un correcto sistema de bombeo: Para liberar las presiones intersticiales, ya sea durante la excavación (agotamiento) o de forma permanente mediante soleras drenadas. Los sistemas pueden ser bombeo desde arquetas (para excavaciones pequeñas sin finos), pozos filtrantes o lanzas de drenaje (well point).
  • Incrementar la clava de la pantalla: Aumentar la profundidad de empotramiento del muro pantalla (∆l) incrementa el recorrido del agua, reduciendo el gradiente hidráulico. La clava real puede ser un 20% mayor que la profundidad del punto de rotación.
  • «Clavar» las pantallas en un sustrato impermeable: Si es posible, extender la pantalla hasta una capa de suelo con muy baja permeabilidad (k) para cortar el flujo de agua.
  • Disminuir la permeabilidad de la capa filtrante y aumentar su peso específico aparente (γ’): Esto se puede lograr mediante un tapón de Jet-grouting, que también puede actuar como un codal natural.
  • Aumentar el efecto ataguía de la clava de las pantallas: Mediante un «peine» de inyecciones que reduce la permeabilidad del suelo bajo el muro.
  • Congelación del nivel freático: En casos extremos, se puede congelar el agua del terreno para crear una barrera impermeable.

A continuación os dejo un audio que resume bien el contenido de estos temas. Espero que os sea de interés.

Glosario de términos clave

  • Muro pantalla: Técnica de cimentación profunda y contención flexible que se desarrolla a principios de los años 50, aúna ambas funciones, especialmente en excavaciones difíciles o cerca de edificios.
  • Contención flexible: Cualidad de los muros pantalla que permite cambios de forma y movimientos de flexión, influenciando la distribución de empujes y la interacción suelo-estructura.
  • Empotramiento: Profundidad a la que se introduce la pantalla en el terreno por debajo del nivel de excavación para asegurar su fijación y estabilidad.
  • Empujes activos: Presiones horizontales mínimas que ejerce el terreno sobre una estructura de contención cuando este se deforma alejándose de la estructura (descompresión horizontal).
  • Empujes pasivos: Presiones horizontales máximas que ejerce el terreno sobre una estructura de contención cuando este se deforma empujando hacia el terreno (compresión horizontal).
  • Empuje al reposo: Presión horizontal que ejerce el terreno cuando no hay deformación lateral de la estructura de contención.
  • Muretes-guía: Estructuras temporales previas a la excavación de bataches, que dirigen la herramienta de excavación, aseguran la verticalidad de los paneles y sirven de soporte.
  • Batache: Segmento o panel individual que conforma el muro pantalla continuo, excavado y posteriormente hormigonado.
  • Cuchara al cable/hidráulica: Herramientas de excavación utilizadas para la formación de los bataches en medios convencionales.
  • Hidrofresa: Máquina de excavación especializada para bataches, usada en terrenos muy duros, cuando se requiere verticalidad estricta o a grandes profundidades.
  • Lodos tixotrópicos (bentoníticos): Suspensiones de arcilla (bentonita) en agua, utilizadas para sostener las paredes de la excavación mediante la formación de un «cake» y presión hidrostática, además de lubricar la herramienta. Son fluidos no newtonianos.
  • Lodos poliméricos: Soluciones de polímeros en agua que sustituyen o complementan a los lodos bentoníticos, formando un «cake» interno y uniendo partículas del terreno por tracción iónica. Son biodegradables.
  • Cake: Película impermeable que se forma en las paredes de la excavación de un muro pantalla debido a la filtración del lodo bentonítico, esencial para el sostenimiento por presión hidrostática.
  • Yield point (esfuerzo umbral): Esfuerzo mínimo necesario para que un fluido tixotrópico comience a fluir; por debajo de él, el lodo se comporta como un sólido.
  • Floculación: Proceso por el cual las partículas de lodo se agrupan, perdiendo su estabilidad y funcionalidad, generalmente por contaminación.
  • Tubería tremie: Tubería utilizada para el hormigonado sumergido de los muros pantalla, asegurando que el hormigón se deposite por debajo de la superficie del lodo sin contaminarse.
  • Junta (en pantallas): Dispositivo o técnica utilizada para asegurar la continuidad y estanqueidad entre bataches adyacentes (circular, trapezoidal, tricilíndrica o Stein).
  • Desarenado: Proceso de separación de arena de los lodos bentoníticos, realizado con hidrociclones, necesario para evitar la decantación de arena en el hormigón.
  • Pantalla en voladizo: Muro pantalla que se introduce en el terreno a una profundidad suficiente para que se fije como un elemento estructural en voladizo, aprovechando la resistencia pasiva.
  • Pantalla anclada: Muro pantalla cuya estabilidad se confía a la resistencia pasiva de la parte enterrada y al apoyo de uno o varios niveles de anclajes, usado en excavaciones profundas.
  • Pantalla de soporte libre (articulada): Pantalla anclada con una profundidad de empotramiento pequeña, que permite movimientos significativos en su base y se comporta como una viga doblemente apoyada.
  • Pantalla de soporte fijo (empotrada): Pantalla anclada con una longitud de empotramiento suficiente para que el movimiento en su base sea insignificante, comportándose como una viga apoyada-empotrada.
  • Efecto arco: Fenómeno que ocurre en pantallas flexibles, donde las cargas se concentran en las zonas más rígidas (como anclajes o fondo de excavación) y hay una descarga en las zonas de mayor movimiento.
  • Sifonamiento: Fenómeno en excavaciones con nivel freático alto, donde la presión intersticial en el fondo iguala la presión total, anulando la tensión efectiva del terreno y causando inestabilidad.
  • Gradiente crítico: Valor del gradiente hidráulico a partir del cual se produce el sifonamiento del terreno.
  • Tubificación (entubamiento): Erosión interna del terreno causada por sifonamientos localizados, formando conductos en el suelo.
  • Pozos filtrantes: Sistema de drenaje que utiliza bombas lapicero dentro de pozos para abatir el nivel freático.
  • Sistema de agujas filtrantes (well-point): Drenaje basado en la hinca de minipozos alrededor de una excavación, utilizando bombas de vacío para aspirar aire y agua, adecuado para terrenos arenosos.
  • Anclaje: Elemento de sujeción que transmite cargas de una estructura al terreno, generalmente trabajando a tracción.
  • Bulbo de inyección (zona de anclaje): Parte del anclaje inyectado que se fija al terreno, donde se desarrolla la transferencia de carga.
  • Zona libre: Parte del anclaje (cables o torones) que se encuentra protegida y no está en contacto directo con el terreno, permitiendo el pretensado sin fricción.
  • Cabeza y placa de apoyo: Elementos del anclaje que lo fijan a la estructura y mediante cuñas inmovilizan los torones.
  • Método de Kranz: Método de cálculo para anclajes que evalúa la estabilidad global frente al deslizamiento de la cuña de terreno soportada por los anclajes.
  • Entibación: Conjunto de elementos (tablestacas, puntales, codales) que se utilizan para contener las paredes de una excavación, evitando su colapso.
  • Método berlinés: Tipo de entibación donde se hincan perfiles metálicos aislados antes de excavar, y luego se va entibando progresivamente con elementos de contención y puntales.
  • Levantamiento de fondo: Problema de inestabilidad característico de excavaciones entibadas en suelos arcillosos blandos, donde el fondo de la excavación asciende debido a la presión del terreno.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, n.º 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and applications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La interacción suelo–estructura como factor decisivo en el diseño optimizado y robusto frente al colapso progresivo de edificios de hormigón armado

Acaban de publicarnos un artículo en Innovative Infrastructure Solutions, revista indexada en el JCR. El artículo presenta un marco de optimización estructural para edificios con pórticos de hormigón armado que integra la resistencia frente al colapso progresivo y la interacción suelo-estructura con el objetivo de conseguir diseños seguros, sostenibles y realistas. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la optimización matemática se ha convertido en una herramienta muy valiosa para la ingeniería. Lejos de ser un mero ejercicio teórico, se ha comprobado que permite diseñar estructuras más eficientes, con menos consumo de materiales, costes e impacto medioambiental. Sin embargo, hasta ahora, un aspecto importante había quedado fuera de estos procesos de optimización: la seguridad frente al colapso progresivo, un fenómeno en el que el fallo localizado de un elemento estructural provoca una reacción en cadena que puede ocasionar el derrumbe total del edificio.

Este tipo de situaciones no son meramente hipotéticas: explosiones accidentales, impactos de vehículos, errores de ejecución e incluso actos intencionados han provocado a lo largo de la historia fallos de este tipo, con consecuencias devastadoras en términos humanos y económicos. Por este motivo, organismos como la General Services Administration (GSA) y el Departamento de Defensa (DoD) de EE. UU. han desarrollado directrices específicas para incorporar criterios de robustez frente al colapso progresivo en el diseño estructural.

La principal aportación de este trabajo es la propuesta de un marco computacional integrado denominado Optimization-based Robust Design to Progressive Collapse (ObRDPC), que combina tres elementos fundamentales:

  1. Optimización estructural mediante algoritmos heurísticos.

  2. Diseño robusto frente a colapso progresivo, aplicado desde el inicio del proceso de cálculo con el método del Alternate Path.

  3. Consideración de la interacción suelo–estructura (SSI), aspecto habitualmente ignorado, pero que modifica de forma notable la respuesta real de un edificio.

La metodología desarrollada no se limita a verificar a posteriori si una estructura cumple los requisitos de robustez, sino que integra estas exigencias como restricciones en el propio proceso de optimización. Así, el algoritmo no solo busca minimizar un objetivo (en este caso, las emisiones de CO₂ asociadas a la construcción), sino que también garantiza la seguridad frente a escenarios de fallo.

Para validar la propuesta, se estudiaron cinco casos de edificios de pórticos de hormigón armado tridimensionales con distintas combinaciones de número de plantas (de cuatro a seis) y longitudes de vano (cuatro, seis y ocho metros). A cada edificio se le aplicaron dos escenarios de daño: la eliminación de una columna de esquina y la eliminación de una columna exterior. Estos escenarios, definidos en la guía GSA, simulan situaciones críticas y permiten evaluar la capacidad de la estructura para redistribuir las cargas y evitar un colapso en cadena.

El marco ObRDPC integra un proceso automatizado en el que el modelado estructural se realiza con SAP2000, enlazado con rutinas programadas en MATLAB. Además, se tiene en cuenta el diseño constructivo de cimentaciones mediante zapatas aisladas, que se modelan como losas apoyadas sobre un suelo con comportamiento elástico. En este punto, la SSI es fundamental, ya que los asientos diferenciales de la cimentación generan esfuerzos adicionales en pilares y vigas, lo que modifica la redistribución de cargas en caso de fallo. El estudio muestra que ignorar este efecto puede dar lugar a errores de hasta el 24 % en el dimensionamiento de la superestructura tras la pérdida de un pilar, lo que se traduce en diseños potencialmente inseguros o, por el contrario, sobredimensionados y poco sostenibles.

Los resultados más destacados se pueden resumir así:

  • Influencia de la altura del edificio: a medida que aumenta el número de plantas, la estructura gana en robustez. Esto se debe a la redundancia estructural y a la existencia de múltiples caminos alternativos para la redistribución de cargas (efecto de pórtico global, mecanismos tipo Vierendeel, etc.). En consecuencia, los edificios de mayor altura presentan una menor diferencia entre un diseño convencional y otro robusto frente al colapso progresivo.

  • Influencia de la luz de vano: a diferencia de lo que ocurre con la altura, un mayor aumento de la luz compromete la robustez. En vanos de 8 metros, el impacto ambiental de un diseño robusto frente al colapso progresivo aumenta en más de un 50 %. La razón es doble: por un lado, las vigas deben absorber momentos flectores mucho mayores cuando desaparece un apoyo y, por otro, disminuye la redundancia estructural al haber menos pilares por unidad de superficie.

  • Estrategias de redistribución de cargas: los mecanismos estructurales varían según el elemento. En las vigas, la optimización conduce a secciones más profundas y a un incremento del refuerzo superior de hasta el 35 % en zonas críticas. En los pilares, tienden a utilizarse secciones más robustas y hormigones de mayor resistencia (hasta 40 MPa) para controlar las solicitaciones combinadas de axiles y flectores. Las cimentaciones, por su parte, tienden a tener geometrías más cuadradas, lo que mejora su respuesta frente a asientos diferenciales.

  • Impacto ambiental y sostenibilidad: en edificios con vanos moderados (4 m), el sobrecoste ambiental de diseñar frente a un colapso progresivo es inferior al 8 %, una cifra razonable para garantizar una mayor seguridad. Sin embargo, en estructuras con vanos grandes, el impacto es muy significativo, por lo que es necesario reflexionar sobre las limitaciones geométricas de ciertos proyectos si se pretende compatibilizar sostenibilidad y robustez.

El valor práctico de esta investigación es indudable. Frente a los métodos tradicionales basados en el ensayo y el error y en hipótesis de apoyo rígido, la propuesta permite automatizar el proceso de diseño e integrar la seguridad y la sostenibilidad desde el principio. Para los ingenieros y proyectistas, esto supone una herramienta que evita tanto el riesgo de subdiseño (estructuras inseguras) como el de sobrediseño (estructuras innecesariamente pesadas y contaminantes).

En definitiva, este trabajo supone un avance hacia una ingeniería estructural más integral, ya que no solo se trata de optimizar costes o reducir emisiones, sino también de garantizar la resiliencia de nuestras construcciones frente a eventos extremos. La integración de la interacción suelo-estructura añade, además, un realismo que acerca la investigación a la práctica profesional. En el futuro, esta metodología podría extenderse a otros sistemas estructurales, como marcos metálicos, estructuras mixtas o rascacielos, lo que supondría un horizonte prometedor para la construcción de infraestructuras seguras, sostenibles y duraderas.

Referencia:

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

Os dejo el artículo para que lo descarguéis, ya que está publicado en abierto.

Pincha aquí para descargar

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.