Entrevista en Construnews — Monográfico infraestructuras en España

A continuación, os paso una entrevista que me hicieron recientemente en Construnews sobre las infraestructuras en España. Forma parte de una serie de entrevistas a personas relacionadas directamente con el sector de la construcción. Espero que os resulte interesante.

“Hay que reingenierizar el modelo de financiación, ejecutar estratégicamente los corredores ferroviarios y desbloquear el suelo para vivienda asequible”

¿Cómo valora el estado actual de las infraestructuras en España (transporte, energía, digitalización, logística)? ¿Cuáles son, a su juicio, los principales retos de país en los próximos 5‑10 años?

La valoración del estado actual de las infraestructuras españolas indica que el notable patrimonio de ingeniería civil presenta síntomas claros de desequilibrio, ya que el modelo se ha centrado excesivamente en la construcción de nuevas infraestructuras de muy alta capacidad, dejando en un segundo plano la conservación preventiva y correctiva de la red existente. En el ámbito viario, los firmes están deteriorados y los sistemas de contención y señalización están obsoletos. En el sector ferroviario, el éxito de la alta velocidad contrasta con la situación de la red convencional y de cercanías, que necesita atención debido a la falta de renovación de los sistemas de seguridad y de las catenarias, lo que provoca incidencias. Además, el hecho de que el ancho de vía sea diferente al de Europa sigue suponiendo un desafío para el transporte de mercancías. El reto más significativo es, por un lado, abordar la vivienda como un problema social y estructural prioritario a nivel nacional, dado el creciente difícil acceso de la población joven y de rentas medias. Por otro lado, la vulnerabilidad ante la emergencia climática, especialmente en lo referente a la gestión del agua, es crítica, por lo que existe una urgencia en materia de defensa contra inundaciones. Gran parte de los sistemas de drenaje se diseñaron basándose en series estadísticas que han quedado obsoletas, y no se está invirtiendo lo suficiente en modernizar las infraestructuras hidráulicas para soportar nuevos caudales punta.

¿Qué segmentos infraestructurales ofrecen mayor potencial de crecimiento para el sector de la construcción y la ingeniería? ¿Y cuáles están quedando fuera del foco?

La inversión se centra en una transición estructural que se está desplazando de la expansión territorial a la intensificación, la digitalización y la resiliencia. El principal motor de crecimiento es la transición energética, ya que la integración masiva de las energías renovables exige un ambicioso programa de refuerzo, digitalización y almacenamiento de la red eléctrica a gran escala. La necesidad de dotar al sistema de baterías industriales y de sistemas de bombeo reversible supone la aparición de un nuevo y gran nicho de mercado. El desarrollo urgente de vivienda asequible y social también se perfila como un segmento clave para el crecimiento del sector. La crisis hídrica convierte la reingeniería hidráulica en un sector estratégico, ya que la oportunidad radica en crear una nueva oferta hídrica mediante desaladoras y sistemas de tratamiento avanzado para la reutilización de aguas residuales, junto con la renovación de las redes de distribución para reducir las pérdidas por fugas. La ingeniería logística crecerá en la dotación de terminales intermodales y en la adaptación de las líneas de transporte al ancho de vía estándar europeo. No obstante, la priorización de grandes proyectos deja en un segundo plano segmentos cruciales para la cohesión. El mantenimiento de las carreteras de titularidad autonómica y provincial es un problema pendiente, al igual que la renovación de los sistemas de señalización del ferrocarril de cercanías. La falta de atención a las pequeñas obras de defensa hidráulica a nivel local (drenajes, encauzamientos) también es crítica.

El déficit de conservación lastra la red existente: señales obsoletas, firmes deteriorados y falta de mantenimiento.

¿Cómo evalúa la coordinación entre administraciones, sector privado y financiación (incluyendo fondos europeos)? ¿Qué mecanismos están funcionando y cuáles habría que reforzar?

La coordinación administrativa presenta una diferencia entre la solidez de la planificación de alto nivel y la lentitud de la fase de materialización. Aunque existe un consenso técnico adecuado y el sector privado ha demostrado su capacidad de ejecución, la principal fricción se debe a la fragmentación administrativa a nivel local y a la superposición de competencias en la financiación del mantenimiento de las redes. Esta situación provoca cuellos de botella en los trámites de expropiación y licencias. La llegada de los fondos europeos de recuperación ha supuesto una inyección de capital necesaria y ha dotado a la inversión de una clara orientación hacia la descarbonización. No obstante, ha puesto de manifiesto la necesidad de reforzar la capacidad administrativa para absorber y licitar el volumen de capital. El mayor riesgo económico es que esta financiación sustituya a la inversión ordinaria en conservación en lugar de complementarla. Para garantizar la sostenibilidad, es necesario establecer mecanismos que separen la gestión técnica del ciclo político. La propuesta más proactiva consiste en crear una Agencia Técnica de Proyectos Estratégicos que tenga autonomía para ejecutar obras de impacto nacional de forma ágil. En cuanto a la financiación, es fundamental sustituir el modelo presupuestario anual por contratos-programa plurianuales y de carácter finalista para la conservación.

Más allá de los discursos, ¿cómo se está incorporando la sostenibilidad en el diseño, ejecución y explotación de infraestructuras? ¿Podría compartir un caso inspirador o representativo?

La sostenibilidad ha dejado de ser un mero postulado ético para convertirse en un requisito técnico y normativo que rediseña el ciclo de vida de las infraestructuras. La ingeniería actual integra este concepto desde la fase de planificación, exigiendo el análisis del ciclo de vida de los activos para cuantificar y minimizar la huella de carbono de los materiales. Esto se traduce en una preferencia técnica por el uso de hormigones y asfaltos con un alto porcentaje de material reciclado y por la implementación de soluciones basadas en la naturaleza. Durante la ejecución, la sostenibilidad se centra en la economía circular mediante la obligación contractual de reutilizar y reciclar in situ los materiales de demolición. Durante la fase de explotación, la sostenibilidad se vincula a la eficiencia: la digitalización mediante sensores permite un mantenimiento predictivo que alarga la vida útil de los activos. Un ejemplo representativo de esta integración es la reingeniería hídrica en zonas con estrés hídrico. Se han desarrollado sistemas de regeneración de aguas residuales con tratamientos terciarios avanzados que permiten cerrar el ciclo del agua y producir un recurso predecible. Este proceso, que requiere mucha energía, se gestiona de forma sostenible al generarse energía a partir de biogás o energía solar.

La transición energética y la ingeniería del agua abren nuevos nichos clave para el sector.

Las infraestructuras ya no son solo estructuras físicas: mantenimiento predictivo, digital twins, infraestructura como servicio… ¿Cuál es su visión sobre esta transformación? ¿Qué proyectos le parecen referentes?

La ingeniería de infraestructuras ha superado la fase de la mera estructura física para transformarse en un sistema dinámico de información y servicio. El enfoque ha cambiado del coste de construcción a la eficiencia operativa a largo plazo. Esta revolución se basa en tres pilares: la monitorización masiva de activos para el mantenimiento predictivo, la creación del gemelo digital, que simula el comportamiento de la infraestructura ante escenarios de estrés, y la adopción del concepto de infraestructura como servicio, que fomenta la colaboración público-privada para construir sistemas duraderos. El gemelo digital es la herramienta clave, ya que permite realizar ensayos virtuales de resiliencia y ampliación sin afectar al activo físico. España está a la vanguardia en la aplicación práctica de esta tecnología. Un ejemplo destacado es la gestión de los túneles de la red de carreteras de alta capacidad, donde la iluminación y la ventilación se ajustan dinámicamente en tiempo real. Otro caso inspirador es el del sector ferroviario, donde el modelado virtual se utiliza para gestionar activos críticos, como la catenaria y los puentes, y simular el impacto físico para anticiparse a la probabilidad de fallo.

En un entorno de alta inversión pública y necesidad de eficiencia, ¿cómo se está calculando y midiendo el ROI en infraestructuras? ¿Podría compartir ejemplos reales o estimaciones? ¿Qué factores lo están condicionando más?

La medición de la rentabilidad de la inversión pública se centra en el retorno social de la inversión, desvinculándose del retorno financiero privado. El cálculo se realiza mediante el análisis coste-beneficio socioeconómico, cuyo principal indicador es el valor actual neto social (VAN social). El mantenimiento preventivo es el segmento con mayor y más estable rentabilidad social; los informes técnicos demuestran que por cada euro invertido en conservación oportuna se evitan entre cuatro y cinco euros en costes de reparación o reconstrucción futura. En contraste, la alta velocidad ferroviaria genera una Tasa Interna de Retorno Social significativa (a menudo superior al 8 %), pero su rentabilidad financiera es insuficiente. La precisión del cálculo se ve comprometida por la sobreestimación recurrente de las previsiones de demanda en las fases iniciales de muchos proyectos. Otros factores críticos son la dificultad para valorar monetariamente las externalidades blandas y los retrasos en la ejecución de la obra, ya que estos elevan el coste final y reducen la rentabilidad esperada.

A raíz de las últimas iniciativas de Bruselas (como el plan para conectar capitales europeas por alta velocidad), ¿qué papel debería jugar España en el nuevo mapa europeo? ¿Estamos preparados o en riesgo de quedar fuera?

El impulso de Bruselas para consolidar la Red Transeuropea de Transporte otorga a España un doble papel estratégico: eje principal de conexión de alta velocidad para viajeros y plataforma logística clave para canalizar el tráfico de mercancías. Sin embargo, a pesar de tener una de las redes de alta velocidad más extensas, España corre el riesgo de quedar menos integrada en el mapa logístico por una barrera técnica: el uso mayoritario del ancho de vía ibérico. Esta diferencia limita la competitividad del transporte de mercancías por ferrocarril. Si no se completa la adecuación al ancho de vía internacional de los corredores Mediterráneo y Atlántico antes de las fechas límite, existe el riesgo de que las mercancías elijan rutas alternativas. Para evitar una menor integración, es necesario reingenierizar los procesos de licitación pública para agilizar la ejecución de la inversión y centrarla en finalizar estos corredores clave y crear los nodos logísticos interiores.

Pensando en todos los modos —carretera, ferrocarril, puertos, aeropuertos, redes logísticas y digitales—, ¿qué ejes o áreas infraestructurales deberían ser prioritarios para mejorar la competitividad y cohesión territorial en España?

La inversión estratégica para mejorar la competitividad y la cohesión territorial debe resolver los cuellos de botella y priorizar la seguridad. El primer eje ineludible se centra en la intermodalidad y la logística de mercancías. Es de máxima prioridad estratégica completar la adaptación de los corredores mediterráneo y atlántico al ancho de vía internacional. El segundo gran eje es la vivienda, cuya provisión masiva y asequible es crucial para la cohesión social y para facilitar la movilidad laboral en zonas de alta demanda. El tercer eje fundamental es la seguridad y el abastecimiento hídrico. La respuesta a la sequía estructural pasa por invertir en infraestructuras que no dependan de las precipitaciones, como la regeneración de aguas residuales mediante un tratamiento avanzado y la ampliación de las plantas desaladoras. También es crucial invertir en obras de defensa y drenaje en cuencas fluviales para proteger a las poblaciones de las avenidas extremas. El cuarto eje se centra en la cohesión a través de la calidad del servicio. Es fundamental saldar el grave déficit de conservación acumulado en la red de carreteras de titularidad autonómica y provincial, que son vitales para la vertebración de la España rural. En cuanto a la prioridad digital, el objetivo es cerrar la brecha y garantizar la cobertura universal de banda ancha ultrarrápida en todos los municipios.

La sostenibilidad ya no es discurso: se mide, se diseña y se exige en todas las fases del ciclo de vida.

El aumento de costes de materiales, la tramitación lenta o la falta de personal cualificado afectan a las infraestructuras. ¿Qué medidas urgentes propondría para desbloquear estos frenos?

La alta inversión pública se ve obstaculizada por tres frenos principales: la volatilidad de los costes, la complejidad administrativa y la necesidad de reforzar el talento. La medida más urgente para hacer frente a la volatilidad de los precios es implementar un sistema de revisión contractual objetivo, automático y no discrecional. Esta medida debe complementarse con la posibilidad de que la Administración adquiera con antelación materiales estratégicos para proyectos clave. Para combatir la lentitud en la tramitación, es imperativo crear Unidades de Gestión de Proyectos Estratégicos que actúen como ventanilla única y coordinen los plazos de licencias y expropiaciones entre las distintas administraciones. Por último, para abordar la falta de personal cualificado, la Administración debe ofrecer condiciones salariales y de progresión profesional más competitivas. Es crucial que la normativa de contratación pública flexibilice la valoración y permita que la calidad técnica y la experiencia del equipo pesen más que el precio en los concursos de servicios de ingeniería.

Si pudiera proponer tres decisiones inmediatas que mejoren las infraestructuras españolas a corto y medio plazo, ¿cuáles serían y por qué?

La mejora de las infraestructuras españolas a corto y medio plazo requiere tomar cuatro decisiones de alto impacto ineludibles. La primera es la reingeniería del modelo de financiación del mantenimiento. Hay que establecer un sistema de contratos programa plurianuales para la conservación de la red de carreteras de alta capacidad y de ferrocarril. La segunda decisión ineludible se centra en la ejecución estratégica y la interoperabilidad. Es urgente crear una unidad ejecutora especializada y con autonomía técnica que se encargue de gestionar de manera integral y acelerada los corredores ferroviarios Mediterráneo y Atlántico. Esta medida resolvería el cuello de botella técnico del ancho de vía y garantizaría el cumplimiento de los plazos exigidos por la Unión Europea para 2030. La tercera decisión debe abordar la gestión eficiente del suelo y la construcción de viviendas asequibles, simplificando los trámites urbanísticos y movilizando suelo público de manera inmediata para aumentar el parque de viviendas sociales. Por último, la cuarta decisión debe resolver los frenos de la gestión: la volatilidad de los costes y la falta de talento. Es imprescindible revisar automáticamente los precios de los contratos de obra pública. De forma complementaria, es necesario modificar la normativa de contratación pública para que, en los servicios de ingeniería, la calidad técnica y la experiencia del equipo humano pesen más que el precio ofertado.

Digital twins, mantenimiento predictivo e infraestructuras como servicio: el futuro ya está en marcha.

Os dejo una conversación donde se habla de estos temas.

En este vídeo se resumen algunas de las ideas principales sobre las infraestructuras en España.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 ideas reveladoras sobre la vida secreta de nuestros edificios y puentes (y por qué debería importarte).

Colapso de una torre de viviendas en Ronan Point (Reino Unido). By Derek Voller, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=59931718

Cada día cruzamos puentes y entramos en edificios con una confianza casi absoluta en su solidez. Damos por hecho que el hormigón y el acero que nos rodean son permanentes. Sin embargo, la realidad es que estas estructuras, al igual que cualquier otra cosa, envejecen, se desgastan y están expuestas a amenazas constantes. Esta degradación no es un problema lejano, sino una realidad silenciosa que ya está aquí. Se trata, como ya he comentado algunas veces, de una verdadera «crisis de las infraestructuras». De eso nos estamos ocupando en el proyecto de investigación RESIFIFE, del cual soy investigador principal.

Para comprender la magnitud del desafío, basta con echar un vistazo a las cifras. Según el informe de la Sociedad Americana de Ingenieros Civiles (ASCE) de 2021, casi el 42 % de todos los puentes de Estados Unidos tienen más de 50 años y un preocupante 7,5 % se consideran «estructuralmente deficientes». A nivel mundial, el panorama es igualmente preocupante. El Foro Económico Mundial estima que la brecha de inversión en infraestructuras podría alcanzar los 18 billones de dólares para el año 2040.

No se trata solo de un problema para ingenieros y gobiernos. Afecta a nuestra seguridad, a nuestra economía y a nuestro futuro. Por eso, hemos recopilado la investigación más reciente para compartir cinco de las ideas más reveladoras que los expertos están debatiendo sobre la gestión del ciclo de vida de nuestra infraestructura.

Los dos «enemigos» al que se enfrentan nuestras estructuras

La degradación de un edificio o un puente no es un proceso único. Para los ingenieros, el primer paso es siempre realizar un diagnóstico correcto. En este caso, hay dos tipos muy diferentes:

  • La degradación progresiva: piense en ella como un desgaste lento y constante. Se trata del «deterioro ambiental», por ejemplo, la corrosión del acero causada por la sal en el aire o la fatiga del material tras soportar cargas durante décadas. Es un enemigo paciente que debilita la estructura poco a poco a lo largo de toda su vida útil.
  • La degradación instantánea: son los impactos repentinos y violentos. Se trata de «eventos extremos», como terremotos, inundaciones o incluso desastres provocados por el ser humano. A diferencia de la degradación progresiva, un solo evento de este tipo puede reducir drásticamente el rendimiento de una estructura en cuestión de minutos.

Comprender esta diferencia es crucial, ya que no se puede utilizar la misma estrategia para reparar una grieta por fatiga que para recuperar una estructura después de un terremoto.

La caja de herramientas de los ingenieros: mantenimiento frente a reparación

Frente a estos dos enemigos, la ingeniería no lucha con las manos vacías. Cuenta con una caja de herramientas específica para cada amenaza, con dos categorías principales de soluciones o «mecanismos de intervención».

  • Mantenimiento: son acciones planificadas para combatir la degradación progresiva. Piense en ellas como la medicina preventiva. Estas «intervenciones preventivas o esenciales» incluyen tareas como reparar grietas, aplicar una nueva capa de pintura protectora o reemplazar componentes estructurales antes de que fallen. El objetivo es frenar el desgaste natural.
  • Reparación: son las acciones que se llevan a cabo en respuesta a la degradación instantánea. Pueden ser «preventivas», como reforzar una estructura (retrofit) para que resista mejor un futuro terremoto, o «correctivas», como las labores de recuperación para devolver la funcionalidad lo antes posible.

Este enfoque de «ciclo de vida» supone un cambio fundamental. En lugar de esperar a que algo se rompa para repararlo, los ingenieros modernos planifican, predicen e intervienen a lo largo de toda la vida útil de la estructura para garantizar su rendimiento a largo plazo.

Más allá de la seguridad: las cuatro formas de medir el «éxito» de una estructura

Es aquí donde el campo se ha vuelto realmente fascinante. La forma de evaluar el «éxito» de una estructura ha evolucionado desde una pregunta sencilla de «¿se ha caído o no?» basta un cuadro de mando sofisticado con cuatro indicadores clave. Para entenderlo mejor, podemos pensar en cómo se evalúa a un atleta profesional:

  • Fiabilidad (reliability): esta es la base. ¿Puede el atleta aguantar el esfuerzo de un partido sin lesionarse? Mide la probabilidad de que una estructura no falle en las condiciones para las que fue diseñada.
  • Riesgo (risk): este indicador va un paso más allá. Si el atleta se lesiona, ¿qué consecuencias tiene para el equipo? ¿Se pierde un partido clave o la final del campeonato? El riesgo tiene en cuenta las consecuencias de un fallo: sociales, económicas y medioambientales.
  • Resiliencia (resilience): este es un concepto más nuevo y crucial. En caso de lesión, ¿cuánto tiempo tardará el atleta en recuperarse y volver a jugar al máximo nivel? Mide la capacidad de una estructura para prepararse, adaptarse y, sobre todo, recuperarse de manera rápida y eficiente tras un evento extremo.
  • Sostenibilidad (sustainability): esta es la visión a largo plazo. ¿Está el atleta gestionando su carrera para poder jugar durante muchos años o se quemará en dos temporadas? La sostenibilidad integra los aspectos sociales, económicos y medioambientales para garantizar que las decisiones de hoy no afecten a las generaciones futuras.

Este cambio de enfoque para evaluar las consecuencias supone una revolución en el campo. Los expertos señalan un cambio de mentalidad fundamental: ya no basta con medir el rendimiento en términos técnicos. Ahora se centran en las consecuencias en el mundo real (sociales, económicas y ambientales), ya que estas ofrecen una visión mucho más fiel y significativa de lo que realmente está en juego.

 

La carrera contra el tiempo: por qué este campo está investigando ahora

El interés por modelar y gestionar el ciclo de vida de las estructuras no es solo una curiosidad académica, sino una respuesta directa a una necesidad global cada vez más acuciante. Un análisis de la investigación científica en este campo revela una clara «tendencia ascendente».

El número de artículos publicados sobre este tema ha crecido constantemente, pero se observa un «incremento importante» a partir de 2015. Este auge de la investigación no es académico, sino una respuesta directa a las alarmantes cifras que vimos al principio. La comunidad mundial de ingenieros está en una carrera contra el tiempo para evitar que ese déficit de 18 billones (18·1012) de dólares se traduzca en fallos catastróficos.

El futuro es inteligente: De la reparación a la predicción

Para gestionar esta complejidad, la ingeniería está recurriendo a herramientas cada vez más avanzadas que van más allá del cálculo tradicional. El objetivo es pasar de un enfoque reactivo a otro predictivo y optimizado. Es como pasar de ir al médico solo cuando tienes un dolor insoportable a llevar un reloj inteligente que monitoriza tu salud las 24 horas del día y te avisa de un problema antes incluso de que lo notes.

Entre las metodologías más destacadas se encuentran:

  • Optimización: algoritmos que ayudan a decidir cuál es la mejor estrategia de mantenimiento (cuándo, dónde y cómo intervenir) para obtener el máximo beneficio con recursos limitados.
  • Modelos de Markov: herramientas estadísticas que funcionan como un pronóstico del tiempo para las estructuras, ya que predicen su estado futuro basándose en su condición actual.
  • Inteligencia artificial (IA), aprendizaje automático y aprendizaje profundo: estas tecnologías permiten analizar grandes cantidades de datos (de sensores, inspecciones, etc.) para predecir fallos, identificar patrones invisibles al ojo humano y optimizar la gestión del ciclo de vida a una escala nunca antes vista.

Este cambio de paradigma significa que, en el futuro, las decisiones sobre cuándo reparar un puente o reforzar un edificio se tomarán con la ayuda de datos y algoritmos complejos que pueden prever el futuro de la estructura.

Conclusión: pensar en el mañana, hoy

Gestionar la salud de nuestra infraestructura es un desafío continuo, complejo y vital. Ya no basta con construir estructuras impresionantes; es fundamental adoptar una mentalidad de «ciclo de vida» que nos obligue a evaluar, intervenir y planificar constantemente pensando en el futuro. Solo así podremos garantizar que los edificios y puentes que usamos cada día no solo sean fiables, sino también resilientes ante los imprevistos y sostenibles para las próximas generaciones.

La próxima vez que cruces un puente, no pienses solo en dónde te lleva. Pregúntate cuál es su historia invisible en su lucha contra el paso del tiempo y si, como sociedad, estamos invirtiendo no solo para construir, sino también para perdurar.

Os dejo un vídeo que os puede servir de guía.

Referencias:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rehabilitación sostenible de edificios costeros de hormigón: ¿cómo optimizar el mantenimiento?

Acaban de publicar un artículo nuestro en Environmental Impact Assessment Review, una de las revistas con mayor impacto científico, dentro del primer decil del JCR. En este trabajo se aborda, desde un enfoque innovador, la optimización de los intervalos de mantenimiento reactivo en edificios costeros construidos con métodos modernos de construcción (MMC). La investigación se enmarca dentro del proyecto RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se muestra un resumen del trabajo e información de contexto.

Quienes trabajamos en ingeniería de la construcción sabemos que los entornos costeros son un auténtico reto. La combinación de humedad, salinidad y vientos cargados de cloruros acelera la corrosión de las armaduras en el hormigón armado. Como consecuencia, estructuras tan comunes como hoteles de playa, bloques residenciales o edificios públicos junto al mar sufren un deterioro prematuro que reduce su vida útil, incrementa los costes de reparación y pone en riesgo la seguridad estructural.

Tradicionalmente, la industria de la construcción ha centrado sus esfuerzos en reducir el impacto ambiental de los materiales y de la fase inicial de obra, dejando en segundo plano la importancia del mantenimiento y la rehabilitación. Sin embargo, cada vez está más claro que prolongar la vida útil mediante estrategias de conservación es clave para lograr ciudades sostenibles.

La pregunta de partida

El equipo investigador se planteó la siguiente cuestión central: ¿qué combinación de diseño preventivo y mantenimiento reactivo permite alargar la vida útil de un edificio costero de hormigón armado de la forma más sostenible, equilibrando costes, impacto ambiental y repercusiones sociales?

Para responderla, compararon doce alternativas de diseño que mejoran la durabilidad frente a los cloruros y analizaron distintas estrategias de reparación en función del nivel de deterioro.

La aportación más destacada

Lo más novedoso del trabajo es la integración de un análisis del ciclo de vida (LCA) con un modelo de ayuda a la decisión basado en FUCOM-TOPSIS. Este enfoque híbrido no solo cuantifica los costes de construcción y mantenimiento, sino también los impactos ambientales (emisiones, recursos y salud humana) y sociales (seguridad de los trabajadores, generación de empleo, molestias a usuarios y a la comunidad local).

En otras palabras, el modelo permite determinar qué intervalos de mantenimiento reactivo son óptimos para cada diseño año tras año y compararlos desde una perspectiva de sostenibilidad global.

Cómo se ha llevado a cabo

  • Caso de estudio: un módulo de hotel en Sancti Petri (Cádiz), construido con losas aligeradas tipo Unidome mediante MMC.

  • Diseños preventivos analizados: desde adiciones (humo de sílice, cenizas volantes), cementos resistentes a sulfatos, reducción de la relación agua/cemento o mayor recubrimiento, hasta soluciones más avanzadas como aceros galvanizados o inoxidables.

  • Estrategias de mantenimiento: cuatro niveles de intervención, desde reparaciones superficiales hasta sustitución de armaduras corroídas.

  • Modelización: se aplicó el modelo de corrosión de Tuutti para estimar periodos de iniciación y propagación del daño.

  • Criterios de evaluación: ocho en total (dos económicos, dos ambientales y cuatro sociales), ponderados mediante FUCOM y evaluados con TOPSIS.

Resultados principales

Los resultados son muy ilustrativos para la práctica profesional.

  • Las soluciones más sostenibles combinaban cemento multirresistente, tratamientos hidrofóbicos anticorrosión y adiciones minerales, como el humo de sílice. Estas alcanzaron una mejora de la sostenibilidad de hasta el 86 % respecto al diseño base.
  • El cemento sulforresistente (SRC) se presentó como la alternativa más equilibrada, con un ciclo de mantenimiento cada 53 años y un ahorro del 65 % en comparación con el caso de referencia.
  • El acero inoxidable prácticamente elimina el mantenimiento durante 100 años, pero su impacto económico y medioambiental inicial lo convierte en una opción poco competitiva.
  • El acero galvanizado ofrece un buen compromiso, ya que es más duradero que el hormigón convencional y su coste es razonable, aunque su impacto ambiental es superior al de otras soluciones.
  • No siempre «menos mantenimiento» significa más sostenibilidad: la clave es intervenir en el momento adecuado para reducir costes y emisiones acumuladas a lo largo de todo el ciclo de vida.

Aplicaciones prácticas en la ingeniería

Este estudio aporta varias lecciones que se pueden aplicar directamente a la práctica:

  1. Planificación a largo plazo: las decisiones de diseño inicial deben ir acompañadas de una estrategia de mantenimiento clara, no solo de criterios de durabilidad normativa.

  2. Visión integral: al evaluar alternativas, no basta con comparar costes iniciales. También hay que tener en cuenta el impacto ambiental y social de cada opción.

  3. Aplicabilidad amplia: aunque el caso analizado es un hotel costero, la metodología es válida para puentes, puertos, depuradoras y cualquier otra estructura de hormigón expuesta a ambientes marinos.

  4. Alineación con la normativa europea: este tipo de enfoques encaja con las estrategias de descarbonización y economía circular de la UE, que exigen evaluar todo el ciclo de vida de las infraestructuras.

En definitiva, este trabajo nos recuerda que la sostenibilidad en la construcción no solo depende de lo que hacemos al levantar un edificio, sino también de cómo lo mantenemos a lo largo de su vida útil. Y, sobre todo, que la ingeniería ya cuenta con herramientas sólidas para planificar esas decisiones de manera objetiva, transparente y alineada con los Objetivos de Desarrollo Sostenible.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Optimizing reactive maintenance intervals for the sustainable rehabilitation of chloride-exposed coastal buildings with MMC-based concrete structure. Environmental Impact Assessment Review, 116, 108110. DOI:10.1016/j.eiar.2025.108110

Como el artículo está publicado en abierto, os lo dejo para su descarga:

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El hormigón frente al mar: cómo alargar la vida de los edificios costeros

A continuación, os paso el contenido de una nota de prensa que ha lanzado la UPV sobre uno de nuestros trabajos de investigación relacionados con el proyecto RESILIFE.

Este trabajo se ha publicado en una de las revistas de mayor impacto científico, dentro del primer decil del JCR: Environmental Impact Assessment Review.

También os dejo enlaces a la noticia. Espero que os resulte interesante.

 

La UPV desarrolla una metodología pionera que combina economía, medioambiente y sociedad para decidir cómo construir y mantener de forma sostenible en entornos marinos.

Por las mañanas, cuando la brisa marina llega a las playas gaditanas, también transporta consigo algo menos poético que el aroma del mar: partículas de sal. Estas sales, cargadas de cloruros, penetran en los materiales de los edificios y aceleran la corrosión del hormigón armado. El resultado es un problema silencioso, pero de gran magnitud: estructuras que se deterioran antes de tiempo, con costes de reparación muy elevados y, en algunos casos, con riesgos para la seguridad.

Un equipo de la Universitat Politècnica de València (UPV) ha desarrollado una herramienta que podría cambiar la forma en la que se planifican las construcciones en la costa. Su investigación, publicada en la revista internacional Environmental Impact Assessment Review, propone un método novedoso que integra tres dimensiones de la sostenibilidad:

  • la económica (cuánto cuesta construir y mantener),
  • la ambiental (qué huella deja en términos de emisiones y recursos),
  • y la social (cómo afecta a trabajadores, vecinos y usuarios).

En palabras de Antonio J. Sánchez-Garrido, autor principal del trabajo: “No basta con calcular cuántos años puede durar un material; hay que considerar también qué impacto tendrá sobre la comunidad, sobre el medio ambiente y sobre el bolsillo de quienes deben mantenerlo”.

Un edificio piloto frente al mar

Para aterrizar su modelo, los investigadores eligieron un caso muy concreto: un hotel situado en primera línea de playa en Sancti Petri (Cádiz). A partir de ahí simularon doce alternativas constructivas distintas, desde cementos especiales hasta recubrimientos protectores o cambios en el tipo de acero de las armaduras.

A cada una de estas alternativas le aplicaron modelos matemáticos de predicción del deterioro y un sistema de decisión multicriterio (FUCOM–TOPSIS) que permite ordenar las opciones en función de su sostenibilidad. El horizonte temporal fue de 100 años, lo que ofrece una visión a largo plazo del ciclo de vida del edificio.

El resultado: una especie de “hoja de ruta” que indica qué material conviene utilizar y cada cuánto tiempo hay que intervenir para alargar la vida útil de la construcción.

Resultados que desmontan intuiciones

Uno de los hallazgos más llamativos es que las soluciones más duraderas no son necesariamente las más sostenibles. El acero inoxidable, por ejemplo, puede resistir más de un siglo sin apenas corrosión. Sin embargo, su elevado coste económico y el fuerte impacto ambiental asociado a su producción lo convierten en una opción menos recomendable si se busca un equilibrio global.

En cambio, alternativas como el cemento resistente a sulfatos (SRC) se posicionan como las más equilibradas: ofrecen buena durabilidad, costes razonables y un impacto ambiental moderado. Según el estudio, con esta solución bastaría con intervenir aproximadamente cada 53 años, lo que supone un gran ahorro económico y logístico.

Otros materiales, como las mezclas con humo de sílice o los tratamientos hidrofóbicos, también obtienen puntuaciones muy competitivas, alargando la vida útil de la estructura y reduciendo la necesidad de reparaciones frecuentes.

Más allá del cálculo técnico

El valor añadido del trabajo radica en su enfoque integral. Hasta ahora, muchas decisiones en construcción se han basado en criterios parciales: el coste inmediato, la resistencia mecánica o la facilidad de ejecución. La propuesta de la UPV va más allá al incluir también los efectos sociales: desde la generación de empleo en la fase de construcción y mantenimiento, hasta las molestias que las obras provocan en vecinos, turistas o trabajadores.

“Un hotel en primera línea de playa no puede permitirse cerrar cada pocos años para reparaciones. Reducir la frecuencia y la duración de las obras no solo ahorra dinero, sino que mejora la experiencia de quienes viven o disfrutan de esos espacios”, explica Víctor Yepes, coautor del estudio e investigador del Instituto ICITECH de la UPV.

Aplicaciones prácticas y futuro

Las aplicaciones de esta metodología son numerosas. Puede ayudar a promotores inmobiliarios a elegir materiales más sostenibles, a administraciones públicas a incluir métricas objetivas en sus licitaciones de obra, y a ingenieros y arquitectos a planificar proyectos con una visión a largo plazo.

Además, se trata de un modelo replicable y transparente, lo que significa que puede adaptarse a diferentes contextos: desde viviendas costeras hasta paseos marítimos, puentes o incluso puertos.

El equipo de la UPV ya trabaja en los siguientes pasos: incorporar inteligencia artificial y modelos probabilísticos para mejorar las predicciones, y validar la metodología en proyectos reales a gran escala, que permitan trasladar este conocimiento directamente al sector.

Un cambio de paradigma

En un momento en que Europa avanza hacia la neutralidad climática y exige a la construcción estándares más estrictos de sostenibilidad, este tipo de investigaciones se vuelven cruciales. No se trata solo de ahorrar dinero o prolongar la vida de los edificios, sino de repensar la relación entre infraestructuras, medio ambiente y sociedad.

La sal del mar seguirá siendo una amenaza para las estructuras costeras, pero gracias a esta metodología, los edificios podrán resistir mejor el paso del tiempo. Y, sobre todo, podrán hacerlo de manera más respetuosa con el planeta y con las personas que los habitan.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Optimizing reactive maintenance intervals for the sustainable rehabilitation of chloride-exposed coastal buildings with MMC-based concrete structure. Environmental Impact Assessment Review, 116, 108110. DOI:10.1016/j.eiar.2025.108110

Esta investigación ha tenido repercusión en la prensa escrita. Aquí tenéis algunos enlaces:

https://cadenaser.com/comunitat-valenciana/2025/08/24/la-upv-propone-como-hacer-mas-duraderos-los-edificios-junto-al-mar-radio-valencia/

https://www.larazon.es/comunidad-valenciana/upv-crea-herramienta-que-ayuda-alargar-vida-util-edificios-situados-junto-mar_2025082468aad195fb354e4b3d1cad77.html

https://valenciaplaza.com/arquitectura-patrimonio-valencia-comunitat-valenciana/la-upv-crea-una-herramienta-que-ayuda-a-alargar-la-vida-util-de-los-edificios-situados-junto-al-mar

https://castellondiario.com/edificios-mas-duraderos-frente-al-mar-la-herramienta-pionera-de-la-upv/

https://www.lavanguardia.com/vida/20250824/10997986/crean-herramienta-ayuda-alargar-vida-util-edificios-situados-mar-agenciaslv20250824.html?utm_term=botones_sociales

UPV crea ferramenta per a prolongar la vida d’edificis costaners i optimitzar el seu manteniment

Os dejo también dos cortes de RNE y de La Ser sobre este mismo tema.

 

Algunas preguntas sobre la gestión y el mantenimiento de la maquinaria empleada en la construcción

¿Cuáles son los objetivos principales del mantenimiento de la maquinaria y cómo se clasifica?

El mantenimiento de la maquinaria de construcción tiene como objetivos fundamentales maximizar su disponibilidad al mínimo coste, optimizar su rendimiento y garantizar unas condiciones óptimas de operatividad y seguridad. Esto se traduce en la reducción de costes debidos a paradas accidentales, minimizando las pérdidas de producción y los gastos propios del mantenimiento, así como en la limitación del deterioro de la maquinaria para evitar la disminución de la calidad del producto.

Las tareas de mantenimiento se clasifican en niveles según la importancia de la obra y sus misiones específicas. Por ejemplo, en una empresa constructora típica, el primer escalón (conductoras y conductores) se encarga del mantenimiento diario, semanal o quincenal (limpieza, repostaje, engrase y reparaciones de urgencia). El segundo escalón (equipos de obra) se encarga del mantenimiento mensual, trimestral o semestral, que incluye revisiones, ajustes ligeros y localización de averías. Los escalones superiores (el tercero y el cuarto, talleres móviles y fijos) se dedican a reparaciones más complejas, a la sustitución de piezas y a grandes reconstrucciones.

¿Qué tipos de políticas de mantenimiento existen y cuál es el más beneficioso a largo plazo?

No existe una clasificación rígida de los sistemas de mantenimiento y cada empresa debe elegir el más adecuado para cada máquina. Sin embargo, pueden clasificarse principalmente en:

  • Corrección por avería: Se permite que los equipos funcionen hasta que fallen, y luego se reparan lo antes posible. Aunque a corto plazo puede parecer económico, a medio y largo plazo puede generar costes elevados debido a la imposibilidad de programar las paradas y al riesgo de fallos graves, lo que disminuye la eficiencia del servicio. Solo se justifica en contadas ocasiones o cuando se trata de muchas máquinas iguales y hay capacidad de sobra.
  • Mantenimiento rutinario: Se establecen instrucciones generales para el mantenimiento de grupos homogéneos de máquinas, basado en la experiencia, para prevenir fallos. Es de bajo costo y puede resolver muchas averías antes de que ocurran.
  • Mantenimiento preventivo planificado: Se establecen ciclos de revisiones y sustituciones de componentes importantes según las instrucciones del fabricante y el uso de la máquina. Esto permite registrar averías y prever la vida útil de los elementos. Aunque es más costoso a corto plazo, resulta más ventajoso a medio y largo plazo, ya que permite programar los tiempos de inactividad y evitar fallos catastróficos, lo que aumenta la eficacia general. El objetivo es reparar antes de que se produzca una avería importante, lo que resulta más rápido y económico.

En resumen, el mantenimiento preventivo planificado es el más ventajoso a medio y largo plazo, ya que permite anticiparse a los problemas, reducir los costes y los tiempos de reparación, y aumentar la eficacia del servicio.

¿Cómo se distribuye el tiempo de permanencia de una máquina en obra y qué implicaciones tiene para los costos?

El tiempo que una máquina permanece en obra se divide en varias categorías, lo que afecta directamente el costo horario y la producción.

  • Tiempo de calendario laborable (fondo horario bruto): Horas reconocidas por la legislación laboral y la organización para trabajar.
  • Tiempo laborable real (fondo horario operacional): Horas de presencia efectiva de la máquina en obra, descontando circunstancias fortuitas como fenómenos atmosféricos, huelgas o catástrofes. Incluye horas extraordinarias.
  • Tiempo de máquina en disposición (fondo horario de explotación): Horas en las que la máquina está operativa y lista para trabajar, excluyendo paradas menores a 15 minutos.
  • Tiempo fuera de disposición: Horas en las que la máquina no está operativa, divididas en:
  • Mantenimiento: Tareas previsibles.
  • Averías: Reparaciones imprevisibles.
  • Parada por organización de obra: Tiempo de inactividad por causas ajenas a la máquina (falta de tajo, suministros, averías de otras máquinas, etc.).
  • Tiempo de trabajo útil: Horas netas donde la máquina produce, incluyendo trabajo productivo y trabajo no productivo o complementario.

Esta distribución temporal implica que el coste horario de una máquina varía en función de la referencia. Para el propietario, el coste se evalúa en relación con la hora de utilización, mientras que, en el caso de un alquiler, se refiere a la hora laborable real. Ampliar la jornada laboral para aumentar las horas útiles puede disminuir el coste horario fijo y acortar los plazos, pero hay que sopesarlo con inconvenientes como el aumento de costes por horas extra del operario, su fatiga y la dilución de responsabilidades si hay varios conductores, lo que puede incrementar las averías.

¿Cómo se calcula la fiabilidad de un equipo de construcción y cuáles son las fases de su vida útil según la «curva de la bañera»?

La fiabilidad se define como la probabilidad de que una unidad funcione correctamente en un intervalo de tiempo determinado sin interrupciones debidas a fallos de sus componentes, en condiciones establecidas. Está relacionada con el tiempo medio entre fallos (TMEF), que es la relación entre las horas de funcionamiento y el número de averías sufridas en ese período.

La «curva de la bañera» describe la evolución de la tasa de fallos de una máquina a lo largo del tiempo y se divide en tres fases:

  1. Período de mortalidad infantil o fallos prematuros: Caracterizado por una alta tasa de fallos que disminuye rápidamente. Las causas suelen ser errores de diseño, fabricación o uso. Estos fallos ocurren en la fase de rodaje y, una vez resueltos, no suelen repetirse.
  2. Período de tasa de fallos constante o vida útil: Los fallos aparecen de forma aleatoria y accidental, debidos a limitaciones de diseño, percances por uso o mal mantenimiento. Es el período ideal de utilización de la máquina.
  3. Período de desgaste: La tasa de fallos aumenta con el tiempo debido a la vejez y el fin de la vida útil. En esta fase, se recomienda el reemplazo preventivo de componentes o incluso la renovación completa del equipo para evitar incidentes catastróficos.
Figura 2. Curva de fiabilidad de una máquina

Para alargar su vida útil, se puede aplicar el envejecimiento preventivo (funcionamiento preliminar para detectar fallos prematuros) y la sustitución preventiva (reemplazo de unidades al finalizar su vida útil para evitar fallos).

¿Cómo se modela la fiabilidad de una máquina y qué técnicas de prevención de fallos se utilizan en el diseño?

La fiabilidad de una máquina puede modelarse mediante la distribución exponencial cuando la tasa de fallos es constante durante el período de vida útil. Esto implica que la ocurrencia de un fallo es imprevisible e independiente de la vida útil del equipo. Una generalización de este modelo es la función de Weibull, que se utiliza cuando la tasa de fallos es variable y permite tener en cuenta las fases de fallos precoces y de envejecimiento.

En lo que respecta a las técnicas de prevención de fallos en el diseño de equipos, las empresas se centran en maximizar la fiabilidad del producto. Algunas metodologías clave son:

  • Despliegue de la Función de Calidad (QFD): Permite traducir los requisitos de calidad del cliente en características técnicas del producto, utilizando matrices para analizar necesidades, competencia y nichos de mercado.
  • Análisis Modal de Fallos y Efectos (AMFE): Una metodología estructurada para identificar y prevenir modos de fallo potenciales y sus causas en un producto o sistema.
  • Análisis del valor: Busca reducir el coste del producto sin eliminar las características esenciales demandadas por los clientes, identificando cambios que aumenten el valor sin un incremento desproporcionado del coste.

¿Cómo influyen las condiciones climáticas y otros imprevistos en la planificación del tiempo de trabajo en una obra de construcción?

Las condiciones climáticas y otros imprevistos son factores cruciales que influyen en el plazo de ejecución de una obra. La planificación del tiempo de trabajo disponible se basa en datos históricos del clima y en el calendario laboral.

El método de la Dirección General de Carreteras, por ejemplo, utiliza coeficientes de reducción aplicados al número de días laborables de cada mes para estimar los días efectivamente trabajados. Estos coeficientes tienen en cuenta:

  • Temperatura límite: Por debajo de la cual no se pueden ejecutar ciertas unidades de obra (ej., 10 ºC para riegos bituminosos, 5 ºC para mezclas bituminosas, 0 ºC para manipulación de materiales húmedos).
  • Precipitación límite diaria: Se definen valores como 1 mm/día para trabajos sensibles a lluvia ligera y 10 mm/día para la mayoría de los trabajos, donde una protección especial sería necesaria.

Los días utilizables netos de cada mes se calculan multiplicando los días laborables por los coeficientes reductores por climatología adversa y por los días no laborables, que dependen de festivos y convenios laborales. La reducción de días representa la probabilidad de que un día del mes sea favorable desde el punto de vista climático y laborable. Estos cálculos permiten elaborar un plan de obra lo más ajustado posible, minimizando las desviaciones de plazo, aunque la evolución del tiempo atmosférico es impredecible en la práctica.

¿Qué se entiende por «disponibilidad» de una máquina en obra y cómo se calcula?

La disponibilidad de una máquina se refiere a su estado operativo, es decir, al tiempo en el que se encuentra disponible. Se pueden distinguir dos tipos principales de disponibilidad:

  • Disponibilidad en obra o factor de disponibilidad: Se define como el cociente entre el tiempo en que una máquina se encuentra en estado operativo y el tiempo laborable real. En otras palabras, es la relación entre las horas brutas de disponibilidad y las horas que la máquina ha estado presente en la obra. Valores bajos de este factor pueden indicar una mala conservación, reparaciones lentas o falta de repuestos.
  • Disponibilidad intrínseca: Se define como el cociente entre el tiempo de utilización y el tiempo laborable real, sin tener en cuenta las paradas ajenas a la máquina por tiempo disponible no utilizado (mala organización de la obra, etc.). Estadísticamente, se define como la probabilidad de que una máquina funcione correctamente en un momento determinado o de que no presente averías irreparables en un tiempo máximo.

Las máquinas se clasifican en «principales» (se requiere alta disponibilidad, ya que su fallo paraliza la producción de un conjunto de máquinas) y «secundarias» o «de producción trabajando solas».

¿Cómo se calcula la disponibilidad de un conjunto de máquinas trabajando en cadena y en paralelo?

La disponibilidad de un sistema de máquinas varía significativamente en función de si trabajan en serie o en paralelo.

  • Máquinas trabajando en cadena (serie): Si n máquinas trabajan en cadena, y el fallo de una paraliza a las demás, la disponibilidad intrínseca del conjunto es el producto de las disponibilidades individuales. Esto significa que la disponibilidad general disminuye rápidamente al aumentar el número de máquinas en serie. Si se admiten acopios intermedios suficientemente grandes, la disponibilidad del equipo sería el mínimo de las disponibilidades individuales, lo que amplía la disponibilidad respecto a no tener acopios.
  • Máquinas trabajando en paralelo: Si n máquinas iguales trabajan en paralelo y la inoperatividad de una no detiene completamente el proceso (ya que otras pueden seguir trabajando), la probabilidad de que x máquinas se encuentren en disposición sigue una distribución binomial. En este caso, la disponibilidad del conjunto aumenta al tener más unidades en paralelo, ya que el sistema puede continuar operando incluso si algunas máquinas fallan.

En un caso general de máquinas principales en paralelo y auxiliares en paralelo que luego trabajan en serie, la disponibilidad del conjunto se calcula combinando las fórmulas de disponibilidad en serie y en paralelo.

 

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Durabilidad de las estructuras de acero

https://estructuramex.com/que-provoca-la-oxidacion-en-las-estructuras-metalicas/

La durabilidad de las estructuras de acero depende de factores como la calidad del material, el diseño estructural, las medidas de protección contra la corrosión y el mantenimiento planificado. Una estrategia efectiva en cada una de estas áreas permite alcanzar la vida útil deseada, minimizar el deterioro y reducir la necesidad de intervenciones costosas.

Factores que afectan a la durabilidad del acero

La exposición ambiental es una de las principales causas del deterioro del acero estructural. La agresividad del medio se clasifica en diferentes niveles, desde ambientes de corrosividad muy baja (C1) hasta ambientes de corrosividad muy alta (C5). En zonas con alta humedad, presencia de iones cloruro, exposición constante a la lluvia o a contaminantes industriales con alto contenido en SO₃, la velocidad de corrosión aumenta, por lo que es necesario adoptar medidas adicionales para proteger la estructura.

Las uniones estructurales pueden constituir puntos de alta vulnerabilidad si no se diseñan y ejecutan adecuadamente. Las soldaduras deben estar libres de fisuras, cráteres y proyecciones, ya que estas imperfecciones dificultan la adherencia de los sistemas de protección superficial. En uniones atornilladas, los pernos, las tuercas y las arandelas deben tener la misma durabilidad que el resto de la estructura para evitar deterioros diferenciales y la formación de pares galvánicos entre metales de diferente potencial electroquímico.

Diseño estructural y estrategias para mejorar la durabilidad

El diseño debe evitar configuraciones que favorezcan la acumulación de agua o suciedad, ya que estas condiciones pueden acelerar la corrosión. Para ello, se recomienda evitar superficies horizontales expuestas y secciones abiertas en la parte superior de los elementos estructurales, ya que pueden retener humedad. Además, las cavidades y huecos deben eliminarse o diseñarse de manera que permitan un drenaje eficiente. En el caso de elementos con interiores accesibles, deben incorporarse sistemas adecuados de ventilación y drenaje, mientras que los interiores inaccesibles deben sellarse completamente mediante soldaduras continuas para evitar la entrada de humedad.

Las uniones estructurales deben recibir especial atención en lo que a protección se refiere. En elementos soldados, se recomienda que la intersección entre refuerzos y elementos principales sea continua para permitir la correcta aplicación de recubrimientos. En el caso de entallas en almas o refuerzos, se deben disponer radios mínimos de 50 mm para facilitar la aplicación de los sistemas de protección.

Selección de materiales y protección contra la corrosión

En entornos agresivos, se pueden emplear aceros con resistencia mejorada a la corrosión atmosférica, aceros inoxidables o aceros galvanizados en caliente. En el caso de los aceros resistentes a la corrosión atmosférica, su uso sin recubrimiento de pintura está limitado a ambientes que no presenten una exposición significativa a iones cloruro. En estos casos, el espesor nominal de los elementos expuestos al ambiente exterior debe incrementarse en 1 mm. Para superficies interiores de secciones cerradas e inaccesibles se requiere la aplicación de un sistema de protección adecuado o un sobreespesor adicional.

La protección superficial es uno de los métodos más utilizados para garantizar la durabilidad de los elementos de acero. Al seleccionar el sistema de protección, se debe tener en cuenta el grado de preparación de la superficie, el tipo de imprimación, el número y el espesor de las capas de recubrimiento y la frecuencia de reposición durante la vida útil de la estructura. En función de la agresividad ambiental, los espesores de recubrimiento y la durabilidad del sistema deben ajustarse para proporcionar la protección requerida.

En algunas condiciones, el sobreespesor puede utilizarse como alternativa a los recubrimientos superficiales. Para ambientes de corrosividad alta (C4) o muy alta (C5), se recomienda un sobreespesor de 1,5 mm por cada 30 años de vida útil prevista, mientras que en ambientes de corrosividad media (C3) este valor se reduce a 1 mm. En ambientes de baja corrosividad (C2), el sobreespesor mínimo es de 0,5 mm, y en ambientes de corrosividad muy baja (C1) no es necesario aumentar el espesor. En elementos inaccesibles de puentes metálicos, el espesor total de las secciones cerradas no debe ser inferior a 8 mm.

La protección catódica es otra opción para reducir la corrosión en estructuras de acero, especialmente en entornos con exposición prolongada a la humedad o ambientes marinos. Este sistema requiere un diseño detallado y un plan de mantenimiento que garantice su efectividad a largo plazo. El proyecto debe justificar técnicamente la aplicación de la protección catódica y definir los procedimientos de instalación y seguimiento conforme a la norma UNE-EN ISO 12499.

Mantenimiento y conservación

El mantenimiento de las estructuras de acero es una parte esencial de la estrategia de durabilidad. Los sistemas de protección superficial deben reemplazarse periódicamente, ya que su vida útil suele ser inferior a la de la estructura. Para facilitar estas intervenciones, es necesario que las estructuras cuenten con accesos adecuados a las zonas cerradas. En los cajones metálicos, por ejemplo, las aberturas deben ser lo suficientemente amplias para permitir el paso de personal y equipos de mantenimiento. Se recomienda que las dimensiones mínimas sean de 500 x 700 mm en accesos rectangulares u ovales y de 600 mm de diámetro en accesos circulares.

Conclusión

La durabilidad de los elementos de acero en estructuras civiles depende de una combinación de factores, como el diseño estructural, la selección de materiales, la aplicación de sistemas de protección adecuados y un mantenimiento planificado. La implementación de estrategias de prevención permite garantizar el buen funcionamiento de la estructura a lo largo de su vida útil, reducir la necesidad de intervenciones correctivas y asegurar su seguridad y funcionalidad en diferentes condiciones de exposición.

A continuación, podéis ver algunos vídeos al respecto.

Os dejo a continuación el capítulo 19 del Código Estructural para que lo consultéis.

Pincha aquí para descargar
Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Durabilidad y rediseño de un puente de hormigón en ambiente costero mediante un método no destructivo de detección de daños

Durante los días 10-13 de julio de 2023 tuvo lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Fue una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso la primera de las comunicaciones presentadas. Cabe destacar que este trabajo recibió el accésit del Premio “Jaume Blasco” a la innovación, por lo que hay que felicitar al doctorando Mehrdad Hadizadeh-Bazaz por el extraordinario trabajo realizado. A ello hay que sumar el Premio que recibió al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del VIII Encuentro de Estudiantes de Doctorado.

Durante algún tiempo, los expertos y los gobiernos han estado enfocados en reducir los costos de reparación y mantenimiento de estructuras cruciales como los puentes a través de un enfoque continuo en el mantenimiento y la reparación. En este estudio, se investiga la rentabilidad de dos métodos de predicción de daños: el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños a través del rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado.

El estudio evalúa el impacto de los iones cloruro en la ubicación y extensión de los daños a lo largo de la vida útil del puente, y compara los costos totales de mantenimiento y reparación. Los resultados revelan que si bien el método PSD es efectivo para estructuras con recubrimientos de hormigón bajos, aumentar el espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Palabras clave:

Evaluación del costo del ciclo de vida, métodos no destructivos de detección de daños, puente costero de hormigón, corrosión del acero, corrosión por cloruros, técnicas de mantenimiento y reparación.

Agradecimientos:

This research was funded by MCIN/AEI/10.13039/501100011033, grant number PID2020-117056RB-I00 and The APC was funded by ERDF A way of making Europe.

Referencia:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 386-401. DOI:10.61547/3371

A continuación os dejo un vídeo donde presentamos el trabajo. Espero que os sea de interés.

Os dejo la comunicación completa, pues está editada en abierto. Espero que os sea de interés.

Pincha aquí para descargar

Gestión del mantenimiento de carreteras con presupuesto limitado

Tengo el placer de anunciar una conferencia invitada que impartiré el próximo día 3 de marzo de 2023, a las 17:00 h, denominada: “Gestión del mantenimiento de carreteras con presupuesto limitado”.

Esta charla está auspiciada por el Instituto Tecnológico de la Construcción. Se trata de una institución de educación superior de habla hispana, radicada en México, especializada en el ramo de la construcción, logrando una formación teórica-práctica de sus alumnos y es reconocida por el liderazgo y calidad de sus egresados.

Este instituto, tal y como se puede ver en su página web, nace en 1983 como respuesta de la Cámara Mexicana de la Industria de la Construcción a las necesidades de sus afiliados por tener profesionales especializados en materia de construcción. Se logra, así, que el proceso de vinculación escuela-industria de la construcción sea total, pues gracias a los estudios universitarios que se imparten, se ha logrado formar a ejecutivos y gestores de empresas constructoras.

Existe un formulario para aquellos de vosotros que queráis participar en este evento. El enlace es el siguiente: https://t.co/oHzVxz6iQ6

 

¿Es rentable contratar un servicio de mantenimiento para el parque de maquinaria?

El mantenimiento y la reparación de los equipos supone un coste importante para los parques de maquinaria de las empresas constructoras. Una posibilidad que tienen los parques es acordar un acuerdo con un proveedor que realice las labores de mantenimiento.

Sin embargo, para que ello sea rentable, el parque deber hacer sus números. Este es uno de los casos estudiados en el “Curso de gestión de costes y producción de la maquinaria empleada en la construcción”.

Os paso un ejemplo de problema donde se puede ver cómo se puede ejecutar dicho cálculo. Espero que os sea de interés.

Pincha aquí para descargar

Referencias:

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Conferencia en el JSAEE 2022: Diseño y mantenimiento sostenible de estructuras y puentes considerando su ciclo de vida

Con motivo de la celebración del XXXIX Congreso Sudamericano de Ingeniería Estructural JSAEE 2022, fui invitado a impartir una conferencia denominada «Diseño y mantenimiento sostenible de estructuras y puentes considerando su ciclo de vida«. En esta conferencia explico lo que está realizando nuestro grupo de investigación con proyectos como DIMALIFEHYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Espero que os sea de interés.

La conferencia del profesor Víctor Yepes aborda la integración de la sostenibilidad en el diseño y mantenimiento de estructuras y puentes, enfatizando la necesidad de considerar todo el ciclo de vida. Yepes, catedrático en Ingeniería de la Construcción en la Universitat Politècnica de València, argumenta que se requiere un cambio de paradigma respecto a las prácticas tradicionales. Destaca la importancia económica, social y ambiental del sector de la construcción y presenta la optimización, especialmente a través de la Inteligencia Artificial (IA) y las metaheurísticas, como una herramienta clave para lograr diseños más eficientes y sostenibles. Explora la complejidad de la optimización combinatoria en ingeniería estructural y las limitaciones de los métodos de resolución exactos. Presenta la optimización multiobjetivo y la frontera de Pareto como herramientas para evaluar soluciones que consideran múltiples criterios (coste, sostenibilidad, fiabilidad, etc.). Introduce el concepto de metamodelos y Smart Data como alternativas para optimizar con menos datos y recursos computacionales. Finalmente, enfatiza la necesidad de integrar el análisis del ciclo de vida y la toma de decisiones multicriterio para una gestión sostenible de los activos, señalando los desafíos en la evaluación social y la variabilidad.

Glosario de términos clave:

  • Sostenibilidad: En el contexto de la ingeniería, se refiere a la capacidad de diseñar, construir y mantener estructuras de manera que se satisfagan las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, considerando dimensiones económicas, sociales y ambientales.
  • Ciclo de Vida (Life Cycle): El período completo desde la concepción de una estructura hasta su demolición y disposición final, incluyendo diseño, construcción, uso, mantenimiento, reparación y fin de vida útil.
  • Optimización: Proceso de encontrar la mejor solución posible a un problema, generalmente minimizando o maximizando una función objetivo (como coste, emisiones, etc.) sujeto a un conjunto de restricciones (como requisitos estructurales o geométricos).
  • Inteligencia Artificial (IA): Sistemas informáticos diseñados para realizar tareas que normalmente requieren inteligencia humana, como aprendizaje, resolución de problemas y toma de decisiones.
  • Metaheurística: Algoritmo o técnica que guía un proceso de búsqueda para encontrar soluciones aproximadamente óptimas a problemas complejos, a menudo inspirados en procesos naturales o biológicos (ej: algoritmos genéticos).
  • Optimización Combinatoria: Tipo de optimización donde las variables de decisión son discretas (toman valores de un conjunto finito), lo que a menudo resulta en un gran número de posibles soluciones.
  • Función Objetivo: La medida de rendimiento o criterio que se busca optimizar en un problema de optimización (ej: minimizar coste, maximizar durabilidad).
  • Restricciones: Condiciones o limitaciones que deben cumplirse en un problema de optimización (ej: límites de deformación, resistencia mínima).
  • Frontera de Pareto: En optimización multiobjetivo, es el conjunto de soluciones óptimas no dominadas, donde no es posible mejorar un objetivo sin empeorar al menos otro.
  • Metamodelo (o Modelo Subrogado): Un modelo simplificado (a menudo una función matemática o un modelo de aprendizaje automático) que aproxima la relación entre las variables de entrada y salida de un modelo más complejo, utilizado para acelerar la optimización o el análisis.
  • Smart Data: En contraste con Big Data, se refiere a la extracción de información útil y patrones a partir de conjuntos de datos más pequeños o selectivos, a menudo utilizando técnicas estadísticas o de modelado avanzado (como Kriging).
  • Análisis del Ciclo de Vida (ACV o LCA): Metodología para evaluar los impactos ambientales, sociales y económicos asociados con todas las etapas del ciclo de vida de un producto o servicio.
  • Toma de Decisión Multicriterio (MCDM): Conjunto de técnicas para evaluar y seleccionar entre alternativas que involucran múltiples criterios de evaluación, a menudo contrapuestos.
  • Gestión de Activos: En el contexto de infraestructuras, es el enfoque sistemático y estratégico para gestionar el ciclo de vida completo de los activos (como puentes o carreteras) con el objetivo de optimizar su rendimiento, coste y riesgo.
  • Fiabilidad: La probabilidad de que una estructura cumpla con sus requisitos de rendimiento bajo condiciones específicas durante un período de tiempo determinado.
  • Gemelo Digital (Digital Twin): Una representación virtual de una estructura o sistema físico que se actualiza con datos en tiempo real de sensores, permitiendo monitorización, análisis y predicción de su comportamiento a lo largo del tiempo.