5 ideas reveladoras sobre la vida secreta de nuestros edificios y puentes (y por qué debería importarte).

Colapso de una torre de viviendas en Ronan Point (Reino Unido). By Derek Voller, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=59931718

Cada día cruzamos puentes y entramos en edificios con una confianza casi absoluta en su solidez. Damos por hecho que el hormigón y el acero que nos rodean son permanentes. Sin embargo, la realidad es que estas estructuras, al igual que cualquier otra cosa, envejecen, se desgastan y están expuestas a amenazas constantes. Esta degradación no es un problema lejano, sino una realidad silenciosa que ya está aquí. Se trata, como ya he comentado algunas veces, de una verdadera «crisis de las infraestructuras». De eso nos estamos ocupando en el proyecto de investigación RESIFIFE, del cual soy investigador principal.

Para comprender la magnitud del desafío, basta con echar un vistazo a las cifras. Según el informe de la Sociedad Americana de Ingenieros Civiles (ASCE) de 2021, casi el 42 % de todos los puentes de Estados Unidos tienen más de 50 años y un preocupante 7,5 % se consideran «estructuralmente deficientes». A nivel mundial, el panorama es igualmente preocupante. El Foro Económico Mundial estima que la brecha de inversión en infraestructuras podría alcanzar los 18 billones de dólares para el año 2040.

No se trata solo de un problema para ingenieros y gobiernos. Afecta a nuestra seguridad, a nuestra economía y a nuestro futuro. Por eso, hemos recopilado la investigación más reciente para compartir cinco de las ideas más reveladoras que los expertos están debatiendo sobre la gestión del ciclo de vida de nuestra infraestructura.

Los dos «enemigos» al que se enfrentan nuestras estructuras

La degradación de un edificio o un puente no es un proceso único. Para los ingenieros, el primer paso es siempre realizar un diagnóstico correcto. En este caso, hay dos tipos muy diferentes:

  • La degradación progresiva: piense en ella como un desgaste lento y constante. Se trata del «deterioro ambiental», por ejemplo, la corrosión del acero causada por la sal en el aire o la fatiga del material tras soportar cargas durante décadas. Es un enemigo paciente que debilita la estructura poco a poco a lo largo de toda su vida útil.
  • La degradación instantánea: son los impactos repentinos y violentos. Se trata de «eventos extremos», como terremotos, inundaciones o incluso desastres provocados por el ser humano. A diferencia de la degradación progresiva, un solo evento de este tipo puede reducir drásticamente el rendimiento de una estructura en cuestión de minutos.

Comprender esta diferencia es crucial, ya que no se puede utilizar la misma estrategia para reparar una grieta por fatiga que para recuperar una estructura después de un terremoto.

La caja de herramientas de los ingenieros: mantenimiento frente a reparación

Frente a estos dos enemigos, la ingeniería no lucha con las manos vacías. Cuenta con una caja de herramientas específica para cada amenaza, con dos categorías principales de soluciones o «mecanismos de intervención».

  • Mantenimiento: son acciones planificadas para combatir la degradación progresiva. Piense en ellas como la medicina preventiva. Estas «intervenciones preventivas o esenciales» incluyen tareas como reparar grietas, aplicar una nueva capa de pintura protectora o reemplazar componentes estructurales antes de que fallen. El objetivo es frenar el desgaste natural.
  • Reparación: son las acciones que se llevan a cabo en respuesta a la degradación instantánea. Pueden ser «preventivas», como reforzar una estructura (retrofit) para que resista mejor un futuro terremoto, o «correctivas», como las labores de recuperación para devolver la funcionalidad lo antes posible.

Este enfoque de «ciclo de vida» supone un cambio fundamental. En lugar de esperar a que algo se rompa para repararlo, los ingenieros modernos planifican, predicen e intervienen a lo largo de toda la vida útil de la estructura para garantizar su rendimiento a largo plazo.

Más allá de la seguridad: las cuatro formas de medir el «éxito» de una estructura

Es aquí donde el campo se ha vuelto realmente fascinante. La forma de evaluar el «éxito» de una estructura ha evolucionado desde una pregunta sencilla de «¿se ha caído o no?» basta un cuadro de mando sofisticado con cuatro indicadores clave. Para entenderlo mejor, podemos pensar en cómo se evalúa a un atleta profesional:

  • Fiabilidad (reliability): esta es la base. ¿Puede el atleta aguantar el esfuerzo de un partido sin lesionarse? Mide la probabilidad de que una estructura no falle en las condiciones para las que fue diseñada.
  • Riesgo (risk): este indicador va un paso más allá. Si el atleta se lesiona, ¿qué consecuencias tiene para el equipo? ¿Se pierde un partido clave o la final del campeonato? El riesgo tiene en cuenta las consecuencias de un fallo: sociales, económicas y medioambientales.
  • Resiliencia (resilience): este es un concepto más nuevo y crucial. En caso de lesión, ¿cuánto tiempo tardará el atleta en recuperarse y volver a jugar al máximo nivel? Mide la capacidad de una estructura para prepararse, adaptarse y, sobre todo, recuperarse de manera rápida y eficiente tras un evento extremo.
  • Sostenibilidad (sustainability): esta es la visión a largo plazo. ¿Está el atleta gestionando su carrera para poder jugar durante muchos años o se quemará en dos temporadas? La sostenibilidad integra los aspectos sociales, económicos y medioambientales para garantizar que las decisiones de hoy no afecten a las generaciones futuras.

Este cambio de enfoque para evaluar las consecuencias supone una revolución en el campo. Los expertos señalan un cambio de mentalidad fundamental: ya no basta con medir el rendimiento en términos técnicos. Ahora se centran en las consecuencias en el mundo real (sociales, económicas y ambientales), ya que estas ofrecen una visión mucho más fiel y significativa de lo que realmente está en juego.

 

La carrera contra el tiempo: por qué este campo está investigando ahora

El interés por modelar y gestionar el ciclo de vida de las estructuras no es solo una curiosidad académica, sino una respuesta directa a una necesidad global cada vez más acuciante. Un análisis de la investigación científica en este campo revela una clara «tendencia ascendente».

El número de artículos publicados sobre este tema ha crecido constantemente, pero se observa un «incremento importante» a partir de 2015. Este auge de la investigación no es académico, sino una respuesta directa a las alarmantes cifras que vimos al principio. La comunidad mundial de ingenieros está en una carrera contra el tiempo para evitar que ese déficit de 18 billones (18·1012) de dólares se traduzca en fallos catastróficos.

El futuro es inteligente: De la reparación a la predicción

Para gestionar esta complejidad, la ingeniería está recurriendo a herramientas cada vez más avanzadas que van más allá del cálculo tradicional. El objetivo es pasar de un enfoque reactivo a otro predictivo y optimizado. Es como pasar de ir al médico solo cuando tienes un dolor insoportable a llevar un reloj inteligente que monitoriza tu salud las 24 horas del día y te avisa de un problema antes incluso de que lo notes.

Entre las metodologías más destacadas se encuentran:

  • Optimización: algoritmos que ayudan a decidir cuál es la mejor estrategia de mantenimiento (cuándo, dónde y cómo intervenir) para obtener el máximo beneficio con recursos limitados.
  • Modelos de Markov: herramientas estadísticas que funcionan como un pronóstico del tiempo para las estructuras, ya que predicen su estado futuro basándose en su condición actual.
  • Inteligencia artificial (IA), aprendizaje automático y aprendizaje profundo: estas tecnologías permiten analizar grandes cantidades de datos (de sensores, inspecciones, etc.) para predecir fallos, identificar patrones invisibles al ojo humano y optimizar la gestión del ciclo de vida a una escala nunca antes vista.

Este cambio de paradigma significa que, en el futuro, las decisiones sobre cuándo reparar un puente o reforzar un edificio se tomarán con la ayuda de datos y algoritmos complejos que pueden prever el futuro de la estructura.

Conclusión: pensar en el mañana, hoy

Gestionar la salud de nuestra infraestructura es un desafío continuo, complejo y vital. Ya no basta con construir estructuras impresionantes; es fundamental adoptar una mentalidad de «ciclo de vida» que nos obligue a evaluar, intervenir y planificar constantemente pensando en el futuro. Solo así podremos garantizar que los edificios y puentes que usamos cada día no solo sean fiables, sino también resilientes ante los imprevistos y sostenibles para las próximas generaciones.

La próxima vez que cruces un puente, no pienses solo en dónde te lleva. Pregúntate cuál es su historia invisible en su lucha contra el paso del tiempo y si, como sociedad, estamos invirtiendo no solo para construir, sino también para perdurar.

Os dejo un vídeo que os puede servir de guía.

Referencias:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Energía de impacto: cómo responden las estructuras ante una colisión

Figura 1. Ejemplo de carga de impacto entre dos vehículos.

En ingeniería, las cargas que actúan sobre una estructura se clasifican en dos tipos principales: estáticas y dinámicas, según si permanecen constantes o varían con el tiempo.

Una carga estática se aplica lentamente y no produce efectos vibratorios ni dinámicos en la estructura. Es decir, la carga aumenta gradualmente desde cero hasta alcanzar su valor máximo y, a partir de ahí, permanece constante. Un ejemplo de carga estática típica es el peso de un objeto colocado cuidadosamente sobre una superficie.

Por su parte, las cargas dinámicas pueden adoptar muchas formas y comportarse de manera más compleja. Algunas se aplican y se retiran de forma repentina, como las cargas de impacto, mientras que otras persisten durante periodos largos y varían continuamente de intensidad, y se conocen como cargas fluctuantes. Las cargas de impacto se producen, por ejemplo, cuando dos objetos colisionan o cuando un objeto en caída golpea una estructura (Figura 1). En cambio, las cargas fluctuantes suelen estar asociadas a maquinaria rotatoria, tránsito de vehículos, ráfagas de viento, olas del mar, movimientos sísmicos o procesos industriales de fabricación. La carga dinámica sobre un cuerpo se puede considerar como una carga aplicada en forma estática multiplicada por un factor de mayoración.

Muchos elementos de las máquinas están sometidos a cargas variables que cambian de intensidad con el tiempo. El comportamiento de los materiales sometidos a este tipo de carga es muy diferente del que presentan frente a cargas estáticas. Por ejemplo, una pieza que puede soportar sin problemas una gran carga estática podría fallar si se le aplica una carga mucho menor, pero repetida un gran número de veces.

Las cargas variables generan esfuerzos alternantes en el material que tienden a producir pequeñas grietas en su superficie. Con cada repetición de la carga, estas grietas se van propagando poco a poco hasta que finalmente se produce la rotura total de la pieza. A este fenómeno, en el que la acumulación de daños por cargas repetidas provoca la fractura, se le conoce como fatiga.

Para ilustrar cómo responde una estructura ante una carga dinámica, analicemos un caso sencillo, pero revelador: el impacto de un objeto que cae sobre el extremo inferior de una barra prismática (Figura 2). Supongamos que un collarín con masa , inicialmente en reposo, se deja caer desde una altura hasta chocar contra una brida fija al extremo inferior de la barra.

Figura 2. Carga de impacto sobre una barra prismática.

Cuando el collarín golpea la brida, la barra comienza a alargarse debido a que el impacto genera esfuerzos axiales internos. En un intervalo muy breve, del orden de algunos milisegundos, la brida desciende y alcanza su posición de desplazamiento máximo. A partir de ese momento, la barra comienza a vibrar longitudinalmente: primero se acorta, después se alarga, luego se vuelve a acortar y así sucesivamente, con el extremo inferior oscilando hacia arriba y hacia abajo.

Estas vibraciones son similares a las que se observan cuando se estira y suelta un resorte o cuando una persona salta con una cuerda elástica atada al tobillo. No obstante, estas vibraciones no persisten indefinidamente, ya que el material presenta efectos de amortiguamiento que hacen que se atenúen rápidamente y la barra finalmente quede en reposo con la masa M apoyada sobre la brida.

Es evidente que la respuesta de la barra al impacto del collarín es bastante compleja. Un análisis completo y preciso requiere recurrir a técnicas matemáticas avanzadas para describir el fenómeno en detalle. Sin embargo, es posible obtener una aproximación útil utilizando el concepto de energía de deformación y formulando algunas suposiciones simplificadoras.

  • Antes de liberar el collarín, este se encuentra a una altura sobre la brida y posee una energía potencial gravitatoria:

donde es la aceleración de la gravedad.

  • A medida que cae, la energía potencial se convierte en energía cinética. Justo al impactar, toda la energía es cinética:

siendo n=√(2 · g · h) la velocidad del collarín en el momento del choque.

Figura 3. Alargamiento producido por el impacto

Durante el impacto, la energía cinética del collarín se transforma en otras formas de energía. Una parte se convierte en energía de deformación cuando la barra se estira. Otra parte se disipa en forma de calor y mediante deformaciones plásticas locales tanto en el collarín como en la brida. Además, una pequeña fracción de la energía permanece como energía cinética residual en el collarín, que puede seguir moviéndose hacia abajo mientras está en contacto con la brida e, incluso, rebotar hacia arriba.

Para simplificar el análisis de esta situación tan compleja, haremos algunas idealizaciones y asumiremos las siguientes condiciones:

  1. Supondremos que el collarín y la brida están diseñados de manera que, tras el impacto, el collarín «se pega» a la brida y se desplaza hacia abajo con ella. Es decir, asumimos que no hay rebote. Este comportamiento es más probable cuando la masa del collarín es mayor que la de la barra.

  2. Ignoraremos todas las pérdidas de energía y supondremos que toda la energía cinética del collarín al caer se transforma por completo en energía de deformación de la barra. Esta simplificación da como resultado esfuerzos mayores de los que realmente se producirían si se tuvieran en cuenta las pérdidas de energía.

  3. No tendremos en cuenta los cambios en la energía potencial de la barra debidos a su movimiento vertical ni la energía de deformación asociada a su propio peso. Ambos efectos son extremadamente pequeños y pueden ignorarse.

  4. Supondremos que los esfuerzos en la barra se mantienen dentro del rango linealmente elástico, es decir, que no se produce deformación plástica en la barra.

  5. Consideraremos que la distribución de esfuerzos en toda la barra es la misma que si estuviera sometida a una carga estática en su extremo inferior, es decir, que los esfuerzos son uniformes en todo el volumen de la barra. En realidad, las ondas de esfuerzo longitudinal que se propagan por la barra causan variaciones en la distribución del esfuerzo, pero aquí las despreciaremos para simplificar el análisis.

Con estas suposiciones, podemos calcular el alargamiento máximo de la barra y los esfuerzos de tensión máximos producidos por la carga de impacto. Hay que recordar que en este análisis no se tiene en cuenta el peso de la barra y que únicamente se evalúan los esfuerzos generados por la caída del collarín.

Este análisis energético, aunque simplificado, permite comprender los principios fundamentales que rigen la respuesta de las estructuras ante una carga de impacto, así como las vibraciones que se generan y la forma en que se amortiguan hasta que la estructura alcanza un nuevo estado de equilibrio.

En este tipo de análisis, asumimos que no hay pérdidas de energía durante el impacto. Sin embargo, en la realidad estas pérdidas siempre están presentes y, por lo general, se disipan en forma de calor y mediante deformaciones localizadas en los materiales. Por tanto, la energía cinética del sistema es menor inmediatamente después del impacto que antes de este. Esto significa que la barra se deforma menos de lo que predice nuestro análisis simplificado. Por lo tanto, el desplazamiento real del extremo de la barra (como se muestra en la Figura 3) es menor que el calculado en el modelo idealizado.

También supusimos que los esfuerzos en la barra permanecían siempre dentro del límite de proporcionalidad, es decir, en el rango elástico. Si el esfuerzo máximo sobrepasa este límite, la relación entre el alargamiento de la barra y la fuerza axial deja de ser lineal y el análisis se vuelve mucho más complejo.

Además, hay otros factores que influyen en la respuesta real de la estructura y que no hemos tenido en cuenta en el modelo, como las ondas de esfuerzo que se propagan a lo largo de la barra, el amortiguamiento y las posibles imperfecciones en las superficies de contacto. Por estas razones, debemos tener presente que todas las fórmulas y resultados obtenidos bajo estas suposiciones son válidos solo en condiciones muy idealizadas y tienden a sobreestimar el alargamiento real de la barra.

Por otro lado, los materiales dúctiles, es decir, aquellos que pueden deformarse considerablemente más allá del límite de proporcionalidad, ofrecen una mayor resistencia frente a las cargas de impacto que los materiales frágiles. También es importante recordar que las barras con ranuras, agujeros u otras concentraciones de esfuerzo son muy vulnerables al impacto: incluso un golpe ligero puede causar una fractura, aunque el material sea relativamente dúctil bajo cargas estáticas.

Por tanto, para resistir con más eficacia una carga de impacto, un elemento estructural debe tener un gran volumen, estar fabricado con un material que tenga un módulo de elasticidad bajo y una alta resistencia a la fluencia, y tener una forma que permita distribuir los esfuerzos de manera uniforme por todo el elemento.

Para un análisis más profundo, recomendamos al lector consultar alguna referencia como las que dejamos a continuación.

Referencias:

Beer, F.P.; Johnston, J. E.; DeWolf, J.T.; Mazurek, D.F. (2017). Mecánica de Materiales. Séptima edición, McGraw Hill, México.

Gere, J. M., & Goodno, B. J. (2009). Mecánica de materiales. Séptima edición, Cengage Learning Editores, S.A. de C.V., México.

Barreras dinámicas en la protección de taludes

Figura 1. Barrera dinámica http://www.geotalud.es/barreras.php

Las barreras dinámicas están formadas por una estructura de geometría variable diseñada para detener bloques de gran tamaño que se desprenden de un talud. Estos sistemas se basan en la absorción de impactos mediante la progresiva disipación de la energía cinética de los bloques, que se convierte en trabajo de frenado. Para ello, se dispone una malla de cables de acero montada sobre postes metálicos articulados en su base, a los que van unidos cables de disipación de energía que son los que efectúan la detención. Las pantallas dinámicas para la retención de rocas en laderas inestables están formadas por una red de intercepción, postes anclados al terreno, cables de conexión y elementos disipadores de energía. Gracias a su capacidad de deformación, estos elementos permiten que el sistema soporte una gran energía de impacto. Durante el impacto, el sistema disipa la energía de la caída de las rocas e impide movimientos adicionales.

En el mercado existen actualmente barreras cuyo rango de capacidad de absorción de energía varía entre 250 kJ y 3500 kJ, con capacidades aún mayores que pueden llegar a 5000 kJ, 8600 kJ y 10 000 kJ, según la norma ETAG 27. Para que os hagáis una idea, un bloque de 1 m³, que puede pesar 2,5 t, en caída libre desde 100 m, desarrolla una energía cinética de unos 2500 kJ. El 16 de octubre de 2017 en Walenstadt, St. Gallen/Suiza, una barrera de protección contra la caída de rocas de la empresa suiza Geobrugg logró soportar una energía de impacto de 10.000 kJ. Un nuevo récord mundial.

Figura 2. Barrera tipo Debris Flow, para la detención de flujos de escombros y lodo. http://www.mallatalud.com/obracivil/iberobarrera.php

Os dejo algunos vídeos explicativos de este sistema de protección y estabilización de laderas.

En este vídeo podemos ver una prueba de detención de una masa de 20 toneladas mediante un sistema de la firma Geobrugg.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.