John Loudon McAdam: vida y legado del ingeniero que revolucionó las carreteras

John Loudon McAdam (1756 – 1836). https://ca.wikipedia.org/wiki/

John Loudon McAdam (1756-1836) fue un ingeniero escocés que transformó para siempre la construcción de carreteras. Su método, conocido como macadamización, o simplemente «macadán», supuso un hito en la ingeniería civil, permitió el auge del transporte moderno en el siglo XIX y sentó las bases de la pavimentación contemporánea. Nació el 21 de septiembre de 1756 en Ayr, capital del condado histórico de Ayrshire (Escocia), en la casa de lady Cathcart. Pertenecía a la baja nobleza local y era el menor de los diez hijos de James McAdam y Susanna Cochrane, sobrina del séptimo conde de Dundonald.

En 1760, la familia se mudó al castillo de Lagwyne, en Carsphairn, y más tarde al castillo de Whitefoord. Su padre, James, llevaba un estilo de vida elevado y gestionó de manera deficiente el negocio familiar, el Banco de Ayr, lo que provocó grandes pérdidas económicas. Finalmente, se vio obligado a vender la finca ancestral de la familia, Waterhead, y quedó prácticamente arruinado.

John estudió en la escuela del señor Doick, en Maybole, hasta 1770. Ese mismo año, con tan solo 14 años, murió su padre tras la bancarrota del banco familiar. Con la familia en la ruina, John fue enviado a Nueva York para vivir con su tío William McAdam, un próspero comerciante, y con su tía Ann Dey, hija de Dirck Dey, otro neoyorquino. William McAdam era propietario de la empresa McAdam & Co. y poseía más de 30 000 acres en Middlesex, conocidos como Kilby Grant. En este entorno, John se formó como mercader y contable, y estableció relaciones comerciales con personas como Robert Gilmore, de Northfork.

Durante la guerra de la Independencia de las Trece Colonias (1775-1783), John apoyó la causa británica desde el principio. Se convirtió en un mercader de éxito y contratista del Gobierno, y amasó una considerable fortuna. Fue socio propietario del barco privado General Mathew y actuó como agente de premios de guerra: revendía las mercancías y materiales capturados a los rebeldes, lo que le reportó importantes beneficios personales. Se casó con Gloriana Nicoll, hija de William Nicoll de Suffolk, descendiente del coronel Nicoll, en Nueva York. El matrimonio heredó un tercio de las propiedades de West Neck, en Shelter Island, así como terrenos en Blue Point (Islip).

Sin embargo, en 1783, tras la derrota británica, él y su familia sufrieron las consecuencias de haber sido realistas. El nuevo gobierno estadounidense confiscó sus propiedades y activos en América, y él, su esposa y sus dos hijos fueron obligados a regresar a Escocia. Una vez en Escocia, McAdam aún conservaba suficiente capital como para comprar una finca en Sauchrie, cerca de Maybole. Gracias a sus lazos familiares, se asoció con el almirante lord Cochrane y con el conde de Dundonald en negocios de hierro y alquitrán. Estos productos, derivados del carbón, eran fundamentales para sellar los barcos de vela. Sin embargo, la introducción del cobre en los cascos redujo la demanda de alquitrán, lo que debilitó la industria en la que John había invertido.

Con el tiempo, McAdam se volcó en una nueva actividad que marcaría su vida: la construcción de carreteras. Empezó haciendo pruebas con piedras en caminos cercanos a su finca y acabó construyendo una carretera que conectaba Alloway con Maybole, que seguía en uso en 1936. En 1787 fue nombrado administrador de carreteras y, durante los siguientes quince años, ejerció como vicealmirante de Ayrshire, consolidando su experiencia en este campo. En 1798, gracias a un nombramiento oficial, se trasladó a Falmouth (Inglaterra) y, en 1801, con 45 años, fue designado inspector de carreteras de Bristol. Allí perfeccionó sus ideas y puso en práctica un sistema radicalmente distinto al habitual.

El método de MacAdam consistía en lo siguiente:

  • Carreteras de unos seis metros de ancho, con la parte central elevada ocho centímetros sobre los bordes para facilitar el drenaje del agua.
  • Cunetas laterales para evacuar el agua de lluvia y evitar encharcamientos.
  • Tres capas: la más profunda, de tierra compactada; una intermedia, de piedras grandes y regulares; y una superior, de piedra triturada, que quedaba perfectamente compactada con el paso de los carruajes.

El resultado era una superficie lisa, dura, resistente y barata, mucho más duradera y menos proclive a embarrarse que los caminos de tierra o los adoquinados.

Construcción de la primera carretera de macadán en Estados Unidos de América (1823).  https://es.wikipedia.org/wiki/Macad%C3%A1n

McAdam recogió sus ideas en dos tratados fundamentales, en los que defendía la importancia de elevar las carreteras respecto al suelo circundante, asegurar un buen drenaje y emplear materiales seleccionados en capas sistemáticas:

  • Remarks on the Present System of Road-Making (1816)
  • Practical Essay on the Scientific Repair and Preservation of Roads (1819)

El prestigio de McAdam creció rápidamente. En 1815 fue nombrado inspector del Bristol Turnpike Trust y, en la década de 1820, alrededor de 70 patronatos de carreteras lo contrataron como consultor. En 1819, un comité parlamentario elogió públicamente su trabajo. En 1823, el Parlamento británico encargó un estudio sobre el deficiente estado de las carreteras del país, que estaban obsoletas para una nación en plena industrialización. Como resultado, McAdam fue nombrado inspector general de carreteras metropolitanas de Gran Bretaña. Desde este cargo, su método se estandarizó y extendió rápidamente no solo en el Reino Unido, sino también en Europa y Norteamérica. El impacto fue inmediato: gracias a la suavidad y durabilidad de las carreteras macadamizadas, el transporte en diligencia experimentó un auge sin precedentes. Poco tiempo después de su fallecimiento, en Inglaterra ya existían 35 000 kilómetros de carreteras construidas con su método.

Aunque McAdam recibió subvenciones del Parlamento (2000 libras para gastos en 1820 y 5000 libras por su trabajo en Bristol), nunca fue plenamente recompensado. Se le ofreció un título de caballero, pero lo rechazó por su avanzada edad. El macadán supuso el mayor avance en la construcción de carreteras desde el Imperio romano. Con el tiempo, su sistema dio origen a mejoras posteriores. La más significativa se produjo en 1901, cuando Edgar Purnell Hooley patentó el uso del alquitrán para ligar los áridos, creando el tarmac o tarmacadam, antecesor del asfalto moderno. Es curioso que McAdam, a pesar de haber sido propietario de una fábrica de alquitrán de hulla, nunca aplicara este material a su método. Desde la perspectiva actual, puede resultar llamativo, pero en su época su innovación ya era revolucionaria. Hoy en día, aunque las carreteras modernas emplean asfaltos derivados del petróleo sobre bases de hormigón armado, el uso de capas de piedra triturada sigue siendo heredero directo de la innovación de McAdam.

En sus últimos años, McAdam permaneció activo en el ámbito de la ingeniería viaria junto a sus hijos, quienes abandonaron sus ocupaciones en Escocia para ayudarle en Inglaterra. Finalmente, John Loudon McAdam murió el 20 de noviembre de 1836 en Moffat, un balneario del consejo de Dumfries y Galloway, a los 80 años. Fue enterrado en el cementerio local. Su apellido quedó inmortalizado en el lenguaje técnico y en la historia de la ingeniería civil.

Os dejo algunos vídeos de este ingeniero.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre pantallas de contención de agua subterránea

Figura 1. Cuchara para excavar pantalla. https://www.geo-solutions.com/resource-category/slurry-walls-equipment/

1. ¿Qué son las pantallas impermeables de bentonita-cemento y cuándo se utilizan?

Las pantallas impermeables de bentonita-cemento, también denominadas pantallas blandas, plásticas o de lodo autoendurecible, son barreras que impiden el paso del agua subterránea. Su construcción es similar a la de los muros pantalla, pero su función principal es impermeabilizante, sin responsabilidad estructural significativa. Su uso se inició en la década de 1960. Son ideales cuando el objetivo es detener el flujo de agua y no se prevé una excavación o un vaciado anexos. Entre sus ventajas destacan su impermeabilidad, la ausencia de juntas, su capacidad de adaptación a grandes deformaciones por cambios en el nivel freático y su bajo coste, debido al bajo consumo de materiales y a la simplificación de la construcción.

2. ¿Cómo se construye una pantalla de bentonita-cemento y qué materiales se utilizan?

La construcción de una pantalla de este tipo implica la excavación de una zanja con herramientas como cucharas bivalvas, retroexcavadoras con brazos largos (eficaces hasta 15 o 20 metros, o hasta 25 o 30 metros con brazos especiales) o zanjadoras de brazo inclinable. La mezcla utilizada consiste en bentonita, cemento, agua y, opcionalmente, aditivos. Las dosificaciones típicas por metro cúbico de mezcla varían: entre 100 y 950 litros de agua, entre 20 y 80 kg de bentonita, entre 100 y 400 kg de cemento y hasta 5 kg de aditivos. La bentonita se añade para evitar la decantación del cemento antes del fraguado. La mezcla se elabora en una planta y se envía a la obra. Es crucial asegurar la continuidad entre paneles para evitar juntas, lo que se logra mediante la perforación inmediata de paneles contiguos o mordiendo el extremo de un panel aún pastoso para la adhesión del nuevo lodo.

3. ¿Qué son las pantallas de suelo-bentonita y en qué se diferencian de las pantallas de bentonita-cemento?

Las pantallas de suelo-bentonita son barreras que se utilizan para detener el paso del agua o aislar residuos o zonas contaminadas de agua subterránea. A diferencia de las pantallas de bentonita-cemento, que son más comunes en Europa, las pantallas de suelo-bentonita se originaron en Estados Unidos en 1945 y son más habituales en este país. La principal diferencia radica en el material de relleno: mientras que las pantallas de bentonita-cemento utilizan una mezcla específica de estos componentes, las pantallas de suelo-bentonita emplean una mezcla de suelo excavado y bentonita. Esto último hace que sean la tipología de barrera más económica, ya que permite utilizar gran parte del material de la propia zanja. Sin embargo, las pantallas de suelo-bentonita pueden ser más susceptibles al deterioro por ciclos de humedad/sequedad o congelación/descongelación, y su permeabilidad puede verse afectada por contaminantes.

Figura 2. Construcción de zanja de lodo con suelo-bentonita como material de relleno. Adaptado de Cashman y Preene (2012)

4. ¿Cómo se realiza la excavación y el relleno de las pantallas de suelo-bentonita?

Durante la excavación de las zanjas para las pantallas de suelo-bentonita, se utiliza bentonita (a veces con aditivos) para estabilizar las paredes y mantener un nivel constante de lechada cerca de la parte superior. Las zanjas suelen tener una anchura de entre 0,6 y 1,5 metros. Una vez alcanzada la profundidad deseada, se introduce la mezcla final de suelo y bentonita. Esta mezcla debe tener un peso específico mayor que el del lodo de la zanja para desplazarlo eficazmente. La preparación de la mezcla puede realizarse en tanques de homogeneización para garantizar una mayor calidad o de forma más rudimentaria en superficie con un buldócer. Es fundamental garantizar que la pantalla se extienda de manera continua por todo el estrato permeable y succionar los sedimentos del fondo de la zanja, sobre todo si se trata de arenas y gravas limpias. La colocación del relleno y la excavación deben realizarse de forma simultánea.

5. ¿Qué es la técnica de pantalla de suelo-cemento con hidrofresa (cutter soil mixing)?

La pantalla de suelo-cemento con hidrofresa, también conocida como cutter soil mixing, es una técnica de mejora de suelos que se utiliza para crear pantallas impermeabilizantes verticales. Consiste en excavar el terreno en paneles verticales con una hidrofresa, que es un cabezal cortador provisto de elementos giratorios con dientes. La hidrofresa no solo excava, sino que también inyecta una mezcla de bentonita y cemento en la parte central de las ruedas cortantes. El movimiento giratorio de los dientes y unas paletas mezclan esta inyección con los detritos del terreno, formando un nuevo material que, tras el fraguado del cemento, crea una pantalla impermeable. Una ventaja clave de este método es que utiliza el propio material del terreno, por lo que se generan muy pocos residuos.

Figura 3. Hidrofresa. http://www.malcolmdrilling.com/cutter_soil_mixing/

6. ¿Cómo funciona el proceso de construcción con hidrofresa para pantallas de suelo-cemento?

El procedimiento constructivo con hidrofresa consta de varias fases. En primer lugar, se prepara una zanja guía para recoger el exceso de lodo. A continuación, se posiciona la hidrofresa en el eje de la pared y se introduce en el suelo a una velocidad continua (normalmente entre 20 y 60 cm/min). Las ruedas de corte rompen el suelo y, simultáneamente, se bombea un fluido (bentonita-cemento) a las boquillas para mezclarlo con la tierra suelta. Una corriente de aire comprimido puede mejorar la mezcla. Al alcanzar la profundidad de diseño, se extrae lentamente la hidrofresa mientras se sigue añadiendo la lechada de cemento para garantizar la homogeneización mediante la rotación de las ruedas. Finalmente, se puede introducir armadura, como perfiles de acero, en la pantalla terminada para mejorar su resistencia. Para ello, se utilizan vibradores, si es necesario, para profundidades mayores. En el caso de muros continuos, se excavan paneles primarios y secundarios que se solapan para garantizar la estanqueidad.

7. ¿Qué son las pantallas de lodo autoendurecible armado y cuál es su función?

Las pantallas de lodo autoendurecible armado, también denominadas pantallas de lechada armada o «reinforced slurry wall», son pantallas compuestas con carácter estructural. Combinan elementos portantes resistentes a la flexión, como tablestacas o perfiles metálicos en «I», con un relleno intermedio de bentonita-cemento que los une y transfiere las cargas a los elementos estructurales. Este sistema funciona como elemento de contención de agua y, al mismo tiempo, como soporte estructural. Una variante es la pared de mezcla suelo-cemento reforzada, que utiliza una mezcla de suelo y cemento en lugar de lechada. Esta técnica se sitúa a medio camino entre un muro berlinés y un muro pantalla, ya que ofrece contención de agua y resistencia estructural.

8. ¿Cómo se construye una pantalla de lodo autoendurecible armada?

El procedimiento constructivo de una pantalla de lodo autoendurecible armada utiliza herramientas de excavación similares a las empleadas en los muros pantalla, como la cuchara bivalva. Durante la excavación, la lechada de bentonita y cemento no solo sirve como material de relleno intermedio, sino que también estabiliza las paredes de la zanja. Una vez colocada la lechada, se insertan perfiles verticales (tablestacas o perfiles en «I») en ella. El lodo endurecido transmite el empuje activo de las tierras y el agua hacia estos perfiles por efecto bóveda, y estos resisten la flexión gracias a anclajes, arriostramientos y el empotramiento bajo el fondo de la excavación. Si se emplean tablestacas, la pantalla opera como un muro continuo convencional, combinando las propiedades impermeabilizantes del lodo con la resistencia estructural de los elementos armados.

Os dejo un audio sobre este tema que, espero, os sea interesante.

Glosario de términos clave

  • Pantallas plásticas (blandas/lodo autoendurecible): Barreras impermeables construidas con mezclas fluidas que fraguan o se autoendurecen, utilizadas para contener el agua subterránea.
  • Bentonita-cemento: Mezcla de bentonita, cemento, agua y aditivos que fragua lentamente y forma una barrera impermeable.
  • Función impermeabilizante: La capacidad de una pantalla para impedir o reducir significativamente el paso del agua.
  • Responsabilidad estructural: La capacidad de un elemento para soportar cargas y esfuerzos (como flexión) sin deformaciones excesivas o fallos. Las pantallas blandas tienen poca responsabilidad estructural.
  • Decantación: El proceso por el cual las partículas sólidas de una suspensión se asientan en el fondo de un líquido debido a la gravedad. La bentonita ayuda a evitar la decantación del cemento.
  • Fraguado: El proceso de endurecimiento de una mezcla cementicia debido a reacciones químicas.
  • Cuchara bivalva: Herramienta de excavación con dos «cucharas» articuladas que se cierran para recoger el material, utilizada en la ejecución de pantallas.
  • Retroexcavadora con brazos largos: Maquinaria de excavación modificada con brazos extendidos para alcanzar mayores profundidades en la construcción de zanjas y pantallas.
  • Zanjadora de brazo inclinable: Maquinaria especializada para excavar zanjas, con un brazo que puede inclinarse.
  • Rendimiento: La cantidad de trabajo realizado en un período determinado (ej., m²/día de pantalla construida).
  • Nivel freático: La superficie superior del agua subterránea, donde la presión del agua es igual a la presión atmosférica.
  • Tablestacas: Elementos prefabricados, generalmente metálicos o de hormigón, que se hincan o se colocan en el terreno para formar muros de contención.
  • Suelo-bentonita: Mezcla de suelo excavado y lechada de bentonita que se utiliza como material de relleno para formar pantallas impermeables.
  • Gradiente hidráulico: La tasa de cambio de la carga hidráulica por unidad de distancia en la dirección del flujo.
  • Peso específico: El peso por unidad de volumen de una sustancia. Es crucial que el relleno de suelo-bentonita tenga un peso específico mayor que el lodo de la zanja.
  • Tanques de homogeneización: Recipientes donde se mezcla y agita el suelo y la bentonita para lograr una consistencia uniforme antes de su colocación.
  • Segregación: La separación de los componentes de una mezcla debido a diferencias en tamaño, forma o densidad.
  • Permeabilidad: La capacidad de un material para permitir el paso de fluidos a través de él. Una baja permeabilidad es deseable en pantallas impermeables.
  • Hidrofresa (cutter soil mixing – CSM): Maquinaria equipada con cabezas cortadoras giratorias y un inyector, utilizada para excavar y mezclar el terreno in-situ con una lechada (bentonita-cemento) para formar pantallas.
  • Detritos: Fragmentos de roca y suelo resultantes de la excavación o trituración del terreno.
  • Zanja guía: Pequeña excavación superficial que se realiza al inicio para alinear la maquinaria y recoger el excedente de lodo.
  • Paneles primarios y secundarios: En la construcción de muros continuos, los paneles primarios se excavan primero, y luego los secundarios se excavan solapándose con los primarios para asegurar la continuidad.
  • Armadura: Elementos de refuerzo (como perfiles de acero) que se insertan en la pantalla para proporcionarle resistencia estructural adicional.
  • Pantalla de lodo autoendurecible armado (reinforced slurry wall): Una pantalla compuesta que incorpora elementos portantes estructurales (como perfiles en «I» o tablestacas) dentro de un relleno de lodo autoendurecible (bentonita-cemento o suelo-cemento).
  • Efecto bóveda: Fenómeno por el cual los empujes del terreno se distribuyen y descargan hacia elementos de mayor rigidez o resistencia, como los perfiles en una pantalla armada.
  • Empotramiento: La condición en la que un elemento estructural está fijado rígidamente en otro (ej., un perfil anclado en el fondo de excavación) impidiendo su rotación y traslación.
  • Muro berlinés: Sistema de contención que consiste en perfiles metálicos hincados en el terreno, entre los cuales se colocan elementos de contención (tablones de madera, prelosas de hormigón, etc.) a medida que se excava.
  • Muro pantalla: Muro de contención de hormigón o similar, ejecutado en el terreno por paneles, utilizando lodo bentonítico para estabilizar la excavación antes del vertido del hormigón.

Referencias:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, n.º 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and applications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La interacción suelo–estructura como factor decisivo en el diseño optimizado y robusto frente al colapso progresivo de edificios de hormigón armado

Acaban de publicarnos un artículo en Innovative Infrastructure Solutions, revista indexada en el JCR. El artículo presenta un marco de optimización estructural para edificios con pórticos de hormigón armado que integra la resistencia frente al colapso progresivo y la interacción suelo-estructura con el objetivo de conseguir diseños seguros, sostenibles y realistas. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la optimización matemática se ha convertido en una herramienta muy valiosa para la ingeniería. Lejos de ser un mero ejercicio teórico, se ha comprobado que permite diseñar estructuras más eficientes, con menos consumo de materiales, costes e impacto medioambiental. Sin embargo, hasta ahora, un aspecto importante había quedado fuera de estos procesos de optimización: la seguridad frente al colapso progresivo, un fenómeno en el que el fallo localizado de un elemento estructural provoca una reacción en cadena que puede ocasionar el derrumbe total del edificio.

Este tipo de situaciones no son meramente hipotéticas: explosiones accidentales, impactos de vehículos, errores de ejecución e incluso actos intencionados han provocado a lo largo de la historia fallos de este tipo, con consecuencias devastadoras en términos humanos y económicos. Por este motivo, organismos como la General Services Administration (GSA) y el Departamento de Defensa (DoD) de EE. UU. han desarrollado directrices específicas para incorporar criterios de robustez frente al colapso progresivo en el diseño estructural.

La principal aportación de este trabajo es la propuesta de un marco computacional integrado denominado Optimization-based Robust Design to Progressive Collapse (ObRDPC), que combina tres elementos fundamentales:

  1. Optimización estructural mediante algoritmos heurísticos.

  2. Diseño robusto frente a colapso progresivo, aplicado desde el inicio del proceso de cálculo con el método del Alternate Path.

  3. Consideración de la interacción suelo–estructura (SSI), aspecto habitualmente ignorado, pero que modifica de forma notable la respuesta real de un edificio.

La metodología desarrollada no se limita a verificar a posteriori si una estructura cumple los requisitos de robustez, sino que integra estas exigencias como restricciones en el propio proceso de optimización. Así, el algoritmo no solo busca minimizar un objetivo (en este caso, las emisiones de CO₂ asociadas a la construcción), sino que también garantiza la seguridad frente a escenarios de fallo.

Para validar la propuesta, se estudiaron cinco casos de edificios de pórticos de hormigón armado tridimensionales con distintas combinaciones de número de plantas (de cuatro a seis) y longitudes de vano (cuatro, seis y ocho metros). A cada edificio se le aplicaron dos escenarios de daño: la eliminación de una columna de esquina y la eliminación de una columna exterior. Estos escenarios, definidos en la guía GSA, simulan situaciones críticas y permiten evaluar la capacidad de la estructura para redistribuir las cargas y evitar un colapso en cadena.

El marco ObRDPC integra un proceso automatizado en el que el modelado estructural se realiza con SAP2000, enlazado con rutinas programadas en MATLAB. Además, se tiene en cuenta el diseño constructivo de cimentaciones mediante zapatas aisladas, que se modelan como losas apoyadas sobre un suelo con comportamiento elástico. En este punto, la SSI es fundamental, ya que los asientos diferenciales de la cimentación generan esfuerzos adicionales en pilares y vigas, lo que modifica la redistribución de cargas en caso de fallo. El estudio muestra que ignorar este efecto puede dar lugar a errores de hasta el 24 % en el dimensionamiento de la superestructura tras la pérdida de un pilar, lo que se traduce en diseños potencialmente inseguros o, por el contrario, sobredimensionados y poco sostenibles.

Los resultados más destacados se pueden resumir así:

  • Influencia de la altura del edificio: a medida que aumenta el número de plantas, la estructura gana en robustez. Esto se debe a la redundancia estructural y a la existencia de múltiples caminos alternativos para la redistribución de cargas (efecto de pórtico global, mecanismos tipo Vierendeel, etc.). En consecuencia, los edificios de mayor altura presentan una menor diferencia entre un diseño convencional y otro robusto frente al colapso progresivo.

  • Influencia de la luz de vano: a diferencia de lo que ocurre con la altura, un mayor aumento de la luz compromete la robustez. En vanos de 8 metros, el impacto ambiental de un diseño robusto frente al colapso progresivo aumenta en más de un 50 %. La razón es doble: por un lado, las vigas deben absorber momentos flectores mucho mayores cuando desaparece un apoyo y, por otro, disminuye la redundancia estructural al haber menos pilares por unidad de superficie.

  • Estrategias de redistribución de cargas: los mecanismos estructurales varían según el elemento. En las vigas, la optimización conduce a secciones más profundas y a un incremento del refuerzo superior de hasta el 35 % en zonas críticas. En los pilares, tienden a utilizarse secciones más robustas y hormigones de mayor resistencia (hasta 40 MPa) para controlar las solicitaciones combinadas de axiles y flectores. Las cimentaciones, por su parte, tienden a tener geometrías más cuadradas, lo que mejora su respuesta frente a asientos diferenciales.

  • Impacto ambiental y sostenibilidad: en edificios con vanos moderados (4 m), el sobrecoste ambiental de diseñar frente a un colapso progresivo es inferior al 8 %, una cifra razonable para garantizar una mayor seguridad. Sin embargo, en estructuras con vanos grandes, el impacto es muy significativo, por lo que es necesario reflexionar sobre las limitaciones geométricas de ciertos proyectos si se pretende compatibilizar sostenibilidad y robustez.

El valor práctico de esta investigación es indudable. Frente a los métodos tradicionales basados en el ensayo y el error y en hipótesis de apoyo rígido, la propuesta permite automatizar el proceso de diseño e integrar la seguridad y la sostenibilidad desde el principio. Para los ingenieros y proyectistas, esto supone una herramienta que evita tanto el riesgo de subdiseño (estructuras inseguras) como el de sobrediseño (estructuras innecesariamente pesadas y contaminantes).

En definitiva, este trabajo supone un avance hacia una ingeniería estructural más integral, ya que no solo se trata de optimizar costes o reducir emisiones, sino también de garantizar la resiliencia de nuestras construcciones frente a eventos extremos. La integración de la interacción suelo-estructura añade, además, un realismo que acerca la investigación a la práctica profesional. En el futuro, esta metodología podría extenderse a otros sistemas estructurales, como marcos metálicos, estructuras mixtas o rascacielos, lo que supondría un horizonte prometedor para la construcción de infraestructuras seguras, sostenibles y duraderas.

Referencia:

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

Os dejo el artículo para que lo descarguéis, ya que está publicado en abierto.

Pincha aquí para descargar

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Transporte hidráulico de pulpas: fundamentos y práctica

El transporte hidráulico de pulpas es un tema esencial en ingeniería de procesos y de minas. La operación de mover sólidos suspendidos en agua mediante tuberías y bombas no solo conecta las diferentes etapas de un proceso, como la molienda, la clasificación, la flotación o la disposición de relaves, sino que también influye en gran medida en los costes de operación, la eficiencia energética y la vida útil de los equipos. Por tanto, es fundamental que los estudiantes de Ingeniería comprendan sus principios y métodos de diseño.

En este artículo se presentan de manera ordenada los conceptos principales: qué es una pulpa, cómo se clasifican, qué tipos de bombas se emplean, cómo se estiman las pérdidas y la altura dinámica total, qué significa la velocidad crítica para evitar la sedimentación, cómo se analiza la cavitación y, por último, cómo se selecciona la bomba adecuada. No obstante, se aconseja un estudio más profundo del tema, atendiendo a las referencias.

1. La pulpa: naturaleza y propiedades

Una pulpa es una mezcla de agua y partículas sólidas en suspensión. Esta definición simple oculta una gran variedad de comportamientos. La forma en que la pulpa fluye depende de varios factores:

  • Concentración de sólidos: se mide en peso o volumen. A bajas concentraciones, la mezcla se comporta parecido al agua. A concentraciones altas, la viscosidad aumenta y pueden aparecer comportamientos no newtonianos (el fluido ya no responde de manera lineal al esfuerzo aplicado).

  • Tamaño de partícula: si la mayoría de las partículas son muy finas (menores a 75 micras), la pulpa tiende a ser homogénea, sin sedimentación marcada. Si predominan partículas gruesas, la pulpa es heterogénea, con riesgo de deposición.

  • Densidad de las partículas: minerales como la magnetita o la galena, con densidades altas, hacen que la pulpa sea más pesada y requiera mayor energía para su transporte.

  • Forma de las partículas: las partículas angulosas o irregulares causan más desgaste que las esféricas.

  • Viscosidad del líquido portador: en la mayoría de los casos es agua, pero a veces se emplean soluciones que alteran la viscosidad.

Estas propiedades son críticas porque determinan tanto la potencia que necesitará la bomba como la durabilidad de los componentes.

2. Bombas para pulpas: tipos y características

El transporte de pulpas se realiza en la gran mayoría de casos con bombas centrífugas, adaptadas a condiciones abrasivas y, a veces, corrosivas. Existen distintos tipos:

  • Bombas horizontales centrífugas: las más comunes en minería y procesos. Permiten gran variedad de caudales y alturas.

  • Bombas verticales: incluyen las de tanque y las de sumidero. Se usan cuando el nivel de pulpa varía mucho o cuando es conveniente sumergir parte de la bomba.

  • Bombas sumergibles: cada vez más empleadas en aplicaciones de drenaje de pulpas.

  • Bombas de desplazamiento positivo: útiles cuando se manejan pulpas muy viscosas o cuando se requiere caudal casi constante independientemente de la presión.

https://www.mogroup.com/es/informacion/e-books/manual-de-bombas–para-pulpa/

Un aspecto importante de las bombas de pulpa es su construcción robusta: impulsores anchos, ejes más gruesos, rodamientos de gran capacidad y, sobre todo, sistemas de sellado capaces de resistir condiciones adversas. Los sistemas de sellado pueden ser dinámicos (aprovechan la propia presión de la pulpa), mecánicos (son caros, pero muy seguros) o de empaquetadura (son los más comunes y requieren mantenimiento frecuente).

3. Materiales de construcción y desgaste

El desgaste es el enemigo número uno de las bombas de pulpa. Cada partícula de mineral en movimiento actúa como un proyectil microscópico que impacta contra las superficies internas de la bomba. Por ello, los materiales deben escogerse con cuidado.

  • Elastómeros (como goma natural o poliuretanos): absorben impactos y funcionan bien con partículas finas o blandas.

  • Metales endurecidos: hierro alto en cromo o aceros especiales resisten abrasión cortante, como la producida por partículas de cuarzo.

  • Cerámicos: extremadamente duros y duraderos, pero frágiles y costosos, usados en condiciones extremas.

La selección no es trivial, ya que depende del tamaño y la forma de las partículas, su concentración, la corrosión química del medio y la temperatura. Elegir bien el material puede duplicar o triplicar la vida útil de la bomba.

4. Altura dinámica total y pérdidas en el sistema

Para que una bomba funcione adecuadamente, debe entregar una altura dinámica total (TDH) que cubra:

  1. Altura estática: diferencia de nivel entre el depósito de aspiración y el de descarga.

  2. Pérdidas por fricción en la tubería: dependen de la longitud, el diámetro, la rugosidad y la velocidad del flujo.

  3. Pérdidas en accesorios: codos, válvulas, reducciones.

  4. Energía cinética: asociada a la velocidad del flujo en salida y entrada.

En el caso del agua, las pérdidas por fricción pueden calcularse mediante fórmulas empíricas o a través de la relación de Darcy-Weisbach, que tiene en cuenta la velocidad, el diámetro y un coeficiente de fricción que se obtiene del diagrama de Moody. En pulpas, sin embargo, estas correlaciones deben corregirse, ya que los sólidos aumentan la resistencia al flujo. Existen diagramas experimentales, como los de Warman, que ayudan a calcular los factores de corrección.

5. Velocidad crítica y sedimentación

Uno de los problemas más graves del transporte de pulpas es la sedimentación. Si la velocidad del flujo desciende por debajo de un valor crítico, las partículas comienzan a depositarse en el fondo de la tubería, lo que puede provocar obstrucciones o un desgaste desigual.

Este valor crítico, conocido como velocidad de Durand, depende de tres factores principales: el tamaño característico de las partículas, la densidad relativa del sólido respecto al agua, y el diámetro de la tubería. En pocas palabras:

  • Cuanto más grandes y densas son las partículas, mayor debe ser la velocidad.

  • Cuanto mayor es el diámetro de la tubería, menor es la velocidad necesaria para mantener las partículas en suspensión.

Mantener la velocidad por encima de este límite garantiza un flujo homogéneo y minimiza el riesgo de sedimentación.

6. Cavitación y NPSH

La cavitación es otro fenómeno que puede poner en peligro la operación segura. Ocurre cuando la presión de entrada de la bomba cae por debajo de la presión de vapor del líquido. En ese momento, se forman burbujas que, al colapsar dentro del impulsor, generan ondas de choque que dañan el material, producen ruido y reducen la eficiencia.

Para evitarlo, se calcula la altura positiva neta de aspiración disponible (NPSHa), que debe ser siempre mayor que la NPSH requerida (NPSHr) por la bomba. En términos prácticos:

  • El sistema debe garantizar suficiente presión en la succión de la bomba.

  • Se recomienda dejar un margen de seguridad adicional (entre 0,5 y 1 metro, o entre 10% y 35% según las guías de diseño).

Determinación del máximo caudal aspirable desde el punto de vista de la cavitación

7. Selección de la bomba

El procedimiento para elegir una bomba de pulpas sigue varios pasos:

  1. Definir caudal y condiciones de operación.

  2. Calcular la TDH real para la pulpa, incluyendo pérdidas.

  3. Convertir la TDH de pulpa a su equivalente en agua, usando factores de corrección.

  4. Consultar curvas de fabricante (Q–H–Eficiencia) y ubicar el punto de operación.

  5. Comprobar potencia requerida, eficiencia, NPSH y velocidad de rotación.

  6. Verificar materiales y opciones de sellado según la abrasividad y corrosión del medio.

Hoy en día, programas de cálculo como Pipe-Flo, AFT Fathom o WinCAPS ayudan a realizar estas estimaciones de manera más ágil, permitiendo simular condiciones de operación variables.

8. Consejos prácticos de operación

  • Mantener velocidades mínimas de 2–3 m/s en descarga y no menos de 1–2 m/s en aspiración (ajustadas según la naturaleza de la pulpa).

  • Usar tuberías lo más rectas posibles y minimizar codos bruscos.

  • Monitorear continuamente el desgaste de revestimientos e impulsores.

  • Planificar un stock de repuestos críticos: el tiempo de parada por una bomba fuera de servicio puede ser muy costoso.

  • Vigilar el NPSH disponible en condiciones de nivel mínimo en el depósito de succión.

9. Reflexión final

El transporte hidráulico de pulpas es un campo en el que confluyen la mecánica de fluidos, la ciencia de materiales y el diseño de equipos. Para los estudiantes de ingeniería, dominar estos fundamentos no solo es esencial para aprobar una asignatura, sino también para resolver problemas reales en los sectores de la minería, la metalurgia, la química e incluso en algunas industrias ambientales.

La clave es comprender que detrás de cada fórmula hay un concepto físico claro: mantener las partículas en suspensión, reducir las pérdidas de energía, evitar la cavitación y prolongar la vida útil de los equipos.

Referencias:

  • Abulnaga, B. E. (2002). Slurry Systems Handbook. McGraw-Hill.

  • ANEFA. (2020). Manual de áridos: Parámetros hidráulicos y de bombeo. Asociación Nacional de Empresarios Fabricantes de Áridos.

  • Bouso, J. L. (1993). Manual de bombeo de pulpas. ERAL, Equipos y Procesos S.A.

  • Bouso, J. L. (1998). El hidrociclón… Lo que siempre quiso saber y no encontró en los libros. Americas Mining.

  • Grzina, A., Roudnev, A., & Burgess, K. E. (2002). Weir slurry pumping manual (1.ª ed.). Weir International.

  • Martínez-Pagán, P. (2025). Transporte hidráulico: Bombeo de pulpas. Apuntes del 3er curso GIRME ingeniería minera. Universidad Politécnica de Cartagena.
  • Metso Outotec. (2020). Slurry pump handbook (8.ª ed.). Metso Minerals (Sala) AB. Recuperado de http://www.metso.com/pumps

  • Volk, M. (2013). Pump characteristics and applications (3.ª ed.). CRC Press. https://doi.org/10.1201/b15559

  • Warman, L. (2000). Warman slurry pumping handbook. Warman International.

  • Yepes, V. (2023). Maquinaria y procedimientos de construcción: Problemas resueltos (Colección Académica, Ref. 376). Editorial Universitat Politècnica de València. https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Os dejo algunos vídeos, que pueden ser de interés:

Este artículo, también puede interesar:

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El hormigón frente al mar: cómo alargar la vida de los edificios costeros

A continuación, os paso el contenido de una nota de prensa que ha lanzado la UPV sobre uno de nuestros trabajos de investigación relacionados con el proyecto RESILIFE.

Este trabajo se ha publicado en una de las revistas de mayor impacto científico, dentro del primer decil del JCR: Environmental Impact Assessment Review.

También os dejo enlaces a la noticia. Espero que os resulte interesante.

 

La UPV desarrolla una metodología pionera que combina economía, medioambiente y sociedad para decidir cómo construir y mantener de forma sostenible en entornos marinos.

Por las mañanas, cuando la brisa marina llega a las playas gaditanas, también transporta consigo algo menos poético que el aroma del mar: partículas de sal. Estas sales, cargadas de cloruros, penetran en los materiales de los edificios y aceleran la corrosión del hormigón armado. El resultado es un problema silencioso, pero de gran magnitud: estructuras que se deterioran antes de tiempo, con costes de reparación muy elevados y, en algunos casos, con riesgos para la seguridad.

Un equipo de la Universitat Politècnica de València (UPV) ha desarrollado una herramienta que podría cambiar la forma en la que se planifican las construcciones en la costa. Su investigación, publicada en la revista internacional Environmental Impact Assessment Review, propone un método novedoso que integra tres dimensiones de la sostenibilidad:

  • la económica (cuánto cuesta construir y mantener),
  • la ambiental (qué huella deja en términos de emisiones y recursos),
  • y la social (cómo afecta a trabajadores, vecinos y usuarios).

En palabras de Antonio J. Sánchez-Garrido, autor principal del trabajo: “No basta con calcular cuántos años puede durar un material; hay que considerar también qué impacto tendrá sobre la comunidad, sobre el medio ambiente y sobre el bolsillo de quienes deben mantenerlo”.

Un edificio piloto frente al mar

Para aterrizar su modelo, los investigadores eligieron un caso muy concreto: un hotel situado en primera línea de playa en Sancti Petri (Cádiz). A partir de ahí simularon doce alternativas constructivas distintas, desde cementos especiales hasta recubrimientos protectores o cambios en el tipo de acero de las armaduras.

A cada una de estas alternativas le aplicaron modelos matemáticos de predicción del deterioro y un sistema de decisión multicriterio (FUCOM–TOPSIS) que permite ordenar las opciones en función de su sostenibilidad. El horizonte temporal fue de 100 años, lo que ofrece una visión a largo plazo del ciclo de vida del edificio.

El resultado: una especie de “hoja de ruta” que indica qué material conviene utilizar y cada cuánto tiempo hay que intervenir para alargar la vida útil de la construcción.

Resultados que desmontan intuiciones

Uno de los hallazgos más llamativos es que las soluciones más duraderas no son necesariamente las más sostenibles. El acero inoxidable, por ejemplo, puede resistir más de un siglo sin apenas corrosión. Sin embargo, su elevado coste económico y el fuerte impacto ambiental asociado a su producción lo convierten en una opción menos recomendable si se busca un equilibrio global.

En cambio, alternativas como el cemento resistente a sulfatos (SRC) se posicionan como las más equilibradas: ofrecen buena durabilidad, costes razonables y un impacto ambiental moderado. Según el estudio, con esta solución bastaría con intervenir aproximadamente cada 53 años, lo que supone un gran ahorro económico y logístico.

Otros materiales, como las mezclas con humo de sílice o los tratamientos hidrofóbicos, también obtienen puntuaciones muy competitivas, alargando la vida útil de la estructura y reduciendo la necesidad de reparaciones frecuentes.

Más allá del cálculo técnico

El valor añadido del trabajo radica en su enfoque integral. Hasta ahora, muchas decisiones en construcción se han basado en criterios parciales: el coste inmediato, la resistencia mecánica o la facilidad de ejecución. La propuesta de la UPV va más allá al incluir también los efectos sociales: desde la generación de empleo en la fase de construcción y mantenimiento, hasta las molestias que las obras provocan en vecinos, turistas o trabajadores.

“Un hotel en primera línea de playa no puede permitirse cerrar cada pocos años para reparaciones. Reducir la frecuencia y la duración de las obras no solo ahorra dinero, sino que mejora la experiencia de quienes viven o disfrutan de esos espacios”, explica Víctor Yepes, coautor del estudio e investigador del Instituto ICITECH de la UPV.

Aplicaciones prácticas y futuro

Las aplicaciones de esta metodología son numerosas. Puede ayudar a promotores inmobiliarios a elegir materiales más sostenibles, a administraciones públicas a incluir métricas objetivas en sus licitaciones de obra, y a ingenieros y arquitectos a planificar proyectos con una visión a largo plazo.

Además, se trata de un modelo replicable y transparente, lo que significa que puede adaptarse a diferentes contextos: desde viviendas costeras hasta paseos marítimos, puentes o incluso puertos.

El equipo de la UPV ya trabaja en los siguientes pasos: incorporar inteligencia artificial y modelos probabilísticos para mejorar las predicciones, y validar la metodología en proyectos reales a gran escala, que permitan trasladar este conocimiento directamente al sector.

Un cambio de paradigma

En un momento en que Europa avanza hacia la neutralidad climática y exige a la construcción estándares más estrictos de sostenibilidad, este tipo de investigaciones se vuelven cruciales. No se trata solo de ahorrar dinero o prolongar la vida de los edificios, sino de repensar la relación entre infraestructuras, medio ambiente y sociedad.

La sal del mar seguirá siendo una amenaza para las estructuras costeras, pero gracias a esta metodología, los edificios podrán resistir mejor el paso del tiempo. Y, sobre todo, podrán hacerlo de manera más respetuosa con el planeta y con las personas que los habitan.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Optimizing reactive maintenance intervals for the sustainable rehabilitation of chloride-exposed coastal buildings with MMC-based concrete structure. Environmental Impact Assessment Review, 116, 108110. DOI:10.1016/j.eiar.2025.108110

Esta investigación ha tenido repercusión en la prensa escrita. Aquí tenéis algunos enlaces:

https://cadenaser.com/comunitat-valenciana/2025/08/24/la-upv-propone-como-hacer-mas-duraderos-los-edificios-junto-al-mar-radio-valencia/

https://www.larazon.es/comunidad-valenciana/upv-crea-herramienta-que-ayuda-alargar-vida-util-edificios-situados-junto-mar_2025082468aad195fb354e4b3d1cad77.html

https://valenciaplaza.com/arquitectura-patrimonio-valencia-comunitat-valenciana/la-upv-crea-una-herramienta-que-ayuda-a-alargar-la-vida-util-de-los-edificios-situados-junto-al-mar

https://castellondiario.com/edificios-mas-duraderos-frente-al-mar-la-herramienta-pionera-de-la-upv/

https://www.lavanguardia.com/vida/20250824/10997986/crean-herramienta-ayuda-alargar-vida-util-edificios-situados-mar-agenciaslv20250824.html?utm_term=botones_sociales

UPV crea ferramenta per a prolongar la vida d’edificis costaners i optimitzar el seu manteniment

Os dejo también dos cortes de RNE y de La Ser sobre este mismo tema.

 

Método de Galerkin y placas elásticas: la contribución de Borís Galiorkin a la ingeniería estructural

Borís Grigórievich Galiorkin (1871–1945). https://generals.dk/general/Galerkin/

Borís Grigórievich Galiorkin (1871–1945) fue un ingeniero y matemático soviético cuya obra transformó la teoría de estructuras y la física matemática. Nacido en una familia humilde en Polotsk, tuvo que compaginar desde joven sus estudios con distintos trabajos para poder subsistir. Su vida estuvo marcada tanto por la represión política —incluidos periodos en prisión— como por una intensa labor científica y docente. Galiorkin es recordado principalmente por el desarrollo del célebre Método de Galerkin, una técnica de aproximación para resolver ecuaciones diferenciales que hoy es pilar en disciplinas como la mecánica, la termodinámica o el electromagnetismo. Su legado sigue siendo fundamental en la ingeniería moderna.

Borís Grigórievich Galérkin (en ruso, Бори́с Григо́рьевич Галёркин, apellido a veces transliterado como Galerkin o Galyorkin) nació el 20 de febrero de 1871. Pólatsk, Gobernación de Vítebsk, Imperio ruso; actual Bielorrusia —falleció el 12 de julio de 1945 en Leningrado, URSS— fue un ingeniero civil y matemático soviético, célebre por formular el método de Galerkin, una técnica numérica fundamental para la resolución aproximada de ecuaciones diferenciales parciales.

Nació en el seno de una familia judía pobre. Sus padres, Girsh-Shleym (Hirsh-Shleym) Galerkin y Perla Basia Galerkina, poseían una casa en Polotsk, pero sus oficios artesanales apenas generaban ingresos. Desde los doce años trabajó como calígrafo en los tribunales para ayudar a la economía familiar.

Cursó sus estudios en Polotsk y, tras superar los exámenes de acceso en Minsk en 1893, obtuvo la oportunidad de continuar su formación superior. Ese mismo año ingresó en el Instituto Tecnológico Estatal de San Petersburgo, donde estudió matemáticas e ingeniería. Para mantenerse, dio clases particulares y, desde 1896, trabajó como diseñador técnico. Durante su etapa universitaria, se vinculó a los socialdemócratas rusos, lo que marcó el rumbo de su vida. En 1899, poco antes de graduarse, fue expulsado del instituto por sus actividades políticas, pero logró graduarse como estudiante externo ese mismo año.

Comenzó su carrera profesional en la fábrica de locomotoras de Járkov en 1899 y, en 1903, se trasladó a San Petersburgo para asumir el cargo de ingeniero jefe en la Northern Mechanical and Boiler Plant. Al mismo tiempo, continuó su activismo en el partido socialdemócrata y fundó un sindicato obrero. Fue encarcelado brevemente en 1905 y, en 1907, condenado a dieciocho meses de prisión. En la cárcel escribió su primer tratado científico: un manual sobre análisis estructural. En 1908, tras salir de prisión, decidió apartarse de la militancia y dedicarse a la ingeniería civil y a la ciencia.

En 1909, comenzó a enseñar mecánica estructural en el Instituto Tecnológico de San Petersburgo, bajo la influencia de V. L. Kirpichov, y en contacto con científicos como Iván Bubnov, A. N. Krylov, I. V. Meshcherskiy y S. P. Timoshenko. Ese mismo año, publicó su primer trabajo sobre pandeo longitudinal, inspirado en Euler y aplicable al diseño de puentes y estructuras de edificios.

Entre 1909 y 1914 viajó por Alemania, Austria, Suiza, Bélgica y Suecia para estudiar obras y sistemas constructivos modernos. En 1911, enseñó también en el Instituto Politécnico Femenino y, en 1913, diseñó la estructura metálica de una central termoeléctrica en San Petersburgo, considerada la primera gran edificación rusa con armazón metálico sometido a cargas pesadas, lo que supuso un hito en Europa.

En 1915 presentó el trabajo que le daría fama mundial: el método de aproximación para ecuaciones diferenciales, que aplicó inicialmente a entramados y placas. Aunque I. G. Bubnov había propuesto un enfoque similar en 1911, la formulación de Galerkin fue más general, ya que desvinculó el procedimiento de la resolución variacional directa e interpretó el método como una técnica universal aplicable a problemas de mecánica y física matemática.

En la actualidad, el método de Galerkin (también conocido como método de Bubnov-Galerkin) constituye la base de numerosos algoritmos en mecánica, termodinámica, electromagnetismo, hidrodinámica y otras disciplinas, y se considera uno de los antecedentes directos del método de elementos finitos.

En 1919 obtuvo una plaza de profesor en el Instituto Politécnico Femenino y, en 1920, ganó por concurso la cátedra de Mecánica Estructural en el Instituto Tecnológico de San Petersburgo. Al año siguiente, también impartía docencia en la Universidad de Leningrado y en el Instituto de Ingenieros de Comunicaciones de dicha ciudad. Ese mismo año, la Sociedad Matemática de San Petersburgo reabrió sus puertas tras la revolución con el nombre de Sociedad Físico-Matemática de Petrogrado. Galiorkin desempeñó un papel central en ella junto a científicos como V. A. Steklov, Serguéi Bernstein y Alexandr Friedmann.

En 1923, fue elegido decano de la Facultad de Ingeniería Civil del Politécnico, donde defendió la independencia académica frente a las presiones políticas y creó los primeros laboratorios de la facultad. En 1924 realizó su último viaje internacional, al Congreso de Mecánica Aplicada en los Países Bajos. En 1928 fue elegido miembro correspondiente de la Academia de Ciencias de la URSS, y en 1935, miembro de pleno derecho. Durante las décadas de 1920 y 1930, fue consultor en las principales obras industriales e hidráulicas de la URSS. Entre sus aportaciones, destacan sus estudios sobre la presa y la central hidroeléctrica del Dniéper (1929), en los que analizó las tensiones en los muros de la presa de perfil trapezoidal. En 1933 publicó Uprugie tonkie plity (Placas delgadas elásticas) y, en 1937, su monografía sobre membranas. Además, entre 1934 y 1945 investigó la teoría de recubrimientos o carcazas, que tenía aplicaciones industriales novedosas. Recibió dos doctorados en técnicas y matemáticas (1934) y el título de Trabajador Eminente en Ciencia e Ingeniería. Ese mismo año fue nombrado director del Instituto de Mecánica de la Academia de Ciencias, cargo que mantuvo hasta su fallecimiento.

En 1939, con la reorganización de la Universidad de Ingeniería Militar (VITU), fue nombrado director del Departamento de Mecánica Estructural y ascendido a teniente general de ingeniería, a pesar de no haber servido en el ejército. Durante la Segunda Guerra Mundial, dirigió la Comisión de Construcciones Defensivas de Leningrado y, tras ser evacuado a Moscú, trabajó en la Comisión de Ingeniería Militar de la Academia de Ciencias. En 1942 recibió el Premio Stalin por sus contribuciones.

Murió en Moscú el 12 de julio de 1945, poco después de la victoria soviética, y fue enterrado en el cementerio Volkovo de San Petersburgo.

El nombre de Galiorkin está ligado al método de Galerkin, uno de los pilares del análisis numérico moderno y del cálculo estructural. Sus investigaciones sobre entramados, placas, membranas y recubrimientos tuvieron un enorme impacto teórico y práctico, especialmente en presas hidroeléctricas, estructuras metálicas y en la consolidación de la ingeniería soviética.

Entre sus obras destacan:

  • Sterzhni i plastinki (Barras y placas, 1915)

  • Uprugie tonkie plity (Placas delgadas elásticas, 1933)

  • Sobranie sochinenii (Obras completas, 1952–1953)

En 1998, el asteroide (22611) Galerkin fue nombrado en su honor, consagrando el legado de uno de los ingenieros y matemáticos más influyentes del siglo XX.

La trayectoria de Borís Grigórievich Galerkin demuestra que la perseverancia y la pasión científica pueden superar las adversidades económicas y políticas. A lo largo de su vida, compaginó la enseñanza, la investigación y la práctica ingenieril, dejando una profunda huella en la ciencia y la técnica del siglo XX. El método de Galerkin y sus estudios sobre estructuras, placas y cáscaras elásticas no solo resolvieron problemas de su tiempo, sino que también sentaron las bases de los métodos numéricos que hoy en día utilizan ingenieros y científicos de todo el mundo. Su legado sigue vivo en cada cálculo estructural, simulación computacional y diseño que recurre a estas herramientas fundamentales.

En este audio podemos conocer más de su biografía.

Os paso un vídeo del método de Garlerkin.

 

Economía circular en la industria del cemento y el hormigón

Figura 1. Economía circular. Fuente: PEMAR (2016-2022)

¿Qué es la economía circular y en qué se diferencia del modelo económico tradicional?

La economía circular es un modelo económico diseñado para eliminar los residuos y maximizar el uso eficiente de los recursos, todo lo cual contrasta con el modelo lineal tradicional de «tomar, hacer y desechar». Su objetivo principal es mantener los productos, materiales y recursos en uso durante el mayor tiempo posible. En la práctica, esto se consigue cerrando ciclos (transformando residuos en materias primas secundarias), ralentizando ciclos (alargando la vida útil de productos y materiales) y estrechando ciclos (maximizando el valor económico de una cantidad fija de recursos).

¿Por qué la industria del cemento y del hormigón está adoptando la economía circular?

Lo hace debido a los desafíos ambientales sin precedentes y a la creciente demanda de recursos. El Foro Económico Mundial señala que cada año se incorporan a la economía mundial 100 mil millones de toneladas de materiales, de los cuales cerca de la mitad se utilizan en ingeniería y construcción. Se estima que para el año 2100 se necesitarán dos mil millones de nuevos hogares, junto con su infraestructura de apoyo. La economía circular es esencial para reducir esta intensa demanda de recursos, mejorar la eficiencia en la fabricación y el diseño, maximizar la vida útil de los proyectos y minimizar y reutilizar los residuos. Además, la adopción de la economía circular es clave para que el sector alcance la neutralidad en emisiones de carbono para el año 2050, un objetivo global de la industria.

¿Cuáles son los principios clave de la economía circular aplicados al cemento y al hormigón según las «9R» del PNUMA?

El Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) describe la economía circular en términos de nueve acciones «R», que, en el caso de materiales de construcción de larga duración como el cemento y el hormigón, se adaptan a seis categorías principales:

  • Reducir por diseño: disminuir la cantidad de material utilizado desde la fase de concepción.
  • Reciclar: evitar la eliminación de residuos y permitir que el material vuelva al ciclo de producción.
  • Readaptar: modificar elementos y componentes para un uso igual o mejor que el original.
  • Reutilizar: Utilizar los materiales o productos tal cual, siempre que sea posible.
  • Rechazar/Reducir: comprar o usar menos y utilizar artículos y servicios durante más tiempo.
  • Reparar, renovar o remanufacturar: reparar en lugar de reemplazar, renovar lo existente o remanufacturar equipos para que queden como nuevos. Estos principios son particularmente efectivos en el cemento y el hormigón, debido a su durabilidad y completa reciclabilidad.

¿De qué manera se aplican los conceptos de economía circular en las fases de diseño de productos y proyectos en la industria del cemento y del hormigón?

En la fase de diseño, la circularidad se aborda de dos maneras:

  • Diseño de productos: Por un lado, se optimizan las recetas de hormigón para cumplir con los requisitos técnicos y maximizar el contenido reciclado, por ejemplo, incorporando cenizas volantes como material cementoso suplementario (SCM) para reducir la cantidad de clínker y mejorar la durabilidad.
  • Diseño de proyectos: La versatilidad del hormigón permite a los diseñadores optimizar el uso de materiales y la circularidad. Esto incluye el uso de elementos prefabricados de hormigón que pueden desmontarse y reutilizarse en nuevos proyectos, así como la implementación de sistemas de construcción modular que facilitan la adaptación y el reúso.
Figura 2. https://www.oficemen.com/la-industria-cementera-en-su-objetivo-de-alcanzar-la-neutralidad-climatica-a-mitad-de-siglo-fija-en-un-43-el-objetivo-de-reduccion-de-co2-a-2030/#

¿Qué papel juega el reciclaje en la economía circular del cemento y el hormigón?

El reciclaje es fundamental para reducir el empleo de materias primas. En la producción de clínker, se emplea el procesamiento de residuos y materiales secundarios como combustibles y materias primas alternativas (ARMs), lo que permite sustituir combustibles fósiles y materias primas primarias, y gestionar residuos. En cuanto al hormigón y los agregados, el primero es completamente reciclable: sus componentes prefabricados pueden reciclarse para producir nuevos hormigones y el hormigón al final de su vida útil puede procesarse para producir áridos reciclados de calidad controlada que sustituyen a los áridos naturales.

¿De qué manera contribuye la durabilidad del hormigón a la reutilización y readaptación de proyectos?

La durabilidad y longevidad inherentes del hormigón lo convierten en un material ideal para la reutilización y readaptación. Los elementos de hormigón pueden diseñarse para ser desmontados y reutilizados en otros proyectos, incluidos sistemas prefabricados o diseños modulares completos. A nivel de proyecto, las estructuras de hormigón son intrínsecamente adecuadas para la readaptación, ya que tienen una larga vida útil, requieren poco mantenimiento y son resistentes a desastres naturales como inundaciones e incendios. Esto permite reutilizar edificios con estructuras de hormigón duraderas en lugar de demolerlos y reconstruirlos, como en el caso de la reconversión de antiguas fábricas en modernos espacios.

¿Qué nuevas tecnologías se están investigando para fomentar la economía circular en la industria del cemento y del hormigón?

Esta industria está invirtiendo en investigación y desarrollo de tecnologías innovadoras para aumentar la circularidad. Entre ellas, destacan los Materiales Cementosos Suplementarios (MCS), como las cenizas volantes y la escoria de alto horno granulada, que sustituyen parcialmente al clínker, reducen la huella de carbono y mejoran la durabilidad del hormigón. También se están llevando a cabo investigaciones para mejorar la recarbonatación del hormigón, es decir, el proceso natural por el cual el material absorbe CO₂ del medio ambiente. El objetivo es optimizar este proceso en el hormigón demolido al final de su vida útil para maximizar la absorción de CO₂ y contribuir a la reducción neta de carbono.

¿Qué iniciativas específicas propone la GCCA para acelerar la adopción de la economía circular en los sectores del cemento y el hormigón?

La Global Cement and Concrete Association (GCCA) propone varias iniciativas que requieren colaboración público-privada para establecer un marco regulatorio común:

  • Facilitar el uso de residuos como combustibles alternativos y materias primas en la producción de clínker, incentivando la segregación de residuos y la infraestructura para su procesamiento.
  • Promover el uso de materiales cementosos suplementarios (MCS) en la fabricación de cemento y hormigón, para lo cual los gobiernos deberían incluirlos en las especificaciones de los proyectos públicos y revisar las normativas de construcción.
  • Reducir y eliminar gradualmente los vertederos de residuos de construcción y demolición de hormigón, estableciendo normativas que obliguen a reciclar estos materiales. Con estos compromisos se pretende acelerar la implementación de principios circulares, informar sobre los progresos mediante métricas, innovar en productos y aplicaciones, colaborar para promover buenas prácticas y fomentar el diseño circular desde el principio.

Os paso un enlace a un artículo que profundiza sobre las ideas anteriores.

La Industria del Cemento y del Hormigón y su rol en la transición hacia una Economía Circular

Os dejo algunos vídeos al respecto, espero que os sean de interés.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más allá del coste inicial: cómo elegir la mejor estrategia de refuerzo sísmico con criterios de sostenibilidad

Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. Desarrolla un marco de decisión multicriterio que integra análisis del ciclo de vida (económico, ambiental y social) con técnicas avanzadas de decisión en entornos de incertidumbre (DEMATEL, DANP y TOPSIS en entornos difusos). El modelo se ha aplicado a un caso real de refuerzo de pilares de hormigón armado en Quito, una ciudad expuesta a riesgos sísmicos y volcánicos, por lo que los resultados son especialmente relevantes para la práctica profesional. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración con la Universidad Central de Ecuador. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la ingeniería civil ha tenido que replantear las estrategias de intervención en el patrimonio edificado. En regiones con alta peligrosidad sísmica, es imperioso reforzar las estructuras de hormigón armado construidas conforme a normativas antiguas. La demolición y reconstrucción, aunque técnicamente es posible, tiene un gran impacto ambiental y social, y supone un coste elevado. Por este motivo, la investigación reciente se orienta hacia metodologías que permitan adoptar soluciones integrales que equilibren la seguridad estructural, la sostenibilidad ambiental, la viabilidad económica y la aceptación social.

Un objetivo ambicioso: tomar decisiones informadas y sostenibles.

El objetivo del estudio es proporcionar a los ingenieros un procedimiento para priorizar técnicas de refuerzo sísmico de pilares de hormigón armado que tenga en cuenta de manera simultánea los siguientes aspectos:

  • Costes de ciclo de vida (LCC): diseño, construcción, mantenimiento y demolición.
  • Impactos ambientales (LCA): consumo de recursos, emisiones con efectos sobre la salud humana y daños a los ecosistemas.
  • Impactos sociales (S-LCA): seguridad de los trabajadores, derechos laborales, efectos sobre la comunidad local, compatibilidad arquitectónica y tiempo de interrupción del uso.

Lo novedoso es que estos criterios no se tratan como compartimentos estancos, sino como un sistema interdependiente en el que las decisiones económicas repercuten en lo social y lo ambiental, y viceversa.

La metodología paso a paso

  1. Selección de criterios: se identificaron nueve indicadores distribuidos en tres dimensiones (económica, ambiental y social).
  2. Análisis de relaciones causales (fuzzy DEMATEL): permitió visualizar qué criterios actúan como causa (por ejemplo, el coste de construcción influye en varios indicadores) y cuáles como efecto (por ejemplo, la salud humana se ve afectada por las decisiones ambientales y económicas).
  3. Determinación de pesos relativos (DANP): se asignó importancia a cada criterio teniendo en cuenta esas interdependencias. La dimensión social emergió como la de mayor peso global (44,6%), seguida de la ambiental (32,2%) y la económica (23,1%).
  4. Evaluación de alternativas (TOPSIS): se compararon tres técnicas habituales de refuerzo de pilares:
    • Encamisado con hormigón armado.
    • Encamisado con acero.
    • Revestimiento con CFRP (polímeros reforzados con fibra de carbono).
      Cada una se evaluó en todas las fases del ciclo de vida, desde la extracción de materias primas hasta el final de vida.

Resultados: el CFRP como mejor opción global

El análisis mostró perfiles muy diferenciados:

  • Hormigón armado (RC):
    • Ventaja: la alternativa más barata en coste inicial y en LCC.
    • Inconveniente: presenta los mayores impactos ambientales y sociales, debido al uso intensivo de materiales (cemento y áridos) y a la mayor duración y molestias de obra.
  • Acero (ST):
    • Ventaja: menor impacto social que el hormigón, reducción moderada de impactos ambientales.
    • Inconveniente: costes significativamente más altos, sobre todo en mantenimiento y fin de vida (protecciones contra corrosión, demolición).
  • CFRP:
    • Ventaja: mejor desempeño ambiental (hasta un 81% menos de consumo de recursos respecto al RC) y social (reducción de hasta un 85% en impactos sobre la sociedad). Además, tiempos de ejecución mucho más cortos, con mínima afectación al uso del edificio.
    • Inconveniente: coste inicial muy superior (un 154% más que el RC).
    • Resultado: pese a ese mayor coste inicial, es la alternativa mejor valorada globalmente cuando se consideran los 50 años de vida útil.

La conclusión es clara: el criterio de sostenibilidad a largo plazo favorece el uso del CFRP, aunque su adopción aún depende de la disponibilidad económica y de la madurez del mercado en cada contexto.

Aplicaciones prácticas en la ingeniería real

Para el proyecto de refuerzo de una estructura, este estudio ofrece varias lecciones prácticas:

  • Justificación técnica y económica: el marco permite presentar a clientes y administraciones un análisis riguroso que va más allá del presupuesto inicial, considerando impactos a 50 años.
  • Planificación de obra: la valoración de los tiempos de intervención y la compatibilidad arquitectónica muestra que soluciones como el CFRP pueden reducir notablemente la interrupción de la actividad en edificios de uso crítico (hospitales, colegios, edificios administrativos).
  • Selección de materiales: el análisis evidencia cómo el acero requiere medidas de protección adicionales frente a la corrosión, mientras que el hormigón aumenta considerablemente la huella de carbono. Esto impulsa a considerar materiales compuestos, incluso con su mayor precio, cuando la sostenibilidad y el servicio a la comunidad son prioritarios.
  • Diseño normativo y políticas públicas: al integrar impactos sociales, el modelo puede orientar normativas de rehabilitación sísmica en países con gran stock de edificaciones vulnerables, priorizando soluciones que maximicen beneficios sociales, además de estructurales.

Conclusiones y recomendaciones para la práctica profesional

  1. Mirar más allá del coste inicial: la ingeniería actual debe adoptar un enfoque de ciclo de vida para que las decisiones sean sostenibles y no hipotequen a futuras generaciones.
  2. Dar peso a lo social: en muchos contextos, el impacto en trabajadores y usuarios pesa tanto como la seguridad estructural. Reducir los tiempos de obra y las afecciones al entorno puede ser determinante.
  3. Promover materiales innovadores: el CFRP se posiciona como un referente en refuerzos sísmicos por su durabilidad, bajo impacto ambiental y beneficios sociales.
  4. Aplicar marcos multicriterio: metodologías como la propuesta permiten al ingeniero defender decisiones complejas con base científica y transparencia.
  5. Aprovechar el modelo en la planificación pública: puede guiar programas de rehabilitación masiva en países sísmicamente activos, optimizando recursos y beneficios.

En definitiva, este trabajo no solo aporta un modelo matemático, sino también una forma de pensar y justificar nuestras decisiones como ingenieros civiles. Es un claro ejemplo de cómo la integración de herramientas de análisis avanzado con criterios de sostenibilidad puede transformar la práctica profesional y alinearla con los retos del siglo XXI.

Este audio os puede servir para entender el trabajo realizado.

Os dejo un vídeo que resume este trabajo.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre el hormigón reforzado con fibras

1. ¿Qué es el hormigón reforzado con fibras (HRF) y cómo se diferencia del hormigón tradicional?

El hormigón reforzado con fibras (HRF) se define como aquel hormigón que incluye en su composición fibras cortas, discretas y distribuidas aleatoriamente en su masa. A diferencia del hormigón tradicional, que tiene una buena resistencia a la compresión, pero es frágil y tiene una resistencia limitada a la tracción, la incorporación de fibras al HRF mejora significativamente su ductilidad y resistencia a la tracción y a la flexotracción. Esto permite que el HRF pueda sustituir, total o parcialmente, al refuerzo de acero convencional (hormigón armado) o activo (hormigón pretensado o postesado) en ciertas aplicaciones. La mejora del comportamiento frágil del hormigón se logra aumentando su resistencia a la tracción en los procesos posteriores a la fisuración de la matriz, en los que las fibras «cosen» las fisuras y evitan el colapso frágil.

Figura 1. https://blog.laminasyaceros.com/blog/hormigon-armado

2. ¿Cuáles son los principales tipos de fibras utilizadas en el HRF y sus características distintivas?

Existen cuatro grandes grupos de fibras para el refuerzo del hormigón:

  • Fibras de acero: Son las más utilizadas tradicionalmente y mejoran notablemente la tenacidad, la ductilidad, la resistencia a la flexión, la tracción, el cortante, el impacto y la fatiga. Se presentan en diversas formas para mejorar el anclaje con el hormigón, como patillas, ondulaciones o corrugaciones. Su dosificación habitual oscila entre 25 y 70 kg/m³. A pesar de sus excelentes propiedades mecánicas, pueden presentar problemas de corrosión si no se controlan adecuadamente.
  • Fibras macro-sintéticas estructurales: Generalmente de poliolefina (polipropileno o polietileno de alta densidad), son poliméricas y tienen un diámetro superior a 0,30 mm. Ofrecen propiedades mecánicas mejoradas y son químicamente estables, lo que elimina los problemas de corrosión del acero. Se requiere una menor dosificación (3-12 kg/m³) para obtener resultados similares en comparación con las de acero, lo que reduce el coste y el peso. Mejoran la durabilidad en ambientes agresivos y reducen el desgaste de los equipos de bombeo.
  • Micro-fibras de polipropileno: Con diámetros inferiores a 0,30 mm, no asumen una función estructural, pero son altamente efectivas para reducir la fisuración por retracción plástica y mejorar el comportamiento del hormigón frente al fuego (debido a su baja temperatura de fusión, que crea espacios para el vapor de agua y evita el estallido). Su dosificación es baja (1-2 kg/m³).
  • Fibras de vidrio (GRC): Utilizadas principalmente en mortero de cemento reforzado con fibras de vidrio (GRC). Mejoran la ductilidad y la resistencia a la tracción del mortero. Sin embargo, su durabilidad en ambientes alcalinos es limitada debido a la corrosión de las fibras. Se han desarrollado fibras resistentes a los álcalis (AR) para mitigar este problema. Se usan en aplicaciones en las que no se necesitan armaduras, lo que permite realizar diseños versátiles con espesores reducidos.
Figura 2. Fuente: http://esp.sika.com

3. ¿Cómo influye la adición de fibras en las propiedades mecánicas y la trabajabilidad del hormigón?

La adición de fibras en el hormigón tiene un impacto significativo en varias de sus propiedades:

  • Resistencia a la compresión: Los incrementos son modestos y, a partir de ciertos umbrales de dosificación, la resistencia puede incluso reducirse debido a problemas de compactación y trabajabilidad.
  • Resistencia a la tracción y flexo-tracción: Las fibras aumentan notablemente estas resistencias al «coser» las fisuras y mejorar el comportamiento post-fisuración. La ductilidad y tenacidad del hormigón endurecido se incrementan con la fracción volumétrica de fibras.
  • Módulo de elasticidad: Las variaciones suelen ser pequeñas, aunque en altas dosificaciones de fibras sintéticas pueden observarse reducciones apreciables. En el caso de las fibras de acero, el módulo puede aumentar hasta un valor máximo, para luego disminuir.
  • Comportamiento frente a fisuración: Las fibras controlan la aparición y propagación de microfisuras, aumentando la absorción de energía durante el proceso de fisuración. Son especialmente efectivas contra la fisuración por retracción plástica (micro-fibras de polipropileno) y fisuración por acciones térmicas.
  • Durabilidad: Las fibras pueden mejorar la durabilidad al reducir la abertura de las fisuras, lo que limita la entrada de agentes nocivos. Las fibras poliméricas destacan por su estabilidad química y ausencia de problemas de corrosión, a diferencia de las fibras de acero que requieren protección.
  • Trabajabilidad: La adición de fibras generalmente reduce la trabajabilidad del hormigón. Las fibras de acero, debido a su mayor rigidez, afectan más la trabajabilidad que las fibras poliméricas. Es importante tener en cuenta esta reducción al diseñar la mezcla y los métodos de colocación y compactación.

4. ¿Qué importancia tiene el anclaje de las fibras en la matriz de hormigón para su rendimiento estructural?

El anclaje de las fibras en la matriz del hormigón es un factor determinante para el comportamiento del material compuesto. La capacidad de las fibras para trabajar solidariamente con la matriz del hormigón es crucial para su aportación.

  • Mecanismo de refuerzo: Si la fibra está bien anclada, controlará la apertura de la fisura, produciendo un «efecto de puenteo» sobre la fisura. Esto permite que la fibra movilice su resistencia a la tracción, impidiendo la propagación incontrolada de la fisura.
  • Tipos de fallo: Un anclaje deficiente puede llevar a un deslizamiento de la fibra por falta de adherencia o una rotura brusca del anclaje, en lugar de la rotura de la propia fibra o un deslizamiento controlado. Por ejemplo, en fibras metálicas, los extremos conformados (patillas, ondulaciones) son comunes para mejorar este anclaje mecánico. En fibras poliméricas, se busca la rugosidad superficial.
  • Longitud mínima de anclaje: Para fibras rectas, la longitud mínima de anclaje es un parámetro fundamental.
  • Orientación y distribución: Además del tipo de anclaje, la orientación y distribución de las fibras dentro de la masa de hormigón son vitales. Un factor de orientación adecuado y una distribución homogénea, influenciadas por el flujo del hormigón y el «efecto pared» en los moldes, aseguran que un mayor número de fibras actúen eficazmente en el plano de la fisura.

5. ¿Cómo se evalúa la aptitud estructural del hormigón reforzado con fibras según las normativas vigentes?

La aptitud estructural del HRF se evalúa principalmente mediante ensayos de resistencia a la tracción por flexión en probetas entalladas, conforme a la norma UNE-EN 14651. Los resultados de este ensayo (curvas fuerza-apertura de fisura o CMOD) proporcionan los valores necesarios para tener en cuenta la contribución de las fibras en los estados límites de servicio (ELS) y en los estados límites últimos (ELU).

Para que las fibras puedan considerarse estructuralmente relevantes, deben cumplir los siguientes requisitos de resistencia residual a la tracción por flexión:

  • La resistencia característica residual a tracción por flexión fR,1,k (para una abertura de fisura de 0,5 mm) no debe ser inferior al 40 % del límite de proporcionalidad (fLOP).
  • La resistencia característica residual a tracción por flexión fR,3,k (para una abertura de fisura de 2,5 mm) no debe ser inferior al 20 % del límite de proporcionalidad (fLOP).

Además, normas como la EN 14889 (para fibras de acero y poliolefina) exigen que el fabricante declare el volumen unitario de fibras que puede alcanzar una resistencia residual a la flexión de 1,5 MPa a 0,5 mm CMOD y 1,0 MPa a 3,5 mm CMOD. Estos requisitos garantizan que el HRF tenga un comportamiento adecuado después de la fisuración.

6. ¿De qué manera las fibras de polipropileno contribuyen a la resistencia del hormigón frente al fuego?

Las microfibras de polipropileno son particularmente eficaces para aumentar la resistencia del hormigón al fuego, aunque no aporten resistencia estructural. Su contribución se basa en una propiedad clave: su baja temperatura de fusión, que ronda los 150-160 °C.

Cuando el hormigón se somete a altas temperaturas durante un incendio, el agua contenida en su masa se convierte en vapor a más de 100 °C. Este vapor genera una presión interna considerable que puede provocar el spalling o estallido brusco del hormigón, desprendiendo trozos y dejando al descubierto la armadura. Al fundirse a una temperatura relativamente baja, las fibras de polipropileno crean canales y huecos dentro de la matriz del hormigón. Estos nuevos espacios permiten que el vapor de agua escape y libere la presión acumulada, lo que reduce significativamente el riesgo de estallido explosivo. Este mecanismo es crucial para mantener la integridad de la estructura durante un incendio y proteger los elementos de refuerzo internos.

7. ¿Cuáles son las ventajas operativas y de seguridad al usar fibras poliméricas en comparación con las fibras de acero?

Las fibras poliméricas ofrecen varias ventajas operativas y de seguridad importantes en comparación con las fibras de acero:

  • Menor peso: Las fibras poliméricas tienen una densidad aproximadamente 8,5 veces inferior a las de acero. Esto significa que con un peso significativamente menor se puede lograr el mismo número de fibras por unidad de volumen, lo que facilita el manejo y reduce la carga total de la estructura.
  • Mejor trabajabilidad: Las macro-fibras sintéticas, aunque reducen la trabajabilidad en comparación con el hormigón sin fibras, lo hacen en menor medida que las fibras de acero, lo que facilita el proceso de amasado, transporte y colocación del hormigón.
  • Reducción del desgaste de equipos: Las fibras poliméricas, al ser menos rígidas y abrasivas, reducen el desgaste en los equipos de bombeo y mezclado del hormigón. Esto es especialmente beneficioso en aplicaciones de hormigón proyectado, donde se prioriza la continuidad del proceso.
  • Mayor seguridad en el manejo: El riesgo de pinchazos y cortes durante la manipulación e instalación es casi nulo con las fibras poliméricas, a diferencia de las rígidas fibras de acero que pueden sobresalir de la superficie de acabado y causar daños. Las fibras poliméricas también ofrecen un mejor acabado superficial.
  • Ausencia de corrosión: Al estar fabricadas con materiales poliméricos, son químicamente estables y eliminan por completo los problemas de corrosión que pueden afectar a las fibras de acero, lo que mejora la durabilidad en ambientes agresivos, como aquellos con cloruros.
  • Aislamiento eléctrico: Las fibras poliméricas no son conductoras de electricidad, lo que las hace una alternativa técnica y económica viable en usos donde las corrientes eléctricas puedan ser un problema para las fibras metálicas.

8. ¿Por qué el hormigón reforzado con fibra de vidrio (GRC) se considera un material con alta versatilidad de diseño, y cuáles son sus limitaciones principales?

El hormigón reforzado con fibra de vidrio (GRC) es muy valorado por su enorme versatilidad de diseño, ya que permite crear formas muy diversas con espesores reducidos de alrededor de 10 mm. Esta cualidad se debe a sus buenas propiedades mecánicas, en particular a su resistencia a la tracción y ductilidad, para lo cual no es necesario utilizar armaduras convencionales. Se trata de un material compuesto cementíceo que se adapta a moldes complejos, por lo que es ideal para elementos prefabricados, paneles de fachada, piezas arquitectónicas con motivos decorativos, encofrados perdidos con mosaicos y rehabilitaciones de edificios históricos.

Sin embargo, el GRC tiene una limitación principal: con el paso del tiempo, pierde propiedades mecánicas, un fenómeno conocido como «envejecimiento». Este fenómeno se debe principalmente a dos causas concurrentes:

  • Corrosión de las fibras de vidrio: Las fibras de vidrio pueden sufrir corrosión en el ambiente alcalino de la matriz de cemento, lo que reduce su sección y, por ende, su capacidad de refuerzo. Aunque se han desarrollado fibras alcali resistant (AR) a base de circonio para mitigar esto, el problema no se elimina por completo.
  • Formación de compuestos de hidratación: La acumulación de compuestos resultantes de la hidratación del cemento entre los filamentos de los haces de fibras también contribuye a la pérdida de propiedades.

El resultado de este envejecimiento es una notable pérdida de ductilidad y capacidad de carga del GRC con el paso del tiempo, como se observa en las curvas de tensión-deformación, lo que limita su uso a elementos no estructurales. A pesar de ello, sigue siendo un material popular para elementos decorativos y de revestimiento en los que priman la ligereza y la libertad de diseño.

Os dejo algunos vídeos al respecto:

Os dejo a continuación el siguiente documento para su consulta, que espero que sea de interés.

Pincha aquí para descargar

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre el futuro del hormigón

1. ¿Cuál es el problema principal con el hormigón tradicional y por qué es necesaria su transformación?

El hormigón ha sido un pilar fundamental en la construcción de infraestructuras globales gracias a su durabilidad, versatilidad y bajo coste. Sin embargo, su producción tiene un impacto ambiental significativo, ya que la fabricación de cemento, un componente esencial del hormigón, es responsable del 8 % de las emisiones globales de CO₂. Esto se debe principalmente a la calcinación de la piedra caliza para producir clínker, un proceso que libera grandes cantidades de dióxido de carbono. Dada la creciente urbanización, especialmente en regiones en desarrollo, es crucial disponer de un hormigón más sostenible para mitigar el cambio climático y alinear la industria de la construcción con los objetivos globales de sostenibilidad.

2. ¿Cómo se está abordando la reducción de emisiones de CO₂ relacionadas con el clínker en la producción de cemento?

La producción de clínker es el proceso que más emisiones genera dentro de la industria del hormigón. Para reducir sus emisiones, se están implementando varias estrategias:

  • Cemento LC3 (limestone calcined clay cement): Este cemento sustituye hasta el 50 % del clínker por una mezcla de arcilla calcinada y piedra caliza molida, lo que puede reducir las emisiones de CO₂ en un 40 % en comparación con el cemento Portland tradicional.
  • Uso de aditivos: Materiales como las cenizas volantes y la escoria de alto horno pueden mezclarse con el cemento para reducir el contenido de clínker sin comprometer la resistencia del hormigón y promover una economía circular mediante la reutilización de subproductos industriales.
  • Tecnologías de producción avanzadas: Se están investigando hornos de precalentamiento, sistemas de recuperación de calor y combustibles alternativos, como el hidrógeno o la energía solar concentrada, para hacer la producción de clínker más eficiente.

3. ¿Qué alternativas se están explorando para reemplazar los áridos naturales en el hormigón y cuál es su impacto?

Los áridos (arena y grava) constituyen la mayor parte del volumen del hormigón y su extracción natural conlleva impactos ambientales, como la degradación del paisaje y la pérdida de biodiversidad. Por ello, se están buscando alternativas sostenibles.

  • Áridos reciclados: Se obtienen de la trituración de residuos de construcción y demolición, lo que reduce la demanda de áridos vírgenes y la cantidad de residuos que van a parar a los vertederos. Son útiles en aplicaciones no estructurales y, gracias a las mejoras en las técnicas de procesamiento, cada vez lo son más en aplicaciones estructurales.
  • Áridos artificiales: Estos áridos, producidos a partir de subproductos industriales o residuos (como escoria de alto horno o cenizas volantes), pueden tener propiedades superiores y contribuir a la economía circular. La empresa Brimstone, por ejemplo, ha desarrollado áridos a partir de silicatos de calcio que no solo reemplazan a los naturales, sino que también capturan carbono, por lo que el hormigón resultante es «carbono negativo».
  • Áridos de plásticos reciclados: Aunque se encuentra en una etapa inicial, la incorporación de plásticos reciclados puede reducir tanto los residuos plásticos como la extracción de áridos, mejorando incluso la flexibilidad del material.

4. ¿Cómo contribuyen las energías renovables a un hormigón más sostenible?

La producción de cemento requiere mucha energía y la quema de combustibles fósiles es responsable de aproximadamente el 30 % de las emisiones de CO₂ asociadas al hormigón. La transición a energías renovables es clave:

  • Energía solar concentrada: Tecnologías como la desarrollada por Synhelion y Cemex utilizan espejos para enfocar la luz solar y generar el calor necesario para el proceso de calcinación en los hornos de cemento, reduciendo las emisiones y la dependencia de combustibles fósiles.
  • Energía eólica y solar fotovoltaica: Estas fuentes se emplean para alimentar las operaciones auxiliares de las plantas de cemento (trituración, molienda), reduciendo la huella de carbono general.
  • Biomasa y residuos industriales: El uso de residuos agrícolas, forestales e industriales como combustibles alternativos en los hornos de cemento permite reducir significativamente las emisiones de CO₂.
  • Hornos de precalentamiento y sistemas de recuperación de calor: Estas innovaciones mejoran la eficiencia energética al reutilizar el calor generado en el proceso, lo que reduce el consumo de energía primaria hasta en un 20 %.

5. ¿Qué papel juega la captura y almacenamiento de carbono (CCS) en la reducción de emisiones del hormigón?

La CCS es una tecnología prometedora para reducir significativamente las emisiones de CO₂. Consiste en capturar el CO₂ emitido durante la producción de cemento antes de que se libere a la atmósfera y almacenarlo de forma segura en formaciones geológicas subterráneas.

  • Proceso: El CO₂ se puede capturar mediante métodos de postcombustión (después de quemar combustibles), precombustión (antes de la combustión) u oxicombustión (usando oxígeno puro en la combustión).
  • Implantación: La planta que Heidelberg Materials tiene en Brevik (Noruega) es un ejemplo pionero, ya que captura aproximadamente el 90 % de sus emisiones de CO₂ (400 000 toneladas al año) para almacenarlas en el mar del Norte.
  • Beneficios y retos: La CCS puede reducir hasta en un 90 % las emisiones y es compatible con la infraestructura existente. No obstante, los costes de instalación y operación son elevados y el proceso requiere mucha energía, además de necesitar un almacenamiento seguro y permanente.

6. ¿Cómo se introduce el CO₂ directamente en la fabricación o vertido del hormigón para mejorar sus propiedades y reducir su huella de carbono?

Una innovación clave es la introducción de CO₂ capturado directamente en el hormigón fresco durante su mezcla, como lo hace la tecnología CarbonCure.

  • Proceso: El CO₂ se inyecta en la mezcla, donde reacciona con el calcio del cemento para formar carbonato de calcio, un proceso denominado mineralización. Este carbonato de calcio queda fijado de forma permanente en el interior del hormigón.
  • Beneficios: Reduce las emisiones en aproximadamente un 5-7 % por metro cúbico de hormigón y permite disminuir la cantidad de cemento necesaria, lo que a su vez reduce las emisiones de clínker.
  • Mejora de propiedades: El carbonato de calcio contribuye a una microestructura más densa, lo que incrementa la resistencia a la compresión del hormigón (hasta un 10%) y mejora su durabilidad.
  • Implantación: Esta tecnología está siendo adoptada por productores de Norteamérica y Europa en proyectos de construcción, lo que demuestra su viabilidad técnica y ambiental.

7. ¿Qué significa el concepto de «cascading» en el hormigón y cómo se relaciona con la economía circular y el reciclaje?

En el contexto de la economía circular, el aprovechamiento en cascada (en inglés, cascading) se refiere a la reutilización de materiales en diferentes niveles o aplicaciones para maximizar su valor antes de desecharlos definitivamente. En el caso del hormigón:

  • Cascading: Implica el desmontaje y la reutilización directa de piezas de hormigón, por ejemplo, bloques o paneles de un edificio antiguo en un nuevo proyecto, o su reutilización en aplicaciones de menor calidad si no pueden usarse estructuralmente, como áridos reciclados para pavimentos o rellenos. El objetivo es aprovechar el material en diferentes etapas de su ciclo de vida.
  • Reciclaje de hormigón: Este proceso consiste en triturar y procesar el hormigón demolido para convertirlo en áridos reciclados que pueden utilizarse en la producción de nuevos hormigones o como base en carreteras.
  • Relación: Ambos conceptos son complementarios y se enmarcan en la economía circular. El cascading puede ser una primera fase (reutilización directa) y el reciclaje supone un paso posterior para reintroducir los materiales en el ciclo productivo una vez que han llegado al final de su vida útil en la aplicación de mayor valor. El diseño para el desmontaje facilita el aprovechamiento en cascada, ya que permite la deconstrucción en lugar de la demolición para recuperar componentes.

8. ¿Cuáles son los principales desafíos y el futuro del hormigón sostenible?

El camino hacia un hormigón más sostenible implica superar varios desafíos:

  • Costes iniciales: La transición a energías renovables, tecnologías de captura de carbono y la implementación de sistemas de reciclaje implican altas inversiones iniciales.
  • Calidad y homogeneidad: Asegurar la calidad y consistencia de los áridos reciclados o materiales alternativos es un reto constante.
  • Regulación y estándares: Muchos códigos de construcción aún no se han actualizado para permitir el uso amplio de estas nuevas tecnologías y materiales en aplicaciones estructurales.
  • Conciencia y adopción: Es necesario aumentar la conciencia en la industria y facilitar la adopción masiva de estas innovaciones.

El futuro del hormigón pasa por la implementación a gran escala de estas tecnologías. Será crucial un esfuerzo conjunto de la industria, los gobiernos y la academia para superar las barreras técnicas, económicas y regulatorias. La inversión en investigación y desarrollo, junto con políticas de apoyo, permitirá que el hormigón no solo mitigue su impacto ambiental, sino que se posicione como un material clave en un futuro construido sobre principios de sostenibilidad y economía circular, convirtiéndose así en un aliado en la lucha contra el cambio climático.

A continuación os paso un audio que explica bien lo contenido en este artículo.

Os dejo varios vídeos sobre el futuro del hormigón y la tecnología CarbonCure. Espero que os resulte de interés.

Os paso un artículo al respecto, que espero os sea de interés.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.