Innovador método para planificar el mantenimiento de infraestructuras públicas optimiza los beneficios sociales y el desarrollo urbano

Un estudio reciente de Jorge Salas y Víctor Yepes, publicado en la prestigiosa revista Structure and Infrastructure Engineering, ha propuesto un enfoque innovador para la planificación del mantenimiento de infraestructuras públicas con el objetivo de mejorar la entrega de beneficios sociales en el contexto urbano. Esta investigación parte de la premisa de que el estado de conservación de las infraestructuras críticas (hidráulicas, energéticas, de comunicaciones) y las instalaciones públicas, como escuelas, hospitales, parques y viviendas sociales, influye directamente en la calidad de vida de las comunidades y, en consecuencia, en el desarrollo urbano sostenible (SUD, por sus siglas en inglés). Sin embargo, el mantenimiento de estas infraestructuras plantea retos significativos, dado que las autoridades locales se enfrentan a restricciones presupuestarias que les impiden acometer todas las reparaciones necesarias de manera simultánea.

El problema de la priorización en el mantenimiento público

En su trabajo, Salas y Yepes destacan la dificultad que enfrentan los municipios al tener que decidir qué instalaciones deben recibir mantenimiento de forma prioritaria. La falta de una planificación eficiente puede llevar a que muchas infraestructuras públicas entren en un estado de deterioro que reduce su capacidad para ofrecer beneficios sociales, como el acceso a la educación, la salud o espacios recreativos. Así, los autores plantean un marco de decisión para planificar y programar el mantenimiento correctivo, que combina un análisis multicriterio con una evaluación económica, con el objetivo de maximizar los beneficios sociales y minimizar los costes.

La metodología CRISDUSEC

La metodología propuesta, implementada en un software llamado CRISDUSEC, se basa en la evaluación de diferentes criterios para priorizar las acciones de mantenimiento. Estos criterios incluyen el tipo de infraestructura social, su estado de conservación y el coste de restaurarla. Además, se tiene en cuenta el impacto que cada instalación tiene en el desarrollo sostenible de la comunidad a la que pertenece. La innovación de este enfoque radica en la integración de diferentes variables en un marco analítico que permite a los planificadores urbanos tomar decisiones más informadas y eficientes.

El software CRISDUSEC, utilizado en el caso de estudio de la región de Valencia, permite a los expertos evaluar el impacto de la infraestructura pública en el desarrollo sostenible en función de su estado de mantenimiento y su tipo. Una de las principales conclusiones del estudio es que las infraestructuras como los hospitales y los mercados públicos, así como las infraestructuras críticas, debido a su mayor sensibilidad a su estado de conservación, generan un impacto social más negativo cuando no están en condiciones óptimas, en comparación con los parques o las áreas recreativas, que son más tolerantes al deterioro. Esto implica que el mantenimiento de ciertos tipos de infraestructuras debe ser priorizado por su importancia crítica en la vida diaria de los ciudadanos.

Resultados y recomendaciones

Los resultados del estudio destacan que, mediante una planificación adecuada basada en esta metodología, es posible maximizar los beneficios sociales derivados del mantenimiento de las infraestructuras públicas, especialmente en las zonas urbanas que requieren una regeneración urgente. Por ejemplo, en el caso de Valencia, los hospitales y los centros educativos fueron identificados como infraestructuras clave cuya restauración genera el mayor retorno social. En cambio, otras infraestructuras, como parques y áreas deportivas, aunque importantes, presentan un impacto menor en el desarrollo urbano sostenible cuando se encuentran en un estado de mantenimiento deficiente.

Otra conclusión relevante es que la metodología permite diseñar planes estratégicos a medio y largo plazo que ayudan a los gobiernos locales a programar las acciones correctivas de manera más eficiente, optimizando la distribución de recursos y minimizando los retrasos en la entrega de prestaciones sociales a la ciudadanía. Este enfoque también se alinea con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas, que promueven la inversión en infraestructuras sociales como un pilar para mejorar la calidad de vida en las ciudades.

Implicaciones y aplicaciones futuras

Este trabajo representa una herramienta valiosa para los gestores públicos y los planificadores urbanos que buscan equilibrar las demandas sociales con las restricciones presupuestarias. Además, el estudio sienta las bases para futuras investigaciones que exploren la adaptación de este marco a otros contextos regionales o nacionales, así como la inclusión de nuevas variables, como el impacto ambiental, que podrían enriquecer aún más el análisis.

 

En conclusión, la investigación de Salas y Yepes ofrece una solución práctica para los desafíos actuales en materia de mantenimiento de infraestructuras públicas, ya que proporciona un enfoque claro y bien fundamentado para maximizar el retorno social de las inversiones en mantenimiento, garantizando así un desarrollo urbano más justo y sostenible.

Referencia:

SALAS, J.; YEPES, V. (2024). Improved delivery of social benefits through the maintenance planning of public assets. Structure and Infrastructure Engineering, 20(5):699-714. DOI:10.1080/15732479.2022.2121844

Microtúneles: Tecnología sin zanja para la construcción subterránea

Figura 1. Microtúnel.https://purewater-int.com/services/microtunneling/

La ingeniería civil ha desarrollado tecnologías avanzadas que permiten la instalación y el mantenimiento de infraestructuras subterráneas sin afectar significativamente a la superficie. Una de estas tecnologías, particularmente útil en áreas urbanas y entornos sensibles, es la de los microtúneles.

En este artículo, exploraremos los aspectos principales de los microtúneles, sus ventajas y limitaciones, los distintos tipos de escudos y los métodos de revestimiento, como el uso de dovelas y la hinca de tubería, que aseguran la estabilidad de los túneles.

1. ¿Qué son los microtúneles?

Los microtúneles son un tipo específico de tecnología sin zanja diseñada para instalar tuberías y conductos subterráneos a través de un proceso de perforación y revestimiento controlado, sin requerir excavaciones abiertas en la superficie. Estos túneles de pequeño diámetro suelen utilizarse para instalar colectores, redes de agua y sistemas de alcantarillado. A diferencia de otras técnicas de perforación, los microtúneles ofrecen mayor precisión y estabilidad estructural, ya que se utilizan tuneladoras y sistemas de guiado avanzados.

Ventajas de los microtúneles

  • Impacto mínimo en la superficie: Como no es necesario abrir zanjas, los microtúneles reducen las interrupciones en el tráfico y minimizan los daños en la infraestructura existente.
  • Menor impacto ambiental: Este método evita la remoción de grandes cantidades de tierra y reduce los desechos de la construcción, por lo que es una opción más ecológica.
  • Ideal para áreas de difícil acceso: Al requerir solo pozos de entrada y salida, los microtúneles son ideales para trabajos en áreas urbanas densamente pobladas o bajo infraestructuras ya existentes.

Limitaciones de los microtúneles

  • Costos iniciales elevados: La maquinaria y planificación requerida pueden aumentar los costos, especialmente en terrenos sencillos donde una excavación tradicional sería suficiente.
  • Necesidad de estudios geotécnicos detallados: Para asegurar el éxito del proyecto, es necesario un análisis exhaustivo del tipo de suelo, así como un diseño específico para el trazado y la maquinaria a emplear.

2. Maquinaria y equipos utilizados en la perforación de microtúneles

La construcción de microtúneles requiere diferentes tipos de escudos, que son dispositivos que protegen el frente de excavación y facilitan la extracción de material. El tipo de escudo elegido depende de las características del terreno y de las especificaciones del proyecto.

Tuneladoras de escudo abierto

Los escudos abiertos son los más básicos y se utilizan en terrenos cohesivos y por encima del nivel freático. Su diseño permite que el personal trabaje dentro del escudo y retire el material excavado mediante cintas transportadoras o vagonetas. Sin embargo, su principal limitación es que no pueden prevenir derrumbes, lo que los hace adecuados solo para suelos estables. Existen versiones que utilizan aire presurizado para estabilizar el entorno en algunas condiciones.

Tuneladoras de escudo cerrado

Las tuneladoras de escudo cerrado son las máquinas principales utilizadas en los microtúneles. Estos equipos están diseñados para evitar derrumbes y permiten un control preciso sobre la extracción del material excavado. Existen dos tipos principales de tuneladoras de escudo cerrado:

  • Tuneladora EPB (Earth Pressure Balance): Equilibra la presión en el frente usando el propio material excavado, lo cual es especialmente útil en terrenos arcillosos. Además, utiliza espumas y polímeros para estabilizar el suelo.
  • Tuneladora hidroescudo: Este tipo de tuneladora utiliza lodos para estabilizar el frente de excavación, lo que resulta especialmente útil en suelos arenosos o bajo el nivel freático.

Ambos tipos de escudos permiten extraer el material en seco o húmedo, asegurando una operación segura y eficiente en diversas condiciones geológicas.

Figura 2. Tuneladora EPB. https://www.gypsum.in/microtunneling/

3. Métodos de revestimiento en microtúneles

Un aspecto importante en la construcción de microtúneles es el revestimiento, que garantiza la estabilidad y durabilidad del túnel, especialmente en terrenos inestables. Existen dos métodos principales de revestimiento: el método de dovelas y el método de hinca de tubería.

Revestimiento con dovelas

Este método consiste en el uso de dovelas, secciones de anillo prefabricadas, que se ensamblan en el interior del túnel a medida que avanza la tuneladora. El procedimiento implica montar las dovelas dentro de la máquina y posteriormente inyectar mortero en el trasdós para garantizar la estabilidad del revestimiento y evitar filtraciones. Este método permite construir túneles con radios de curvatura pequeños, adaptándose a trazados complejos y de gran diámetro.

Revestimiento con hinca de tubería

El revestimiento con hinca de tubería es ideal para túneles de menor diámetro y consiste en empujar tramos de tubería prefabricada desde el pozo de ataque hasta el pozo de salida. Este proceso puede incorporar estaciones intermedias para longitudes extensas, y utiliza bentonita como lubricante para reducir la fricción durante la hinca. La principal ventaja de este método es que no requiere que el personal opere dentro de la tuneladora y facilita la alineación precisa gracias al sistema de guiado continuo.

Ambos métodos de revestimiento cumplen la función de asegurar la estabilidad y el sellado del túnel, aunque su selección dependerá de las características específicas del proyecto.

4. Planificación y ejecución de un proyecto de microtúnel

Para llevar a cabo un proyecto de microtúnel, es fundamental una planificación detallada que incluya:

  • Estudios geotécnicos: Analizar el tipo de suelo es esencial para definir el equipo y las técnicas de excavación adecuadas, especialmente en terrenos variables o inestables.
  • Selección de tuneladora y herramientas de corte: La tuneladora debe ser seleccionada en función de las condiciones del suelo, y equipada con herramientas de corte específicas.
  • Diseño del pozo de ataque: Los pozos de entrada y salida deben ser diseñados para facilitar el montaje y operación de la tuneladora.
  • Sistema de guiado: Un sistema de guiado, como un teodolito láser motorizado, asegura que la perforación siga el trazado previsto, evitando desviaciones que podrían afectar la estructura del túnel.

5. Caso de estudio: El colector de Valdemarín

Un ejemplo destacado de aplicación de los microtúneles es el proyecto del colector de Valdemarín, en el que se utilizó una tuneladora EPB con dovelas para construir un colector de aguas en un terreno arenoso y de alta abrasividad. El colector, con un diámetro nominal de 2760 mm, fue diseñado para superar el reto de excavar bajo un nivel freático considerable y con una geometría compleja, incluyendo curvas de pequeño radio. Gracias a la tecnología de microtúnel, fue posible instalar el colector, minimizando el impacto en el entorno urbano y controlando el proceso de excavación en un suelo particularmente desafiante.

Conclusión

Los microtúneles son una solución avanzada para la construcción subterránea, especialmente útil en entornos urbanos densos y ambientalmente sensibles. Con diversas opciones de escudos (abiertos y cerrados) y métodos de revestimiento, como las dovelas y la hinca de tuberías, esta tecnología proporciona flexibilidad y precisión en una amplia gama de condiciones geológicas. La implementación de microtúneles sigue siendo una herramienta clave para el desarrollo de infraestructuras subterráneas sostenibles, ya que minimiza el impacto en la superficie y optimiza el proceso constructivo.

Os dejo algunos vídeos para ilustrar esta técnica constructiva.

Referencias:

FRENCH SOCIETY FOR TRENCHLESS TECHNOLOGY (FSTT). Microtunneling and Horizontal Drilling: Recommendations. John Wiley & Sons, 2010.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Finalista a la divulgación científica en la Universitat Politècnica de València

Me llena de alegría y gratitud compartir con ustedes que este año soy finalista al Premio a la Divulgación Científica de la Universitat Politècnica de València en la edición de los Premios de Investigación de 2023. Este reconocimiento es muy especial para mí, ya que en mi labor de divulgación busco acercar el fascinante mundo de la ingeniería y la construcción a un público cada vez más amplio y curioso.

El año pasado, tuve el privilegio de recibir dos de los máximos galardones de la UPV: el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación. Estos premios, que reconocen no solo el trabajo en investigación, sino también el impacto y el compromiso de una carrera dedicada a la ingeniería, se otorgan una sola vez cada 5 años. Esto ha supuesto un gran alivio al saber que, aunque fui nominado este año de nuevo, no soy finalista en ambas categorías al haber recibido ya estos honores en la edición anterior. Además, en 2023 también fui galardonado con el Premio Excelencia Docente del Consejo Social de la Universidad Politécnica de Valencia, un premio que igualmente solo se puede recibir una vez en la trayectoria profesional.

La entrega de premios de este año tendrá lugar el próximo 12 de noviembre a las 18:00 horas en el edificio Nexus del campus de Vera, y la gala estará repleta de ciencia, música y teatro, un evento con el inconfundible sello de la UPV. Desde aquí quiero felicitar a todos los finalistas de este año por su destacada labor en investigación y divulgación.

Aprovecho para agradecer a cada uno de ustedes, quienes han hecho posible que esta labor de divulgación científica sea una realidad. ¡Nos vemos en el camino, y gracias por su apoyo constante!

Los nominados a este premio en esta edición han sido los siguientes 18 investigadores:

• COS GAYÓN, Fernando
• ESCOBAR RAMÓN, Santiago
• ESTEBAN GONZÁLEZ, Héctor
• GARCÍA MARTÍNEZ, Antonio
• GARCÍA SEGOVIA, Purificación
• HERNÁNDEZ FRANCO, Carlos
• HOYAS CALVO, Sergio
• LÓPEZ PÉREZ, Miguel
• MONSORIU SERRA, Juan Antonio
• MULET SALORT, José Miguel
• PEDROCHE Sánchez, Francisco
• PINILLA CIENFUEGOS, Elena
• PORCEL ROLDÁN, Rosa
• REMIRO BUENAMAÑANA, Sonia
• ROJAS BRIALES, Eduardo
• SERRANO CRUZ, José Ramón
• SOLER ALEIXANDRE, Salvador
• YEPES PIQUERAS, Víctor

De entre los nominados, tengo el gran honor de compartir ser finalista con dos grandes en el mundo de la divulgación científica. Para que os hagáis una idea del calibre, tanto de José Miguel Mulet como de Rosa Porcel, os dejo un breve resumen de sus méritos en el ámbito de la divulgación. Este año estoy más que satisfecho de saber que me he rodeado de compañeros de esta relevancia. Para mí es mi mayor premio estar con ellos.

José Miguel Mulet Salort: destacado divulgador científico en el ámbito nacional, ha publicado nueve libros en los últimos 12 años. Este curso ha participado en numerosas charlas y jornadas de divulgación y ha sido invitado al Parlamento Europeo y por el gobierno de México para hablar sobre nuevas herramientas de edición genética. Su labor se extiende a una activa presencia en redes sociales y colaboraciones constantes con medios de comunicación, como su columna de ciencia en El País. Además, es miembro del comité de asesoramiento científico de Mercadona.

Rosa Porcel Roldán: divulgadora especializada en biotecnología vegetal desde 2011 y autora del blog La Ciencia de Amara. Su ensayo Eso no estaba en mi libro de Botánica fue galardonado con el Premio Prismas en 2021 al mejor libro de divulgación científica editado. Recientemente, publicó su segundo libro, Plantas que nos ayudan. Ganadora del Premio Antama de Divulgación Científica, este año ha organizado y participado en diversas conferencias y eventos de divulgación científica, como la Noche Europea de la Investigación, el proyecto Mednight y el Día Internacional de la Mujer y la Niña en la Ciencia.

Víctor Yepes Piqueras: su blog, enfocado en la ingeniería de la construcción, es un referente en el sector tanto en España como en Latinoamérica. Creado en 2012, ha alcanzado casi dos millones de visitas solo en el último año. Cuenta con aproximadamente 34,000 seguidores en X y más de 22,000 en LinkedIn. Su labor divulgativa también incluye colaboraciones en medios de comunicación. Durante el curso 2023/24, ha participado en iniciativas como el podcast UPV Revisado por pares y ha publicado en medios como TechXplore, Apunt, Valencia Plaza y El Confidencial, entre otros.

 

Recomendaciones sobre productos y sistemas para la protección superficial del hormigón

Figura 1. https://www.molins.es/construction-solutions/reparacion-y-proteccion-del-hormigon/

La protección superficial del hormigón no solo responde a una necesidad estética, sino que cumple un papel crucial en la durabilidad y conservación de las estructuras de hormigón expuestas a condiciones ambientales adversas o a demandas estructurales específicas. Factores como la exposición ambiental y las propiedades deseadas del hormigón influyen en la selección de los productos y sistemas más adecuados para su protección. Estos sistemas se aplican con el objetivo de prevenir la degradación o mejorar ciertas características de la superficie del hormigón. Este artículo describe las principales recomendaciones basadas en la norma UNE 83703:2023, y se centra en productos y sistemas destinados a proteger la superficie del hormigón, incluyendo impregnaciones, revestimientos y otros métodos, en función de diferentes tipos de agresión ambiental o necesidades de mejora física.

1. Productos para la protección superficial del hormigón

Antes de seleccionar un producto o sistema de protección, es fundamental comprender los principios en los que se basan los métodos de protección superficial. Los siguientes principios resumen las estrategias empleadas para proteger el hormigón frente a diversos tipos de agresiones: Protección contra la penetración, control de la humedad y resistencia a agentes químicos.

Los productos para la protección superficial del hormigón varían en función de los métodos y tratamientos empleados. Estos productos, que pueden presentarse en forma líquida o plástica, se endurecen o se secan a temperatura ambiente. A continuación, se detallan las principales categorías:

  • Impregnación hidrófoba: consiste en la aplicación de productos líquidos de baja viscosidad que penetran en los poros del hormigón sin formar una película superficial. El objetivo es crear una superficie repelente al agua sin afectar a la permeabilidad al vapor. Los productos más utilizados son los oligómeros de siloxanos y las microemulsiones de silanos.
  • Impregnación: su objetivo es rellenar los poros del hormigón y reducir su porosidad superficial. Los productos empleados suelen estar basados en aglutinantes similares a los usados en revestimientos, y proporcionan una mayor adherencia para aplicaciones posteriores.
  • Revestimientos: forman una película continua sobre la superficie del hormigón para prevenir el deterioro. Pueden tener un espesor que va desde los 0,1 mm hasta los 5 mm, o incluso más en aplicaciones específicas. Los revestimientos pueden estar basados en polímeros en dispersión acuosa, en disolución o en polímeros reactivos que no requieren disolventes. Estos pueden ser de varios tipos, como revestimientos flexibles o rígidos. En función de las necesidades, algunos revestimientos pueden incorporar mallas o tejidos que mejoran la resistencia mecánica.

Debe tenerse en cuenta que los revestimientos deben resistir una exposición prolongada a la luz solar, especialmente en exteriores. Los productos acrílicos suelen ser más resistentes a los rayos UV. Además, los revestimientos deben poder repararse. En este sentido, los revestimientos a base de polímeros termoplásticos, como los acrílicos, son fáciles de repintar si presentan algún deterioro.

Figura 2. https://anfapa.com/articulos-tecnicos-morteros-de-reparacion-de-hormigon/1252/principios-y-metodos-para-reparar-y-proteger-estructuras-de-hormigon-deterioradas-une-en-1504

2. Sistemas de protección superficial

Los productos para la protección superficial del hormigón se agrupan en diferentes sistemas, cada uno con características particulares. Cada sistema de protección superficial está diseñado para hacer frente a diferentes amenazas o mejorar ciertas características del hormigón. Por ello, es importante elegir el sistema adecuado en función de las condiciones específicas de la estructura y su entorno. A continuación, se describen los sistemas más comunes:

2.1 Sistemas para impregnación hidrófoba

Estos sistemas protegen el hormigón y lo hacen repelente al agua, al mismo tiempo que permiten que «respire» al dejar pasar el vapor de agua. Son especialmente útiles en ambientes donde se desea mantener el hormigón seco. Los productos empleados deben ser transparentes, no alterar el aspecto del hormigón y garantizar la transpirabilidad. La profundidad de la impregnación y la calidad de los productos utilizados son factores clave para su eficacia a largo plazo.

También debe considerarse la eficiencia de la impregnación, es decir, que debe alcanzar una profundidad adecuada para asegurar una protección prolongada. Además, la impregnación debe ser compatible con el hormigón existente, por lo que será necesario evaluar las características químicas de este antes de aplicarla.

2.2 Sistemas protectores frente a la carbonatación

La carbonatación del hormigón es un proceso natural que puede afectar a la durabilidad de las estructuras. Los sistemas protectores frente a la carbonatación, basados en polímeros acrílicos o epoxi, crean una barrera que impide la entrada de CO₂ y reduce la absorción de agua. Estos revestimientos deben proporcionar una resistencia a la difusión de CO₂ equivalente a un espesor de aire de al menos 50 m (SD ≥ 50 m).

2.3 Sistemas con capacidad de puenteo de fisuras

Estos sistemas están diseñados para absorber movimientos en fisuras o prevenir la aparición de otras nuevas en el hormigón. Son útiles en estructuras que experimentan movimiento o en zonas sometidas a esfuerzos térmicos o mecánicos. Se pueden clasificar en sistemas con capacidad de puenteo estático (fisuras sin movimiento) o dinámico (fisuras con movimiento cíclico).

2.4 Sistemas resistentes a la agresión química

En ambientes donde el hormigón está expuesto a sustancias químicas agresivas, como ácidos o sulfatos, los sistemas resistentes a la agresión química proporcionan una barrera protectora. Estos revestimientos, que pueden estar basados en resinas epoxi o poliuretanos, son fundamentales en estructuras sometidas a ataques químicos intensos, como en plantas industriales o instalaciones de tratamiento de aguas.

2.5 Sistemas con capacidad de mejora física

Los sistemas que mejoran las propiedades físicas del hormigón incluyen la aplicación de tratamientos superficiales que aumentan la resistencia a la abrasión, la dureza superficial y la resistencia al impacto. Estos productos, como las capas de rodadura o las impregnaciones endurecedoras, son habituales en pavimentos industriales y en zonas expuestas a un tránsito o un impacto mecánico elevados.

Entre sus aspectos importantes, destaca que las imprimaciones mejoran la adherencia entre el hormigón y el revestimiento, lo que garantiza una protección más duradera. Además, los productos utilizados deben ser compatibles entre sí y con el tipo de hormigón de la estructura.

3. Control catódico y zonas anódicas

La corrosión del acero de refuerzo es uno de los problemas más comunes y graves que afectan a las estructuras de hormigón armado. La aplicación de sistemas de protección puede incluir el control catódico y el control de zonas anódicas, que son métodos especializados en la prevención de la corrosión.

  • El control catódico se basa en restringir la penetración de oxígeno en las zonas catódicas del hormigón armado. Al limitar la cantidad de oxígeno disponible, se neutralizan los puntos de corrosión y se minimiza el riesgo de deterioro. Los sistemas basados en este principio suelen utilizar revestimientos superficiales que impiden la difusión de oxígeno.
  • El control de zonas anódicas busca evitar la corrosión en los puntos donde el acero de refuerzo del hormigón está expuesto al ambiente. Esto se consigue aplicando inhibidores de corrosión directamente sobre el hormigón o mezclándolos con los productos de revestimiento.
Figura 3.  Control catódico y zonas anódicas

4. Preparación del soporte para revestir

La durabilidad y la eficacia de los sistemas de protección dependen en gran medida de las condiciones del soporte de hormigón. Antes de aplicar cualquier producto o sistema, es fundamental garantizar que el soporte cumpla las siguientes condiciones:

  • Limpieza: el soporte debe estar libre de polvo, aceites, sales u otros contaminantes que puedan afectar a la adherencia.
  • Porosidad: una porosidad adecuada garantiza la penetración del producto en el hormigón.
  • Secado: el soporte debe estar completamente curado, con al menos 28 días desde su fabricación.
  • Resistencia mecánica: el soporte debe tener una resistencia mínima al arrancamiento de 1,5 N/mm² para garantizar la adherencia del sistema protector.

5. Métodos de puesta en obra

La correcta aplicación de los sistemas de protección es crucial para garantizar su eficacia. Los métodos más comunes son los siguientes:

  • Aplicación con brocha o rodillo: método utilizado en pequeñas áreas o en productos de baja viscosidad.
  • Pulverización: método recomendado para grandes superficies o cuando se requiere una aplicación uniforme y rápida.
  • Técnicas específicas: en el caso de membranas gruesas, como los sistemas cementosos, se pueden aplicar con llana o mediante proyección.

6. Control de calidad y mantenimiento

Es fundamental realizar controles de calidad durante y después de la aplicación de los sistemas de protección. Esto incluye verificar las condiciones ambientales, el espesor de las capas aplicadas y la adherencia de los productos. Una vez completada la aplicación, deben realizarse inspecciones periódicas para garantizar que la protección sigue siendo efectiva. Además de los controles mencionados, se recomienda incluir:

  • Pruebas de adherencia y resistencia: son necesarios ensayos de tracción directa (UNE-EN 1542) y ensayos de resistencia a la difusión de gases para asegurar que el sistema cumple con las especificaciones.
  • Mantenimiento periódico: en función del tipo de sistema aplicado, es fundamental establecer un programa de inspecciones periódicas para detectar signos de desgaste o deterioro.

Conclusión

La correcta elección y aplicación de los productos y sistemas de protección superficial del hormigón es esencial para prolongar la vida útil de las estructuras y evitar daños costosos. El uso adecuado de impregnaciones, revestimientos y sistemas especializados puede mitigar los efectos de la carbonatación, la humedad, los ataques químicos y las fisuras, garantizando así la durabilidad y la funcionalidad del hormigón en diversas condiciones ambientales. La elección adecuada del sistema, la correcta preparación del soporte y la aplicación conforme a los estándares son esenciales para asegurar la durabilidad y el rendimiento del hormigón en diversas condiciones ambientales y de uso.

Os dejo algunos vídeos al respecto. Espero que os sean de interés.

También os dejo un folleto de MAPEI por si os resulta de interés.

Descargar (PDF, 1.06MB)

Referencias:

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Fabricación y puesta en obra del hormigón”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso en línea sobre “Fabricación y puesta en obra del hormigón”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-fabricacion-y-puesta-en-obra-del-hormigon/

 

 

Acerca de este curso

Este curso ofrece una visión completa sobre la fabricación y la puesta en obra del hormigón. No se requieren conocimientos previos específicos, ya que está diseñado para beneficiar a un amplio espectro de profesionales, tanto con experiencia como sin ella, así como a estudiantes de disciplinas relacionadas con la construcción, tanto en el ámbito universitario como en la formación profesional. El proceso de aprendizaje está estructurado de manera gradual, lo que permite a los participantes profundizar en los aspectos que más les interesen, apoyándose en material complementario y enlaces a recursos en línea, como vídeos y catálogos.

En este curso, adquirirás conocimientos fundamentales sobre la fabricación de hormigones y el uso de maquinaria relacionada, incluyendo centrales de hormigonado, transporte y bombeo de hormigón, cintas transportadoras, gunitado, colocación de hormigón bajo el agua y en condiciones de frío o calor, así como grandes vertidos, compactación por vibrado, hormigón al vacío, curado, juntas de construcción, hormigón precolocado y tipos de hormigón como el de fibra de vidrio, autocompactantes, compactados con rodillo y ligeros.

El enfoque principal del programa es comprender los principios que rigen la fabricación y la puesta en obra del hormigón, tanto prefabricado como ejecutado en obra, prestando atención a sus características más importantes y a los aspectos constructivos relevantes en ingeniería civil y edificación. El curso abarca un amplio espectro y profundiza en los fundamentos de la ingeniería de la construcción, además de destacar la importancia de fomentar el pensamiento crítico de los estudiantes, especialmente en relación con la selección de métodos, técnicas y maquinaria que se deben aplicar en situaciones concretas. Además, este curso trata de llenar el vacío que a menudo deja la bibliografía habitual y está diseñado para que los estudiantes puedan profundizar en los conocimientos adquiridos y adaptarlos a su experiencia previa o a sus objetivos personales y empresariales.

El contenido del curso se organiza en 50 lecciones, cada una de las cuales constituye una secuencia de aprendizaje completa. Además, se ofrece un amplio conjunto de problemas resueltos que complementan la teoría presentada en cada lección. Se estima que se necesitan entre dos y tres horas para completar cada lección, en función del interés del estudiante por profundizar en los temas mediante el material adicional proporcionado.

Al finalizar cada unidad didáctica, el estudiante se enfrenta a una serie de preguntas diseñadas para consolidar los conceptos fundamentales y fomentar la curiosidad sobre aspectos relacionados con el tema tratado. También se han diseñado tres unidades adicionales para reforzar los conocimientos adquiridos a través del desarrollo de casos prácticos, en los que se fomenta el pensamiento crítico y la capacidad para resolver problemas reales. Finalmente, al concluir el curso, se llevará a cabo un conjunto de preguntas tipo test con el objetivo de evaluar el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está diseñado para una dedicación total de 75 horas por parte del estudiante. Se busca mantener un ritmo moderado, con una dedicación semanal de aproximadamente 10 a 15 horas, en función del nivel de profundidad que cada estudiante desee alcanzar. La duración total del curso es de seis semanas de aprendizaje.

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria empleada en la fabricación del hormigón, tanto prefabricado como elaborado en obra
  2. Evaluar y seleccionar los procedimientos constructivos para la colocación del hormigón, atendiendo a criterios económicos y técnicos
  3. Conocer las buenas prácticas y los aspectos de seguridad implicados en el transporte, vertido, compactación y curado del hormigón
  4. Analizar las características específicas en la fabricación y colocación de hormigones especiales como los autocompactantes, ligeros, con fibras, precolocados, compactados con rodillo y otros.

Programa del curso

  • Lección 1. Fabricación de hormigones
  • Lección 2. Homogeneidad en la fabricación del hormigón
  • Lección 3. Amasado del hormigón
  • Lección 4. Amasadoras de hormigón
  • Lección 5. Centrales de fabricación de hormigón
  • Lección 6. Hormigoneras
  • Lección 7. Cálculo de la temperatura de fabricación del hormigón
  • Lección 8. Almacenamiento de áridos
  • Lección 9. Corrección de humedad de los áridos
  • Lección 10. Transporte del cemento
  • Lección 11. Silos fijos de cemento
  • Lección 12. Cemento para hormigones resistentes a sulfatos en cimentaciones
  • Lección 13. Carretillas manuales o a motor para el transporte del hormigón
  • Lección 14. Hormigonado con cubilote
  • Lección 15. Transporte del hormigón mediante cintas transportadoras
  • Lección 16. Colocación del hormigón mediante bombeo
  • Lección 17. Torres distribuidoras de hormigón
  • Lección 18. Problemas de bombeo de hormigón
  • Lección 19. Hormigón proyectado: gunitado
  • Lección 20. Recomendaciones para el vertido de hormigón
  • Lección 21. Trompas de elefante para la colocación del hormigón
  • Lección 22. Hormigonado con tubería Tremie
  • Lección 23. Técnicas de colocación del hormigón bajo el agua
  • Lección 24. Fabricación y colocación del hormigón en tiempo caluroso
  • Lección 25. Fabricación y colocación del hormigón en tiempo frío
  • Lección 26. Hormigonado en condiciones de viento
  • Lección 27. Vertido y compactación de hormigón en soportes de sección reducida
  • Lección 28. Grandes vertidos de hormigón
  • Lección 29. Razones para compactar el hormigón
  • Lección 30. Compactación manual del hormigón: picado y apisonado
  • Lección 31. Compactación del hormigón por vibrado
  • Lección 32. Vibradores de aguja para compactar el hormigón
  • Lección 33. Vibradores externos para encofrados de hormigón
  • Lección 34. Mesa vibrante de hormigón
  • Lección 35. Compactación del hormigón con regla vibrante
  • Lección 36. Compactación del hormigón por centrifugación
  • Lección 37. Hormigón al vacío
  • Lección 38. Alisadoras rotativas o fratasadoras
  • Lección 39. Revibrado del hormigón
  • Lección 40. Agrietamiento plástico durante el fraguado del hormigón: Nomograma de Menzel
  • Lección 41. Necesidad y fases del curado del hormigón
  • Lección 42. Curado de pavimentos y otras losas de hormigón sobre tierra
  • Lección 43. Curado al vapor del hormigón e índice de madurez
  • Lección 44. Hormigón de limpieza en fondos de excavación
  • Lección 45. Las juntas de construcción en el hormigón
  • Lección 46. Hormigón precolocado: Prepakt y Colcrete
  • Lección 47. Hormigón reforzado con fibra de vidrio
  • Lección 48. Hormigón autocompactante
  • Lección 49. Hormigones compactados con rodillo
  • Lección 50. Hormigones ligeros
  • Supuesto práctico 1.
  • Supuesto práctico 2.
  • Supuesto práctico 3.
  • Batería de preguntas final

Conozca a los profesores

Víctor Yepes Piqueras

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de 175  artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 17 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.

Lorena Yepes Bellver

Lorena Yepes Bellver es Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.

Métodos multicriterio: la clave para rehabilitar edificios vulnerables en zonas sísmicas

Un equipo de investigadores de la Universitat Politècnica de València y la Universidad Central del Ecuador ha llevado a cabo un análisis exhaustivo sobre los métodos de toma de decisiones multicriterio (MCDM) aplicados a la evaluación, selección y rehabilitación de edificios. Publicado en la prestigiosa revista Journal of Civil Engineering and Management, este artículo aborda una problemática clave en la ingeniería civil actual: cómo hacer frente al envejecimiento del parque de edificios, muchos de los cuales se construyeron siguiendo normativas de seguridad y sostenibilidad ya obsoletas.

La necesidad de abordar esta cuestión es urgente, dado que muchos edificios existentes no cumplen con los estándares actuales de seguridad, en particular respecto a su vulnerabilidad sísmica. Este factor es especialmente relevante en países con un alto riesgo, donde recientes terremotos han demostrado la fragilidad de las infraestructuras más antiguas. Además de las posibles pérdidas humanas, el impacto económico y social de estos eventos puede ser devastador.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Ecuador y España.

Contexto de la investigación

El envejecimiento del parque de edificios es un problema global que afecta tanto a países desarrollados como en vías de desarrollo. Muchos edificios antiguos se construyeron siguiendo normativas obsoletas que no tenían en cuenta los estándares de seguridad modernos, especialmente en lo que respecta al riesgo sísmico. A esto se suma la necesidad de hacer frente a desafíos medioambientales, como el impacto de la construcción en el consumo energético y las emisiones de CO₂. Ante esta situación, surge la necesidad de adoptar estrategias de rehabilitación que combinen la seguridad estructural con la sostenibilidad. La integración de factores sociales, económicos y ambientales en la toma de decisiones sobre la rehabilitación de edificios es fundamental para avanzar hacia un entorno construido más seguro y sostenible.

Metodología

La investigación se basa en una revisión bibliométrica de la literatura sobre los métodos MCDM aplicados a la evaluación y rehabilitación de edificios. Se analizaron 91 artículos publicados entre 2008 y 2023, utilizando bases de datos especializadas como Web of Science y SCOPUS. Los estudios seleccionados abordan tanto la evaluación de la vulnerabilidad de los edificios como la selección de estrategias de rehabilitación, con un enfoque particular en edificios escolares y patrimoniales, que suelen estar más expuestos a riesgos debido a su antigüedad o importancia cultural.

Se evaluaron las tendencias en el uso de los métodos MCDM y se identificaron investigaciones clave que han logrado evaluar de manera conjunta el consumo energético y la vulnerabilidad sísmica. Estas investigaciones destacan la necesidad de contar con metodologías que permitan evaluar múltiples factores de manera simultánea y en contextos de incertidumbre, especialmente cuando se trata de estructuras vulnerables, como las escuelas y los edificios patrimoniales, que requieren un enfoque especializado tanto por su valor cultural como por su complejidad estructural. Los investigadores clasificaron los diferentes métodos MCDM más utilizados, como el Proceso de Análisis Jerárquico (AHP), el Simple Additive Weighting (SAW) y el TOPSIS. Cada método se evaluó en función de su capacidad para integrar criterios contradictorios, como la seguridad estructural, el impacto económico, social y ambiental.

Resultados

El estudio revela la prevalencia de ciertos métodos clásicos en la investigación científica, como el ya mencionado AHP, que se ha combinado en muchos estudios con TOPSIS, un enfoque que permite identificar soluciones óptimas al considerar tanto la distancia a una solución ideal como a una no ideal. Este enfoque se ha aplicado tanto a la selección de edificios que requieren intervenciones urgentes como a la identificación de estrategias de rehabilitación más eficaces. Estos métodos permiten ponderar diversos criterios y encontrar soluciones que maximicen la seguridad y la sostenibilidad. Entre los principales hallazgos destacan:

  • Evaluación de la vulnerabilidad: Se ha aplicado MCDM para evaluar la vulnerabilidad de los edificios en zonas urbanas, con un enfoque particular en las escuelas y los edificios patrimoniales. En muchos casos, los estudios integraron criterios de vulnerabilidad sísmica con aspectos socioeconómicos y ambientales.
  • Selección de estrategias de rehabilitación: El estudio identificó tres enfoques principales en la rehabilitación de edificios: la intervención en componentes individuales, la adición de elementos de resistencia y la reducción de demandas estructurales mediante dispositivos suplementarios. La combinación de sostenibilidad y seguridad ha sido un aspecto clave en estos estudios.
  • Sostenibilidad: Si bien muchos estudios ya integran criterios de sostenibilidad, solo un porcentaje menor (15 %) incorpora análisis del ciclo de vida (LCA), una herramienta crucial para medir el impacto ambiental de las intervenciones a largo plazo.

Implicaciones

Las conclusiones de este trabajo tiene importantes implicaciones tanto para la práctica de la ingeniería civil como para las políticas públicas. La aplicación de métodos MCDM permite a los ingenieros y a los responsables de la toma de decisiones considerar una variedad de factores antes de seleccionar una estrategia de rehabilitación para un edificio. Esto es particularmente relevante en áreas con alto riesgo sísmico, donde la rehabilitación de edificios vulnerables puede salvar vidas y reducir las pérdidas económicas.

Además, la integración de criterios de sostenibilidad subraya la importancia de las políticas que promuevan rehabilitaciones que no solo refuercen la seguridad, sino que también reduzcan el impacto ambiental. Los resultados del estudio sugieren que las futuras investigaciones deberían centrarse en la creación de metodologías más avanzadas que manejen mejor la incertidumbre y que logren una verdadera integración de los pilares de sostenibilidad (económico, social y ambiental) con los criterios de seguridad estructural.

En resumen, este estudio ofrece una perspectiva innovadora sobre la forma en que los métodos MCDM pueden ayudar a afrontar los retos actuales en la rehabilitación de edificios. Su aplicación no solo mejora la seguridad de las infraestructuras, sino que también permite avanzar hacia un modelo de construcción más sostenible y eficiente. Sus recomendaciones son claras: es necesario seguir investigando para mejorar las soluciones de toma de decisiones que integren de manera efectiva la seguridad estructural y la sostenibilidad. Esto es fundamental no solo para garantizar la seguridad de los edificios, sino también para asegurar que las futuras generaciones puedan disfrutar de un entorno construido que sea resiliente, seguro y sostenible.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). A review of multi-criteria decision-making methods for building assessment, selection, and retrofit. Journal of Civil Engineering and Management, 30(5):465-480. DOI:10.3846/jcem.2024.21621

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 1.66MB)

Nuevo estudio propone solución clave para reducir la huella de carbono en grandes proyectos de construcción internacionales

Un estudio innovador, titulado «Research on coupling optimization of carbon emissions and carbon leakage in international construction projects» y publicado en la prestigiosa revista Scientific Reports, aborda un desafío crítico para la construcción internacional: cómo optimizar las emisiones y las fugas de carbono en grandes proyectos de infraestructura.

Liderado por Zhiwu Zhou, de la Hunan University of Science and Engineering, y colaboradores como Víctor Yepes de la Universitat Politècnica de València, el artículo desarrolla un modelo matemático avanzado para analizar y predecir las emisiones de carbono a lo largo de todo el ciclo de vida de los proyectos de construcción en diferentes países. Este estudio es especialmente relevante en un contexto donde la globalización y el comercio internacional están impulsando el crecimiento económico, pero también contribuyendo de manera significativa al cambio climático.

Contexto y relevancia del estudio

El fenómeno conocido como «fuga de carbono» se ha convertido en un problema clave en la lucha contra el cambio climático. Este término se refiere al traslado de actividades productivas intensivas en carbono desde países con regulaciones estrictas sobre emisiones a países con normativas más laxas, lo que, paradójicamente, puede aumentar las emisiones globales. A medida que los países desarrollados implementan políticas más estrictas para reducir sus emisiones, existe la preocupación de que esto pueda incentivar a las empresas a trasladar su producción a países en desarrollo, exacerbando el problema en lugar de solucionarlo.

La construcción es uno de los sectores que más contribuye a las emisiones de carbono a nivel mundial. De hecho, la infraestructura está vinculada al 50 % de las emisiones globales, y se prevé que la inversión en infraestructuras alcance los 94000 millones de dólares para 2040, lo que pone de manifiesto la importancia de abordar el problema en este sector. El estudio de Zhou y su equipo se centra en ofrecer una herramienta para medir y mitigar la fuga de carbono en los grandes proyectos internacionales de construcción.

Metodología del estudio

La investigación combina una revisión bibliográfica extensa con el desarrollo de un modelo matemático que tiene en cuenta múltiples factores de incertidumbre asociados a los proyectos internacionales. Para analizar las emisiones y fugas de carbono, los investigadores emplearon bases de datos de cadenas de suministro reconocidas a nivel internacional, como Ecoinvent y OpenLCA, conforme a los estándares ISO 14040 e ISO 14044. Estas bases de datos permiten rastrear el ciclo de vida completo de los materiales y la energía utilizados en un proyecto, desde la extracción de materias primas hasta el transporte, la construcción y la eventual demolición.

El estudio utilizó como caso práctico un importante proyecto de infraestructura: el puente transnacional China-Indonesia, un proyecto internacional clave gestionado bajo el modelo EPC (ingeniería, contratación y construcción). Este puente, que conecta ambos países, se convirtió en un ejemplo ideal para analizar la huella de carbono debido a su complejidad técnica y logística, así como su impacto transnacional. El análisis de este caso permitió a los autores validar la robustez de su modelo teórico.

Resultados más destacados

Uno de los hallazgos más importantes del estudio es la notable diferencia en la huella de carbono entre los países exportadores e importadores. En el caso del puente China-Indonesia, los datos revelaron que la proporción de emisiones de carbono entre los países exportadores e importadores era de 0,577:100, lo que indica que los países que producen materiales y maquinaria (en este caso, China) soportan una mayor parte de la carga de emisiones. Esto sugiere que los países importadores, que son los principales beneficiarios de los proyectos de infraestructura, deberían asumir una mayor responsabilidad en la compensación de estas emisiones.

Además, el estudio pone de relieve que la utilización de acero, cemento y otros materiales intensivos en carbono es una de las principales fuentes de emisiones en los proyectos de construcción internacionales. Sin embargo, los resultados mostraron que optimizar la cadena de suministro y aplicar técnicas de transporte más eficientes pueden reducir significativamente estas emisiones. Por ejemplo, el uso de transporte marítimo en lugar de aéreo o terrestre para mover grandes volúmenes de materiales redujo las emisiones de manera sustancial.

Otro resultado clave es que la fuga de carbono no solo se produce durante la fase de construcción, sino también a lo largo de todo el ciclo de vida del proyecto, desde el diseño hasta la demolición. Las emisiones asociadas al diseño, el transporte y el montaje de los materiales también representan una parte significativa del impacto ambiental total de los proyectos.

Implicaciones del estudio

Este estudio tiene importantes implicaciones para los responsables políticos y las empresas constructoras. En primer lugar, los autores destacan la necesidad de desarrollar políticas más eficaces para gestionar la fuga de carbono en el comercio internacional. Las políticas actuales, como los ajustes en las fronteras de carbono (Carbon Border Adjustment Mechanisms, CBAM), son un buen paso hacia la reducción de la fuga de carbono, pero no son suficientes si no se aplican de manera coordinada a nivel global. Los investigadores sugieren que las empresas que participan en proyectos internacionales de construcción deben tener en cuenta no solo el coste económico, sino también el impacto ambiental y la huella de carbono de sus operaciones.

Por otro lado, el estudio subraya la importancia de optimizar las cadenas de suministro internacionales para reducir las emisiones de carbono. Esto implica seleccionar cuidadosamente los materiales, gestionar de manera eficiente el transporte y adoptar tecnologías más limpias durante el proceso de construcción. Los investigadores argumentan que los esfuerzos por reducir las emisiones deben extenderse a todas las fases del proyecto, no solo a la construcción, y que las empresas deben colaborar más estrechamente con los gobiernos para diseñar estrategias eficaces de mitigación del carbono.

Conclusiones

En resumen, el estudio ofrece una herramienta valiosa para evaluar y mitigar las emisiones y fugas de carbono en proyectos de construcción internacionales. Al utilizar un enfoque matemático riguroso y bases de datos internacionales de alto nivel, este trabajo proporciona un marco científico sólido para ayudar a los gobiernos y a las empresas a tomar decisiones más informadas sobre cómo reducir el impacto ambiental de sus proyectos.

Este enfoque no solo es relevante para los proyectos de infraestructura a gran escala, sino que también tiene el potencial de influir en la forma en que las políticas de carbono se diseñan e implementan a nivel global. La investigación concluye que, aunque los costes iniciales de adoptar prácticas más sostenibles pueden ser elevados, los beneficios a largo plazo, tanto en términos económicos como ambientales, justifican plenamente esta inversión.

Referencia:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 10.82MB)

Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 8.18MB)

Nueva investigación cuantifica por primera vez el valor económico de los paisajes en la gestión de los puertos deportivos

Puerto deportivo Marina del Este. Imagen: R. Martín

Un estudio innovador, titulado «Valuation of landscape intangibles: Influence on the marina management» recientemente publicado en la prestigiosa revista Ocean and Coastal Management, aborda un tema de gran relevancia en la gestión de los puertos deportivos: la valoración económica de los intangibles paisajísticos, un factor clave pero a menudo subestimado en la planificación y sostenibilidad de las infraestructuras costeras.

La investigación, liderada por Ricardo Martín y Víctor Yepes, de la Universidad Politécnica de Valencia, emplea un enfoque innovador para cuantificar cómo las características no tangibles del paisaje, como las vistas al mar, la tranquilidad y la exclusividad, influyen en el valor económico de los puertos deportivos y su entorno.

Contexto de la investigación

Las áreas costeras albergan una interacción compleja entre los elementos naturales y las actividades humanas, generando paisajes únicos que combinan belleza escénica y oportunidades económicas, particularmente en sectores como el turismo náutico. Los puertos deportivos, además de ofrecer servicios para embarcaciones, actúan como puntos de entrada para descubrir el entorno costero, lo que convierte el paisaje en un activo fundamental para su gestión y rentabilidad. Sin embargo, hasta ahora no existía una metodología clara para poner en valor los elementos intangibles del paisaje, como las vistas o la serenidad de una ubicación, que no se transaccionan directamente en el mercado.

El propósito de esta investigación es llenar ese vacío, proporcionando un enfoque cuantitativo para medir estos intangibles paisajísticos y su impacto en el valor global de los puertos deportivos. Este trabajo se desarrolla en la Marina del Este, en La Herradura (Granada), un enclave que combina el atractivo natural del Mediterráneo con una ubicación estratégica entre montañas y el mar.

Metodología empleada

La investigación utilizó el método de precios hedónicos (HPM, por sus siglas en inglés) para estimar el valor económico de los elementos paisajísticos intangibles de la Marina del Este. Los precios hedónicos permiten desglosar el valor de una propiedad en función de atributos específicos, tanto estructurales (número de habitaciones, tamaño de la terraza, presencia de aire acondicionado) como intangibles (proximidad a la playa, vistas panorámicas al mar o a las montañas). Se recopilaron datos sobre las transacciones inmobiliarias de la zona durante el año 2023, analizando un total de 97 propiedades.

Además de las características físicas de las viviendas, se tuvieron en cuenta factores como la distancia al mar, la tranquilidad del entorno y la exclusividad de la zona. Estos factores, aunque no se comercializan directamente, influyen en las decisiones de compra y en el valor percibido de las propiedades.

Puerto deportivo Marina del Este. Imagen: R. Martín

Resultados

Los resultados del estudio indican que los elementos intangibles del paisaje, como las vistas al mar y la cercanía a la playa, son factores determinantes a la hora de valorar las propiedades costeras. Los compradores valoran altamente estas características, lo que incrementa notablemente el precio de las viviendas que cuentan con ellas. Por ejemplo, la proximidad a la playa puede aumentar el precio de una vivienda en un 0,21 % por cada 1 % que se reduce la distancia, y las vistas amplias al mar pueden incrementar su valor hasta en un 14 %.

El análisis reveló que los activos intangibles paisajísticos representan más de 2,4 millones de euros, lo que equivale al 7,91 % del valor total de la marina. Este valor destaca la importancia económica de elementos intangibles que a menudo se pasan por alto en la gestión tradicional de infraestructuras costeras.

Implicaciones

Esta investigación tiene importantes implicaciones tanto para los gestores de los puertos deportivos como para los responsables de políticas paisajísticas. Los gestores pueden utilizar esta metodología para cuantificar el valor de los elementos intangibles del paisaje en sus decisiones de planificación y desarrollo. Si no se preservan adecuadamente, estos elementos pueden provocar una disminución en el valor del puerto deportivo, lo que afectaría tanto a su atractivo como a sus posibles ingresos.

Por otro lado, los responsables de las políticas paisajísticas y urbanísticas tienen en este estudio una herramienta clave para medir el impacto económico de sus decisiones sobre el entorno costero. La conservación de los paisajes y sus características intangibles no solo es esencial para preservar el atractivo turístico y el bienestar de los residentes, sino también para impulsar el desarrollo económico sostenible de las zonas costeras.

En conclusión, este estudio aporta una perspectiva novedosa sobre la importancia de los intangibles paisajísticos en la valoración y gestión de los puertos deportivos. Al demostrar que estos factores influyen de manera significativa en el valor económico de estas infraestructuras, abre nuevas vías para integrar la sostenibilidad y la valoración del paisaje en la toma de decisiones en el ámbito costero.

Referencia:

MARTÍN, R.; YEPES, V. (2024). Valuation of landscape intangibles: Influence on the marina management. Ocean & Coastal Management, 259, 107416. DOI:10.1016/j.ocecoaman.2024.107416

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 4.28MB)

Edificios modulares de acero: una opción sostenible y resistente en zonas sísmicas

Un estudio reciente, titulado «Life cycle assessment of seismic resistant prefabricated modular buildings» y publicado en la prestigiosa revista Heliyon, ha evaluado los beneficios de los edificios modulares prefabricados (PVMB) diseñados para resistir terremotos.

La investigación, liderada por expertos de la Universitat Politècnica de València y la Universidad Central del Ecuador, se llevó a cabo en el marco del proyecto RESILIFE y comparó cuatro sistemas estructurales, tres de ellos basados en tecnología modular (dos de hormigón armado y uno de acero), y un sistema convencional de hormigón armado in situ, en una zona de alto riesgo sísmico.

El análisis tuvo en cuenta tanto los impactos económicos como ambientales a lo largo de todo el ciclo de vida de los edificios, desde la fabricación hasta la fase final de demolición.

 

Contexto del estudio

El sector de la construcción es responsable de una parte importante del consumo de recursos y de las emisiones de gases de efecto invernadero a nivel global. Dado que el crecimiento poblacional y la demanda de infraestructuras siguen aumentando, las tecnologías como los edificios modulares prefabricados ofrecen una alternativa innovadora para reducir el impacto ambiental. Estos sistemas, que permiten construir fuera del emplazamiento y ensamblar los módulos en la obra, prometen reducir los tiempos y los costes de construcción en un 50 % y un 30 %, respectivamente, lo que los convierte en una opción atractiva en términos de sostenibilidad y eficiencia.

Sin embargo, la adopción de estas tecnologías en áreas sísmicas aún se enfrenta a barreras, principalmente por la necesidad de demostrar su capacidad para resistir cargas sísmicas y por la percepción de altos costes iniciales. Por ello, el estudio se centró en realizar un análisis integral de la vida útil para cuantificar estos beneficios y compararlos con las técnicas de construcción convencionales.

Metodología

El estudio evaluó un hospital de cuatro pisos situado en Quito, Ecuador, una región con un alto nivel de actividad sísmica debido a la presencia de dos fuentes principales de terremotos: una zona de subducción y un sistema de fallas activas. Se evaluaron cuatro soluciones estructurales:

  1. Un sistema convencional de hormigón armado construido in situ.
  2. Un sistema modular de hormigón armado con conexiones húmedas (prefabricación con ensamblaje mediante hormigonado en obra).
  3. Un sistema modular de hormigón armado con conexiones secas (ensamblaje mediante pernos y juntas metálicas).
  4. Un sistema modular de acero.

El análisis abarcó las etapas de fabricación, construcción, uso y fin de vida, y evaluó tanto el impacto ambiental como el coste económico. Para ello, se utilizaron indicadores como la cantidad de materiales empleados, las emisiones de gases de efecto invernadero y los costes asociados a cada etapa, desde la producción de los módulos hasta su mantenimiento y demolición.

Resultados principales

Los resultados revelaron que, aunque el sistema modular de acero es el más costoso en términos de construcción inicial (un 60 % más caro que el sistema convencional), presenta los mejores resultados en términos de sostenibilidad. Este sistema mostró una reducción significativa en los impactos ambientales, con una disminución del 43 % en las emisiones de gases de efecto invernadero en comparación con el sistema tradicional de hormigón. Además, los ciclos de mantenimiento fueron menores, lo que implica una mayor durabilidad y menos intervenciones durante su vida útil.

Por otro lado, las alternativas de hormigón modular, si bien también ofrecían beneficios en cuanto a reducción del tiempo de construcción, presentaban mayores impactos ambientales debido al uso intensivo de hormigón y acero de refuerzo. De hecho, el sistema modular con conexiones húmedas resultó ser el menos favorable desde el punto de vista ambiental, con un impacto un 52 % mayor que el sistema convencional.

Implicaciones del estudio

Este trabajo tiene importantes implicaciones para la construcción en zonas sísmicas. Los autores sugieren que los métodos de construcción modulares no solo son viables desde el punto de vista técnico, sino también en términos de sostenibilidad ambiental, siempre y cuando se adopten las soluciones más eficientes, como el uso de estructuras de acero. Aunque los sistemas modulares de acero son más caros, ofrecen ventajas claras en cuanto a durabilidad, menor impacto ambiental y reducción de los costos de mantenimiento a lo largo de su vida útil.

El estudio también pone de relieve la importancia de evaluar no solo los costes iniciales de construcción, sino todo el ciclo de vida de las infraestructuras. Las decisiones basadas únicamente en el precio de construcción pueden dar como resultado infraestructuras menos sostenibles a largo plazo, mientras que un enfoque integral, que tenga en cuenta el impacto ambiental y los costes futuros, puede conducir a mejores decisiones tanto para el medio ambiente como para la economía.

Conclusiones

En resumen, este estudio aporta valiosas evidencias a favor del uso de edificios modulares prefabricados, especialmente en zonas de alto riesgo sísmico. Los resultados indican que el uso de sistemas modulares de acero puede ser clave para mejorar la sostenibilidad de las infraestructuras, reducir las emisiones y asegurar una mayor durabilidad de los edificios. Las conclusiones de esta investigación son relevantes no solo para el ámbito académico, sino también para los responsables de las políticas públicas y los profesionales de la construcción que buscan soluciones más sostenibles y eficientes para las ciudades del futuro.

Referencia:

GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). Life cycle assessment of seismic resistant prefabricated modular buildingsHeliyon, 10(20), e39458. DOI:10.1016/j.heliyon.2024.e39458

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 7.1MB)