Unidades VSM (Vertical Shaft Sinking Machine) para perforación de pozos

Figura 1. Simulación de la Vertical Shaft Sinking Machine (VSM) de Herrenknetch trabajando con el pozo inundado a través de un terreno blando (cortesía de Herrenknetch).

Las unidades VSM (Vertical Shaft Sinking Machine) son equipos mecanizados diseñados para la construcción de pozos verticales en condiciones difíciles, como terrenos blandos intercalados con materiales más estables, suelos con resistencias a la compresión de hasta 140 MPa, presencia de aguas subterráneas o espacios confinados. Se utilizan en proyectos de túneles, accesos subterráneos, minería y soluciones urbanas, como aparcamientos subterráneos.

La VSM fue desarrollada por fabricantes como Herrenknecht a mediados de la década de 2000 y su uso se ha extendido internacionalmente debido a las ventajas en materia de seguridad y productividad que ofrece frente a los métodos convencionales. Su diseño modular le permite adaptarse a diferentes diámetros y profundidades, y su capacidad para operar en entornos urbanos y espacios confinados ha sido fundamental en proyectos como el sistema de túneles de Singapur y el metro de Nápoles.

 

Componentes principales:

Una unidad VSM se compone de:

  1. La VSM propiamente dicha, que incluye el bastidor, el cabezal de corte o tambor rozador equipado con picas y el brazo giratorio telescópico con capacidad de extensión de aproximadamente 1 m, que permite la excavación por «rebanadas» mediante un giro de 360°.
  2. Elementos auxiliares externos, encargados de controlar el descenso y la estabilidad, como zapatas de apoyo, winches y sistemas de control.

Estas máquinas suelen ser modulares y se adaptan al diámetro y a la profundidad requeridos. También pueden incorporar sistemas de monitorización digital para controlar el par de corte, el consumo de energía y las propiedades del lodo durante la excavación. Además, algunos modelos incluyen sensores avanzados que permiten predecir el desgaste de las picas y optimizar el rendimiento energético, lo que incrementa la eficiencia en obras de gran profundidad.

Figura 2. Elementos principales del Vertical Shaft Sinking Machine (VSM) de Herrenknetch (cortesía de Herrenknetch).

Proceso constructivo

El procedimiento de excavación y construcción con VSM consta de varias fases:

  • Inicio y excavación: la máquina se instala en el pozo de ataque y se fija a las paredes mediante brazos estabilizadores. El tambor rozador excava justo por debajo del anillo inferior metálico, facilitando el descenso de la estructura de hormigón.
  • Evacuación del material: el material excavado (detritos) se mezcla con agua para formar lodos, que son extraídos mediante bombas sumergibles de 200–400 m³/h. Posteriormente, los lodos se conducen a una planta de tratamiento externa, donde se separa el agua y se acondiciona el material sobrante para su gestión. En proyectos recientes, se ha implementado un sistema de reciclaje de lodos que reduce el consumo de agua hasta en un 40 %.
  • Estructura del pozo: el anillo inferior es de acero biselado, permitiendo que los anillos de hormigón se deslicen a medida que avanza la excavación. Los anillos prefabricados de hormigón se añaden desde la superficie y son empujados por cilindros hidráulicos (3 o 4 unidades habituales), conectados a través de cables de acero que soportan el peso total de la estructura.
  • Coordinación excavación-anillado: la excavación, el bombeo de ripios y el montaje de anillos deben sincronizarse cuidadosamente para evitar paradas prolongadas que comprometan la estabilidad del pozo. En obras internacionales, se ha documentado la integración de software de control automatizado que permite coordinar en tiempo real la excavación, el bombeo y el anillado, lo que aumenta la seguridad y reduce los retrasos.

Rendimientos y capacidades

  • Diámetros: las VSM pueden construir pozos de entre 4,5 y 19 m, en función del modelo y de las condiciones de la obra.
  • Profundidad: habitualmente alcanzan profundidades de hasta 85 m en terrenos heterogéneos, con registros documentados en proyectos internacionales.
  • Avance: la tasa de excavación varía entre 1 y 5 m/día, en función de la geología, el diámetro y el estado hidrogeológico. En terrenos blandos o con alta presencia de agua, el avance puede ser menor debido al mayor control de lodos requerido.

Gestión de lodos y sellado

Durante la excavación, el pozo permanece inundado con lodos bentoníticos, que garantizan la presión hidrostática y evitan derrumbes. Una vez alcanzada la profundidad final, se extrae el lodo y se procede a la instalación de la tubería.

  • El fondo del pozo se sella con un tapón de hormigón mientras permanece inundado.
  • El espacio anular se rellena con lechada de cemento.
  • Finalmente, se evacúa el lodo residual para dejar el pozo listo para su uso. Algunos proyectos incorporan sensores que monitorizan la presión y la composición del lodo durante la instalación del tapón para garantizar la integridad estructural.

Comparativa y ventajas

Frente a otros métodos de excavación vertical, como las Shaft Boring Machines (SBM), la VSM destaca por:

  • Montaje compacto y aplicabilidad en entornos urbanos.
  • Mayor seguridad al reducir la intervención manual en el frente.
  • Alta productividad en diámetros medianos y grandes con suelos blandos o saturados.

No obstante, la elección entre VSM y otras tecnologías depende de parámetros como el diámetro requerido, la profundidad y las condiciones geológicas.

Conclusión

Las VSM son una solución mecanizada, eficiente y segura para la construcción de pozos de gran diámetro en condiciones complejas. Su modularidad, su capacidad para operar en suelos saturados y la posibilidad de integrar tecnologías digitales de control las convierten en una herramienta esencial en proyectos de infraestructuras, minería y entornos urbanos. El uso de sensores avanzados y sistemas de control automatizado permite optimizar el rendimiento, aumentar la seguridad y reducir el impacto medioambiental de los proyectos a gran escala.

Os dejo algunos vídeos al respecto de esta máquina:

Referencias

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Transporte hidráulico de pulpas: fundamentos y práctica

El transporte hidráulico de pulpas es un tema esencial en ingeniería de procesos y de minas. La operación de mover sólidos suspendidos en agua mediante tuberías y bombas no solo conecta las diferentes etapas de un proceso, como la molienda, la clasificación, la flotación o la disposición de relaves, sino que también influye en gran medida en los costes de operación, la eficiencia energética y la vida útil de los equipos. Por tanto, es fundamental que los estudiantes de Ingeniería comprendan sus principios y métodos de diseño.

En este artículo se presentan de manera ordenada los conceptos principales: qué es una pulpa, cómo se clasifican, qué tipos de bombas se emplean, cómo se estiman las pérdidas y la altura dinámica total, qué significa la velocidad crítica para evitar la sedimentación, cómo se analiza la cavitación y, por último, cómo se selecciona la bomba adecuada. No obstante, se aconseja un estudio más profundo del tema, atendiendo a las referencias.

1. La pulpa: naturaleza y propiedades

Una pulpa es una mezcla de agua y partículas sólidas en suspensión. Esta definición simple oculta una gran variedad de comportamientos. La forma en que la pulpa fluye depende de varios factores:

  • Concentración de sólidos: se mide en peso o volumen. A bajas concentraciones, la mezcla se comporta parecido al agua. A concentraciones altas, la viscosidad aumenta y pueden aparecer comportamientos no newtonianos (el fluido ya no responde de manera lineal al esfuerzo aplicado).

  • Tamaño de partícula: si la mayoría de las partículas son muy finas (menores a 75 micras), la pulpa tiende a ser homogénea, sin sedimentación marcada. Si predominan partículas gruesas, la pulpa es heterogénea, con riesgo de deposición.

  • Densidad de las partículas: minerales como la magnetita o la galena, con densidades altas, hacen que la pulpa sea más pesada y requiera mayor energía para su transporte.

  • Forma de las partículas: las partículas angulosas o irregulares causan más desgaste que las esféricas.

  • Viscosidad del líquido portador: en la mayoría de los casos es agua, pero a veces se emplean soluciones que alteran la viscosidad.

Estas propiedades son críticas porque determinan tanto la potencia que necesitará la bomba como la durabilidad de los componentes.

2. Bombas para pulpas: tipos y características

El transporte de pulpas se realiza en la gran mayoría de casos con bombas centrífugas, adaptadas a condiciones abrasivas y, a veces, corrosivas. Existen distintos tipos:

  • Bombas horizontales centrífugas: las más comunes en minería y procesos. Permiten gran variedad de caudales y alturas.

  • Bombas verticales: incluyen las de tanque y las de sumidero. Se usan cuando el nivel de pulpa varía mucho o cuando es conveniente sumergir parte de la bomba.

  • Bombas sumergibles: cada vez más empleadas en aplicaciones de drenaje de pulpas.

  • Bombas de desplazamiento positivo: útiles cuando se manejan pulpas muy viscosas o cuando se requiere caudal casi constante independientemente de la presión.

https://www.mogroup.com/es/informacion/e-books/manual-de-bombas–para-pulpa/

Un aspecto importante de las bombas de pulpa es su construcción robusta: impulsores anchos, ejes más gruesos, rodamientos de gran capacidad y, sobre todo, sistemas de sellado capaces de resistir condiciones adversas. Los sistemas de sellado pueden ser dinámicos (aprovechan la propia presión de la pulpa), mecánicos (son caros, pero muy seguros) o de empaquetadura (son los más comunes y requieren mantenimiento frecuente).

3. Materiales de construcción y desgaste

El desgaste es el enemigo número uno de las bombas de pulpa. Cada partícula de mineral en movimiento actúa como un proyectil microscópico que impacta contra las superficies internas de la bomba. Por ello, los materiales deben escogerse con cuidado.

  • Elastómeros (como goma natural o poliuretanos): absorben impactos y funcionan bien con partículas finas o blandas.

  • Metales endurecidos: hierro alto en cromo o aceros especiales resisten abrasión cortante, como la producida por partículas de cuarzo.

  • Cerámicos: extremadamente duros y duraderos, pero frágiles y costosos, usados en condiciones extremas.

La selección no es trivial, ya que depende del tamaño y la forma de las partículas, su concentración, la corrosión química del medio y la temperatura. Elegir bien el material puede duplicar o triplicar la vida útil de la bomba.

4. Altura dinámica total y pérdidas en el sistema

Para que una bomba funcione adecuadamente, debe entregar una altura dinámica total (TDH) que cubra:

  1. Altura estática: diferencia de nivel entre el depósito de aspiración y el de descarga.

  2. Pérdidas por fricción en la tubería: dependen de la longitud, el diámetro, la rugosidad y la velocidad del flujo.

  3. Pérdidas en accesorios: codos, válvulas, reducciones.

  4. Energía cinética: asociada a la velocidad del flujo en salida y entrada.

En el caso del agua, las pérdidas por fricción pueden calcularse mediante fórmulas empíricas o a través de la relación de Darcy-Weisbach, que tiene en cuenta la velocidad, el diámetro y un coeficiente de fricción que se obtiene del diagrama de Moody. En pulpas, sin embargo, estas correlaciones deben corregirse, ya que los sólidos aumentan la resistencia al flujo. Existen diagramas experimentales, como los de Warman, que ayudan a calcular los factores de corrección.

5. Velocidad crítica y sedimentación

Uno de los problemas más graves del transporte de pulpas es la sedimentación. Si la velocidad del flujo desciende por debajo de un valor crítico, las partículas comienzan a depositarse en el fondo de la tubería, lo que puede provocar obstrucciones o un desgaste desigual.

Este valor crítico, conocido como velocidad de Durand, depende de tres factores principales: el tamaño característico de las partículas, la densidad relativa del sólido respecto al agua, y el diámetro de la tubería. En pocas palabras:

  • Cuanto más grandes y densas son las partículas, mayor debe ser la velocidad.

  • Cuanto mayor es el diámetro de la tubería, menor es la velocidad necesaria para mantener las partículas en suspensión.

Mantener la velocidad por encima de este límite garantiza un flujo homogéneo y minimiza el riesgo de sedimentación.

6. Cavitación y NPSH

La cavitación es otro fenómeno que puede poner en peligro la operación segura. Ocurre cuando la presión de entrada de la bomba cae por debajo de la presión de vapor del líquido. En ese momento, se forman burbujas que, al colapsar dentro del impulsor, generan ondas de choque que dañan el material, producen ruido y reducen la eficiencia.

Para evitarlo, se calcula la altura positiva neta de aspiración disponible (NPSHa), que debe ser siempre mayor que la NPSH requerida (NPSHr) por la bomba. En términos prácticos:

  • El sistema debe garantizar suficiente presión en la succión de la bomba.

  • Se recomienda dejar un margen de seguridad adicional (entre 0,5 y 1 metro, o entre 10% y 35% según las guías de diseño).

Determinación del máximo caudal aspirable desde el punto de vista de la cavitación

7. Selección de la bomba

El procedimiento para elegir una bomba de pulpas sigue varios pasos:

  1. Definir caudal y condiciones de operación.

  2. Calcular la TDH real para la pulpa, incluyendo pérdidas.

  3. Convertir la TDH de pulpa a su equivalente en agua, usando factores de corrección.

  4. Consultar curvas de fabricante (Q–H–Eficiencia) y ubicar el punto de operación.

  5. Comprobar potencia requerida, eficiencia, NPSH y velocidad de rotación.

  6. Verificar materiales y opciones de sellado según la abrasividad y corrosión del medio.

Hoy en día, programas de cálculo como Pipe-Flo, AFT Fathom o WinCAPS ayudan a realizar estas estimaciones de manera más ágil, permitiendo simular condiciones de operación variables.

8. Consejos prácticos de operación

  • Mantener velocidades mínimas de 2–3 m/s en descarga y no menos de 1–2 m/s en aspiración (ajustadas según la naturaleza de la pulpa).

  • Usar tuberías lo más rectas posibles y minimizar codos bruscos.

  • Monitorear continuamente el desgaste de revestimientos e impulsores.

  • Planificar un stock de repuestos críticos: el tiempo de parada por una bomba fuera de servicio puede ser muy costoso.

  • Vigilar el NPSH disponible en condiciones de nivel mínimo en el depósito de succión.

9. Reflexión final

El transporte hidráulico de pulpas es un campo en el que confluyen la mecánica de fluidos, la ciencia de materiales y el diseño de equipos. Para los estudiantes de ingeniería, dominar estos fundamentos no solo es esencial para aprobar una asignatura, sino también para resolver problemas reales en los sectores de la minería, la metalurgia, la química e incluso en algunas industrias ambientales.

La clave es comprender que detrás de cada fórmula hay un concepto físico claro: mantener las partículas en suspensión, reducir las pérdidas de energía, evitar la cavitación y prolongar la vida útil de los equipos.

Referencias:

  • Abulnaga, B. E. (2002). Slurry Systems Handbook. McGraw-Hill.

  • ANEFA. (2020). Manual de áridos: Parámetros hidráulicos y de bombeo. Asociación Nacional de Empresarios Fabricantes de Áridos.

  • Bouso, J. L. (1993). Manual de bombeo de pulpas. ERAL, Equipos y Procesos S.A.

  • Bouso, J. L. (1998). El hidrociclón… Lo que siempre quiso saber y no encontró en los libros. Americas Mining.

  • Grzina, A., Roudnev, A., & Burgess, K. E. (2002). Weir slurry pumping manual (1.ª ed.). Weir International.

  • Martínez-Pagán, P. (2025). Transporte hidráulico: Bombeo de pulpas. Apuntes del 3er curso GIRME ingeniería minera. Universidad Politécnica de Cartagena.
  • Metso Outotec. (2020). Slurry pump handbook (8.ª ed.). Metso Minerals (Sala) AB. Recuperado de http://www.metso.com/pumps

  • Volk, M. (2013). Pump characteristics and applications (3.ª ed.). CRC Press. https://doi.org/10.1201/b15559

  • Warman, L. (2000). Warman slurry pumping handbook. Warman International.

  • Yepes, V. (2023). Maquinaria y procedimientos de construcción: Problemas resueltos (Colección Académica, Ref. 376). Editorial Universitat Politècnica de València. https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Os dejo algunos vídeos, que pueden ser de interés:

Este artículo, también puede interesar:

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rotopalas: maquinaria de excavación continua para grandes producciones

Figura 1. Rotopala. Cortesía SKW.

Las rotopalas, conocidas en inglés como Bucket Wheel Excavators (BWE), son máquinas de producción continua que integran las funciones de arranque, carga y transporte del material sin interrupciones. Están especialmente diseñadas para excavar materiales de fácil manipulación, como arenas, gravas, margas, arcillas o lignito. Su funcionamiento continuo las hace ideales para explotaciones mineras a cielo abierto, donde se requiere una alta eficiencia operativa en procesos prolongados y repetitivos.

El origen de estas imponentes máquinas se remonta a 1881, en Estados Unidos, cuando se construyó el primer equipo accionado por vapor. Sin embargo, no fue hasta 1916 en Alemania cuando se produjo su verdadero desarrollo industrial, al aplicarse en la explotación de lignito pardo. A partir de la década de 1950, las rotopalas experimentaron una notable evolución técnica, con modelos de mayor capacidad que respondían a las crecientes necesidades de producción. En la actualidad, estas máquinas pueden mover volúmenes superiores a los 254 000 m³ de material, lo que da una idea de su gran capacidad. En comparación, los Bucket Chain Excavators (BCE), aunque útiles en ciertas aplicaciones, apenas superan los 14 000 m³ y se emplean principalmente para retirar recubrimientos.

El diseño de las rotopalas se clasifica según la relación entre la longitud del brazo del rodete (L) y el diámetro del rodete (D). De este modo, se distinguen los modelos compactos (L/D = 2), semicompactos (L/D = 3) y convencionales (L/D = 4). Las compactas presentan varias ventajas significativas: una inversión inicial un 20 % inferior a la de las convencionales, menor peso, mayor estabilidad y tiempos de entrega más reducidos. Sin embargo, su diseño, limitado a dos orugas, restringe su tamaño máximo a 1600 toneladas, lo que implica una capacidad máxima de producción de 7500 m³/h y un brazo más corto que reduce su alcance operativo. Esta clasificación está normalizada por la norma DIN 22266, que define un sistema de denominación mediante letras que representan distintas características del equipo, como, por ejemplo, el tipo de tren de rodaje o la capacidad de los cangilones.

Figura 2. Rotopala semicompacta. Cortesía SKW

Una rotopala está formada por múltiples sistemas clave que permiten su funcionamiento. El tren de rodaje puede montarse sobre vías o, lo que es más habitual en minería a cielo abierto, sobre orugas. La configuración de estas últimas (dos, tres, cuatro, tres dobles o seis dobles) depende del peso de la máquina y de la capacidad portante del terreno. Cada oruga incorpora un bastidor, una rueda motriz o guía elevada, rodillos de sustentación y zapatas. La corona de giro permite orientar el brazo del rodete, cuya longitud influye directamente en la altura máxima de excavación, la anchura del bloque que se va a extraer y la selectividad del corte. El rodete es el elemento encargado de arrancar el material y su diseño depende de las propiedades geomecánicas del macizo rocoso, la resistencia del material y la producción horaria deseada. Su diámetro oscila entre 2,5 y 22 metros, y su capacidad productiva está entre 200 y 19 000 m³/h. Además, cada tonelada adicional en el peso del rodete implica una carga extra de 400 toneladas sobre la estructura de la máquina.

Existen varios tipos de rodete. El tipo celular, muy habitual en los parques de homogeneización, emplea una placa de caída con forma de arco que crea una célula para conducir el material hacia la cinta lateral. El tipo no celular se caracteriza por tener cangilones insertados en un espacio anular, con un cierre radial que permite aumentar la capacidad del cangilón en un 50 %. Por último, el tipo semicircular tiene un cierre inferior con planos inclinados llamados semicelulares y una vertedera fija. Los cangilones pueden tener un respaldo cerrado, que es ideal para materiales adhesivos como las arcillas duras (tipo «caparazón de tortuga»), o un respaldo de cadenas, que es más adecuado para materiales blandos, húmedos o pegajosos. Los elementos de corte, como dientes, cuchillas u orejetas angulares, son determinantes para la eficiencia de la excavación y deben ser fácilmente sustituibles, resistentes a la abrasión y al impacto. En materiales duros, pueden incorporarse precortadores que fragmentan previamente el material, aunque esto puede generar sobrecargas y vibraciones no deseadas.

Figura 3. Bucket Wheel Excavator. Cortesía FAM-BEUMER GROUP.

El sistema de izado permite posicionar el rodete a la altura de operación deseada y realizar descensos o ascensos rápidos mediante cilindros hidráulicos o cables de acero. Por otro lado, la descarga del material excavado se realiza mediante sistemas como puentes de conexión, brazos de descarga o cintas transportadoras, lo que otorga gran flexibilidad al sistema.

El dimensionamiento de una rotopala debe tener en cuenta múltiples factores técnicos. El diámetro del rodete se selecciona en función de la capacidad nominal requerida y de las propiedades del material, procurando elegir el diámetro más pequeño posible que cumpla los objetivos de producción, ya que un rodete de mayor tamaño incrementa el peso y complica la estática de la máquina. La capacidad nominal (Q) distingue entre la producción teórica o de diseño (Qt) y la producción real, que se ve afectada por factores como el grado de llenado de los cangilones y las paradas por mantenimiento o averías. La producción teórica se calcula mediante la fórmula Qt = Qa / (F · horas/día · días/año), donde F es un factor de campo que incluye la eficiencia y las constantes operativas. La producción de material suelto se determina aplicando el esponjamiento del material, que normalmente se sitúa entre 1,3 y 1,6, o mediante la fórmula Qts = I * s * 60, donde I es la capacidad del cazo y s el número de descargas por minuto.

El tipo de material que se va a excavar influye en la velocidad de corte, el número de cangilones, el diámetro del rodete y la inclinación del brazo. La velocidad de corte (Vc) se calcula como Vc = ω · D / 2 y suele estar entre 2 y 3,5 m/s, debiendo mantenerse por encima de la velocidad crítica (Vcri = 2,22 · D). El número de cangilones (Z) depende del material: las rocas blandas requieren pocos cangilones grandes, mientras que las rocas duras exigen muchos cangilones pequeños. Como estimación, se puede considerar Z = 4D. La frecuencia de descarga (s) se obtiene mediante la fórmula s = (Vc · Z) / (π · D) · 60, y la capacidad de los cangilones (V) mediante V = (Qts · 60) / (s · 1,25). Las potencias necesarias para la excavación, la aceleración, la elevación y el sistema completo deben calcularse en función de la producción deseada, el tipo de material y el diseño mecánico del equipo.

Durante la operación, el rodete gira mientras el brazo se mueve y el corte más eficiente se produce cuando el brazo está perpendicular al frente de trabajo (ángulo α = 0°). El avance puede realizarse en terrazas, donde el rodete desciende escalonadamente tras cada pasada, o en cortes descendentes, bajando con cada inversión del giro del brazo. Existen diversas variantes operativas, como la excavación en bloque lleno, la más común en la actualidad gracias a la movilidad sobre orugas, la excavación en frente largo, en la que la máquina avanza en paralelo al frente, y la excavación en bloque lateral, que es una adaptación del sistema anterior. También es posible excavar por debajo del nivel de las orugas, lo que permite trabajar con bancos de mayor altura con respecto a la posición del tren de rodaje.

Figura 4. Variantes de excavación de la rotopala. Fuente: Manual de arranque, carga y transporte en minería a cielo abierto (1995)

Entre las múltiples ventajas de las rotopalas, destacan su capacidad de excavación continua, su bajo consumo energético (hasta un 70 % menos que los sistemas de cables), la ausencia de impactos durante la carga, su gran radio de vertido y la posibilidad de operar tanto por encima como por debajo del nivel del terreno. Además, pueden trabajar en bancos de distintas alturas, generar taludes estables, entregar material fácilmente transportable por cinta y permitir una gran selectividad en la excavación. También pueden diseñarse para ejercer una baja presión sobre el terreno, lo que resulta clave en zonas con baja capacidad portante.

Sin embargo, no todo son ventajas. Las rotopalas requieren un mantenimiento complejo y frecuente, no son flexibles ante cambios en la geometría o tectónica del yacimiento y no sirven para excavar materiales compactos o muy abrasivos. Además, su rendimiento global depende de la disponibilidad de todos los elementos en serie que componen el sistema, lo que introduce una fuerte interdependencia operativa. Por último, su adquisición e instalación suponen una inversión inicial muy elevada, lo que limita su adopción a proyectos a gran escala y a largo plazo.

En resumen, las rotopalas son una solución de ingeniería impresionante para grandes operaciones mineras, ya que combinan eficiencia, potencia y continuidad operativa. No obstante, no son la herramienta adecuada para todos los contextos y, en las condiciones apropiadas, su rendimiento y productividad son difíciles de igualar.

Os dejo algunos vídeos que espero os interesen:

Referencias:

GÓMEZ DE LAS HERAS, J.; MANGLANO, S.; TOLEDO, J.; LÓPEZ-JIMENO, C.; LÓPEZ-JIMENO, E. (1995). Manual de arranque, carga y transporte en minería a cielo abierto. Instituto Geológico y Minero de España, Madrid, 604 pp.

MARTÍNEZ-PAGÁN, P. (2025). Rotopalas. Apuntes 4º curso GIRME. Universidad Politécnica de Cartagena.

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de la carga circulante de un circuito cerrado de molienda

Figura 1. Circuito cerrado de molienda (Álvarez, 1996).

En la industria minera, se utilizan molinos de bolas en circuito cerrado cuando se busca liberar las especies minerales antes de concentrarlas. Este proceso tiene como objetivo minimizar la generación excesiva de partículas ultrafinas. Para ello, es fundamental contar con un instrumento de clasificación que se ajuste al tamaño de las partículas y a las condiciones específicas de la operación.

En los procesos en seco, se deben utilizar clasificadores neumáticos que permitan realizar cortes granulométricos adecuados al tamaño del producto final deseado. En contraste, en operaciones que manejan pulpa, el uso de hidrociclones es lo habitual, especialmente para cortes granulométricos inferiores a 75 micrómetros. Para partículas de mayor tamaño, se pueden emplear tanto hidrociclones como clasificadores mecánicos, dependiendo principalmente de la capacidad de molienda necesaria. Es importante señalar que los hidrociclones diseñados para cortes gruesos suelen tener una alta capacidad de tratamiento que puede exceder la capacidad de molienda disponible. Entre los clasificadores mecánicos más utilizados se encuentran el tipo Akins, que utiliza un tornillo sinfín, y el tipo Dorr, que emplea rastrillos.

La Figura 1 muestra un esquema de un circuito cerrado que incluye un molino de rebose y un clasificador en espiral o tornillo. Una forma de ajustar el tamaño de corte del clasificador es añadir agua. Este procedimiento modifica la viscosidad de la pulpa, lo que influye en la carga circulante y permite un control más preciso del proceso.

En este circuito cerrado, la nueva alimentación se introduce directamente en el molino. Sin embargo, existe una variante que se utiliza cuando la nueva alimentación ya contiene una gran cantidad de finos o cuando se desea minimizar completamente su producción. En este caso, la nueva alimentación se introduce directamente en el clasificador, como se ilustra en la Figura 2.

Figura 2. Circuito cerrado con alimentación al clasificador (Álvarez, 1996).

La Figura 3 muestra la variación típica de la capacidad de un molino a medida que aumenta la carga circulante en comparación con un circuito abierto. La carga circulante se expresa comúnmente como un porcentaje en peso del retorno del molino en relación con la nueva alimentación. Un valor del 250 % se considera normal en este contexto.

Figura 3. Variación de la capacidad con la carga circulante (Álvarez, 1996)

 

A continuación os dejo un nomograma elaborado por los profesores Pedro Martínez-Pagán, Jaime Sepúlveda y Daniel Boulet que permite el cálculo de la carga circulante. Espero que os sea de interés.

Referencias:

ÁLVAREZ, R. (1996). Trituración, molienda y clasificación. Ed. Fundación Gómez Pardo. Escuela Técnica Superior de Ingenieros de Minas, Universidad Politécnica de Madrid.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

WILLS, B.A.; NAPIER-MUNN, T. (2006). Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 7th edition.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Equipos para excavación de roca dura en sección rectangular: Máquina de desarrollo minero

Figura 1. https://www.robbinstbm.com/products/mining-machines/mine-development-machine/

La Máquina de Desarrollo Minero “Mine Development Machine” (MDM) es un equipo especializado diseñado para perforar secciones no circulares, específicamente rectangulares, en entornos de roca con una resistencia a la compresión de hasta 200 MPa. Este dispositivo está equipado con un cabezal de corte rotativo que cuenta con cortadores de disco para garantizar una excavación eficiente.

Hasta ahora, la excavación de galerías mineras y túneles de acceso se ha realizado mediante una metodología de perforación y voladura, a menudo lenta y ardua. Históricamente, los métodos de túneles mecanizados han carecido de la personalización necesaria para agilizar las actividades mineras. El MDM ofrece una tasa de excavación el doble de rápida que la de perforación y voladura en el modelo Robbins MDM5000. El perfil rectangular elimina la necesidad de verter una solera o de cortar el invertido, lo que permite su uso inmediato por la flota de vehículos de la mina.

Su aplicación principal se encuentra en la construcción de infraestructuras mineras, especialmente en el desarrollo de túneles de acceso o galerías con dimensiones de 5,0 m de ancho por 4,5 m de alto. La solera resultante del túnel queda en condiciones óptimas para ser utilizada por los equipos mineros que operan sobre ruedas, lo que facilita el transporte y el movimiento en el interior de la mina.

Figura 2. https://www.robbinstbm.com/products/mining-machines/mine-development-machine/

El MDM utiliza gran parte de la misma tecnología que una máquina perforadora de túneles, incluidos cortadores de disco que se desplazan en la misma pista durante un ciclo de perforación. Durante la perforación, los agarres se extienden contra las paredes del túnel, reaccionando al impulso de avance de la máquina, al igual que en las TBM estándar. Los cilindros hidráulicos de propulsión se extienden, empujando los cortadores contra la roca. La transferencia de este alto impulso a través de los cortadores de disco giratorios provoca fracturas en la roca, lo que hace que los fragmentos se desprendan de la cara del túnel. Un sistema único de agarre flotante presiona contra las paredes laterales y se fija en su lugar mientras los cilindros de propulsión se extienden, lo que permite que la viga principal avance el MDM. Además, se coloca soporte continuo inmediatamente detrás del cabezal cortador en un patrón que cumple con los estándares de la mina. El soporte y la instalación de servicios públicos, como tuberías, ventilación e iluminación, se realizan simultáneamente a la perforación. Dado que la roca se fractura mecánicamente, no se requiere trituración secundaria y la roca rota resultante es adecuada para el transporte mediante cintas transportadoras.

Existen algunas diferencias clave: mientras que una TBM estándar presenta un movimiento circular constante, coincidente con el eje del túnel durante la perforación, el MDM utiliza un movimiento oscilante del cabezal cortador. El cabezal cortador del MDM oscila hacia arriba y hacia abajo alrededor de un eje horizontal perpendicular al eje del túnel. La evacuación de material en el MDM es bastante diferente a la de una TBM estándar, con el material desplazándose hacia atrás desde el cabezal cortador en cada barrido descendente, hasta una cinta transportadora o una cadena instalada en el invertido. Esencialmente, la carga de la cinta transportadora se realiza mediante el barrido descendente del cabezal cortador, en lugar de que los cucharones de material se vacíen sobre una cinta transportadora mientras el cabezal cortador gira, como en la configuración de una TBM estándar.

El MDM presenta diversas ventajas para las minas frente a otros métodos, como la perforación y la voladura. La perforación con el MDM tiene tasas de avance aproximadamente el doble que las de una perforación y voladura, lo que se traduce en paredes de túneles más uniformes, menos desprendimiento excesivo y un menor requerimiento de soporte estructural. El aumento de las tasas de avance se debe en parte al progreso continuo de la máquina, a diferencia de las operaciones de perforación y voladura, en las que los equipos deben salir del túnel durante la detonación por motivos de seguridad. Además, la instalación simultánea del soporte estructural aumenta aún más las tasas generales de avance en comparación con las operaciones de perforación y voladura que deben instalarlo de manera secuencial.

Este equipo avanzado ha demostrado su eficacia en la mina de plata de Fresnillo, ubicada en México. Su rendimiento se destaca con avances notables de 10-12 metros por día en rocas con resistencia inferior a 100 MPa y de 7-10 metros por día en terrenos más desafiantes, con resistencia entre 100 y 150 MPa. La máquina ha perforado a velocidades de hasta 52 metros por semana y 191 por mes en andesita y esquisto, con intrusiones de cuarzo que desafiaron intentos previos de excavación con rozadoras.

La versatilidad y eficiencia de la MDM la convierten en una herramienta crucial para la ejecución de proyectos mineros, mejorando la productividad y la seguridad en el desarrollo de túneles y galerías en diversas condiciones.

Os dejo algunos vídeos de esta máquina.

También os dejo un artículo explicativo de esta máquina.

Pincha aquí para descargar

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Río Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Excavación mecánica a cielo abierto: Highwall miners

Figura 1. Cat HW300 Highwall Miner, https://h-cpc.cat.com/cmms/v2?&f=subfamily&it=group&cid=406&lid=en&sc=CA&gid=18296377&nc=1

Entre los equipos empleados en la excavación mecánica en minería a cielo abierto destacan los “Highwall Miners”. Estos equipos mineros avanzados desempeñan un papel crucial en la extracción de minerales al excavar en paredes o muros verticales. Constituyen una combinación ingeniosa entre un minador continuo (CM) y la estructura exterior que proporciona el soporte necesario para el minador. Su aplicación se centra en la explotación de capas delgadas de carbón, yeso u otras rocas de dureza media a blanda, que son especialmente idóneas para la minería de contorno.

Con la capacidad de extraer minerales de carbón a una profundidad de hasta 1,5 metros, estos equipos representan una solución eficiente y productiva para la industria minera. La versatilidad de estos dispositivos permite alcanzar grandes producciones, llegando hasta las 110,000 toneladas al mes, con tan solo cuatro personas operando el equipo.

Destacando entre sus características, el equipo Cat HW300 Highwall Miner demuestra su capacidad para trabajar en bermas de hasta 18 metros. Esta notable amplitud de acción amplía las posibilidades de extracción y facilita la labor minera en entornos desafiantes.

Figura 2. https://cinmine.com/products/highwall-miner-products/

Además de su eficiencia en la producción, estos equipos demuestran su valía al recuperar hasta un 70% del carbón contenido en las capas explotadas, lo que contribuye significativamente a maximizar la rentabilidad de las operaciones mineras.

En resumen, estos equipos de vanguardia no solo destacan por su capacidad para extraer minerales en condiciones específicas, sino que también ofrecen eficiencia, productividad y rentabilidad, convirtiéndose en piezas clave para el éxito de la industria minera en la extracción de recursos en capas delgadas.

A continuación, os dejo algunos vídeos para que veáis el funcionamiento de estos equipos.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ideas sobre la docencia de la asignatura de Procedimientos de Construcción

En el prólogo de obras anteriores, mencioné que la enseñanza de “Procedimientos de Construcción” es complicada, ya que implica instruir a futuros ingenieros civiles sobre la realización de obras. Este proceso abarca no solo las fases constructivas, sino también aspectos de gran relevancia, como el manejo de maquinaria y medios auxiliares, la seguridad y salud, el impacto ambiental de las obras, y sobre todo, conocimientos fundamentales en geotecnia, resistencia de materiales, mecánica, cálculo de estructuras, gestión de empresas, planificación de obras y economía. Todo este conjunto de conocimientos es esencial para tomar decisiones acertadas al seleccionar el mejor proceso constructivo para un proyecto específico. Además, debemos abordar toda esta información, considerando que la mayoría de los alumnos tienen poca o nula experiencia práctica en relación con el entorno físico de las obras.

Una dificultad adicional radica en la creación de un conjunto ordenado y coherente de problemas resueltos que no sean meramente teóricos, sino que se acerquen al mundo real de la profesión. Esta tarea resulta compleja en ocasiones, pues los procedimientos constructivos requieren conocimientos que abarcan casi todas las áreas de la ingeniería. En consecuencia, explicar esta asignatura en los primeros cursos de un grado universitario puede parecer arriesgado, debido a la amplia gama de conocimientos necesarios. Sin embargo, los planes de estudio a veces presentan estas incongruencias y desafíos en la enseñanza de esta materia.

Al final ha salido un volumen extenso, con una amplia variedad de problemas resueltos, que intenta abarcar todo el campo de conocimiento de los procedimientos de construcción, incluyendo la maquinaria y los medios auxiliares utilizados tanto en la ingeniería civil como en la edificación, e incluso en algunos casos, en la minería.

Esta colección forma parte del conjunto de materiales, libros y documentación que he elaborado como autor, complementando así el contenido teórico de la asignatura. Por esta razón, recomiendo al lector que acuda a manuales, libros o apuntes para reforzar la parte teórica de los problemas. No obstante, he incluido una extensa bibliografía que espero sea útil para este propósito. Además, me complace recomendar mi blog, que cuenta con
una trayectoria de casi 12 años y ha recopilado cerca de 2.000 artículos relacionados con aspectos de la ingeniería de la construcción. Puedes encontrarlo en el siguiente enlace: https://victoryepes.blogs.upv.es/.

El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.

Por último, y a pesar de que he puesto todo el empeño en resolver y revisar cada uno de los problemas, es posible que existan erratas o errores. Por ello, agradezco de antemano cualquier sugerencia o mejora que pueda ser útil para futuras ediciones. Espero sinceramente que este libro que tiene en sus manos contribuya a mejorar la calidad de la enseñanza de este tipo de asignaturas y que se convierta en una herramienta valiosa tanto para estudiantes como para profesionales. Su éxito en el aprendizaje y aplicación de los procedimientos de construcción es mi mayor deseo.

Valencia, a 25 de julio de 2023

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Pincha aquí para descargar

Nomogramas para su empleo en trabajos de movimiento de tierras

Este artículo presenta cinco nomogramas originales que pueden ser utilizados en proyectos de movimientos de tierra. El primero de ellos calcula el peso específico aparente de un suelo, mientras que el segundo nomograma facilita el valor de la piedra en el diseño de voladuras según la metodología de Ash. Los dos siguientes se aplican para determinar la capacidad de la hoja empujadora de un buldócer, y finalmente, el último nomograma ayuda a calcular el rendimiento de escarificado de un buldócer.

Estos nomogramas demuestran también las capacidades de los programas de código abierto, PyNomo y Nomogen, para generar nomogramas adaptados a las necesidades de cálculo de cualquier proyectista. Este proyecto es el resultado de una colaboración internacional entre profesores de Finlandia, Canadá y Australia, y su artículo ha sido publicado en la revista inGEOpress en mayo de 2023.

En este trabajo se proporcionan cinco nomogramas originales generados con el programa Pynomo (http://lefakkomies.github.io/pynomo-doc/introduction/introduction.html), muy útiles para su empleo en trabajos de obra civil, movimiento de tierras y/o minería, así como en ámbito docente. Los ejemplos resueltos por cada uno de los nomogramas también demuestran que los valores obtenidos se obtienen con una precisión adecuada a los requerimientos que se exigen en ingeniería de proyectos, haciéndolos útiles cuando no se tiene acceso a ordenadores o a calculadoras programables y, especialmente, en el manejo de ecuaciones cuyo empleo sea repetitivo.

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; ROSCHIER, L.; BOULET, D.; BLIGHT, T. (2023). Nomogramas para su empleo en trabajos de movimiento de tierras. Canteras y explotaciones, 657(3):44-48.

Os paso a continuación el artículo entero por si os resulta de interés.

Pincha aquí para descargar

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Códigos abiertos para la elaboración de nomogramas en el ámbito de la ingeniería civil y minera

En este artículo se hace una introducción sobre los códigos abiertos, PyNomo y Nomogen, para la elaboración de nomogramas o ábacos de útil aplicación en el ámbito de la ingeniería civil y minera, resolviendo de forma gráfica y eficiente ecuaciones comúnmente utilizadas y sin necesidad de realizar cálculos manuales exhaustivos. Se presentan varios ejemplos de nomogramas realizados con PyNomo y Nomogen que servirán para mostrar la utilidad de estos códigos abiertos en el campo de la ingeniería hidráulica. Se trata de una colaboración internacional con profesores de Finlandia, Canadá y Australia, cuyo resultado se ha publicado en la revista inGEOpress, en su número de abril del 2023.

La nomografía se puede definir como aquella rama de las matemáticas que se encarga de la representación gráfica de ecuaciones a través de nomogramas (también conocidos como ábacos) que permiten poner en relación tres o más variables resolviendo una de ellas cuando se conocen el resto. Esta área de las matemáticas fue implantada en 1880, y posteriormente desarrollada por Maurice d’Ocagne. El empleo de la nomografía tuvo su mayor desarrollo en el siglo pasado como una forma de resolver de forma rápida y precisa complejas expresiones matemáticas en sectores tan diversos como medicina, aeronáutica, hidráulica, química, física, matemáticas, electrónica, radio, balística, alimentación, etc. Por ello, son innumerables los ejemplos que han llegado hasta nuestros días y que aún aparecen en libros especializados de ingeniería, especialmente hidráulica, ingeniería civil, minería, etc. . Además, en la actualidad, todavía es común que un gran volumen de documentación técnica, folletos de especificaciones técnicas y catálogos de equipos faciliten el cálculo de numerosas expresiones a través de nomogramas.

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; ROSCHIER, L.; BOULET, D.; BLIGHT, T. (2023). Introducción de los códigos abiertos PyNomo y Nomogen para la elaboración de nomogramas en el ámbito de la ingeniería civil y minera. Ingeopres, 302:66-70.

Os paso a continuación el artículo entero por si os resulta de interés.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.