Vivienda social sostenible: un enfoque integrador de ciclo de vida y evaluación multicriterio

Acaban de publicar un artículo nuestro en Sustainable Cities and Society, una de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. En este trabajo se propone un enfoque integrador basado en el ciclo de vida y en métodos de evaluación multicriterio para analizar la vivienda social sostenible. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo.

Los principales resultados revelan que el sistema Light Steel Frame (LSF) es la alternativa más sostenible, ya que logra un equilibrio superior entre la eficiencia en el uso de los recursos, la durabilidad y la reducción del mantenimiento. Un descubrimiento crucial es el papel de la dimensión social, que representó casi el 40 % del peso total en la evaluación, por encima de las dimensiones económica y medioambiental. El análisis causal identifica el coste de construcción, la funcionalidad y los agentes de la cadena de valor como los principales factores que condicionan el rendimiento sostenible del resto del sistema.

El artículo presenta un marco metodológico integrador que combina evaluaciones basadas en el ciclo de vida —análisis de ciclo de vida (LCA), análisis de coste del ciclo de vida (LCC) y análisis de ciclo de vida estocástico (S-LCA)— con técnicas avanzadas de decisión multicriterio: método mejor-peor (BWM), análisis DEMATEL difuso y análisis MARCOS. Esta integración permite incorporar ponderaciones de expertos, modelar relaciones causales entre criterios y sintetizar resultados frente a soluciones ideales o anti-ideales, lo que aumenta la transparencia en la priorización de alternativas constructivas. Este enfoque se ha aplicado a un caso real de vivienda social en Perú, en el que se han comparado cinco sistemas estructurales representativos: LSF, LBSPS, RCW, RCF-M y RCF-CP. El estudio ha proporcionado pruebas empíricas sobre los costes del ciclo de vida, los impactos ambientales y las prestaciones sociales que respaldan las decisiones de diseño y las políticas.

El estudio analiza cinco sistemas constructivos adaptados a contextos de urbanización rápida (específicamente en Lima, Perú), que van desde métodos convencionales hasta industrializados:

Entre las aportaciones metodológicas, la combinación de BWM con una agregación basada en credenciales profesionales reduce la carga de comparación y atenúa los sesgos en la agregación de juicios, mientras que la extensión difusa de DEMATEL permite identificar los criterios que funcionan como impulsores del sistema y los que actúan como receptores. Esta capacidad para distinguir entre causas y efectos permite aclarar qué palancas hay que modificar para lograr efectos amplificados en la sostenibilidad. Por último, la validación cruzada con otros métodos de MCDM y los ensayos de sensibilidad aumentan la confianza en la estabilidad de los resultados.

Discusión de resultados

Los análisis económicos muestran que, en un horizonte de 50 años y por metro cuadrado, los sistemas basados en acero ligero (LSF) tienen los menores costes totales de ciclo de vida, mientras que algunas alternativas prefabricadas, como el LBSPS, tienen los mayores costes de construcción. Estos datos implican que si solo se tiene en cuenta la inversión inicial, se pueden tomar decisiones subóptimas, ya que no se consideran el mantenimiento y el fin de vida.

En términos ambientales, la evaluación con ReCiPe (endpoint) sitúa al LSF como el sistema con el menor impacto agregado, principalmente debido a su menor intensidad material. Por el contrario, las soluciones con mayor presencia de hormigón y ladrillo presentan una carga superior, especialmente en la dimensión de recursos. Esta diferenciación pone de manifiesto la influencia del perfil material y del proceso de fabricación en la huella medioambiental de la vivienda y sugiere que, en la práctica profesional, se deben priorizar medidas que reduzcan la demanda de materiales energéticamente intensivos en la fase de fabricación.

La S-LCA revela una tensión entre la industrialización y la exposición social: las alternativas más industrializadas, como el LSF y el LBSPS, presentan mayores valores de exposición laboral y de funcionalidad exigente, mientras que las tipologías convencionales de hormigón muestran menores riesgos sociales, medidos en Medium Risk Hours. Este resultado indica que la adopción de sistemas industrializados exige prestar atención explícita a la gestión del trabajo, la formación y la coordinación de la cadena de suministro para evitar que los impactos negativos se transfieran al personal y a la comunidad.

La síntesis mediante MARCOS ubica a LSF como la alternativa mejor valorada en el escenario analizado, seguida de RCW y RCF-M. Los sistemas LBSPS y RCF-CP quedan en posiciones inferiores. Las pruebas de sensibilidad (variación de los pesos de ±15 %, escenarios de distancia de transporte y estratificación de expertos) muestran que el orden general se mantiene, lo que indica cierta robustez frente a perturbaciones razonables en los supuestos. Estos resultados permiten extraer una conclusión práctica: en contextos con características similares a las del caso estudiado, las soluciones ligeras industrializadas pueden mejorar la relación entre coste, impacto ambiental y rendimiento técnico, siempre que se gestionen adecuadamente los aspectos sociales y de ejecución.

Un aspecto metodológico de interés es la identificación de los criterios causales. La técnica DEMATEL identifica el coste de construcción, la funcionalidad y las interacciones con la cadena de valor como criterios que inciden en el resto del sistema, mientras que los indicadores ambientales, como la salud humana y la conservación de los ecosistemas, se presentan principalmente como efectos. Esto sugiere que las intervenciones en los costes de construcción y en la organización funcional pueden provocar mejoras indirectas en la sostenibilidad ambiental y social, lo cual resulta relevante al diseñar políticas y contratos que incentiven las prácticas integradas.

Futuras líneas de investigación

Una línea de trabajo inmediata consiste en ampliar la diversidad y el tamaño del panel de agentes consultados para captar las variaciones en las prioridades y las competencias profesionales. Esto permitiría evaluar la sensibilidad de las ponderaciones y mejorar la representatividad social del proceso. Otra opción es trasladar y recalibrar el marco a otros contextos geográficos y tipologías constructivas, como viviendas de mayor altura o equipamientos públicos, para evaluar la transferibilidad de la clasificación y de la estructura causal identificada en este estudio.

En el ámbito técnico, utilizar datos primarios de obras reales en lugar de bases de datos secundarias aumentará la fiabilidad de la evaluación del ciclo de vida (LCA) y del análisis del ciclo de vida (S-LCA) y mejorará la precisión de los modelos de coste del ciclo de vida (LCC). La incorporación de enfoques dinámicos, como la LCA dinámica o las simulaciones acopladas a plataformas BIM, puede facilitar las evaluaciones en etapas iniciales y permitir análisis de sensibilidad más detallados relacionados con la sustitución de componentes, las reparaciones y las evoluciones tecnológicas. Asimismo, explorar técnicas de optimización multiobjetivo que vinculen explícitamente las restricciones económicas con las metas ambientales y sociales podría proporcionar soluciones de diseño más operativas para promotores y organismos públicos.

Desde la perspectiva social, investigar intervenciones concretas de capacitación, reorganización de procesos y de contratos que reduzcan la exposición de los trabajadores a los sistemas industrializados aportará pruebas sobre cómo mantener los beneficios ambientales y económicos sin incrementar los impactos sociales. Por último, el estudio de la interacción entre políticas públicas, incentivos financieros y la adopción tecnológica ofrecerá información útil para diseñar instrumentos que favorezcan soluciones constructivas más equilibradas en el marco de los programas de vivienda social.

Conclusión

El estudio proporciona un marco metodológico replicable y sólido que combina la evaluación del ciclo de vida con técnicas multicriterio capaces de representar las interdependencias y la incertidumbre. Los resultados empíricos indican que, en el caso analizado, las soluciones ligeras industrializadas presentan ventajas en términos de coste y de huella ambiental, aunque se requieren medidas específicas para reducir los riesgos sociales derivados de su ejecución. La metodología y los resultados obtenidos sientan las bases para orientar las políticas y las decisiones de los proyectos y ponen de manifiesto la necesidad de ampliar los datos primarios, diversificar la muestra de expertos y conectar el análisis con herramientas digitales de diseño y gestión.

Referencia:

LUQUE CASTILLO, X.; YEPES-BELLVER, L.; YEPES, V. (2026). Towards Sustainable Social Housing: An Integrative Life Cycle and Multi-Criteria ApproachSustainable Cities and Society, 137, 107164. DOI:10.1016/j.scs.2026.107164

Dejo a continuación el artículo completo, ya que está publicado en abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

4 verdades incómodas sobre la innovación en empresas constructoras tradicionales

Introducción: el dilema de la innovación.

Existe una creencia muy extendida en el mundo empresarial: para innovar, se necesita un líder transformador. Alguien carismático, visionario y capaz de inspirar a sus equipos para alcanzar nuevas metas. Y, en muchos casos, es cierto. Sin embargo, ¿qué sucede cuando intentamos aplicar esta fórmula a sectores más tradicionales, conservadores y reacios al cambio, como el de la construcción?

La realidad, como suele suceder, es mucho más compleja y sorprendente. Un estudio reciente, realizado en 60 empresas de construcción y consultoría en España, ha puesto de relieve algunas verdades incómodas sobre lo que realmente impulsa la innovación. Los resultados desafían las ideas preconcebidas y nos obligan a replantearnos el papel del liderazgo en sectores altamente regulados.

Este artículo desglosa los cuatro hallazgos más impactantes y prácticos de esta investigación. Descubre por qué el carisma no siempre es la solución y por qué, a veces, un buen sistema es más efectivo que un gran discurso.

Primer hallazgo: el liderazgo inspira productos, pero no mejora los procesos.

Este es, quizás, el descubrimiento más sorprendente. El estudio ha descubierto que el liderazgo transformacional tiene un impacto directo, fuerte y positivo en la innovación de productos. En otras palabras, los líderes inspiradores son excelentes motivadores de sus equipos para que estos desarrollen nuevos materiales, diseños o servicios.

Los datos son claros: el efecto del liderazgo sobre la innovación de productos fue muy alto (β = 0,548, p < 0,001). Sin embargo, y aquí viene la sorpresa, ese mismo estilo de liderazgo no mostró un efecto significativo en la innovación de procesos, es decir, en la mejora de la eficiencia de las operaciones internas (β = 0,102).

Esto no implica un fracaso del liderazgo, sino una colisión entre la visión inspiradora y la realidad inamovible de un sector atado por contratos, regulaciones e infraestructuras físicas. La innovación de procesos en industrias como la construcción es de naturaleza operativa y rutinaria. Su mejora depende menos de la motivación y más de la inversión tecnológica, la estandarización y la superación de las barreras burocráticas. Como señala el estudio, los equipos de proyecto suelen ser temporales y tienen una autonomía limitada para modificar los procesos definidos en el contrato.

En sectores altamente regulados, como el de la construcción, la capacidad de un líder para alterar procesos establecidos está limitada por la burocracia, las infraestructuras existentes y la naturaleza temporal de los equipos de proyecto, que tienen poca autonomía para modificar los procesos definidos por contrato.

En resumen, puedes ser el líder más inspirador del mundo, pero eso no te servirá de mucho para cambiar un procedimiento operativo anclado en la rutina y la regulación.

Segundo hallazgo: el héroe anónimo de la eficiencia es el sistema, no el carisma.

Si el liderazgo carismático no es la clave para mejorar los procesos, ¿qué lo es? La respuesta del estudio es contundente: los sistemas.

El concepto clave aquí es la gobernanza del conocimiento (Knowledge Governance). Se trata de los mecanismos y estructuras formales que una organización utiliza para capturar, organizar y aplicar el conocimiento. Piensa en repositorios de lecciones aprendidas, manuales de buenas prácticas o puestos dedicados a la gestión de la información.

El hallazgo fue revelador: la gobernanza del conocimiento es el factor que más influye, con diferencia, en la innovación de procesos. Su impacto fue muy potente (β = 0,508, p < 0,001), mucho mayor que el efecto sobre la innovación de productos (β = 0,241, p < 0,05).

La implicación práctica es directa: si tu objetivo es mejorar la eficiencia, optimizar las operaciones y hacer las cosas mejor, más rápido o con menos coste, debes centrarte menos en el carisma y más en ser un arquitecto de sistemas. Construir estructuras robustas para gestionar el conocimiento es la verdadera palanca del cambio operativo en las industrias tradicionales.

Tercer hallazgo: el clima de innovación es un amplificador, no un motor.

Muchas empresas invierten grandes sumas de dinero en crear un «clima de innovación»: oficinas abiertas, post-its de colores, sesiones de lluvia de ideas… La idea es que un entorno que fomenta la creatividad impulsará la innovación por sí solo. Sin embargo, el estudio demuestra que esto es solo medio cierto.

Por sí solo, un clima de innovación positivo no tuvo un efecto directo significativo sobre el intercambio de conocimientos ni sobre la innovación. Es decir, tener un ambiente «guay» no garantiza que la gente colabore más ni que surjan mejores ideas.

La clave está en que el clima de innovación actúa como un amplificador. Cuando se combina con un liderazgo transformacional activo, potencia significativamente la capacidad del líder para que la gente comparta conocimientos (el estudio detectó un efecto de interacción β = 0,141, p < 0,1).

La conclusión es clara: crear un clima innovador no sirve de nada si no va acompañado de un liderazgo que sepa aprovecharlo. Es como tener un coche de carreras (el clima), pero sin un piloto que sepa conducirlo (el líder). La combinación de un buen entorno y un buen líder es lo que realmente desbloquea el potencial colaborativo de un equipo.

Cuarto hallazgo: ¿colaboración o estructura? Depende de lo que quieras innovar.

Dado que el impacto de un líder se ve amplificado por el entorno, es crucial saber qué entorno construir. El estudio revela dos planos distintos: uno para crear nuevos productos y otro para perfeccionar los procesos existentes. No existe una única «receta para innovar».

La vía hacia la innovación de productos se logra principalmente mediante el intercambio de conocimientos. Para desarrollar nuevos productos, servicios o soluciones, es fundamental que las personas hablen, colaboren e intercambien ideas con fluidez. El estudio demuestra que el liderazgo transformacional impulsa la innovación de productos de forma indirecta a través de este intercambio (efecto indirecto: β = 0,089, p < 0,001).

La innovación de procesos se logra mediante la gobernanza del conocimiento. Para optimizar las operaciones, estandarizar las buenas prácticas y mejorar la eficiencia, son necesarios sistemas y estructuras formales. La investigación muestra que el liderazgo transformacional influye en la innovación de procesos de manera indirecta a través de estos sistemas de gobernanza (efecto indirecto: β = 0,136, p < 0,001).

En resumen, la innovación de productos surge de las conversaciones informales; la innovación de procesos se plasma en los manuales de la empresa. Una es social y la otra, estructural.

Si quieres desarrollar nuevos productos, fomenta una cultura de colaboración y comunicación abierta. Si quieres mejorar tus procesos internos, invierte en sistemas y estructuras que organicen el conocimiento de la empresa.

Conclusión: liderar la innovación es más que inspirar.

En sectores tradicionales como la construcción, la innovación no es un concepto monolítico. Pensar que un liderazgo inspirador lo soluciona todo es un error que puede salir muy caro. Este estudio nos demuestra que la estrategia debe ser dual: se requieren palancas distintas para la innovación de productos y de procesos.

El liderazgo transformacional no es una solución universal. Su efectividad depende del contexto y de si se apoya en sistemas robustos y en un clima adecuado que lo potencie.

La inspiración sin sistemas da lugar a productos nuevos y emocionantes, pero construidos sobre procesos ineficientes y frágiles. Los sistemas sin inspiración conducen a mejoras incrementales que no logran crear los productos disruptivos necesarios para capturar nuevos mercados. Un camino crea valor y el otro lo protege. El verdadero liderazgo industrial requiere dominar ambos.

La pregunta final es para ti. Como líder en tu sector, ¿en qué estás invirtiendo tu energía: en ser una fuente de inspiración o en ser un arquitecto de sistemas? Este estudio sugiere que necesitas ser ambas cosas.

En esta conversación se profundiza en las ideas del trabajo. Espero que te resulte interesante.

Aquí tienes un vídeo en el que se sintetizan las ideas comentadas en este artículo.

En este documento se explican las ideas más importantes.

Pincha aquí para descargar

Referencia:

LOPEZ, S.; YEPES, V. (2026). Innovation in construction: Assessing the role of transformational leadership and knowledge governance. Journal of Civil Engineering and Management, (accepted, in press)

 

Entrevista en Construnews — Monográfico infraestructuras en España

A continuación, os paso una entrevista que me hicieron recientemente en Construnews sobre las infraestructuras en España. Forma parte de una serie de entrevistas a personas relacionadas directamente con el sector de la construcción. Espero que os resulte interesante.

“Hay que reingenierizar el modelo de financiación, ejecutar estratégicamente los corredores ferroviarios y desbloquear el suelo para vivienda asequible”

¿Cómo valora el estado actual de las infraestructuras en España (transporte, energía, digitalización, logística)? ¿Cuáles son, a su juicio, los principales retos de país en los próximos 5‑10 años?

La valoración del estado actual de las infraestructuras españolas indica que el notable patrimonio de ingeniería civil presenta síntomas claros de desequilibrio, ya que el modelo se ha centrado excesivamente en la construcción de nuevas infraestructuras de muy alta capacidad, dejando en un segundo plano la conservación preventiva y correctiva de la red existente. En el ámbito viario, los firmes están deteriorados y los sistemas de contención y señalización están obsoletos. En el sector ferroviario, el éxito de la alta velocidad contrasta con la situación de la red convencional y de cercanías, que necesita atención debido a la falta de renovación de los sistemas de seguridad y de las catenarias, lo que provoca incidencias. Además, el hecho de que el ancho de vía sea diferente al de Europa sigue suponiendo un desafío para el transporte de mercancías. El reto más significativo es, por un lado, abordar la vivienda como un problema social y estructural prioritario a nivel nacional, dado el creciente difícil acceso de la población joven y de rentas medias. Por otro lado, la vulnerabilidad ante la emergencia climática, especialmente en lo referente a la gestión del agua, es crítica, por lo que existe una urgencia en materia de defensa contra inundaciones. Gran parte de los sistemas de drenaje se diseñaron basándose en series estadísticas que han quedado obsoletas, y no se está invirtiendo lo suficiente en modernizar las infraestructuras hidráulicas para soportar nuevos caudales punta.

¿Qué segmentos infraestructurales ofrecen mayor potencial de crecimiento para el sector de la construcción y la ingeniería? ¿Y cuáles están quedando fuera del foco?

La inversión se centra en una transición estructural que se está desplazando de la expansión territorial a la intensificación, la digitalización y la resiliencia. El principal motor de crecimiento es la transición energética, ya que la integración masiva de las energías renovables exige un ambicioso programa de refuerzo, digitalización y almacenamiento de la red eléctrica a gran escala. La necesidad de dotar al sistema de baterías industriales y de sistemas de bombeo reversible supone la aparición de un nuevo y gran nicho de mercado. El desarrollo urgente de vivienda asequible y social también se perfila como un segmento clave para el crecimiento del sector. La crisis hídrica convierte la reingeniería hidráulica en un sector estratégico, ya que la oportunidad radica en crear una nueva oferta hídrica mediante desaladoras y sistemas de tratamiento avanzado para la reutilización de aguas residuales, junto con la renovación de las redes de distribución para reducir las pérdidas por fugas. La ingeniería logística crecerá en la dotación de terminales intermodales y en la adaptación de las líneas de transporte al ancho de vía estándar europeo. No obstante, la priorización de grandes proyectos deja en un segundo plano segmentos cruciales para la cohesión. El mantenimiento de las carreteras de titularidad autonómica y provincial es un problema pendiente, al igual que la renovación de los sistemas de señalización del ferrocarril de cercanías. La falta de atención a las pequeñas obras de defensa hidráulica a nivel local (drenajes, encauzamientos) también es crítica.

El déficit de conservación lastra la red existente: señales obsoletas, firmes deteriorados y falta de mantenimiento.

¿Cómo evalúa la coordinación entre administraciones, sector privado y financiación (incluyendo fondos europeos)? ¿Qué mecanismos están funcionando y cuáles habría que reforzar?

La coordinación administrativa presenta una diferencia entre la solidez de la planificación de alto nivel y la lentitud de la fase de materialización. Aunque existe un consenso técnico adecuado y el sector privado ha demostrado su capacidad de ejecución, la principal fricción se debe a la fragmentación administrativa a nivel local y a la superposición de competencias en la financiación del mantenimiento de las redes. Esta situación provoca cuellos de botella en los trámites de expropiación y licencias. La llegada de los fondos europeos de recuperación ha supuesto una inyección de capital necesaria y ha dotado a la inversión de una clara orientación hacia la descarbonización. No obstante, ha puesto de manifiesto la necesidad de reforzar la capacidad administrativa para absorber y licitar el volumen de capital. El mayor riesgo económico es que esta financiación sustituya a la inversión ordinaria en conservación en lugar de complementarla. Para garantizar la sostenibilidad, es necesario establecer mecanismos que separen la gestión técnica del ciclo político. La propuesta más proactiva consiste en crear una Agencia Técnica de Proyectos Estratégicos que tenga autonomía para ejecutar obras de impacto nacional de forma ágil. En cuanto a la financiación, es fundamental sustituir el modelo presupuestario anual por contratos-programa plurianuales y de carácter finalista para la conservación.

Más allá de los discursos, ¿cómo se está incorporando la sostenibilidad en el diseño, ejecución y explotación de infraestructuras? ¿Podría compartir un caso inspirador o representativo?

La sostenibilidad ha dejado de ser un mero postulado ético para convertirse en un requisito técnico y normativo que rediseña el ciclo de vida de las infraestructuras. La ingeniería actual integra este concepto desde la fase de planificación, exigiendo el análisis del ciclo de vida de los activos para cuantificar y minimizar la huella de carbono de los materiales. Esto se traduce en una preferencia técnica por el uso de hormigones y asfaltos con un alto porcentaje de material reciclado y por la implementación de soluciones basadas en la naturaleza. Durante la ejecución, la sostenibilidad se centra en la economía circular mediante la obligación contractual de reutilizar y reciclar in situ los materiales de demolición. Durante la fase de explotación, la sostenibilidad se vincula a la eficiencia: la digitalización mediante sensores permite un mantenimiento predictivo que alarga la vida útil de los activos. Un ejemplo representativo de esta integración es la reingeniería hídrica en zonas con estrés hídrico. Se han desarrollado sistemas de regeneración de aguas residuales con tratamientos terciarios avanzados que permiten cerrar el ciclo del agua y producir un recurso predecible. Este proceso, que requiere mucha energía, se gestiona de forma sostenible al generarse energía a partir de biogás o energía solar.

La transición energética y la ingeniería del agua abren nuevos nichos clave para el sector.

Las infraestructuras ya no son solo estructuras físicas: mantenimiento predictivo, digital twins, infraestructura como servicio… ¿Cuál es su visión sobre esta transformación? ¿Qué proyectos le parecen referentes?

La ingeniería de infraestructuras ha superado la fase de la mera estructura física para transformarse en un sistema dinámico de información y servicio. El enfoque ha cambiado del coste de construcción a la eficiencia operativa a largo plazo. Esta revolución se basa en tres pilares: la monitorización masiva de activos para el mantenimiento predictivo, la creación del gemelo digital, que simula el comportamiento de la infraestructura ante escenarios de estrés, y la adopción del concepto de infraestructura como servicio, que fomenta la colaboración público-privada para construir sistemas duraderos. El gemelo digital es la herramienta clave, ya que permite realizar ensayos virtuales de resiliencia y ampliación sin afectar al activo físico. España está a la vanguardia en la aplicación práctica de esta tecnología. Un ejemplo destacado es la gestión de los túneles de la red de carreteras de alta capacidad, donde la iluminación y la ventilación se ajustan dinámicamente en tiempo real. Otro caso inspirador es el del sector ferroviario, donde el modelado virtual se utiliza para gestionar activos críticos, como la catenaria y los puentes, y simular el impacto físico para anticiparse a la probabilidad de fallo.

En un entorno de alta inversión pública y necesidad de eficiencia, ¿cómo se está calculando y midiendo el ROI en infraestructuras? ¿Podría compartir ejemplos reales o estimaciones? ¿Qué factores lo están condicionando más?

La medición de la rentabilidad de la inversión pública se centra en el retorno social de la inversión, desvinculándose del retorno financiero privado. El cálculo se realiza mediante el análisis coste-beneficio socioeconómico, cuyo principal indicador es el valor actual neto social (VAN social). El mantenimiento preventivo es el segmento con mayor y más estable rentabilidad social; los informes técnicos demuestran que por cada euro invertido en conservación oportuna se evitan entre cuatro y cinco euros en costes de reparación o reconstrucción futura. En contraste, la alta velocidad ferroviaria genera una Tasa Interna de Retorno Social significativa (a menudo superior al 8 %), pero su rentabilidad financiera es insuficiente. La precisión del cálculo se ve comprometida por la sobreestimación recurrente de las previsiones de demanda en las fases iniciales de muchos proyectos. Otros factores críticos son la dificultad para valorar monetariamente las externalidades blandas y los retrasos en la ejecución de la obra, ya que estos elevan el coste final y reducen la rentabilidad esperada.

A raíz de las últimas iniciativas de Bruselas (como el plan para conectar capitales europeas por alta velocidad), ¿qué papel debería jugar España en el nuevo mapa europeo? ¿Estamos preparados o en riesgo de quedar fuera?

El impulso de Bruselas para consolidar la Red Transeuropea de Transporte otorga a España un doble papel estratégico: eje principal de conexión de alta velocidad para viajeros y plataforma logística clave para canalizar el tráfico de mercancías. Sin embargo, a pesar de tener una de las redes de alta velocidad más extensas, España corre el riesgo de quedar menos integrada en el mapa logístico por una barrera técnica: el uso mayoritario del ancho de vía ibérico. Esta diferencia limita la competitividad del transporte de mercancías por ferrocarril. Si no se completa la adecuación al ancho de vía internacional de los corredores Mediterráneo y Atlántico antes de las fechas límite, existe el riesgo de que las mercancías elijan rutas alternativas. Para evitar una menor integración, es necesario reingenierizar los procesos de licitación pública para agilizar la ejecución de la inversión y centrarla en finalizar estos corredores clave y crear los nodos logísticos interiores.

Pensando en todos los modos —carretera, ferrocarril, puertos, aeropuertos, redes logísticas y digitales—, ¿qué ejes o áreas infraestructurales deberían ser prioritarios para mejorar la competitividad y cohesión territorial en España?

La inversión estratégica para mejorar la competitividad y la cohesión territorial debe resolver los cuellos de botella y priorizar la seguridad. El primer eje ineludible se centra en la intermodalidad y la logística de mercancías. Es de máxima prioridad estratégica completar la adaptación de los corredores mediterráneo y atlántico al ancho de vía internacional. El segundo gran eje es la vivienda, cuya provisión masiva y asequible es crucial para la cohesión social y para facilitar la movilidad laboral en zonas de alta demanda. El tercer eje fundamental es la seguridad y el abastecimiento hídrico. La respuesta a la sequía estructural pasa por invertir en infraestructuras que no dependan de las precipitaciones, como la regeneración de aguas residuales mediante un tratamiento avanzado y la ampliación de las plantas desaladoras. También es crucial invertir en obras de defensa y drenaje en cuencas fluviales para proteger a las poblaciones de las avenidas extremas. El cuarto eje se centra en la cohesión a través de la calidad del servicio. Es fundamental saldar el grave déficit de conservación acumulado en la red de carreteras de titularidad autonómica y provincial, que son vitales para la vertebración de la España rural. En cuanto a la prioridad digital, el objetivo es cerrar la brecha y garantizar la cobertura universal de banda ancha ultrarrápida en todos los municipios.

La sostenibilidad ya no es discurso: se mide, se diseña y se exige en todas las fases del ciclo de vida.

El aumento de costes de materiales, la tramitación lenta o la falta de personal cualificado afectan a las infraestructuras. ¿Qué medidas urgentes propondría para desbloquear estos frenos?

La alta inversión pública se ve obstaculizada por tres frenos principales: la volatilidad de los costes, la complejidad administrativa y la necesidad de reforzar el talento. La medida más urgente para hacer frente a la volatilidad de los precios es implementar un sistema de revisión contractual objetivo, automático y no discrecional. Esta medida debe complementarse con la posibilidad de que la Administración adquiera con antelación materiales estratégicos para proyectos clave. Para combatir la lentitud en la tramitación, es imperativo crear Unidades de Gestión de Proyectos Estratégicos que actúen como ventanilla única y coordinen los plazos de licencias y expropiaciones entre las distintas administraciones. Por último, para abordar la falta de personal cualificado, la Administración debe ofrecer condiciones salariales y de progresión profesional más competitivas. Es crucial que la normativa de contratación pública flexibilice la valoración y permita que la calidad técnica y la experiencia del equipo pesen más que el precio en los concursos de servicios de ingeniería.

Si pudiera proponer tres decisiones inmediatas que mejoren las infraestructuras españolas a corto y medio plazo, ¿cuáles serían y por qué?

La mejora de las infraestructuras españolas a corto y medio plazo requiere tomar cuatro decisiones de alto impacto ineludibles. La primera es la reingeniería del modelo de financiación del mantenimiento. Hay que establecer un sistema de contratos programa plurianuales para la conservación de la red de carreteras de alta capacidad y de ferrocarril. La segunda decisión ineludible se centra en la ejecución estratégica y la interoperabilidad. Es urgente crear una unidad ejecutora especializada y con autonomía técnica que se encargue de gestionar de manera integral y acelerada los corredores ferroviarios Mediterráneo y Atlántico. Esta medida resolvería el cuello de botella técnico del ancho de vía y garantizaría el cumplimiento de los plazos exigidos por la Unión Europea para 2030. La tercera decisión debe abordar la gestión eficiente del suelo y la construcción de viviendas asequibles, simplificando los trámites urbanísticos y movilizando suelo público de manera inmediata para aumentar el parque de viviendas sociales. Por último, la cuarta decisión debe resolver los frenos de la gestión: la volatilidad de los costes y la falta de talento. Es imprescindible revisar automáticamente los precios de los contratos de obra pública. De forma complementaria, es necesario modificar la normativa de contratación pública para que, en los servicios de ingeniería, la calidad técnica y la experiencia del equipo humano pesen más que el precio ofertado.

Digital twins, mantenimiento predictivo e infraestructuras como servicio: el futuro ya está en marcha.

Os dejo una conversación donde se habla de estos temas.

En este vídeo se resumen algunas de las ideas principales sobre las infraestructuras en España.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Europa premia a la UPV por revolucionar el diseño estructural con Inteligencia Artificial

La Universitat Politècnica de València (UPV) ha obtenido un reconocimiento destacado europeo al ganar el premio al mejor proyecto en la categoría «AI for Sustainable Development» de la European Universities Competition on Artificial Intelligence, organizada por la HAW Hamburg.

El trabajo galardonado, desarrollado en el ICITECH por el doctorando Iván Negrín, demuestra cómo la inteligencia artificial puede transformar el diseño estructural para hacerlo más sostenible y resiliente, con reducciones de hasta un 32 % en la huella de carbono respecto a los sistemas convencionales. Este logro posiciona a la UPV como un referente europeo en innovación ética e impacto y reafirma su compromiso con la búsqueda de soluciones frente al cambio climático y al desarrollo insostenible.

El trabajo se enmarca en el proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. La tesis doctoral de Iván la dirigen los profesores Víctor Yepes y Moacir Kripka.

Introducción: El dilema de la construcción moderna.

La industria de la construcción se enfrenta a un reto monumental: edificar las ciudades del futuro sin agotar los recursos del presente. El enorme impacto medioambiental de los materiales y procesos tradicionales, especialmente las emisiones de CO₂, es uno de los problemas más acuciantes de nuestra era.

¿Y si la solución a este problema no radicara en un nuevo material milagroso, sino en una nueva forma de pensar? ¿Y si la inteligencia artificial (IA) pudiera enseñarnos a construir de manera mucho más eficiente y segura?

Esa es precisamente la hazaña que ha logrado un innovador proyecto de la Universitat Politècnica de València (UPV). Su enfoque es tan revolucionario que acaba de ganar un prestigioso premio europeo, lo que demuestra que la IA ya no es una promesa, sino una herramienta tangible para la ingeniería sostenible.

Clave 1: una innovación europea premiada al más alto nivel.

Este no es un proyecto académico cualquiera. La investigación, dirigida por el doctorando Iván Negrín del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la UPV, ha recibido el máximo reconocimiento continental.

Inicialmente seleccionado como uno de los diez finalistas, el proyecto tuvo que defenderse en una presentación final ante un jurado de expertos. Tras la deliberación del jurado, el proyecto fue galardonado como el mejor en la categoría «AI for Sustainable Development Projects» de la competición «European Universities Competition on Artificial Intelligence to Promote Sustainable Development and Address Climate Change», organizada por la Universidad de Ciencias Aplicadas de Hamburgo (HAW Hamburg). Este reconocimiento consolida la reputación del proyecto en el ámbito de la innovación europea.

Clave 2: adiós al CO₂: reduce la huella de carbono en más del 30 %.

El resultado más impactante de esta investigación es su capacidad para abordar el principal problema medioambiental del sector de la construcción: las emisiones de carbono. La plataforma de diseño asistido por IA puede reducir la huella de carbono de los edificios de manera significativa.

En concreto, consigue una reducción del 32 % de la huella de carbono en comparación con los sistemas convencionales de hormigón armado, que ya habían sido optimizados. Esta reducción abarca todo el ciclo de vida del edificio, desde la extracción de materiales y la construcción hasta su mantenimiento y su eventual demolición.

En un sector tan difícil de descarbonizar, un avance de esta magnitud, impulsado por un diseño inteligente y no por un nuevo material, supone un cambio de paradigma fundamental para la ingeniería sostenible.

Clave 3: Rompe el mito: más sostenible no significa menos resistente.

Uno de los aspectos más revolucionarios del proyecto es la forma en que resuelve un conflicto histórico en ingeniería: la sostenibilidad frente a la resiliencia. La IA ha superado la barrera que obligaba a elegir entre usar menos material para ser sostenible o más material para ser resistente.

En una primera fase, el modelo optimizó estructuras mixtas de acero y hormigón (denominadas técnicamente RC-THVS) para que fueran altamente sostenibles, aunque con una resiliencia baja. Lejos de detenerse, la IA iteró sobre su propio diseño y, en una evolución posterior (RC-THVS-R), logró una solución altamente sostenible y resiliente frente a eventos extremos.

La metodología desarrollada permite compatibilizar la sostenibilidad y la resiliencia, superando el tradicional conflicto entre ambos objetivos.

Clave 4: Ahorro desde los cimientos. Menos costes, energía y materiales.

Los beneficios de esta IA no solo benefician al planeta, sino también al bolsillo y a la eficiencia del proyecto. La optimización inteligente de las estructuras se traduce en ahorros tangibles y medibles desde las primeras fases de la construcción.

Los datos demuestran un ahorro significativo en múltiples frentes:

  • -16 % de energía incorporada.
  • -6 % de coste económico.
  • – Reducción del 17 % de las cargas transmitidas a columnas y cimentaciones.

Este último punto es clave. Una menor carga en los cimientos no solo supone un ahorro directo de materiales, sino que tiene un efecto cascada en materia de sostenibilidad: al usar menos hormigón, se reduce la cantidad de cemento empleado, uno de los principales generadores de CO₂ a nivel mundial.

Clave 5: un enfoque versátil para las ciudades del futuro (y del presente).

La aplicación de esta metodología no se limita a los grandes edificios de nueva construcción. Su versatilidad la convierte en una herramienta estratégica para el desarrollo urbano integral.

Puede aplicarse a infraestructuras de transporte, como puentes y pasarelas, para minimizar su impacto ambiental. También es fundamental para la rehabilitación de estructuras existentes, ya que permite optimizar su seguridad y reducir las emisiones asociadas a los refuerzos.

Este enfoque se alinea con los Objetivos de Desarrollo Sostenible (ODS) de la ONU, concretamente con los ODS 9 (Industria, innovación e infraestructura), 11 (Ciudades y comunidades sostenibles) y 13 (Acción por el clima).

Conclusión: construyendo un futuro inteligente.

Este proyecto de la UPV demuestra que la inteligencia artificial ha dejado de ser una tecnología futurista para convertirse en una herramienta imprescindible en la ingeniería civil. Ya no se trata de promesas, sino de soluciones prácticas que resuelven problemas reales, medibles y urgentes.

La capacidad de diseñar estructuras más baratas, ecológicas, seguras y resistentes abre un nuevo capítulo en la construcción.

¿Estamos a las puertas de una nueva era en la ingeniería en la que la sostenibilidad y la máxima seguridad ya no son objetivos contrapuestos, sino aliados inseparables gracias a la inteligencia artificial?

En futuros artículos, explicaremos con más detalle el contenido de este proyecto ganador. De momento, os dejo una conversación que lo explica muy bien y un vídeo que resume lo más importante. Espero que os resulte interesante.

Os dejo un documento resumen, por si queréis ampliar la información.

Pincha aquí para descargar

Referencias:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Environmental Life-Cycle Design Optimization of a RC-THVS composite frame for modern building construction. Engineering Structures, 345, 121461. DOI:10.1016/j.engstruct.2025.121461

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildingsJournal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Crees que la ciencia «transfiere» conocimiento a la sociedad? 4 revelaciones que cambiarán tu perspectiva.

Introducción: de la torre de marfil al diálogo abierto.

A menudo imaginamos la ciencia como un proceso aislado: un grupo de expertos en una torre de marfil que, una vez finalizado su trabajo, «transfiere» su conocimiento empaquetado a una sociedad que lo recibe pasivamente. Esta imagen de un flujo unidireccional en el que el conocimiento fluye desde el laboratorio hasta la calle ha dominado nuestra percepción durante décadas. Sin embargo, esta visión está profundamente obsoleta. La relación entre la ciencia y la sociedad es, en realidad, un ecosistema vibrante, un diálogo complejo y multidireccional que enriquece a ambas partes de formas que apenas empezamos a comprender.

Este artículo se sumerge en el corazón de esta nueva perspectiva basándose en un profundo análisis del documento de trabajo de la Agencia Nacional de Evaluación de la Calidad y Acreditación (ANECA). A continuación, revelaremos las claves más impactantes y sorprendentes sobre cómo el conocimiento científico crea realmente valor social, desmontando viejos mitos y abriendo la puerta a una nueva forma de entender la ciencia.

1. No es «transferencia», sino «intercambio». Y el cambio es enorme.

El primer gran cambio es conceptual, pero tiene implicaciones transformadoras. La anterior Ley Orgánica de Universidades de 2001 entendía la «transferencia» como un flujo que siempre partía de la universidad hacia la sociedad, con un enfoque casi exclusivo en el valor económico o tecnológico. Era un monólogo en el que la ciencia hablaba y la sociedad escuchaba.

El nuevo paradigma, impulsado por las recientes leyes del Sistema Universitario y de la Ciencia, habla de «transferencia e intercambio de conocimiento». Este término enriquece radicalmente la perspectiva. Reconoce que los flujos de conocimiento son multidireccionales, ya que la sociedad también aporta saberes, necesidades y contextos cruciales para la investigación. Se valora la interacción con actores no académicos y los procesos de cocreación, en los que el valor ya no es solo económico, sino también social, artístico y cultural. Este cambio es significativo, puesto que transforma la relación de un monólogo a un diálogo y reconoce que el conocimiento y las necesidades de la sociedad son fundamentales para enriquecer la propia ciencia.

La valorización del conocimiento consiste en crear valor social y económico a partir de él, vinculando diferentes ámbitos y sectores, y transformando datos, conocimientos técnicos y resultados de la investigación en productos, servicios, soluciones y políticas basadas en el conocimiento, sostenibles y que beneficien a la sociedad.

2. Las patentes son solo la punta del iceberg (y muy pequeña, además).

Cuando pensamos en la ciencia aplicada a la sociedad, suele venirnos a la mente la imagen de una patente que se convierte en un producto comercial o la creación de una empresa spin-off a partir de una investigación universitaria. Estas se han considerado durante mucho tiempo como el máximo exponente de la transferencia de tecnología.

Sin embargo, la realidad es muy diferente. El informe de la ANECA pone de manifiesto que solo una minoría de investigadores e instituciones participa activamente en estas actividades. Los datos del estudio EXTRA son reveladores: la comercialización de resultados (que incluye patentes y empresas derivadas) es una práctica mucho menos frecuente (12 %) que la colaboración formal mediante contrato (63 %) o la colaboración informal (80 %). Esto significa que, durante décadas, los sistemas de evaluación han premiado y medido la actividad de una minoría (el 12 %), mientras que el vasto ecosistema de colaboración real (el 80 %) que genera valor social ha permanecido en la sombra, sin ser reconocido ni incentivado.

Esta obsesión por lo comercial no es solo teórica. En una evaluación piloto de la «transferencia» realizada en 2018, los resultados favorecieron abrumadoramente un modelo económico y tecnológico que premiaba perfiles muy específicos (hombres de mayor edad con trayectorias consolidadas) y actividades como las spin-offs y las patentes, mientras que la divulgación y la transferencia con valor social obtuvieron resultados muy inferiores. Este sesgo sistémico demostró que el antiguo modelo no solo era incompleto, sino también excluyente.

La mayor parte del intercambio real se produce a través de un «espectro oculto» de mecanismos menos visibles, pero muy valiosos, como la investigación conjunta con empresas u ONG, la consultoría especializada, la formación a medida o la participación directa en la elaboración de políticas públicas.

«Intercambio de conocimientos» es el nombre que damos a la amplia gama de actividades que las instituciones de educación superior emprenden con socios (…) para explorar datos y explicaciones sobre las diferentes maneras en que trabajan con sus socios externos, desde empresas hasta grupos comunitarios, en beneficio de la economía y la sociedad.

3. El valor de la ciencia no es intrínseco, sino que lo crean quienes la utilizan.

Medir el «impacto social» de la investigación es un gran desafío. De hecho, la literatura citada en el documento de ANECA señala que ni siquiera existe una definición consensuada de qué es exactamente. Esto ha llevado a un cambio de enfoque radical: la «valorización y el uso social».

La idea es sencilla, pero potente: el valor no reside inherentemente en los resultados científicos, como un artículo o un descubrimiento. El valor se crea y materializa cuando los agentes sociales —empresas, administraciones públicas, ONG, asociaciones de pacientes o ciudadanos— utilizan ese conocimiento para resolver problemas, mejorar procesos o enriquecer contextos. La investigación, por sí sola, no tiene valor social; lo adquiere cuando alguien la pone en práctica.

En la práctica, son los actores sociales que usan o apoyan el uso de la investigación quienes le confieren valor, ya que este no es intrínseco a los resultados científicos, sino que depende de su materialización efectiva por parte de los usuarios en sus respectivos entornos.

Esta perspectiva empodera a la sociedad y transforma por completo el enfoque de la evaluación. La pregunta clave ya no es «¿qué ha producido el científico?», sino «¿cómo y quién ha utilizado el conocimiento generado para crear valor real en el mundo?».

4. La ciencia del futuro debe ser inclusiva, abierta y responsable.

La idea de una ciencia completamente neutral y objetiva, inmune a los problemas sociales, es otro mito que se desmorona. El documento de ANECA deja claro que la ciencia, al igual que cualquier actividad humana, no está exenta de sesgos sistémicos como el sexismo, el racismo o la discriminación por clase social. Reconocer esto es el primer paso para construir una ciencia mejor, guiada por tres pilares fundamentales:

  • Ciencia inclusiva: supera el «modelo del déficit», que asume que el público es un receptor vacío de conocimiento. En su lugar, incorpora activamente las voces, experiencias y preocupaciones de comunidades diversas e históricamente excluidas en el propio proceso científico. En esencia, es la puesta en práctica del verdadero «intercambio» del que hablamos al principio y garantiza que el diálogo sea real y representativo.
  • Ciencia abierta: promueve el acceso libre y gratuito a los datos, las metodologías y los resultados de la investigación. El objetivo es maximizar su reutilización, transparencia y beneficio para toda la sociedad, no solo para quienes pueden pagarlo.
  • Ciencia responsable: implica considerar proactivamente las implicaciones éticas, sociales y medioambientales de la investigación. Se trata de anticipar consecuencias para garantizar que el «valor» creado por la sociedad, como vimos antes, se oriente siempre hacia el bien común.

Integrar estos principios no es solo una cuestión de justicia social. Se trata de una estrategia indispensable para mejorar la calidad y la relevancia de la propia investigación, fortalecer la confianza pública en la ciencia y garantizar que sus beneficios lleguen a todos.

Conclusión: una conversación, no un monólogo.

El viaje ha sido revelador. Hemos pasado de la idea de una «transferencia» unidireccional y centrada en las patentes a un ecosistema de «intercambio», en el que el verdadero valor no radica en el descubrimiento científico en sí, sino en cómo la sociedad lo utiliza y lo transforma. Este cambio nos obliga a replantearnos qué es lo que realmente importa. La ciencia del futuro no puede medirse por sus productos aislados, sino por la riqueza y la calidad de sus relaciones con la sociedad. Su éxito no radica en un monólogo desde la autoridad, sino en su capacidad para crear, conjuntamente, un valor tangible y equitativo mediante un diálogo inclusivo, abierto y responsable.

Ahora que entendemos la ciencia no como un monólogo desde una torre de marfil, sino como una conversación continua, ¿qué pregunta urgente le harías tú a la comunidad científica?

En esta conversación se descubre gran parte de las ideas anteriores.

En este vídeo tenéis un resumen del tema.

El documento de ANECA lo podéis ver en este enlace: https://www.aneca.es/web/guest/-/documento-transferencia-e-intercambio-de-conocimiento

Pero también lo podéis descargar aquí:

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cinco ideas revolucionarias de la «estrategia del océano azul» que cambiarán tu forma de ver los negocios.

Introducción: ¿Atrapado en un mar de competencia?

¿Sientes que tu negocio está en una lucha constante por la cuota de mercado? ¿Las guerras de precios y los márgenes de beneficio cada vez más reducidos marcan tu día a día? Si es así, es probable que estés navegando, por lo que los estrategas W. Chan Kim y Renée Mauborgne llaman un «océano rojo».

Esta metáfora describe el espacio de mercado conocido, donde las industrias y sus reglas del juego están perfectamente definidas. En estas aguas, las empresas compiten ferozmente por una demanda existente, tratando de superar a sus rivales para llevarse la mayor participación posible. A medida que el mercado se satura, la competencia a muerte tiñe el agua de sangre, dando lugar a un entorno de crecimiento limitado y utilidades decrecientes.

Pero ¿y si hubiera una alternativa? ¿Y si, en lugar de luchar por un trozo del pastel, pudieras crear uno completamente nuevo? Esa es la promesa del «océano azul»: la creación de espacios de mercado sin competencia, donde aún no existen las reglas del juego y la demanda se crea en lugar de disputarse.

A continuación, te presentamos las cinco ideas más impactantes del libro La estrategia del océano azul, que ofrecen un método sistemático para salir del océano rojo y navegar hacia un crecimiento rentable y sostenible.

1. Olvida a tus rivales: el objetivo es que la competencia sea irrelevante.

La primera idea puede resultar sorprendente: el objetivo de una buena estrategia no es vencer a la competencia, sino hacerla irrelevante. Mientras que la estrategia convencional se centra en la referenciación (benchmarking) y en superar a los rivales, la estrategia del océano azul propone un cambio de enfoque radical.

El contraste, basado en los principios del libro, es claro:

  • Estrategia del Océano Rojo:
    • Competir en el espacio existente del mercado.
    • Vencer a la competencia.
    • Explotar la demanda existente.
    • Elegir entre la disyuntiva entre valor y coste.
    • Alinear todo el sistema de las actividades de una empresa con la decisión estratégica de la diferenciación o del bajo costo.
  • Estrategia del Océano Azul:
    • Crear un espacio sin competencia en el mercado.
    • Hacer que la competencia pierda toda importancia.
    • Crear y capturar nueva demanda.
    • Romper la disyuntiva entre valor y coste.
    • Alinear todo el sistema de las actividades de una empresa con el propósito de lograr diferenciación y bajo costo.

Este cambio de mentalidad se resume a la perfección en una de las frases más célebres del libro:

«La única manera de vencer a la competencia es dejar de tratar de vencerla».

Estratégicamente, este giro es poderoso porque desplaza el objetivo empresarial de un juego de suma cero, en el que la ganancia de una empresa es la pérdida de otra, a una lógica de creación de nuevo valor. En lugar de repartir una demanda limitada, el objetivo es aumentar el tamaño total del mercado.

2. Innovación en valor: el arte de ser diferente y más barato a la vez.

El pensamiento estratégico tradicional nos ha enseñado que las empresas deben tomar una decisión fundamental: o bien compiten por diferenciación, ofreciendo un mayor valor a un coste más alto, o bien compiten por bajo coste, ofreciendo un valor razonable a un coste menor. La estrategia de los océanos azules rompe esta disyuntiva con su piedra angular: la innovación en valor.

La innovación en valor consiste en buscar simultáneamente la diferenciación y el bajo coste. No se trata de un simple avance tecnológico o de ser el primero en un mercado, sino de alinear la innovación con la utilidad para el comprador, el precio y la estructura de costes de la empresa.

Este concepto se materializa cuando se cuestiona en qué compite la industria. Al eliminar o reducir las variables que los clientes no valoran o que suponen un alto coste, la empresa consigue una estructura de costes inferior a la de sus competidores. Del mismo modo, al incrementar y crear nuevas fuentes de valor que la industria nunca antes había ofrecido, se genera una diferenciación radical. Es esta doble acción la que rompe la disyuntiva clásica y permite ofrecer un valor superior a un coste menor.

Este enfoque, que busca la diferenciación y el bajo coste de forma simultánea, no es solo una teoría elegante, sino que tiene un impacto medible y desproporcionado en los resultados del negocio, como demuestran las cifras del siguiente apartado.

3. El impacto real de los océanos azules (traducido en cifras).

Para quienes puedan pensar que crear nuevos mercados es una apuesta demasiado arriesgada, los autores presentan los resultados de un estudio sobre 108 lanzamientos de negocios que demuestran lo contrario. Los resultados son sorprendentes y revelan una clara asimetría entre el riesgo y la recompensa.

Las cifras hablan por sí solas:

  • Lanzamientos en océanos rojos (el 86 % del total) generaron solo el 62 % de los ingresos totales y un escaso 39 % de las utilidades.
  • Lanzamientos en océanos azules (14 % del total): generaron el 38 % de los ingresos y un impresionante 61 % de las utilidades totales.

Esta asimetría demuestra que, aunque la creación de océanos azules es menos frecuente, su impacto en la rentabilidad es desproporcionadamente alto. Aunque navegar en aguas competitivas puede parecer la opción más segura, las cifras indican que la verdadera oportunidad de crecimiento y rentabilidad se halla en la creación de nuevos espacios de mercado. Por tanto, la búsqueda de océanos azules se convierte en un imperativo estratégico.

4. Deja de obsesionarte con tus clientes y empieza a pensar en los «no clientes».

Las empresas tienden a centrarse en sus clientes actuales, tratando de segmentar el mercado de manera cada vez más precisa para satisfacer mejor sus preferencias. Para crear un océano azul y maximizar su tamaño, la estrategia propone hacer lo contrario: mirar más allá de la demanda existente y centrarse en los «no clientes».

Los autores identifican tres niveles de «no clientes» que representan un torrente de demanda potencial sin explotar:

  • Primer nivel: Personas que están próximas a convertirse en no clientes. Utilizan mínimamente la oferta actual mientras buscan algo mejor y están a la espera de dejar de ser clientes.
  • Segundo nivel: No clientes que rechazan conscientemente el mercado de la empresa. Han visto la oferta y han decidido no utilizarla.
  • Tercer nivel: No clientes inexplorados que jamás han contemplado la oferta de la empresa como una opción.

El caso del vino australiano Yellow Tail es un ejemplo perfecto. En lugar de competir con los conocedores del vino, se centraron en los no clientes: los bebedores de cerveza y cócteles. Este grupo se sentía intimidado por los aspectos del vino tradicional, como la compleja terminología enológica, el envejecimiento, los taninos y la sofisticación que rodeaba su consumo. Al identificar estos puntos de fricción, Yellow Tail creó un vino fácil de beber, accesible y divertido que eliminó o redujo sistemáticamente esas barreras, creando en su lugar «facilidad para beber» y «diversión y aventura», y abrió un océano azul masivo al convertir a los no bebedores de vino en nuevos clientes.

5. La herramienta para reconstruir tu mercado: eliminar, reducir, incrementar y crear.

La estrategia del océano azul no es un concepto abstracto, sino un proceso práctico y sistemático. Su principal herramienta para aplicar la innovación en valor es el esquema de las cuatro acciones, que desafía la lógica estratégica de una industria a través de cuatro preguntas clave:

  • ¿Qué variables que la industria da por sentadas se deben eliminar?
  • ¿Qué variables se deben reducir muy por debajo de la norma de la industria?
  • ¿Qué variables se deben incrementar muy por encima de la norma de la industria?
  • ¿Qué variables se deben crear porque la industria nunca las ha ofrecido?

El ejemplo más paradigmático es el Cirque du Soleil. En una industria del circo en declive, aplicaron este modelo para reinventar el entretenimiento en vivo.

  • Eliminó: las estrellas del circo, los espectáculos con animales, las concesiones en los pasillos y las pistas múltiples.
  • Redujo: la diversión, el humor, el suspense y el peligro.
  • Incrementó: un único escenario.
  • Creó: un tema, un ambiente refinado, múltiples producciones y música y danza artísticas.

Esta herramienta sistemática permite a cualquier empresa deconstruir la lógica de su sector y reconstruirla en una nueva curva de valor. Al responder a estas cuatro preguntas, una empresa puede visualizar un nuevo perfil estratégico que la diferencie radicalmente de la competencia, de modo que la comparación directa pierda sentido.

Conclusión: ¿cuál es tu océano azul?

La estrategia del océano azul es mucho más que una teoría empresarial: supone un cambio de mentalidad fundamental. Nos invita a pasar, de competir a crear, de dividir los mercados existentes a construirlos de nuevo. Demuestra que la creación de estos nuevos espacios no es fruto de la suerte o la genialidad, sino el resultado de un proceso estratégico, analítico y sistemático que cualquier organización puede llevar a cabo.

La próxima vez que te sientas atrapado en las sangrientas aguas de la competencia, detente y hazte una pregunta: ¿qué reglas «inquebrantables» de tu sector podrías empezar a cuestionar hoy mismo para descubrir tu propio océano azul?

En este audio se mantiene una conversación interesante sobre este tema.

El siguiente vídeo sintetiza bien las ideas más importantes de la estrategia del océano azul.

Os dejo un vídeo de Polimedia en el que el profesor Jordi Joan Mauri Castelló nos explica este concepto. Espero que os resulte útil.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más allá de los robots: 4 revelaciones sobre la Industria 6.0 que lo cambiarán todo

1. Introducción: La próxima frontera industrial no es lo que esperas.

Hemos oído hablar mucho de la Industria 4.0 y sus fábricas inteligentes, conectadas a través del Internet de las cosas (IoT). Más recientemente, la Industria 5.0 nos ha familiarizado con la idea de una colaboración precisa entre humanos y robots (cobots), en la que la inteligencia humana y la eficiencia de las máquinas trabajan conjuntamente.

Sin embargo, la Industria 6.0 no es simplemente el siguiente paso lógico en esta progresión. Se trata de un salto revolucionario que está a punto de redefinir la esencia de la creación, la inteligencia y la realidad en el mundo de la fabricación. Prepárese para ir más allá de la simple automatización y descubrir un ecosistema industrial que piensa, crea y se regenera por sí mismo.

2. Las cuatro revelaciones más impactantes de la Industria 6.0.

2.1. No es una evolución, es una revolución.

La Industria 6.0 no es una simple actualización de la 5.0. Supone un cambio de paradigma fundamental, que se manifiesta en múltiples dimensiones. Mientras que la Industria 5.0 se centra en la «IA con humanos en el ciclo» para prescribir optimizaciones, la Industria 6.0 introduce la «autonomía de IA generativa que co-crea flujos de trabajo».

Esta distinción es fundamental y se complementa con otros cambios clave:

  • Alcance de la automatización: pasamos de la colaboración a nivel de tareas individuales con cobots a «redes de cobots con IA generativa (GAI-cobots) que autoorquestan cadenas de suministro enteras». Esto significa que la automatización ya no se limita a un paso en un flujo de trabajo fijo, sino que gestiona de manera dinámica ecosistemas de producción completos.
  • Paradigma de decisión: la Industria 5.0 se basa en «respuestas reactivas, impulsadas por eventos». En contraste, la Industria 6.0 opera con una «autoadaptación continua y proactiva», anticipándose a los problemas y ajustándose en tiempo real para evitar interrupciones.
  • Límites del ecosistema: pasamos de las «fábricas inteligentes individuales y aisladas» a los «ecosistemas de metaverso físico-virtuales sin fisuras», que conectan la producción con mundos digitales persistentes.

No se trata solo de proporcionar a los trabajadores herramientas más eficientes, sino de cuestionar los supuestos básicos sobre el funcionamiento de las fábricas y la creación de valor.

«La Industria 6.0 no se limita a añadir nuevas herramientas al marco de la Industria 5.0, sino que cuestiona los supuestos fundamentales sobre cómo se diseñan las fábricas, se toman las decisiones y se genera valor».

2.2. Las fábricas pensarán (y se curarán) por sí mismas.

El concepto de Industria 6.0 va mucho más allá de la automatización tradicional y da paso a fábricas autónomas, adaptativas y autorreparadoras. Se trata de una plataforma industrial diseñada para «crear, sanar e intercambiar recursos en tiempo real».

Esa es la profunda repercusión de la Industria 6.0: un cambio desde el mantenimiento predictivo (una característica de las Industrias 4.0 y 5.0) hacia una autorregulación y regeneración proactivas y autónomas. En lugar de predecir cuándo podría fallar una pieza, el sistema se anticipa, se reconfigura y se cura a sí mismo para evitar el fallo por completo. El resultado es un ecosistema industrial verdaderamente resiliente y adaptable, capaz de anticiparse y ajustarse continuamente en lugar de simplemente responder a los eventos.

2.3. Tu próximo diseñador de productos podría ser una IA generativa.

En la Industria 6.0, la IA generativa (GAI) no es solo una herramienta de optimización, sino un socio creativo. El proceso de diseño se transforma por completo. Por ejemplo, un ingeniero puede describir los objetivos de rendimiento como «una carcasa más ligera, con menor resistencia aerodinámica y menos pasos de ensamblaje». La GAI responde casi de inmediato, produciendo «múltiples geometrías físicamente válidas» para su evaluación.

Así, se invierte el proceso de diseño tradicional, ya que en lugar de que el ser humano cree una geometría específica para que la computadora la pruebe, el ser humano establece metas abstractas y la IA genera múltiples realidades físicas válidas. Este cambio redefine por completo el papel del ser humano. Como describe la investigación, el papel del ser humano pasa de ser un «conserje de datos» a ser un «director creativo». En lugar de sumergirse en el tedioso trabajo de dibujo y borrador, las personas pueden centrarse en la estrategia de alto nivel, ajustando las restricciones y guiando el proceso creativo, mientras la IA se encarga de la iteración y la validación complejas.

2.4. La fabricación se fusionará con mundos virtuales y biológicos.

Quizás el aspecto más sorprendente de la Industria 6.0 sea la sinergia entre las esferas física, digital y biológica. Este nuevo paradigma contempla «metaversos industriales», en los que las fábricas físicas son sustituidas o complementadas por fábricas virtuales. Los clientes pueden explorar diseños y productos funcionales a través de avatares desde la comodidad de sus propios espacios virtuales.

Pero la fusión va aún más lejos al integrarse con «esferas biológicas» a través de la «web emocional» (web 5.0). No se trata de ciencia ficción abstracta, sino de fomentar «conexiones neuronales y emocionales» entre humanos y máquinas. Implica sistemas industriales que no solo se conectan a mundos digitales, sino que también pueden interactuar con los estados biológicos y emocionales de las personas, creando una relación verdaderamente simbiótica. Esta convergencia difumina las líneas entre la realidad, la simulación e incluso la biología en el contexto de la fabricación y representa el aspecto más transformador y visionario de esta nueva era industrial.

3. La Industria 6.0 y el sector de la construcción

La Industria 6.0 está preparada para transformar significativamente el sector de la construcción, conocido como arquitectura, ingeniería y construcción (AEC). Esta nueva fase industrial tiene como objetivo modernizar las operaciones y redefinir los procesos para sincronizarlos con maquinaria, productos y procesos sostenibles y escalables de alta gama.

A continuación, se explica cómo podría afectar la Industria 6.0 a la industria de la construcción.

3.1 Impactos positivos y oportunidades

  • Diseño y desarrollo de estructuras inteligentes y ecológicas: La Industria 6.0 supone una evolución de los enfoques tradicionales de la Industria 5.0 en el sector de la arquitectura, la ingeniería y la construcción (AEC) para satisfacer la creciente necesidad de infraestructuras creativas y respetuosas con el medio ambiente. Los principios de la Industria 6.0 son un paso importante hacia la sostenibilidad de los edificios inteligentes y están en consonancia con los objetivos medioambientales mundiales.
  • Mayor eficiencia y longevidad: La Industria 6.0 en la AEC ha mejorado la eficiencia y la longevidad de los procedimientos de construcción modernos mediante el uso de equipos de vanguardia, digitalización avanzada y enfoques respetuosos con el medio ambiente.
  • Edificios inteligentes y sostenibles: La integración de las tecnologías de la Industria 6.0 hace posible la construcción de edificios inteligentes y ecológicos. Estos edificios utilizan datos de sensores e inteligencia artificial (IA) para ajustar dinámicamente los sistemas de conservación de energía, mejorar la seguridad del edificio y optimizar las operaciones de CVC (calefacción, ventilación y aire acondicionado), lo que conduce a un mejor rendimiento medioambiental y confort del ocupante.
  • Gestión de la construcción basada en datos: La combinación de IA e Internet de las Cosas (IoT) da lugar a técnicas de gestión de la construcción basadas en datos, lo que aumenta considerablemente la previsibilidad de la construcción y reduce los riesgos.
  • Reducción de residuos y mejora ambiental: El uso de robótica, impresión 3D e inteligencia artificial en las operaciones de construcción puede reducir los residuos y sus efectos ambientales negativos. La sostenibilidad y la responsabilidad medioambiental son claramente importantes para la industria 6.0, como se observa en programas como las transiciones verdes de la Unión Europea, que se centran en el uso de la inteligencia artificial, la energía renovable y los materiales energéticamente eficientes.
  • Visualización y colaboración del diseño: La tecnología de Realidad Virtual (RV) y Realidad Aumentada (RA) ha mejorado la visualización del diseño, la colaboración y la inmersión, mejorando los procedimientos de planificación y reduciendo los errores. Esta sinergia permite que arquitectos, algoritmos de IA y robótica trabajen juntos de manera más efectiva.
  • Enfoque en las cualidades humanas: La Industria 6.0 asistida por AEC se centra en utilizar las cualidades y habilidades humanas que van más allá de lo que los robots pueden hacer; por el contrario, la Industria 5.0 se preocupa más por los sistemas ciberfísicos en las cadenas de suministro. El objetivo principal es potenciar las capacidades humanas para que las personas puedan participar activamente en la toma de decisiones complejas, la creatividad y la resolución de problemas.

3.2 Desafíos a considerar

  • Dificultades de implantación: A pesar de las ventajas de la Industria 5.0 de la AEC, como el aumento de la participación de las partes interesadas, la automatización, la optimización mediante robótica, las estructuras de decisión basadas en datos y la gestión meticulosa de los recursos, la implementación de los principios de la Industria 6.0 de la AEC presenta dificultades.
  • Seguridad de los datos: La adopción de estas nuevas tecnologías requerirá una cuidadosa consideración de los desafíos relacionados con la seguridad de los datos.
  • Mejora de las habilidades laborales: Otra preocupación es la necesidad de mejorar las habilidades de la fuerza de trabajo para poder colaborar con estas nuevas tecnologías.
  • Dilemas éticos y consecuencias laborales: La Industria 6.0 aún debe superar una serie de obstáculos, como los dilemas morales y las posibles consecuencias laborales derivadas de la automatización.

4. Conclusión: ¿cuál es nuestro lugar en este nuevo universo creativo?

La Industria 6.0 no consiste solo en fábricas más rápidas o robots más inteligentes. Se trata de crear un ecosistema industrial profundamente integrado, autónomo e inteligente que cambia nuestra relación con la tecnología y la creación misma. Desde la IA que actúa como socio de diseño hasta las fábricas que se curan a sí mismas, pasando por la integración de la sostenibilidad como objetivo central a través de «bucles de economía circular en tiempo real», esta revolución reescribe las reglas.

Esto nos lleva a una pregunta poderosa y fundamental sobre nuestro futuro:

Si las fábricas del futuro pueden crear, pensar e incluso sentir, ¿cuál será nuestro nuevo papel en el universo de la creación?

Os dejo un audio que creo os puede resultar de interés para aclarar algunas ideas.

Lo mismo pasa con este vídeo resumen de todos los conceptos anteriores.

Referencias:

Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction142, 104532.

Maureira, C., Pinto, H., Yepes, V., & García, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping: an adaptive methodology for macroscopic conceptual analysis. IEEE Access9, 110842-110879.

Verma, A., Prasad, V. K., Kumari, A., Bhattacharya, P., Srivastava, G., Fang, K., Wang, W., & Gadekallu, T. R. (2025). Industry 6.0: Vision, technical landscape, and opportunitiesAlexandria Engineering Journal130, 139-174.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Métodos de decisión multicriterio aplicados a los proyectos vivienda social

Acaban de publicarnos un artículo en la revista Journal of Civil Engineering and Management, revista indexada en el JCR. Presenta un análisis exhaustivo de la investigación científica en torno a la evaluación de las viviendas sociales. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

La evaluación de proyectos de vivienda social es un proceso complejo que requiere tener en cuenta múltiples factores para conseguir comunidades más resilientes y sostenibles. Los métodos de decisión multicriterio (MCDM) son herramientas esenciales que proporcionan un marco estructurado para la adopción de decisiones informadas, ya que integran criterios cuantitativos y cualitativos. Esta revisión bibliográfica, basada en 93 artículos publicados entre 1994 y marzo de 2025, destaca la creciente prevalencia de los MCDM, el enfoque en la sostenibilidad (que abarca aspectos ambientales, sociales, económicos y técnicos) y la evolución hacia técnicas más modernas, como la lógica difusa y neutrosófica. Aunque el proceso de jerarquía analítica (AHP) y TOPSIS son los métodos más utilizados, es necesario integrar más los MCDM en todas las fases del proceso de construcción para mejorar la constructibilidad y la sostenibilidad, sobre todo en la vivienda social.

Contexto y desafío de la vivienda social

La vivienda es un elemento clave para cubrir las necesidades básicas de la población y fortalecer la cohesión social. Sin embargo, el crecimiento demográfico y la urbanización han agravado la escasez de viviendas asequibles, sostenibles y socialmente justas en todo el mundo. El modelo tradicional de construcción no solo encarece los costes a lo largo de la vida útil de la vivienda, sino que también provoca impactos negativos en el medio ambiente y en la salud.

En este contexto, la vivienda social se presenta como una solución esencial para atender a las poblaciones más vulnerables, garantizar unas condiciones mínimas de habitabilidad y calidad de vida, y promover la inclusión social.

No obstante, el desarrollo urbano desordenado ha favorecido la expansión de asentamientos informales y la falta de infraestructuras básicas adecuadas. Para que las iniciativas de vivienda social sean efectivas, es necesario adoptar un enfoque integral que tenga en cuenta la viabilidad económica, la sostenibilidad medioambiental y la equidad social. En un mundo donde la urbanización acelerada amenaza los medios de vida de millones de personas, buscar soluciones sostenibles es cada vez más urgente.

Métodos de decisión multicriterio (MCDM)

Los MCDM son herramientas poderosas para la toma de decisiones en escenarios con múltiples objetivos o criterios, facilitando la evaluación y comparación de alternativas basadas en varios aspectos cruciales. Se clasifican en:

  • Métodos de Puntuación: Asignan puntuaciones numéricas a los criterios para comparación (e.g., SAW, COPRAS).
  • Métodos Basados en Distancia: Evalúan alternativas midiendo la distancia a un punto ideal positivo y a un punto ideal negativo (e.g., TOPSIS, VIKOR, ARAS, EDAS).
  • Métodos de Comparación Pareada: Comparan alternativas directamente para determinar preferencias basadas en criterios específicos (e.g., AHP, ANP).
  • Métodos de Superación (Outranking): Se basan en la noción de que una alternativa óptima es preferible si es igual o superior en todos los criterios y al menos uno de ellos (e.g., PROMETHEE, ELECTRE).
  • Funciones de Utilidad (Valor) Multi-atributo: Representan las preferencias del tomador de decisiones a través de funciones de utilidad/valor (e.g., MAUT, SWARA, MIVES).

Prevalencia y tendencias:

  • AHP es el método individual dominante (75% de los casos individuales), seguido por TOPSIS.
  • El 48% de los artículos revisados utilizan la comparación pareada, siendo AHP el método principal (41 artículos).
  • Los métodos basados en distancia representan el 21% del uso, con TOPSIS como la opción predominante.
  • Métodos híbridos: Aunque se aboga por la integración de diferentes MCDM, su adopción generalizada es limitada. La combinación AHP + TOPSIS es frecuente, aprovechando la capacidad de AHP para estructurar criterios y la de TOPSIS para identificar y clasificar alternativas.
  • Números Crisp vs. Lógica Difusa/Neutrosófica: La mayoría de los estudios (84%) emplean números crisp, lo que indica un enfoque en datos exactos. Sin embargo, desde 2011, ha habido un aumento en el uso de la lógica difusa (15% de los manuscritos) para manejar la imprecisión y vaguedad inherentes a los juicios humanos. La lógica neutrosófica (1%) también ha comenzado a explorarse.
  • La Agenda 2030 y el ODS 11 («Ciudades y Comunidades Sostenibles»), junto con la adopción de la Nueva Agenda Urbana en 2015, han impulsado un aumento significativo en las publicaciones (más del 77% entre 2016 y la actualidad), «subrayando el papel fundamental de la vivienda adecuada y sostenible como piedra angular para lograr ciudades sostenibles.

Criterios de evaluación en vivienda social

Los proyectos de vivienda social se evalúan considerando cuatro dimensiones principales, reflejando un enfoque integral de sostenibilidad:

  • Económicos: Predominantemente enfocados en costos de construcción, reparación y mantenimiento, y gastos operativos de los proyectos de vivienda. Solo siete artículos revisados incluyen el Coste del Ciclo de Vida (LCC) según ISO 15686-5.
  • Ambientales: Abordan consumo de energía, eficiencia hídrica, emisiones contaminantes, gestión de residuos y energía del ciclo de vida (LCE). El consumo de energía y las emisiones de contaminantes son los aspectos más evaluados.
  • Sociales: Los criterios incluyen salud y seguridad, nivel de confort, facilidad de servicios y satisfacción del usuario. La accesibilidad a servicios públicos y la inclusión social son aspectos clave.
  • Técnicos: Comprenden especificaciones del proyecto, diseño, construcción y criterios de programación, con énfasis en la innovación, calidad y adhesión a los plazos.

Hay un cambio hacia evaluaciones multidimensionales, con «comparación por pares, superación y métodos basados en la distancia» emergiendo como herramientas esenciales.

Fases del proceso de construcción y MCDM

La aplicación de MCDM se distribuye en varias fases de la constructibilidad:

  • Fase de diseño: Es la fase más estudiada, cubriendo optimización del diseño interior, selección de sistemas de construcción óptimos y diseño MEP (Mecánico, Eléctrico y de Fontanería) priorizando el confort térmico.
  • Fase de planificación conceptual: Se centra en la viabilidad económica, la elección de ubicaciones adecuadas y la consideración de las necesidades de los habitantes, incluyendo acceso a servicios públicos, transporte, seguridad y áreas recreativas.
  • Fase de mantenimiento y puesta en marcha: Evalúa el bienestar de los ocupantes, las renovaciones arquitectónicas y energéticas, y las técnicas de refuerzo estructural.
  • Fase de construcción: Se enfoca en el uso de maquinaria, materiales y mano de obra, abordando preocupaciones de seguridad.
  • Fase de adquisiciones: Aborda la evaluación de proveedores y la gestión de la cadena de suministro, un aspecto vital pero poco representado.

A pesar de las intervenciones de la ciencia de la construcción que se centran en el conocimiento, la planificación, las adquisiciones y la ejecución, la investigación en este ámbito aborda principalmente cuestiones convencionales en lugar de conceptos emergentes como la economía circular y el Análisis del Ciclo de Vida (ACV) completo.

Discusión y direcciones futuras de investigación

La revisión destaca la necesidad de:

  • Integración de MCDM más allá de la viabilidad económica: Ampliar el alcance para abarcar la viabilidad social, técnica y ambiental.
  • Mayor uso de métodos híbridos y lógicas avanzadas: A pesar de la complejidad de los proyectos de vivienda social, la aplicación de la lógica difusa y neutrosófica en MCDM individuales e híbridos sigue siendo limitada en comparación con otras disciplinas de ingeniería. Se recomienda la integración de enfoques híbridos que integren MCDM con lógica difusa o neutrosófica, para evaluaciones más precisas.
  • Estandarización de criterios de evaluación: Existe una falta de consenso en los criterios de evaluación de la sostenibilidad, lo que subraya la «necesidad de un marco estandarizado que integre sistemáticamente estos aspectos. Un enfoque de Evaluación del Ciclo de Vida de la Sostenibilidad (SLCA) podría ser beneficioso.
  • Exploración de MCDM alternativos: Métodos como el Best-Worst Method (BWM) y el Combinative Distance-Based Assessment (CODAS) ofrecen ventajas sobre los métodos tradicionales en ciertos escenarios y deberían ser considerados.
  • Mayor aplicación del análisis de sensibilidad: Solo 17 de los artículos revisados emplearon análisis de sensibilidad, a pesar de su crucial papel para determinar la solidez de los métodos y la validez de los resultados.
  • Integración de tecnologías como GIS y BIM: La combinación de GIS (Sistemas de Información Geográfica), BIM (Modelado de Información de Construcción) y MCDM ha demostrado ser efectiva en la ingeniería civil, permitiendo análisis espaciales y temporales multicriterio. Esta integración puede optimizar la selección de sitios, el uso de recursos y la planificación sostenible a largo plazo. Sin embargo, su combinación es limitada en la literatura revisada.
  • Abordar la interdependencia de los criterios: La naturaleza holística y multifacética de la sostenibilidad implica que los criterios están inherentemente interconectados, lo que desafía los enfoques individuales de MCDM. Un reconocimiento exhaustivo de esta interdependencia es vital.

7. Conclusiones clave

  • Los MCDM son herramientas versátiles y esenciales para evaluar proyectos de vivienda social, con AHP, TOPSIS y COPRAS como los más prevalentes.
  • Existe una tendencia creciente hacia el uso de MCDM con lógicas de incertidumbre como la difusa y neutrosófica, aunque su aplicación todavía es limitada.
  • La sostenibilidad es un factor clave, siendo la dimensión social la más analizada, seguida por la económica, ambiental y técnica. No obstante, se necesita un marco estandarizado y la integración del Análisis del Ciclo de Vida (LCA) para evaluaciones más completas.
  • La aplicación de MCDM en todas las fases de la construcción mejora la toma de decisiones, optimiza los recursos y permite la identificación temprana de riesgos.
  • Es crucial investigar la jerarquización de criterios y la optimización de modelos híbridos para mejorar la aplicabilidad de los MCDM en proyectos de interés social.
  • La adopción de innovaciones como la construcción modular y el uso de materiales sostenibles es fundamental para la eficiencia y sostenibilidad de la vivienda social.

Este documento de información busca guiar a los profesionales de la investigación y a los tomadores de decisiones hacia la integración de métodos MCDM modernos para abordar de manera más efectiva los complejos desafíos de la vivienda social, impulsando así decisiones más informadas y sostenibles.

Os dejo un resumen en audio donde se explican las ideas principales del trabajo.

Al estar publicado en abierto, os dejo el artículo completo.

Pincha aquí para descargar

Glosario de términos clave

  • AHP (Analytic Hierarchy Process / Proceso Analítico Jerárquico): Un método MCDM basado en comparaciones por pares para estructurar y analizar decisiones complejas, determinando la importancia relativa de los criterios y alternativas.
  • ANP (Analytic Network Process / Proceso de Red Analítico): Una extensión del AHP que permite relaciones más complejas entre los criterios y las alternativas, incluyendo interdependencias y retroalimentación.
  • ARAS (Additive Ratio Assessment / Evaluación por Razón Aditiva): Un método MCDM basado en el cálculo de ratios aditivos para clasificar alternativas en función de su rendimiento.
  • BIM (Building Information Modelling / Modelado de Información de Construcción): Un proceso inteligente basado en modelos 3D que permite a los profesionales de la arquitectura, ingeniería y construcción planificar, diseñar, construir y gestionar edificios e infraestructuras de manera más eficiente.
  • COPRAS (Complex Proportional Assessment / Evaluación Proporcional Compleja): Un método MCDM de puntuación que evalúa alternativas basándose en su proximidad a un punto ideal y a un punto anti-ideal.
  • Crisp numbers (Números nítidos): Valores precisos y exactos utilizados en los cálculos matemáticos, que no consideran la imprecisión o la ambigüedad inherente a algunos conceptos humanos o datos subjetivos.
  • Constructability (Constructibilidad): La medida en que el diseño de un proyecto facilita la construcción, permitiendo un uso eficiente de los recursos y la mano de obra para mejorar el costo, el tiempo, la calidad y la seguridad.
  • DEMATEL (Decision Making Trial and Evaluation Laboratory / Laboratorio de Evaluación y Toma de Decisiones): Un método MCDM que ayuda a analizar relaciones causa-efecto entre criterios, permitiendo comprender su interdependencia.
  • EDAS (Evaluation Based on Distance to Average Solution / Evaluación Basada en la Distancia a la Solución Promedio): Un método MCDM que evalúa alternativas en función de su distancia a la solución promedio.
  • ELECTRE (Elimination and Choice Expressing Reality Method / Método de Eliminación y Elección que Expresa la Realidad): Una familia de métodos MCDM de superación que compara alternativas por pares y determina su relación de preferencia o indiferencia.
  • Fuzzy logic (Lógica difusa): Una forma de lógica multivaluada que permite valores de verdad intermedios entre «verdadero» y «falso», utilizada para modelar la incertidumbre y la vaguedad en los juicios humanos.
  • GIS (Geographic Information Systems / Sistemas de Información Geográfica): Un sistema que crea, gestiona, analiza y mapea todo tipo de datos. Relaciona los datos con la ubicación, analizando la información geográfica para organizar capas de información en visualizaciones mediante mapas.
  • Hybrid MCDMs (MCDM híbridos): Combinaciones de dos o más métodos MCDM, o de MCDM con otras herramientas (como BIM o GIS), para aprovechar las fortalezas de cada técnica y abordar la complejidad de los problemas de decisión.
  • LCA (Life Cycle Assessment / Análisis del Ciclo de Vida): Una metodología para evaluar los impactos ambientales asociados a todas las etapas de la vida de un producto o servicio, desde la extracción de materias primas hasta su disposición final.
  • LCC (Life Cycle Cost / Costo del Ciclo de Vida): El cesto total de un activo a lo largo de su vida útil, incluyendo los costos iniciales de adquisición, operación, mantenimiento, y disposición final.
  • MCDM (Multi-Criteria Decision Methods / Métodos de Decisión Multicriterio): Herramientas analíticas y computacionales que ayudan a los tomadores de decisiones a evaluar y priorizar diferentes opciones considerando múltiples factores o criterios, a menudo conflictivos.
  • MIVES (Model Integrated Value for Sustainable Evaluation / Modelo de Valor Integrado para la Evaluación Sostenible): Un método MCDM que integra la toma de decisiones con el análisis de valor, utilizando dimensiones indexadas estandarizadas para comparar indicadores de diferente naturaleza.
  • MOORA (Multi-Objective Optimization by Ratio Analysis / Optimización Multiobjetivo por Análisis de Ratios): Un método MCDM que clasifica alternativas basándose en un ratio de rendimiento y una referencia de desviación.
  • Neutrosophic logic (Lógica neutrosófica): Una generalización de la lógica difusa que introduce la indeterminación (además de la verdad y la falsedad), permitiendo un manejo más completo de la incertidumbre en los procesos de decisión.
  • PROMETHEE (Preference Ranking Organization Method for Enrichment of Evaluations / Método de Organización de Preferencias para el Enriquecimiento de Evaluaciones): Un método MCDM de superación que permite clasificar alternativas según sus preferencias de los criterios.
  • Scoring methods (Métodos de puntuación): Métodos MCDM que asignan puntuaciones numéricas a los criterios relevantes para comparar y evaluar cantidades jerárquicamente estructuradas.
  • Sensitivity analysis (Análisis de sensibilidad): Un estudio que examina cómo la incertidumbre en la salida de un modelo puede atribuirse a diferentes fuentes de incertidumbre en sus entradas, utilizado para probar la robustez de un método y la validez de los resultados.
  • Social housing (Vivienda social): Viviendas diseñadas para ser accesibles a personas y familias de ingresos medios y bajos, asegurando estándares mínimos de habitabilidad y calidad de vida, y fomentando la inclusión social.
  • Sustainability (Sostenibilidad): Un enfoque que busca satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, abarcando dimensiones económicas, ambientales, sociales y técnicas.
  • SWARA (Scaled Weighted Assessment Ratio Analysis): Un método MCDM utilizado para determinar los pesos de los criterios.
  • TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution / Técnica para la Ordenación por Similitud con la Solución Ideal): Un método MCDM que clasifica alternativas basándose en su distancia a una solución ideal positiva y a una solución ideal negativa.
  • VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje / Optimización Multicriterio y Solución de Compromiso): Un método MCDM que clasifica alternativas basándose en su proximidad a una solución ideal.
  • WSM (Weighted Sum Model / Modelo de Suma Ponderada): Un método MCDM de puntuación que calcula una puntuación total para cada alternativa sumando las puntuaciones ponderadas de cada criterio

Cómo construir viviendas sociales más baratas y sostenibles y de forma más rápida

A continuación, os paso el contenido de una nota de prensa que ha lanzado la UPV sobre uno de nuestros trabajos de investigación relacionados con el proyecto RESILIFE. También os dejo enlaces a la noticia. Espero que os resulte interesante.

Investigadores de la UPV han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE

Investigadores de la Universitat Politècnica de València (UPV) han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente. El trabajo, liderado por el investigador del Instituto ICITECH Víctor Yepes y la doctoranda Ximena Luque, se ha centrado en Perú, un país con un elevado déficit habitacional, si bien sus resultados podrían aplicarse a otros países con necesidades similares.

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE y analiza cinco sistemas constructivos diferentes —desde métodos tradicionales como el hormigón con ladrillo hasta métodos industrializados como el Light Steel Frame (LSF). Además, evalúa no solo costes de construcción, sino también los de mantenimiento, demolición e impacto ambiental durante todo el ciclo de vida de la vivienda.

“No se trata de solo construir más, sino de construir mejor. Por eso analizamos cada sistema de principio a fin, con el enfoque conocido como desde la cuna hasta la tumba, evaluando tanto el impacto técnico, económico y medioambiental de la construcción. Nuestro estudio no solo se centra en el precio o la velocidad de construcción. También analizó el impacto de cada tipo de vivienda a lo largo de toda su vida útil: desde la extracción de los materiales hasta su demolición”, explica Víctor Yepes

El sistema más eficiente: rápido, limpio y rentable

De los cinco modelos analizados, el sistema LSF —una estructura metálica prefabricada y liviana— es el más eficiente, según el estudio realizado por Víctor Yepes y Ximena Luque. Es el más barato a largo plazo (en construcción, mantenimiento y demolición); el que menos impacto ambiental genera y el que permite construir más rápido, lo que resulta clave para reducir el déficit habitacional en corto tiempo.

“Los sistemas tradicionales, aunque parecen más baratos al inicio, terminan siendo más costosos a largo plazo por sus residuos y su dificultad para ser reciclados. El estudio también señala que ningún sistema es perfecto. Por ejemplo, los paneles sándwich de hormigón son muy rápidos de montar, pero tienen mayores costes e impactos. El sistema convencional, aunque ampliamente empleado, tarda más en construirse y tiene un impacto ambiental alto. Sin embargo, necesita menos mano de obra especializada, lo que también es un factor que debemos considerar. Aun así, en más del 90 % de los escenarios evaluados, el LSF siguió siendo la mejor alternativa”, explica Yepes.

Guía práctica y modelo replicable

Además de identificar el “sistema para construir mejor”, el equipo de la UPV ha desarrollado una guía práctica para programas de vivienda social, planteando una metodología que se puede replicar en otros países en desarrollo.

Nuestro estudio ofrece una herramienta práctica y replicable que puede ayudar a ingenieros, arquitectos y autoridades a tomar decisiones más informadas. Al tener en cuenta todo el ciclo de vida de una vivienda y varios criterios de sostenibilidad, nuestro trabajo pretende contribuir a conseguir hacia soluciones habitacionales más justas, rápidas y respetuosas con el medio ambiente en aquellos países que lo necesitan”, añade Yepes.

Próximos pasos: sumar el factor humano

El equipo de la UPV trabaja ya en la siguiente fase del proyecto, que incorporará el impacto social de cada sistema constructivo, evaluando cómo influyen en la calidad de vida de las personas, el empleo local y la cohesión comunitaria.

“Construir bien, no es solo colocar ladrillos y hormigón. También es considerar a las personas que habitarán ese espacio y cómo la vivienda puede mejorar su bienestar y sus oportunidades”, concluye Víctor Yepes.

Referencia

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Noticia en À Punt:

Entrevistas en RNE y Ser

Noticia en medios:

La UPV plantea un modelo «replicable» para construir viviendas sociales baratas y sostenibles

https://cadenaser.com/comunitat-valenciana/2025/08/03/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles-y-de-forma-mas-rapida-radio-valencia/

https://www.larazon.es/comunidad-valenciana/mas-baratas-eficientes-upv-tiene-clave-construir-mas-viviendas_20250803688f1efac5e9fd602f666afd.html

https://www.20minutos.es/nacional/estudio-propone-construir-viviendas-sociales-baratas-sostenibles_6233824_0.html

https://valencia.elperiodicodeaqui.com/epda-noticias/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles/374196

https://www.noticiasde.es/comunidad-valenciana/la-upv-ha-propuesto-un-metodo-para-construir-viviendas-sociales-de-forma-mas-economica-sostenible-y-rapida/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Un estudio de la UPV propone cómo construir viviendas sociales «más baratas y sostenibles» y de forma «más rápida»

https://alicanteplaza.es/alicanteplaza/innovacion-alicante/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles

Un estudio de la UPV propone cómo construir viviendas sociales más baratas y sostenibles | Murcia Plaza

https://economia3.com/2025/08/04/701578-upv-impulsa-una-nueva-forma-de-construir-viviendas-sociales-mas-eficientes/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Nou estudi de la UPV revela com construir vivendes socials més econòmiques i sostenibles

 

Preguntas sobre el prefabricado de hormigón: Historia, ventajas y futuro

1. ¿Qué es un elemento prefabricado de hormigón y cómo se diferencia de la construcción con hormigón tradicional?

Un elemento prefabricado de hormigón se define como un producto fabricado con hormigón y elaborado en un lugar distinto de su ubicación final. Durante su fabricación, está protegido de las condiciones ambientales adversas y se obtiene mediante un proceso industrial con un sistema de control de la producción en fábrica. Esto permite acortar los plazos de entrega. En términos prácticos, la prefabricación consiste en aplicar principios industriales a la construcción, como la racionalización de procesos, la búsqueda de la economía de escala y el desarrollo a partir de la repetición de tareas cuidadosamente planificadas, ejecutadas en entornos favorables, con medios suficientes y por personal especializado.

La principal diferencia con el hormigón tradicional (o in situ) radica en el lugar y el método de fraguado y de control. El hormigón tradicional se concibe como un material fresco que cura libremente en la obra (ejecución in situ), mientras que el prefabricado es un producto terminado que se diseña y fabrica previamente en una planta industrial, con todas sus características adquiridas de forma controlada. Esto le confiere una entidad propia y una serie de cualidades inherentes que lo distinguen, como una mayor precisión dimensional, mejores acabados y la eliminación de incertidumbres en el resultado final, lo que a menudo se traduce en precios más competitivos.

https://www.telecinco.es/noticias/catalunya/20250730/levantan-bloque-vivienda-publica-diez-dias-barcelona_18_016247482.html

2. ¿Cuándo y cómo se originó el concepto de prefabricación aplicado al hormigón?

Aunque el uso del hormigón se remonta al Imperio romano (7000 a. C., según algunos historiadores), el origen de la prefabricación, entendida como la aplicación de procesos industriales a la construcción, se sitúa a mediados del siglo XVIII, con la Revolución Industrial y la aparición de nuevos materiales como el acero y el vidrio. Sin embargo, la combinación específica del material (hormigón) y la técnica (prefabricación) es relativamente reciente y ha experimentado un desarrollo espectacular a partir de la segunda mitad del siglo XX.

Un hito clave fue la patente concedida en 1824 a Joseph Aspdin para la producción de «cemento Portland». A partir de 1848 y 1849 se registran los primeros elementos prefabricados de hormigón, como la barca de Joseph Louis Lambot y la jardinera de Joseph Monier. No obstante, un hito trascendental fue la patente del hormigón pretensado presentada por Eugène Freyssinet en 1928, que revolucionó la forma de construir al convertir el hormigón en un material activo y duradero, lo que impulsó la creación de las primeras fábricas de elementos prefabricados.

3. ¿Cuáles fueron los hitos más importantes en el desarrollo del hormigón prefabricado entre 1850 y 1970?

El desarrollo del hormigón prefabricado se puede dividir en varias etapas significativas:

  • 1850-1940 (Primera época): Estuvo marcada por la visión de ingenieros que vieron en el hormigón una alternativa a la piedra natural. Los hitos incluyen:
    • Primeros elementos prefabricados como la barca de Lambot (1848) y la jardinera de Monier (1849).
    • El primer edificio con bloques prefabricados de cemento Portland, Castle House (1851).
    • La invención del concreto armado por William Wilkinson (1854).
    • La patente de un edificio prefabricado con módulos tridimensionales de Eduard T. Potter (1889).
    • La construcción del primer edificio con estructura prefabricada de hormigón, un molino de harina en Swansea (1897).
    • La invención del hormigón pretensado por Eugène Freyssinet (1928) transformó el material.
  • 1940-1970 (Segunda época): Influenciada por la necesidad de reconstrucción rápida y económica tras la Segunda Guerra Mundial y por el aprovechamiento del tejido industrial bélico.
    • Difusión del pretensado (Francisco Fernández Conde obtuvo las patentes para España y América Latina en 1942).
    • La Unión Soviética adoptó masivamente los paneles prefabricados de hormigón para la construcción de barrios urbanos debido a la reducción de costos y a la rapidez (1947-1951).
    • Estandarización de sistemas prefabricados en Inglaterra (1960).
    • Diseños icónicos como la cúpula del Palacio de Deportes de Pier Luigi Nervi para los JJ.OO. de Roma (1960) y el complejo de viviendas Habitat 67 de Moshe Safdie en Montreal (1967).
    • Desarrollo de losas alveolares y de la escuela francesa de «grandes paneles».

4. ¿Cómo ha evolucionado el hormigón prefabricado desde el último tercio del siglo XX hasta la actualidad?

Desde finales del siglo XX, la industria del prefabricado ha experimentado una creciente mecanización y un enfoque hacia una prefabricación más «abierta». Los fabricantes pasaron de producir grandes volúmenes de elementos repetitivos a crear soluciones más flexibles y adaptables a diversas obras y demandas. En este periodo, Italia y los países nórdicos destacaron, ya que su clima favorece la construcción industrializada.

Se mejoraron las posibilidades estéticas del prefabricado, como se evidenció en la Ópera de Sídney, que empleó grandes conchas prefabricadas. Aumentó la demanda de grandes elementos prefabricados para viviendas, escuelas, centros comerciales y estadios, lo que impulsó la mejora de sus propiedades estructurales. En el ámbito de la obra civil, el prefabricado se convirtió en la opción dominante para puentes, canalizaciones, túneles y traviesas ferroviarias.

En la actualidad, la construcción prefabricada es un método con entidad propia que destaca por su capacidad para aplicar técnicas de producción de alto rendimiento con elevados niveles de control, lo que asegura una mayor calidad y precisión dimensional. También se destaca la capacidad de las piezas para su desmontaje y reutilización, lo que contribuye a la sostenibilidad. La evolución informática permite realizar diseños complejos que antes resultaban inviables. Además, se ha logrado combinar la libertad arquitectónica con la eficiencia constructiva, lo que permite realizar diseños flexibles y adaptables que permiten cambiar el uso de los edificios sin afectar a su estructura.

https://resimart.com/beneficios-prefabricados-de-hormigon/

5. ¿Qué ventajas ofrece la prefabricación de hormigón en comparación con los métodos de construcción tradicionales?

La prefabricación de hormigón ofrece múltiples ventajas significativas:

  • Mayor calidad y precisión dimensional: el proceso industrial en fábrica, bajo sistemas de control de producción, asegura una calidad superior, homogeneidad y precisión dimensionales de los elementos, eliminando las incertidumbres del resultado final.
  • Ahorro de tiempo y costes: la fabricación en un entorno controlado acelera los plazos de entrega y permite una planificación más detallada, lo que se traduce en mayor productividad, menores costes laborales in situ y, a menudo, un precio final más competitivo.
  • Mayor durabilidad y resistencia: El hormigón prefabricado utiliza materiales de mejores prestaciones y un curado más controlado, lo que contribuye a una mayor durabilidad y resistencia, especialmente evidente tras la invención del pretensado.
  • Sostenibilidad y eficiencia energética: contribuyen a la reducción de residuos en obra, al uso de hormigones de mejores prestaciones (mayor durabilidad) y a una alta inercia térmica, lo que se traduce en un menor consumo de energía y un mayor confort para los usuarios. La posibilidad de desmontar y reutilizar las piezas también mejora su impacto ambiental a largo plazo.
  • Versatilidad arquitectónica y estructural: permite la creación de formas complejas, texturas, relieves, colores y aligeramientos, así como la adaptación a requisitos arquitectónicos cambiantes sin sacrificar la eficiencia. Los diseños flexibles permiten cambiar el uso de los edificios sin afectar la estructura.
  • Mejores condiciones laborales: La aplicación del hormigón autocompactante en plantas de prefabricados ha mejorado notablemente las condiciones de trabajo de los operarios al reducir la carga sonora y las vibraciones.

6. ¿Cuáles son los principales campos de aplicación del hormigón prefabricado en la actualidad?

El entorno urbano está lleno de elementos prefabricados de hormigón que forman parte de nuestro paisaje cotidiano y tienen una amplia gama de aplicaciones en la edificación y la obra civil.

En edificación (arquitectura), el prefabricado se utiliza masivamente para:

  • Viviendas (Habitat 67 es un ejemplo icónico).
  • Escuelas, pabellones, centros comerciales, aparcamientos.
  • Estadios y hospitales.
  • Elementos estructurales y de cerramiento, incluyendo paneles de fachada de grandes dimensiones con mejoras estéticas (colores, texturas, diseños de vanguardia como fachadas translúcidas).
  • Forjados (desde viguetas y bovedillas hasta losas alveolares).

En obra civil (ingeniería), el desarrollo de los prefabricados de hormigón ha sido fundamental para:

  • Puentes (tanto la estructura como las losas que unen las vigas).
  • Canalizaciones y tuberías.
  • Dovelas para túneles.
  • Traviesas para ferrocarril.
  • Mobiliario urbano y pavimentos.

En general, el prefabricado responde satisfactoriamente a todas las exigencias técnicas y funcionales y se adapta cada vez más a diseños arquitectónicos libres y a la integración de servicios e instalaciones en la estructura prefabricada.

7. ¿Qué mitos persisten sobre el hormigón prefabricado y cómo se están superando?

Aunque la acepción peyorativa del término «prefabricado» está disminuyendo, aún persisten ciertos mitos infundados que impiden un mayor avance de la industria. Estos mitos incluyen la percepción de que los elementos prefabricados son una solución «inferior» o carecen de versatilidad estética y funcional. Se asocia erróneamente con la necesidad de producir grandes cantidades de elementos muy repetitivos para optimizar costes, una idea que la industria ya ha corregido, pues es capaz de producir elementos a costes razonables para demandas más pequeñas y diferenciadas.

La realidad es que el diseño y la fabricación en un entorno técnico y controlado conducen a elementos y soluciones más precisos y de mayor calidad. Los avances tecnológicos en dosificación, curado, control de calidad, moldes, acabados, nuevos materiales y la introducción de hormigones autocompactantes han superado las limitaciones estéticas y funcionales previas. La industria ha sabido responder adecuadamente a las exigencias técnicas, funcionales y estéticas y ha logrado una mayor libertad arquitectónica sin sacrificar la eficiencia. La difusión de sus ventajas y el éxito en obras emblemáticas están ayudando a disipar estos mitos.

8. ¿Cuáles son los principales retos y las vías de innovación para la industria del hormigón prefabricado en los próximos años?

La industria del prefabricado de hormigón se enfrenta a varios retos prometedores para ganar mayor presencia en el mercado:

  • Sostenibilidad: Se trata de un eje fundamental, impulsado por políticas reglamentarias que bonifican las soluciones respetuosas con el medio ambiente. El prefabricado ofrece ventajas como una mayor inercia térmica (que reduce el consumo de energía), una menor generación de residuos y el uso de concretos de mejores prestaciones para aumentar su durabilidad. También se investiga la adición de materia prima para dotar a los elementos de capacidades descontaminantes.
  • Innovación tecnológica: En un entorno competitivo, la innovación es crucial. Se busca la mejora continua mediante la I+D+i, en colaboración con centros tecnológicos y universidades. Las innovaciones incluyen el aumento de la resistencia mecánica del hormigón, la ampliación de las formas, texturas, relieves y colores de los elementos vistos, y la mejora de las materias primas (cementos, aditivos, aceros pretensados y fibras) para lograr dimensiones, ligereza y acabados antes inimaginables.
  • Automatización y digitalización: El progreso tecnológico en la maquinaria permite a las plantas de prefabricados alcanzar altos niveles de automatización, incluyendo la impresión 3D, moldes más duraderos, sistemas de vaciado eficientes, cortes guiados por láser y sistemas de curado más eficaces. La integración de sensores en la fabricación para monitorizar parámetros (por ejemplo, la resistencia a la compresión) y el desarrollo de productos conforme a la metodología BIM también son áreas de profundización.
  • Adaptación a nuevas exigencias: El objetivo es mejorar el comportamiento sísmico, rediseñar las piezas estructurales para cubrir un mayor rango dimensional y optimizar las conexiones de los elementos estructurales, con el fin de seguir expandiendo las aplicaciones y la eficiencia del prefabricado.

Creo que estos vídeos pueden interesarte.

Os dejo un artículo que, espero, sea de vuestro interés.

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.