Transporte hidráulico de pulpas: fundamentos y práctica

El transporte hidráulico de pulpas es un tema esencial en ingeniería de procesos y de minas. La operación de mover sólidos suspendidos en agua mediante tuberías y bombas no solo conecta las diferentes etapas de un proceso, como la molienda, la clasificación, la flotación o la disposición de relaves, sino que también influye en gran medida en los costes de operación, la eficiencia energética y la vida útil de los equipos. Por tanto, es fundamental que los estudiantes de Ingeniería comprendan sus principios y métodos de diseño.

En este artículo se presentan de manera ordenada los conceptos principales: qué es una pulpa, cómo se clasifican, qué tipos de bombas se emplean, cómo se estiman las pérdidas y la altura dinámica total, qué significa la velocidad crítica para evitar la sedimentación, cómo se analiza la cavitación y, por último, cómo se selecciona la bomba adecuada. No obstante, se aconseja un estudio más profundo del tema, atendiendo a las referencias.

1. La pulpa: naturaleza y propiedades

Una pulpa es una mezcla de agua y partículas sólidas en suspensión. Esta definición simple oculta una gran variedad de comportamientos. La forma en que la pulpa fluye depende de varios factores:

  • Concentración de sólidos: se mide en peso o volumen. A bajas concentraciones, la mezcla se comporta parecido al agua. A concentraciones altas, la viscosidad aumenta y pueden aparecer comportamientos no newtonianos (el fluido ya no responde de manera lineal al esfuerzo aplicado).

  • Tamaño de partícula: si la mayoría de las partículas son muy finas (menores a 75 micras), la pulpa tiende a ser homogénea, sin sedimentación marcada. Si predominan partículas gruesas, la pulpa es heterogénea, con riesgo de deposición.

  • Densidad de las partículas: minerales como la magnetita o la galena, con densidades altas, hacen que la pulpa sea más pesada y requiera mayor energía para su transporte.

  • Forma de las partículas: las partículas angulosas o irregulares causan más desgaste que las esféricas.

  • Viscosidad del líquido portador: en la mayoría de los casos es agua, pero a veces se emplean soluciones que alteran la viscosidad.

Estas propiedades son críticas porque determinan tanto la potencia que necesitará la bomba como la durabilidad de los componentes.

2. Bombas para pulpas: tipos y características

El transporte de pulpas se realiza en la gran mayoría de casos con bombas centrífugas, adaptadas a condiciones abrasivas y, a veces, corrosivas. Existen distintos tipos:

  • Bombas horizontales centrífugas: las más comunes en minería y procesos. Permiten gran variedad de caudales y alturas.

  • Bombas verticales: incluyen las de tanque y las de sumidero. Se usan cuando el nivel de pulpa varía mucho o cuando es conveniente sumergir parte de la bomba.

  • Bombas sumergibles: cada vez más empleadas en aplicaciones de drenaje de pulpas.

  • Bombas de desplazamiento positivo: útiles cuando se manejan pulpas muy viscosas o cuando se requiere caudal casi constante independientemente de la presión.

https://www.mogroup.com/es/informacion/e-books/manual-de-bombas–para-pulpa/

Un aspecto importante de las bombas de pulpa es su construcción robusta: impulsores anchos, ejes más gruesos, rodamientos de gran capacidad y, sobre todo, sistemas de sellado capaces de resistir condiciones adversas. Los sistemas de sellado pueden ser dinámicos (aprovechan la propia presión de la pulpa), mecánicos (son caros, pero muy seguros) o de empaquetadura (son los más comunes y requieren mantenimiento frecuente).

3. Materiales de construcción y desgaste

El desgaste es el enemigo número uno de las bombas de pulpa. Cada partícula de mineral en movimiento actúa como un proyectil microscópico que impacta contra las superficies internas de la bomba. Por ello, los materiales deben escogerse con cuidado.

  • Elastómeros (como goma natural o poliuretanos): absorben impactos y funcionan bien con partículas finas o blandas.

  • Metales endurecidos: hierro alto en cromo o aceros especiales resisten abrasión cortante, como la producida por partículas de cuarzo.

  • Cerámicos: extremadamente duros y duraderos, pero frágiles y costosos, usados en condiciones extremas.

La selección no es trivial, ya que depende del tamaño y la forma de las partículas, su concentración, la corrosión química del medio y la temperatura. Elegir bien el material puede duplicar o triplicar la vida útil de la bomba.

4. Altura dinámica total y pérdidas en el sistema

Para que una bomba funcione adecuadamente, debe entregar una altura dinámica total (TDH) que cubra:

  1. Altura estática: diferencia de nivel entre el depósito de aspiración y el de descarga.

  2. Pérdidas por fricción en la tubería: dependen de la longitud, el diámetro, la rugosidad y la velocidad del flujo.

  3. Pérdidas en accesorios: codos, válvulas, reducciones.

  4. Energía cinética: asociada a la velocidad del flujo en salida y entrada.

En el caso del agua, las pérdidas por fricción pueden calcularse mediante fórmulas empíricas o a través de la relación de Darcy-Weisbach, que tiene en cuenta la velocidad, el diámetro y un coeficiente de fricción que se obtiene del diagrama de Moody. En pulpas, sin embargo, estas correlaciones deben corregirse, ya que los sólidos aumentan la resistencia al flujo. Existen diagramas experimentales, como los de Warman, que ayudan a calcular los factores de corrección.

5. Velocidad crítica y sedimentación

Uno de los problemas más graves del transporte de pulpas es la sedimentación. Si la velocidad del flujo desciende por debajo de un valor crítico, las partículas comienzan a depositarse en el fondo de la tubería, lo que puede provocar obstrucciones o un desgaste desigual.

Este valor crítico, conocido como velocidad de Durand, depende de tres factores principales: el tamaño característico de las partículas, la densidad relativa del sólido respecto al agua, y el diámetro de la tubería. En pocas palabras:

  • Cuanto más grandes y densas son las partículas, mayor debe ser la velocidad.

  • Cuanto mayor es el diámetro de la tubería, menor es la velocidad necesaria para mantener las partículas en suspensión.

Mantener la velocidad por encima de este límite garantiza un flujo homogéneo y minimiza el riesgo de sedimentación.

6. Cavitación y NPSH

La cavitación es otro fenómeno que puede poner en peligro la operación segura. Ocurre cuando la presión de entrada de la bomba cae por debajo de la presión de vapor del líquido. En ese momento, se forman burbujas que, al colapsar dentro del impulsor, generan ondas de choque que dañan el material, producen ruido y reducen la eficiencia.

Para evitarlo, se calcula la altura positiva neta de aspiración disponible (NPSHa), que debe ser siempre mayor que la NPSH requerida (NPSHr) por la bomba. En términos prácticos:

  • El sistema debe garantizar suficiente presión en la succión de la bomba.

  • Se recomienda dejar un margen de seguridad adicional (entre 0,5 y 1 metro, o entre 10% y 35% según las guías de diseño).

Determinación del máximo caudal aspirable desde el punto de vista de la cavitación

7. Selección de la bomba

El procedimiento para elegir una bomba de pulpas sigue varios pasos:

  1. Definir caudal y condiciones de operación.

  2. Calcular la TDH real para la pulpa, incluyendo pérdidas.

  3. Convertir la TDH de pulpa a su equivalente en agua, usando factores de corrección.

  4. Consultar curvas de fabricante (Q–H–Eficiencia) y ubicar el punto de operación.

  5. Comprobar potencia requerida, eficiencia, NPSH y velocidad de rotación.

  6. Verificar materiales y opciones de sellado según la abrasividad y corrosión del medio.

Hoy en día, programas de cálculo como Pipe-Flo, AFT Fathom o WinCAPS ayudan a realizar estas estimaciones de manera más ágil, permitiendo simular condiciones de operación variables.

8. Consejos prácticos de operación

  • Mantener velocidades mínimas de 2–3 m/s en descarga y no menos de 1–2 m/s en aspiración (ajustadas según la naturaleza de la pulpa).

  • Usar tuberías lo más rectas posibles y minimizar codos bruscos.

  • Monitorear continuamente el desgaste de revestimientos e impulsores.

  • Planificar un stock de repuestos críticos: el tiempo de parada por una bomba fuera de servicio puede ser muy costoso.

  • Vigilar el NPSH disponible en condiciones de nivel mínimo en el depósito de succión.

9. Reflexión final

El transporte hidráulico de pulpas es un campo en el que confluyen la mecánica de fluidos, la ciencia de materiales y el diseño de equipos. Para los estudiantes de ingeniería, dominar estos fundamentos no solo es esencial para aprobar una asignatura, sino también para resolver problemas reales en los sectores de la minería, la metalurgia, la química e incluso en algunas industrias ambientales.

La clave es comprender que detrás de cada fórmula hay un concepto físico claro: mantener las partículas en suspensión, reducir las pérdidas de energía, evitar la cavitación y prolongar la vida útil de los equipos.

Referencias:

  • Abulnaga, B. E. (2002). Slurry Systems Handbook. McGraw-Hill.

  • ANEFA. (2020). Manual de áridos: Parámetros hidráulicos y de bombeo. Asociación Nacional de Empresarios Fabricantes de Áridos.

  • Bouso, J. L. (1993). Manual de bombeo de pulpas. ERAL, Equipos y Procesos S.A.

  • Bouso, J. L. (1998). El hidrociclón… Lo que siempre quiso saber y no encontró en los libros. Americas Mining.

  • Grzina, A., Roudnev, A., & Burgess, K. E. (2002). Weir slurry pumping manual (1.ª ed.). Weir International.

  • Martínez-Pagán, P. (2025). Transporte hidráulico: Bombeo de pulpas. Apuntes del 3er curso GIRME ingeniería minera. Universidad Politécnica de Cartagena.
  • Metso Outotec. (2020). Slurry pump handbook (8.ª ed.). Metso Minerals (Sala) AB. Recuperado de http://www.metso.com/pumps

  • Volk, M. (2013). Pump characteristics and applications (3.ª ed.). CRC Press. https://doi.org/10.1201/b15559

  • Warman, L. (2000). Warman slurry pumping handbook. Warman International.

  • Yepes, V. (2023). Maquinaria y procedimientos de construcción: Problemas resueltos (Colección Académica, Ref. 376). Editorial Universitat Politècnica de València. https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Os dejo algunos vídeos, que pueden ser de interés:

Este artículo, también puede interesar:

Descargar (PDF, 36.36MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Bombas empleadas en el control del nivel freático de una excavación

Figura 1. Bomba de achique. https://www.sulzer.com/es-es/spain/shared/applications/dewatering-in-construction

Las bombas hidráulicas empleadas para controlar el nivel freático se diseñan para agotar aguas que están en contacto con el suelo, lo cual implica el arrastre de partículas. Este tipo de bombas se emplean con aguas sucias, que pueden presentar material granular de 10 mm de tamaño máximo, siendo muy importante conocer su proporción de arenas. La calidad del agua determina si la bomba puede ser estándar EN 1.4301/AISI 304 o si tiene que ser de acero inoxidable de un grado superior.

El bombeo debe reservarse a los casos imprescindibles, donde el drenaje por gravedad sea insuficiente o bien donde la disposición de medidas de contención (ataguías, muros pantalla, tablestacas, inyecciones de impermeabilización, etc.) no sean rentables. Se deben mantener los equipos e instalaciones de agotamiento con la capacidad y características necesarias desde el principio de la obra, con sus correspondientes bombas de reserva y piezas de repuesto. Además, la alimentación de energía eléctrica debe garantizarse, incluso con la previsión de grupos electrógenos de emergencia.

Pérez Valcárcel (2004) clasifica las bombas utilizadas en la excavación en las siguientes:

  • Bombas de achique: Útiles para evacuar pequeños caudales en excavaciones con entrada esporádica de agua o sótanos inundados.
  • Bombas de drenaje: De mayor tamaño, evacuan mayor caudal y son idóneas para drenar excavaciones con fuerte entrada de agua.
  • Bombas sumergibles: Se emplean cuando el descenso de agua es muy alto, trabajando sumergidas.

En todos los casos, el problema será averiguar el caudal a bombear para reducir el agua por debajo del nivel de la excavación. Para ello se suele utilizar, para el régimen permanente en un acuífero libre, la fórmula de Dupuit-Thiem, la cual ya fue descrita en un artículo anterior.

En excavaciones verticales son habituales las bombas de diafragma, las bombas centrífugas, tanto de aspiración como autoaspirantes, y las bombas sumergibles. Aunque no se trata propiamente de una bomba, también describimos brevemente el eyector hidráulico.

  • Bombas de diafragma o membrana: Es una bomba de desplazamiento positivo cuyo funcionamiento alternativo se produce por medio de una membrana elástica accionada por medios mecánicos o hidráulicos y válvulas esféricas que permiten el paso del agua (Figura 2). El cambio de presión genera que la válvula de succión se abra y permita el paso del fluido, la diferencia de presión abre la válvula de impulsión y la membrana se contrae, con lo cual el agua sale de la bomba. Algunos modelos presentan diafragmas de diversas formas (diafragma tubular, de doble disco, etc.). Habitualmente son bombas de poca potencia y pequeños caudales que se emplean en aguas cenagosas o cargadas de limo y arenas. Se eliminan las fugas posibles de líquido por su sistema de funcionamiento y sellado, por lo que son adecuadas para bombear materiales corrosivos y otros donde no se admitan fugas, en aplicaciones industriales. Presentan una succión muy elevada y un rendimiento muy bajo, una altura de impulsión máxima de 15 m. Aunque existen bombas de mando manual o hidráulico, en construcción se usan las de mando manual, y dentro de éstas, las electromagnéticas (caudal de 0,1 a 100 l/h) y las accionadas por motor (caudal de 100 a 1000 l/h). Algunos modelos pueden manejar partículas sólidas de hasta 40 mm.
Figura 2. Bomba de diafragma. https://es.wikipedia.org/wiki/Bomba_de_membrana
  • Bombas centrífugas de aspiración: Son bombas dinámicas aptas para todo tipo de líquidos, incluso con sólidos en suspensión, excepto si la carga a vencer es demasiado elevada. En excavaciones puede entrar arena o barro que obligan al diseño de paletas sujetas al desgaste. El líquido, al entrar en la cámara por la parte central y en la dirección del eje del rotor, es impulsada por éste y al girar lanzada hacia el exterior por la fuerza centrífuga. El líquido adquiere energía cinética que en el difusor se convierte en un aumento de presión. Transforman, por tanto, un trabajo mecánico en otro de tipo hidráulico, siendo su funcionamiento análogo, pero inverso, a las turbinas hidráulicas. Las bombas centrífugas pueden tener varias etapas (normalmente hasta ocho), de modo que el difusor de cada cámara envía el agua a la siguiente, aumentando la presión. Así, las bombas de varias etapas se adaptan a las condiciones de caudal y presión del sistema, siempre que no se planteen problemas de uso con aguas muy sucias. Las ventajas principales de las bombas centrífugas son el suministro de un caudal constante, presión uniforme, sencillez de construcción, tamaño reducido, bajo mantenimiento y flexibilidad de regulación. Uno de los escasos inconvenientes de la bomba centrífuga convencional es la necesidad de cebado previo al funcionamiento pues, al contrario que las de desplazamiento positivo, no son autoaspirantes. En teoría, sería posible aspirar agua desde una profundidad de 10,33 m, sin embargo, esto exigiría un vacío absoluto; por tanto, a partir de los 5-7 m de excavación (altura de aspiración práctica), la bomba debería quedar por debajo de la superficie del terreno y lo más próxima al nivel freático original, facilitando así la impulsión hacia la superficie (Figura 3). En este caso son mejores las bombas sumergibles, donde ya no tiene importancia la altura de aspiración, mientras que la de impulsión solo depende de la potencia del motor.
Figura 3. Esquema de altura de impulsión. http://www.benoit.cl/LIBRO-HIDRAULICA-BOMBAS%20IDEAL.pdf
  • Bombas centrífugas autoaspirantes: Actualmente existen bombas centrífugas autocebantes, que permiten trabajar sin el peligro de deterioro por trabajar en vacío (Figura 4). En el principio de autocebado, el aire se introducen en la bomba por la presión negativa generada por el impulsor y se emulsiona con el líquido contenido en el cuerpo de la bomba. Esta emulsión entra forzada en la cámara de cebado, donde el aire más ligero escapa por la tubería de impulsión y el líquido recircula en el interior de dicha cámara. Una vez se expulsa todo el aire de la tubería, la bomba se ceba automáticamente hasta una altura de 5-7 m y trabaja como una bomba centrífuga convencional. Estas bombas también pueden trabajar con una mezcla líquido-aire. Algunos modelos pueden manejar sólidos de hasta 50 mm de tamaño.
Figura 4. Bomba centrífuga autoaspirante. https://www.tecnicafluidos.es/bombas-centrifugas-autoaspirantes-t-8-es
  • Bombas sumergibles de agua sucia: Estas bombas se utilizan en procedimientos de bombeo de achique cuando existen pequeñas infiltraciones o agua de lluvia en la excavación. Son relativamente pequeñas, normalmente portátiles, con una agarradera para moverlas fácilmente (Figuras 5 y 6). Tales bombas son de baja eficiencia (usualmente 50 a 60 %); las unidades son robustas y por lo tanto, requieren pozos de gran diámetro. Existen en el mercado unidades con potencias mayores que 100 HP para corriente directa o trifásica. Constan de un rodete multicanal, con una configuración y álabes preparados para estos fluidos. No poseen tubo de aspiración, por lo que el motor eléctrico se sitúa en el interior de la bomba. Las bombas empleadas en la construcción cuentan con una protección especial contra la abrasión para bombear aguas sucias con contenidos de lodos, arenas o cementos. Las bombas para agotamientos utilizadas en los sumideros se diseñan especialmente para trabajos duros en elevación de aguas sucias y fangosas. Funcionan en seco o sumergidas, ya que bomba y motor forman una unidad compacta y estanca; no dependen de la presión del aire que la rodea, así pueden impulsar los líquidos a alturas considerables; necesitan únicamente dos conexiones, una al tubo de descarga y otra al motor; no requieren tuberías, pues basta una manguera; no tienen válvulas, y por tanto, no se obstruye; no necesita cebarse; puede trabajar en seco en cortos periodos; trabajan en cualquier posición, aunque el mayor rendimiento se da en vertical y presentan un bajo coste de instalación, funcionamiento y mantenimiento.
Figura 5. Esquema de bomba sumergible de achique
Figura 6. Bomba de achique sumergible. https://www.bombasideal.com/producto/serie-d/
Figura 7. Principio de bomba sumergible. https://www.ingenieros.es/files/catalogos/Grundfos_-_Manual_de_Ingenieria_SP_ES.pdf

 

  • Electrobombas sumergibles para pozos profundos: Son bombas con rodetes radiales o semiaxiales de múltiples etapas superpuestas diseñadas para pozos profundos (hasta 350 m) y de pequeña sección (4” a 14”). Existen dos tipos, la bomba con motor sumergible y la de motor seco conectado a la bomba por medio de un eje largo.

Se pueden impulsar caudales desde 3 l/s (dentro de tubos de 152 mm de diámetro interno) a 40-80 l/s (en tubos de 250 a 300 mm de diámetro interno). Constan de un motor eléctrico del tipo “jaula de ardilla” de 2 a 250 kW, provisto de estator con bobinado de conducciones especialmente aislado con PVC y compensador de dilataciones y contracciones por cambios de temperatura. Son bombas con un alto rendimiento, entre el 70 y el 80%.

El factor más desfavorable es la presencia de arena (daños a partir de más de 25 g de arena por m3). También hay que determinar la composición del agua, su pH o el contenido de CO2, pues influyen en la elección de la bomba adecuada, por la presencia de estos componentes corrosivos o abrasivos. No son imprescindibles los cuidados de mantenimiento, no se producen averías por heladas, ni ocurren problemas de aspiración ni de ruido; estas circunstancias justifican la economía de su uso, siempre que los grupos utilizados estén bien proyectados y sean resistentes y equilibrados. Sin embargo, en caso de avería del motor se debe extraer toda la columna.

Según se observa en la Figura 7, la bomba consta de una entrada (1), un número de etapas de bomba (2) y una salida de la bomba (3). Según la presión requerida, se incluye un mayor número de etapas. Cada etapa incluye un impulsor (4), los álabes del impulsor transfieren energía al agua. Cada impulsor está fijo al eje de la bomba (5) mediante una conexión acanalada o una conexión de cono dividido.

 

 

 

 

  • Bombas de turbina de eje vertical: Son adecuadas para grandes caudales con pequeñas alturas en posición vertical y sumergida. La bomba se coloca en el fondo del pozo, sin embargo, a diferencia de la electrobomba sumergible, la unidad motriz se ubica encima o junto al grupo de bombas, en la cabeza del pozo (Figura 8). Existen dos tipos de bombas de turbina de eje vertical, las lubricadas por aceite y las lubricadas por agua (autolubricadas). La construcción de estas bombas permite montar el número de etapas necesario, que puede llegar a 20 o más. Se pueden alcanzar unos 200 m.c.a., pero los problemas que ocasiona cualquier imperfección en la rectitud del eje influyen en la vida de los cojinetes y en la vibración de funcionamiento. Frente a las electrobombas sumergidas, su mayor ventaja es la facilidad de desmontar el eje y el impulsor desde arriba, sin necesidad de retirar la columna, lo que facilita la accesibilidad y el mantenimiento.
Figura 8. Esquema de bomba de turbina de eje vertical (Cashman y Preene, 2012)
  • Bombas de vacío para lanzas de drenaje (wellpoints): Constan de una unidad centrífuga para bombear el agua, de una unidad de vacío para impulsar el aire y de una cámara de aire flotante para separar el aire del agua. Su potencia disponible comercial varía entre 20 a 250 CV. Debido a que operan continuamente con vacíos importantes, se pueden dañar por cavitación. El equipo, montado sobre un chasis con un eje con neumáticos y barra de tiro para facilitar su colocación en la obra (Figura 9), consta de los siguientes elementos principales:
    • Cámara o tanque de separación de aire: recipiente cilíndrico con gran capacidad (de 1,5 m³), para reducir al mínimo los paros y arrancadas.
    • En su interior se alojan dos bombas sumergibles eléctricas o bombas para la impulsión del agua, así como los electrodos de barra para el control del nivel eléctrico.
    • Consta además de dos bombas de vacío eléctrico adosadas en el exterior del tanque. Se trata de dos depresores del tipo multicelular enfriados por aire y lubricados por aceite.
    • Cuadro de control eléctrico. Todos los equipos están provistos de control de marcha automática, con lo que se reducen al mínimo los costos de funcionamiento. Los elementos de mando eléctrico se hallan en una caja hermética al agua.
Figura 9. Equipo de bombeo para wellpoints. http://www.ischebeck.es/assets/files/agotamiento_agua/Cat%C3%A1logo%20Wellpoint%2016022012.pdf
  • Eyector hidráulico: Son bombas fluido-dinámicas que utilizan la energía de un fluido primario) para mantener un caudal de otro fluido (secundario) mediante un salto de presión. Son dispositivos que tienen la ventaja de no tener elementos móviles, no precisan mantenimiento, trabajan con todo tipo de fluidos, son confiables en su funcionamiento y pueden instalarse en cualquier posición. El eyector hidráulico, tal y como se aprecia en la Figura 10, está formado por un tubo vertical sumergido, paralelo al de aspiración, y al que se impulsa agua desde la parte superior. Ello forma una subpresión en la tobera inferior, cuando la altura de aspiración sobrepasa los 7 m, que es capaz de aspirar en condiciones económicas hasta los 20 m. Los sistemas eyectores son efectivos en suelos finos donde se requiere un bombeo de pequeños volúmenes de agua y para los cuales la baja eficiencia de los eyectores no es una desventaja. Este dispositivo, con algunas modificaciones, se emplea para el transporte de aguas sucias, lodos y arcillas en suspensión, en una proporción que llega a la cuarta parte del volumen total del fluido. Son las llamadas “bombas mamut”, que pueden elevar hasta 10 m mezclas fangosas, incluso con arenas, aunque sus rendimientos son pequeños (inferiores al 25%). En ocasiones se emplean lanzas hidráulicas de alta presión para romper la cohesión del material a bombear.
Figura 10. Eyector hidráulico. http://puyga.es/como-elegir-una-bomba-de-agua-para-pozos-componentes-tipos-y-recomendaciones-practicas/

Os dejo un vídeo de una bomba vertical tipo turbina.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Instalación de bombas centrífugas

https://www.iagua.es/blogs/miguel-angel-monge-redondo/algunas-observaciones-instalaciones-equipos-bombeo

La bomba centrífuga constituye el tipo más frecuentemente utilizado. Puede bombear todo tipo de líquidos, incluso con sólidos en suspensión. Se emplean en todo tipo de bombeos, excepto cuando la carga a vencer es demasiado elevada. Esta clase de bomba es adecuada para caudales moderados y alturas considerables. La bomba puede ser sumergible o estar instalada en seco. En este último caso, la instalación puede estar en aspiración o en carga.

Se trata de máquinas hidráulicas en las que el líquido, al entrar por la parte central y en la dirección del eje del rotor, es impulsado por este y, al girar, es lanzado hacia el exterior por la fuerza centrífuga. El líquido adquiere energía cinética que se convierte en un aumento de presión en el difusor. Por tanto, transforman un trabajo mecánico en otro de tipo hidráulico, y su funcionamiento es análogo, pero inverso, al de las turbinas hidráulicas.

Los elementos constitutivos de que constan son:

  1. Una tubería de aspiración, que concluye prácticamente en la brida de aspiración.
  2. El impulsor o rodete, formado por una serie de álabes de formas distintas que giran dentro de una carcasa circular. El rodete va unido solidariamente al eje y es la parte móvil de la bomba.
  3. Una tubería de impulsión, donde el líquido adquiere la presión cedida por la energía cinética en la voluta de la bomba.
Perspectiva de una bomba centrífuga. https://es.wikipedia.org/wiki/Bomba_centr%C3%ADfuga

Os dejo a continuación un vídeo explicativo de cómo se instala una bomba centrífuga. Espero que os sea de utilidad.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Punto de funcionamiento de una bomba centrífuga. Problema resuelto.

Bomba centrífuga. https://es.wikipedia.org/

 

El punto de funcionamiento o de operación de una bomba centrífuga se define como el flujo volumétrico de fluido que esta enviara cuando se instale en un sistema dado. El régimen de trabajo se determina por el punto de intersección de las características de la bomba y de la tubería. Por eso, al ser la característica de la conducción (tubería) invariable, salvo que se actúe sobre la válvula de impulsión, el cambio del número de revoluciones de la bomba provocará el desplazamiento del punto de trabajo a lo largo de la característica de la tubería. Si esta corta a una parábola de regímenes semejantes, al cambiar el número de revoluciones y pasar a otra curva característica, la semejanza se conservará, pudiéndose considerar en este caso que el cambio del número de revoluciones de la bomba no alterará la semejanza de los regímenes de trabajo.

Para aclarar un poco más este tema, os dejo un problema resuelto y un vídeo con los conceptos básicos resueltos. Espero que os sea de interés.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Descargar (PDF, 215KB)

Clasificación de las bombas hidráulicas

Bomba de engranaje
Bomba de engranaje

Una bomba es una máquina destinada al transporte y elevación de líquidos, para lo cual absorbe fluido dentro de sí misma a través de un orificio de entrada y lo impulsa hacia fuera a través de una lumbrera de salida. Para accionarlas precisan de la energía proporcionada por un motor, que suele ser en la mayoría de los casos eléctricos, y en otros de combustión.

En ingeniería civil son empleadas para la elevación de agua de pozos para el abastecimiento de poblaciones, agotamientos de niveles freáticos, aspiración de fondos marinos, bombeos de líquidos de un lugar a otro, elevación de aguas negras, etc.

Los parámetros básicos necesarios para seleccionar una bomba son los siguientes:

  1. El caudal de diseño.
  2. Los parámetros que definen el líquido a transportar.
  3. La altura manométrica en el caso de una instalación de bombeo o las necesidades de oxígeno si se trata de un agitador para una planta depuradora.

Las bombas se pueden clasificar atendiendo a diversos criterios. En la figura siguiente se establece la clasificación habitual de las bombas atendiendo a su forma de trabajo.

Figura
Clasificación de las bombas hidráulicas

Otra posible clasificación se establece atendiendo al régimen de funcionamiento:

  1. Bombas de caudal constante: donde el caudal de salida es proporcional al régimen de giro de la bomba, es decir, que el caudal de líquido desplazado por cada revolución es fijo. Estas máquinas no consideran la necesidad de presión del sistema y por tanto debe existir un medio capaz de reconducir el caudal sobrante. Las bombas de engranajes son de caudal constante.
  2. Bombas de caudal variable: el caudal a la salida es independiente de la velocidad de la bomba, por lo que el caudal de líquido desplazado por cada revolución es variable. En este caso el caudal desplazado es el que necesita el sistema. Las bombas de paletas y pistones pueden ser tanto de caudal constante como variable.

En la Tabla siguiente se comparan las características más importantes de las bombas hidráulicas.

Comparación de las propiedades generales de las bombas
Comparación de las propiedades generales de las bombas

Os dejo uno vídeos explicativos sobre este tema.

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.