5 ideas reveladoras sobre la vida secreta de nuestros edificios y puentes (y por qué debería importarte).

Colapso de una torre de viviendas en Ronan Point (Reino Unido). By Derek Voller, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=59931718

Cada día cruzamos puentes y entramos en edificios con una confianza casi absoluta en su solidez. Damos por hecho que el hormigón y el acero que nos rodean son permanentes. Sin embargo, la realidad es que estas estructuras, al igual que cualquier otra cosa, envejecen, se desgastan y están expuestas a amenazas constantes. Esta degradación no es un problema lejano, sino una realidad silenciosa que ya está aquí. Se trata, como ya he comentado algunas veces, de una verdadera «crisis de las infraestructuras». De eso nos estamos ocupando en el proyecto de investigación RESIFIFE, del cual soy investigador principal.

Para comprender la magnitud del desafío, basta con echar un vistazo a las cifras. Según el informe de la Sociedad Americana de Ingenieros Civiles (ASCE) de 2021, casi el 42 % de todos los puentes de Estados Unidos tienen más de 50 años y un preocupante 7,5 % se consideran «estructuralmente deficientes». A nivel mundial, el panorama es igualmente preocupante. El Foro Económico Mundial estima que la brecha de inversión en infraestructuras podría alcanzar los 18 billones de dólares para el año 2040.

No se trata solo de un problema para ingenieros y gobiernos. Afecta a nuestra seguridad, a nuestra economía y a nuestro futuro. Por eso, hemos recopilado la investigación más reciente para compartir cinco de las ideas más reveladoras que los expertos están debatiendo sobre la gestión del ciclo de vida de nuestra infraestructura.

Los dos «enemigos» al que se enfrentan nuestras estructuras

La degradación de un edificio o un puente no es un proceso único. Para los ingenieros, el primer paso es siempre realizar un diagnóstico correcto. En este caso, hay dos tipos muy diferentes:

  • La degradación progresiva: piense en ella como un desgaste lento y constante. Se trata del «deterioro ambiental», por ejemplo, la corrosión del acero causada por la sal en el aire o la fatiga del material tras soportar cargas durante décadas. Es un enemigo paciente que debilita la estructura poco a poco a lo largo de toda su vida útil.
  • La degradación instantánea: son los impactos repentinos y violentos. Se trata de «eventos extremos», como terremotos, inundaciones o incluso desastres provocados por el ser humano. A diferencia de la degradación progresiva, un solo evento de este tipo puede reducir drásticamente el rendimiento de una estructura en cuestión de minutos.

Comprender esta diferencia es crucial, ya que no se puede utilizar la misma estrategia para reparar una grieta por fatiga que para recuperar una estructura después de un terremoto.

La caja de herramientas de los ingenieros: mantenimiento frente a reparación

Frente a estos dos enemigos, la ingeniería no lucha con las manos vacías. Cuenta con una caja de herramientas específica para cada amenaza, con dos categorías principales de soluciones o «mecanismos de intervención».

  • Mantenimiento: son acciones planificadas para combatir la degradación progresiva. Piense en ellas como la medicina preventiva. Estas «intervenciones preventivas o esenciales» incluyen tareas como reparar grietas, aplicar una nueva capa de pintura protectora o reemplazar componentes estructurales antes de que fallen. El objetivo es frenar el desgaste natural.
  • Reparación: son las acciones que se llevan a cabo en respuesta a la degradación instantánea. Pueden ser «preventivas», como reforzar una estructura (retrofit) para que resista mejor un futuro terremoto, o «correctivas», como las labores de recuperación para devolver la funcionalidad lo antes posible.

Este enfoque de «ciclo de vida» supone un cambio fundamental. En lugar de esperar a que algo se rompa para repararlo, los ingenieros modernos planifican, predicen e intervienen a lo largo de toda la vida útil de la estructura para garantizar su rendimiento a largo plazo.

Más allá de la seguridad: las cuatro formas de medir el «éxito» de una estructura

Es aquí donde el campo se ha vuelto realmente fascinante. La forma de evaluar el «éxito» de una estructura ha evolucionado desde una pregunta sencilla de «¿se ha caído o no?» basta un cuadro de mando sofisticado con cuatro indicadores clave. Para entenderlo mejor, podemos pensar en cómo se evalúa a un atleta profesional:

  • Fiabilidad (reliability): esta es la base. ¿Puede el atleta aguantar el esfuerzo de un partido sin lesionarse? Mide la probabilidad de que una estructura no falle en las condiciones para las que fue diseñada.
  • Riesgo (risk): este indicador va un paso más allá. Si el atleta se lesiona, ¿qué consecuencias tiene para el equipo? ¿Se pierde un partido clave o la final del campeonato? El riesgo tiene en cuenta las consecuencias de un fallo: sociales, económicas y medioambientales.
  • Resiliencia (resilience): este es un concepto más nuevo y crucial. En caso de lesión, ¿cuánto tiempo tardará el atleta en recuperarse y volver a jugar al máximo nivel? Mide la capacidad de una estructura para prepararse, adaptarse y, sobre todo, recuperarse de manera rápida y eficiente tras un evento extremo.
  • Sostenibilidad (sustainability): esta es la visión a largo plazo. ¿Está el atleta gestionando su carrera para poder jugar durante muchos años o se quemará en dos temporadas? La sostenibilidad integra los aspectos sociales, económicos y medioambientales para garantizar que las decisiones de hoy no afecten a las generaciones futuras.

Este cambio de enfoque para evaluar las consecuencias supone una revolución en el campo. Los expertos señalan un cambio de mentalidad fundamental: ya no basta con medir el rendimiento en términos técnicos. Ahora se centran en las consecuencias en el mundo real (sociales, económicas y ambientales), ya que estas ofrecen una visión mucho más fiel y significativa de lo que realmente está en juego.

 

La carrera contra el tiempo: por qué este campo está investigando ahora

El interés por modelar y gestionar el ciclo de vida de las estructuras no es solo una curiosidad académica, sino una respuesta directa a una necesidad global cada vez más acuciante. Un análisis de la investigación científica en este campo revela una clara «tendencia ascendente».

El número de artículos publicados sobre este tema ha crecido constantemente, pero se observa un «incremento importante» a partir de 2015. Este auge de la investigación no es académico, sino una respuesta directa a las alarmantes cifras que vimos al principio. La comunidad mundial de ingenieros está en una carrera contra el tiempo para evitar que ese déficit de 18 billones (18·1012) de dólares se traduzca en fallos catastróficos.

El futuro es inteligente: De la reparación a la predicción

Para gestionar esta complejidad, la ingeniería está recurriendo a herramientas cada vez más avanzadas que van más allá del cálculo tradicional. El objetivo es pasar de un enfoque reactivo a otro predictivo y optimizado. Es como pasar de ir al médico solo cuando tienes un dolor insoportable a llevar un reloj inteligente que monitoriza tu salud las 24 horas del día y te avisa de un problema antes incluso de que lo notes.

Entre las metodologías más destacadas se encuentran:

  • Optimización: algoritmos que ayudan a decidir cuál es la mejor estrategia de mantenimiento (cuándo, dónde y cómo intervenir) para obtener el máximo beneficio con recursos limitados.
  • Modelos de Markov: herramientas estadísticas que funcionan como un pronóstico del tiempo para las estructuras, ya que predicen su estado futuro basándose en su condición actual.
  • Inteligencia artificial (IA), aprendizaje automático y aprendizaje profundo: estas tecnologías permiten analizar grandes cantidades de datos (de sensores, inspecciones, etc.) para predecir fallos, identificar patrones invisibles al ojo humano y optimizar la gestión del ciclo de vida a una escala nunca antes vista.

Este cambio de paradigma significa que, en el futuro, las decisiones sobre cuándo reparar un puente o reforzar un edificio se tomarán con la ayuda de datos y algoritmos complejos que pueden prever el futuro de la estructura.

Conclusión: pensar en el mañana, hoy

Gestionar la salud de nuestra infraestructura es un desafío continuo, complejo y vital. Ya no basta con construir estructuras impresionantes; es fundamental adoptar una mentalidad de «ciclo de vida» que nos obligue a evaluar, intervenir y planificar constantemente pensando en el futuro. Solo así podremos garantizar que los edificios y puentes que usamos cada día no solo sean fiables, sino también resilientes ante los imprevistos y sostenibles para las próximas generaciones.

La próxima vez que cruces un puente, no pienses solo en dónde te lleva. Pregúntate cuál es su historia invisible en su lucha contra el paso del tiempo y si, como sociedad, estamos invirtiendo no solo para construir, sino también para perdurar.

Os dejo un vídeo que os puede servir de guía.

Referencias:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Implicaciones éticas de chatbots generativos en la educación superior

En la actualidad, la inteligencia artificial (IA) está cada vez más presente en nuestra vida diaria, transformando industrias y planteando nuevas preguntas sobre la sociedad, la economía y, por supuesto, la educación. Entre las herramientas de IA emergentes, los «chatbots» generativos como ChatGPT han llamado especialmente la atención, ya que prometen revolucionar la enseñanza y el aprendizaje. Estas potentes plataformas pueden simular conversaciones humanas, ofrecer explicaciones e incluso generar textos complejos como poemas o ensayos. Sin embargo, a medida que educadores y legisladores consideran la implementación de estas tecnologías innovadoras en el ámbito educativo, es crucial reflexionar sobre las implicaciones éticas que conllevan. Aunque los beneficios potenciales son innegables, desde una mayor accesibilidad hasta experiencias de aprendizaje personalizadas, también existen desafíos significativos.

En este artículo, exploramos las consideraciones éticas clave relacionadas con el uso de chatbots generativos en la educación superior. La información que se presenta a continuación se basa en el artículo «The ethical implications of using generative chatbots in higher education» de Ryan Thomas Williams, publicado en Frontiers in Education.

A continuación, se examinan las implicaciones éticas de integrar chatbots generativos, como ChatGPT, en la educación superior. Se abordan preocupaciones clave como la privacidad de los datos de los estudiantes y los desafíos para cumplir con las regulaciones de protección de datos cuando la información es procesada y almacenada por la IA. El artículo también explora el sesgo algorítmico y señala cómo los prejuicios inherentes a los datos de entrenamiento pueden perpetuar estereotipos, además de abordar el impacto en la autoeficacia de los estudiantes al depender excesivamente de la IA, lo que podría disminuir el pensamiento crítico. Por último, se aborda el creciente problema del plagio y las «alucinaciones» de la IA, donde los chatbots generan información incorrecta, y se sugiere la necesidad de políticas claras, detección avanzada y métodos de evaluación innovadores.

1. ¿Cuáles son las principales implicaciones éticas de integrar los chatbots generativos en la educación superior?

La integración de chatbots generativos en la educación superior, como ChatGPT, aborda varias cuestiones éticas fundamentales. En primer lugar, la gestión de los datos sensibles de los estudiantes plantea importantes desafíos de privacidad, por lo que es necesario cumplir estrictamente con las normativas de protección de datos, como el RGPD, lo cual puede ser complejo debido a la naturaleza de los algoritmos de aprendizaje automático que aprenden de los datos y complican su «verdadera» eliminación. En segundo lugar, existe un riesgo significativo de sesgo algorítmico, ya que los chatbots aprenden de vastas fuentes de datos de internet que pueden perpetuar sesgos sociales (por ejemplo, de género o raciales), lo que podría afectar negativamente a la experiencia de aprendizaje del estudiante y a su visión del mundo. En tercer lugar, si bien los chatbots pueden fomentar la autonomía en el aprendizaje al ofrecer acceso bajo demanda a recursos y explicaciones personalizadas, existe la preocupación de que una dependencia excesiva pueda reducir la autoeficacia académica de los estudiantes, desincentivando el pensamiento crítico y la participación en actividades de aprendizaje más profundas. Finalmente, el plagio emerge como una preocupación primordial, ya que la capacidad de los chatbots para generar contenido sofisticado podría alentar a los estudiantes a presentar el trabajo generado por la IA como propio, lo que comprometería la integridad académica.

2. ¿Cómo afectan los chatbots generativos a la privacidad de los datos de los estudiantes en entornos educativos?

La implementación de chatbots en entornos educativos implica la recopilación, el análisis y el almacenamiento de grandes volúmenes de datos de los estudiantes, que pueden incluir desde su rendimiento académico hasta información personal sensible. Esta «gran cantidad de datos» permite experiencias de aprendizaje personalizadas y la identificación temprana de estudiantes en situación de riesgo. Sin embargo, esto genera importantes preocupaciones relacionadas con la privacidad. Existe el riesgo de uso indebido o acceso no autorizado a estos datos. Además, las regulaciones actuales de privacidad de datos, como el RGPD, permiten a los individuos solicitar la eliminación de sus datos, pero la naturaleza del aprendizaje automático significa que los algoritmos subyacentes ya han aprendido de los datos de entrada, por lo que es difícil aplicar un verdadero «derecho al olvido» o «eliminación». También hay una falta de transparencia algorítmica por parte de las empresas sobre la implementación de los algoritmos de los chatbots y sus bases de conocimiento, lo que dificulta el cumplimiento total de la ley de protección de datos, que exige que las personas estén informadas sobre el procesamiento de sus datos. Para mitigar estas preocupaciones, las instituciones educativas deben establecer directrices claras para la recopilación, almacenamiento y uso de datos, alineándose estrictamente con la normativa de protección de datos y garantizando la transparencia con todas las partes interesadas.

3. ¿Qué es el sesgo algorítmico en los chatbots educativos y cómo se puede abordar?

El sesgo algorítmico ocurre cuando los sistemas de IA, incluidos los chatbots, asimilan y reproducen los sesgos sociales presentes en los grandes conjuntos de datos con los que son entrenados. Esto puede manifestarse en forma de sesgos de género, raciales o de otro tipo que, si se reflejan en el contenido generado por la IA (como casos de estudio o escenarios), pueden perpetuar estereotipos y afectar a la experiencia de aprendizaje de los estudiantes. Para abordar esta situación, es fundamental que los conjuntos de datos utilizados para entrenar los sistemas de IA sean diversos y representativos, evitando fuentes de datos únicas o limitadas que no representen adecuadamente a grupos minoritarios. Se proponen asociaciones entre institutos educativos para compartir datos y garantizar su representatividad. Además, se deben realizar auditorías regulares de las respuestas del sistema de IA para identificar y corregir los sesgos. Es fundamental que se sea transparente sobre la existencia de estos sesgos y que se eduque a los estudiantes para que evalúen críticamente el contenido generado por la IA en lugar de aceptarlo como una verdad objetiva. El objetivo no es que la IA sea inherentemente sesgada, sino que los datos generados por humanos que la entrenan pueden contener sesgos, por lo que se requiere un enfoque deliberado y crítico para el desarrollo e implementación de la IA en la educación.

4. ¿Cómo impacta la dependencia de los estudiantes de los chatbots en su autoeficacia académica y su pensamiento crítico?

Si bien los chatbots pueden ofrecer una autonomía significativa en el aprendizaje al proporcionar acceso inmediato a recursos y respuestas personalizadas, existe la preocupación de que una dependencia excesiva pueda reducir la autoeficacia académica de los estudiantes. Esta dependencia puede llevar a los estudiantes a no comprometerse con el aprendizaje auténtico, lo que les disuade de participar en seminarios, lecturas recomendadas o discusiones colaborativas. A diferencia de las tecnologías informáticas tradicionales, la IA intenta reproducir habilidades cognitivas, lo que plantea nuevas implicaciones para la autoeficacia de los estudiantes con la IA. Además, la naturaleza en tiempo real de las interacciones con el chatbot puede fomentar respuestas rápidas y reactivas en lugar de una consideración reflexiva y profunda, lo que limita el desarrollo del pensamiento crítico. Las tecnologías de chatbot suelen promover formas de comunicación breves y condensadas, lo que puede restringir la profundidad de la discusión y las habilidades de pensamiento crítico que se cultivan mejor a través de una instrucción más guiada e interactiva, como las discusiones entre compañeros y los proyectos colaborativos. Por lo tanto, es crucial equilibrar la autonomía que ofrecen los chatbots con la orientación y supervisión de educadores humanos para fomentar un aprendizaje holístico.

5. ¿Cuál es la preocupación principal con respecto al plagio en la era de los chatbots generativos y qué soluciones se proponen?

El plagio se ha convertido en una preocupación ética crítica debido a la integración de herramientas de IA como ChatGPT en la educación. La capacidad de los chatbots para generar respuestas textuales sofisticadas, resolver problemas complejos y redactar ensayos completos crea un entorno propicio para la deshonestidad académica, ya que los estudiantes pueden presentar la producción de la IA como propia. Esto es especialmente problemático en sistemas educativos que priorizan los resultados (calificaciones, cualificaciones) sobre el proceso de aprendizaje. Los estudiantes pueden incurrir incluso en plagio no intencional si utilizan chatbots para tareas administrativas o para mejorar su escritura en inglés sin comprender completamente las implicaciones. Para abordar esta situación, es necesario un enfoque integral que incluya educar a los estudiantes sobre la importancia de la honestidad académica y las consecuencias del plagio. También se propone desplegar software avanzado de detección de plagio capaz de identificar texto generado por IA, aunque se reconoce que estas metodologías deben evolucionar continuamente para mantenerse al día con los avances de la IA. Más allá de la detección, es esencial reevaluar las estrategias de evaluación y diseñar tareas que evalúen la comprensión de los estudiantes y fomenten el pensamiento original, la creatividad y las habilidades que actualmente están más allá del alcance de la IA, como las presentaciones orales y los proyectos en grupo. También es crucial fomentar la transparencia sobre el uso de la IA en el aprendizaje, algo similar a lo que se hace con los correctores ortográficos.

6. ¿Qué se entiende por «alucinaciones» de la IA en los chatbots educativos y por qué son problemáticas?

Las «alucinaciones» de la IA se refieren a las respuestas generadas por modelos de lenguaje de IA que contienen información falsa o engañosa presentada como si fuera real. Este fenómeno ganó atención generalizada con la llegada de los grandes modelos de lenguaje (LLM), como ChatGPT, donde los usuarios notaron que los chatbots insertaban frecuentemente falsedades aleatorias en sus respuestas. Si bien el término «alucinación» ha sido criticado por su naturaleza antropomórfica, el problema subyacente es la falta de precisión y fidelidad a fuentes de conocimiento externas. Las alucinaciones pueden surgir de discrepancias en grandes conjuntos de datos, errores de entrenamiento o secuencias sesgadas. Para los estudiantes, esto puede llevar al desarrollo de conceptos erróneos, lo que afecta a su comprensión de conceptos clave y a su confianza en la IA como herramienta educativa fiable. Para los educadores, el uso de contenido generado por IA como recurso en el aula plantea un desafío ético significativo, ya que son los responsables de garantizar la precisión de la información presentada. Los estudios han descubierto que un porcentaje considerable de referencias generadas por chatbots son falsas o inexactas. Si bien la IA puede reducir la carga de trabajo de los docentes, la supervisión humana sigue siendo esencial para evitar imprecisiones, lo que puede crear una carga administrativa adicional.

7. ¿Cómo pueden las instituciones educativas equilibrar los beneficios de los chatbots con sus riesgos éticos?

Para conseguirlo, las instituciones educativas deben adoptar un enfoque reflexivo y multifacético. Esto implica establecer límites éticos firmes para proteger los intereses de los estudiantes, los educadores y la comunidad educativa en general. Se recomienda implementar políticas claras y sólidas de recopilación, almacenamiento y uso de datos, alineándose estrictamente con regulaciones de protección de datos como el RGPD, a pesar de los desafíos relacionados con la eliminación de datos y la transparencia algorítmica. Para mitigar el sesgo algorítmico, las instituciones deben garantizar que los conjuntos de datos de entrenamiento sean diversos y representativos, y realizar auditorías regulares. Para evitar una dependencia excesiva y mantener la autoeficacia académica de los estudiantes, los educadores deben fomentar la autonomía en el aprendizaje sin comprometer el pensamiento crítico ni el compromiso auténtico. Con respecto al plagio, es fundamental educar a los estudiantes sobre la integridad académica, utilizar software avanzado de detección de plagio y reevaluar los métodos de evaluación para fomentar el pensamiento original y las habilidades que la IA no puede replicar. Por último, es crucial que se conciencie a la sociedad sobre las «alucinaciones» de la IA, para lo cual los educadores deben verificar la exactitud de la información generada por la IA y reconocer su naturaleza evolutiva, comparándola con los primeros días de Wikipedia. Es una responsabilidad colectiva de todas las partes interesadas garantizar que la IA se utilice de una manera que respete la privacidad, minimice el sesgo, apoye la autonomía equilibrada del aprendizaje y mantenga el papel vital de los maestros humanos.

8. ¿Qué papel juega la transparencia en el uso ético de los chatbots de IA en la educación?

La transparencia es un pilar fundamental para el uso ético de los chatbots de IA en la educación, ya que aborda varias de las preocupaciones éticas clave. En el ámbito de la privacidad de los datos, es esencial que los usuarios estén informados sobre las prácticas de gestión de datos para aliviar sus preocupaciones y generar confianza en los chatbots adoptados. Esto incluye informar a los usuarios sobre cómo se recopilan, almacenan y utilizan sus datos. Con respecto al sesgo algorítmico, la transparencia significa reconocer que los chatbots pueden mostrar sesgos ocasionalmente debido a los datos de entrenamiento subyacentes. Se debe alentar a los estudiantes a evaluar críticamente la producción de los chatbots, en lugar de aceptarla como una verdad objetiva, teniendo en cuenta que el sesgo no es inherente a la IA, sino a los datos generados por humanos con los que se entrena. En la prevención del plagio, la transparencia en la educación es vital para el uso responsable de las herramientas de IA; los estudiantes deben ser conscientes de que deben reconocer la ayuda recibida de la IA, de la misma manera en que se acepta la ayuda de herramientas como los correctores ortográficos. Además, para las «alucinaciones» de la IA, es importante que los educadores y los estudiantes sean conscientes de la posibilidad de que los chatbots generen información falsa o engañosa, lo que requiere un escrutinio humano continuo para su verificación. En general, la transparencia fomenta la alfabetización digital y la conciencia crítica, y empodera a los usuarios para navegar por el panorama de la IA de manera más efectiva.

Referencia:

WILLIAMS, R. T. (2024). The ethical implications of using generative chatbots in higher education. In Frontiers in Education (Vol. 8, p. 1331607). Frontiers Media SA.

Glosario de términos clave

  • Inteligencia artificial (IA): La capacidad de un sistema informático para imitar funciones cognitivas humanas como el aprendizaje y la resolución de problemas (Microsoft, 2023). En el contexto del estudio, se refiere a sistemas que pueden realizar tareas que normalmente requieren inteligencia humana.
  • Chatbots generativos: Programas de IA capaces de simular conversaciones humanas y generar respuestas creativas y nuevas, como poemas, historias o ensayos, utilizando Procesamiento del Lenguaje Natural (PLN) y vastos conjuntos de datos.
  • Procesamiento del lenguaje natural (PLN): Un subcampo de la IA que permite a las máquinas entender, responder y generar lenguaje humano. Es fundamental para la funcionalidad de los chatbots avanzados.
  • Aprendizaje automático (ML): Un subconjunto de la IA que permite a los sistemas aprender de los datos sin ser programados explícitamente. Los chatbots modernos utilizan ML para mejorar sus respuestas a lo largo del tiempo.
  • Privacidad de datos: La protección de la información personal de los individuos, asegurando que se recopile, almacene y utilice de forma ética y legal. En el contexto educativo, se refiere a la información sensible de los estudiantes.
  • Reglamento general de protección de datos (GDPR): Una ley de la Unión Europea sobre protección de datos y privacidad en el Área Económica Europea y el Reino Unido. Es relevante para la gestión de datos sensibles de estudiantes.
  • Ley de protección de la privacidad en línea de los niños (COPPA): Una ley de Estados Unidos que impone ciertos requisitos a los operadores de sitios web o servicios en línea dirigidos a niños menores de 13 años.
  • Derecho al olvido: El derecho de un individuo a que su información personal sea eliminada de los registros de una organización, un concepto que se complica con la naturaleza del aprendizaje de los algoritmos de IA.
  • Transparencia algorítmica: La capacidad de entender cómo funcionan los algoritmos de IA y cómo toman decisiones, incluyendo el acceso a los detalles de su implementación y bases de conocimiento.
  • Big Data: Conjuntos de datos tan grandes y complejos que los métodos tradicionales de procesamiento de datos no son adecuados. En los chatbots, se utilizan para personalizar experiencias.
  • Sesgo algorítmico: Ocurre cuando los sistemas de IA asimilan y reproducen sesgos sociales presentes en los datos con los que fueron entrenados, lo que puede llevar a resultados injustos o estereotipados.
  • Autoeficacia académica: La creencia de un estudiante en su capacidad para tener éxito en sus tareas académicas. El estudio explora cómo una dependencia excesiva de la IA podría impactarla negativamente.
  • Autoeficacia en IA: La confianza de un individuo en su capacidad para usar y adaptarse a las tecnologías de inteligencia artificial. Distinto de la autoeficacia informática tradicional debido a las capacidades cognitivas de la IA.
  • Plagio: La práctica de tomar el trabajo o las ideas de otra persona y presentarlas como propias, sin la debida atribución. Se convierte en una preocupación crítica con la capacidad de los chatbots para generar texto.
  • Software de detección de plagio: Herramientas diseñadas para identificar instancias de plagio comparando un texto con una base de datos de otros textos. La evolución de la IA plantea desafíos para su eficacia.
  • Alucinación de IA: Una respuesta generada por un modelo de lenguaje de IA que contiene información falsa, inexacta o engañosa, presentada como si fuera un hecho.
  • Modelos de lenguaje grandes (LLMs): Modelos de IA muy grandes que han sido entrenados con inmensas cantidades de texto para comprender, generar y responder al lenguaje humano de manera sofisticada. ChatGPT es un ejemplo de LLM.
  • Integridad académica: El compromiso con la honestidad, la confianza, la justicia, el respeto y la responsabilidad en el aprendizaje, la enseñanza y la investigación. Es fundamental para el entorno educativo y está amenazada por el plagio asistido por IA.

Os dejo este artículo, pues está en acceso abierto:

Pincha aquí para descargar

Aprendizaje supervisado en ingeniería civil

En un artículo anterior hablamos del aprendizaje no supervisado aplicado a la ingeniería civil. La otra rama del aprendizaje automático (machine learning) es el aprendizaje supervisado. Se trata de un enfoque que utiliza conjuntos de datos de entrada y sus correspondientes respuestas para entrenar modelos capaces de realizar predicciones sobre datos nuevos. Este método es particularmente útil en contextos donde se dispone de información previa sobre la variable que se desea predecir, lo que permite establecer relaciones y patrones en los datos.

El aprendizaje supervisado emerge como una herramienta muy poderosa en el campo de la ingeniería civil, ya que facilita la toma de decisiones y la optimización de procesos mediante el análisis de datos. Este enfoque se basa en el uso de algoritmos que aprenden a partir de un conjunto de datos etiquetados, lo que les permite realizar predicciones sobre nuevos datos. A continuación, se presentan algunas aplicaciones y beneficios del aprendizaje supervisado en este campo.

Técnicas de aprendizaje supervisado

Las técnicas de aprendizaje supervisado se dividen en dos categorías principales: clasificación y regresión. La clasificación se centra en predecir respuestas discretas, es decir, en asignar una etiqueta a un conjunto de datos. Por ejemplo, en el ámbito del correo electrónico, se puede clasificar un mensaje como genuino o spam. Este tipo de modelos se aplica en diversas áreas, como la imagenología médica, donde se pueden clasificar tumores en diferentes categorías de tamaño, o en el reconocimiento de voz, donde se identifican comandos específicos. La clasificación se basa en la capacidad de los modelos para categorizar datos en grupos definidos, lo que resulta esencial en aplicaciones como la evaluación crediticia, donde se determina la solvencia de una persona.

Por el contrario, la regresión se ocupa de predecir respuestas continuas, lo que implica estimar valores en un rango numérico. Por ejemplo, se puede utilizar la regresión para prever cambios en la temperatura o fluctuaciones en la demanda eléctrica. Este enfoque es aplicable en contextos como la previsión de precios de acciones, donde se busca anticipar el comportamiento del mercado, o en el reconocimiento de escritura a mano, donde se traduce la entrada manual en texto digital. La elección entre clasificación y regresión depende de la naturaleza de los datos y de la pregunta específica que se desea responder.

Selección del algoritmo adecuado.

La selección de un algoritmo de aprendizaje automático es un proceso que requiere un enfoque metódico, ya que hay que encontrar el equilibrio entre diversas características de los algoritmos. Entre estas características se encuentran la velocidad de entrenamiento, el uso de memoria, la precisión predictiva en nuevos datos y la transparencia o interpretabilidad del modelo. La velocidad de entrenamiento se refiere al tiempo que un algoritmo necesita para aprender de los datos, mientras que el uso de memoria se relaciona con la cantidad de recursos computacionales que requiere. La precisión predictiva es crucial, ya que determina la capacidad del modelo para generalizar a datos no vistos. Por último, la interpretabilidad se refiere a la facilidad con la que se pueden entender las decisiones del modelo, lo que es especialmente relevante en aplicaciones donde la confianza en el modelo es esencial.

El uso de conjuntos de datos de entrenamiento más grandes generalmente permite que los modelos generalicen mejor en datos nuevos, lo que se traduce en una mayor precisión en las predicciones. Sin embargo, la selección del algoritmo también puede depender del contexto específico y de las características de los datos disponibles.

Clasificación binaria y multicategoría

Al abordar un problema de clasificación, es fundamental determinar si se trata de un problema binario o multicategórico. En un problema de clasificación binaria, cada instancia se clasifica en una de las dos clases, como ocurre cuando se identifica la autenticidad de los correos electrónicos o su clasificación como spam. Este tipo de clasificación es más sencillo y, por lo general, se puede resolver con algoritmos diseñados específicamente para este propósito. En contraste, un problema de clasificación multicategórica implica más de dos clases, como clasificar imágenes de animales en perros, gatos u otros. Los problemas multicategóricos suelen ser más complejos, ya que requieren modelos más sofisticados que puedan manejar la diversidad de clases y sus interacciones.

Es importante señalar que algunos algoritmos, como la regresión logística, están diseñados específicamente para problemas de clasificación binaria y tienden a ser más eficientes durante el entrenamiento. Sin embargo, existen técnicas que permiten adaptar algoritmos de clasificación binaria para abordar problemas multicategóricos, lo que amplía su aplicabilidad.

Algoritmos de clasificación comunes

Existen diversos varios algoritmos de clasificación ampliamente utilizados en el campo del aprendizaje supervisado.

  • La regresión logística es uno de los métodos más comunes, ya que permite predecir la probabilidad de que una respuesta binaria pertenezca a una de las dos clases. Este algoritmo es valorado por su simplicidad y se emplea frecuentemente como punto de partida en problemas de clasificación binaria. Su capacidad para ofrecer una interpretación clara de los resultados lo convierte en una herramienta muy valiosa en diversas aplicaciones.
  • El algoritmo k-vecinos más cercanos (kNN) clasifica objetos basándose en las clases de sus vecinos más cercanos, utilizando métricas de distancia como la euclidiana o la de Manhattan. Este enfoque es intuitivo y fácil de implementar, aunque puede resultar costoso en términos de cálculo en conjuntos de datos grandes.
  • El soporte vectorial (SVM) es otro algoritmo destacado que clasifica datos al encontrar un límite de decisión lineal que separe las clases. En situaciones en las que los datos no son linealmente separables, se puede aplicar una transformación de kernel para facilitar la clasificación. Este método es especialmente útil en contextos de alta dimensionalidad, donde la complejidad de los datos puede dificultar la clasificación.
  • Las redes neuronales, inspiradas en la estructura del cerebro humano, son útiles para modelar sistemas altamente no lineales. Estas redes se entrenan ajustando las conexiones entre neuronas, lo que permite que el modelo aprenda patrones complejos en los datos. Aunque su interpretación puede ser más complicada, su capacidad para capturar relaciones no lineales las hace valiosas en diversas aplicaciones.
  • El clasificador Naïve Bayes se basa en la suposición de que la presencia de una característica en una clase no depende de la presencia de otras características. Este enfoque permite clasificar nuevos datos en función de la probabilidad máxima de pertenencia a una clase, lo que resulta útil en contextos en los que se requiere una clasificación rápida y eficiente.
  • El análisis discriminante clasifica los datos mediante combinaciones lineales de características, asumiendo que los diferentes conjuntos de datos tienen distribuciones gaussianas. Este método es apreciado por su simplicidad y facilidad de interpretación.
  • Los árboles de decisión permiten predecir respuestas basándose en decisiones tomadas en un árbol estructurado, donde cada rama representa una condición de decisión. Este enfoque es intuitivo y fácil de interpretar, por lo que es una opción popular en diversas aplicaciones.

Algoritmos de regresión comunes

Los algoritmos de regresión son esenciales para predecir valores continuos.

  • La regresión lineal es una técnica que describe una variable de respuesta continua como una función lineal de una o más variables predictoras. Este modelo es fácil de interpretar y se utiliza frecuentemente como referencia para modelos más complejos. Su simplicidad y eficacia en contextos lineales lo convierten en una opción inicial para el análisis de datos.
  • La regresión no lineal se utiliza cuando los datos presentan tendencias no lineales significativas. Este enfoque permite modelar relaciones más complejas que no pueden ser capturadas por modelos lineales, lo que resulta útil en contextos donde las variables interactúan de manera no lineal.
  • El modelo de regresión de procesos gaussianos es un enfoque no paramétrico que se utiliza para predecir valores continuos y es común en el análisis espacial. Este método es especialmente valioso en contextos donde se requiere interpolación y se trabaja con datos que presentan incertidumbre.
  • La regresión SVM, similar a su contraparte de clasificación, busca un modelo que se desvíe de los datos medidos en la menor cantidad posible. Este enfoque es útil en contextos de alta dimensionalidad, donde se espera que haya un gran número de variables predictoras.
  • El modelo lineal generalizado se utiliza cuando las variables de respuesta tienen distribuciones no normales, lo que permite abordar una variedad de situaciones en las que no se cumplen los supuestos de la regresión lineal.
  • Los árboles de regresión son una adaptación de los árboles de decisión que permiten predecir respuestas continuas, por lo que son útiles en contextos donde se requiere una interpretación clara y rápida.

Mejora de modelos

La mejora de un modelo implica aumentar su precisión y capacidad predictiva, así como prevenir el sobreajuste, que ocurre cuando un modelo se ajusta demasiado a los datos de entrenamiento y pierde capacidad de generalización. Este proceso incluye la ingeniería de características, que abarca la selección y transformación de variables, y la optimización de hiperparámetros, que busca identificar el conjunto de parámetros que mejor se ajustan al modelo.

  • La selección de características es un aspecto crítico en el aprendizaje supervisado, especialmente en conjuntos de datos de alta dimensión. Este proceso permite identificar las variables más relevantes para la predicción, lo que no solo mejora la precisión del modelo, sino que también reduce el tiempo de entrenamiento y la complejidad del mismo. Entre las técnicas de selección de características se encuentran la regresión por pasos, que implica agregar o eliminar características de manera secuencial, y la regularización, que utiliza estimadores de reducción para eliminar características redundantes.
  • La transformación de características es otra estrategia importante que busca mejorar la representación de los datos. Técnicas como el análisis de componentes principales (PCA) permiten realizar transformaciones lineales en los datos, que capturan la mayor parte de la varianza en un número reducido de componentes. Esto resulta útil en contextos donde se trabaja con datos de alta dimensionalidad, ya que facilita la visualización y el análisis.
  • La optimización de hiperparámetros es un proceso iterativo que busca encontrar los valores óptimos para los parámetros del modelo. Este proceso puede llevarse a cabo mediante métodos como la optimización bayesiana, la búsqueda en cuadrícula y la optimización basada en gradientes. Un modelo bien ajustado puede superar a un modelo complejo que no ha sido optimizado adecuadamente, lo que subraya la importancia de este proceso en el desarrollo de modelos efectivos.

Aplicaciones del aprendizaje supervisado en ingeniería civil

  • Predicción de fallos estructurales: los modelos de aprendizaje supervisado se utilizan para predecir fallos en estructuras como puentes y edificios. Al analizar datos históricos de inspecciones y condiciones ambientales, es posible identificar patrones que indiquen un posible fallo estructural. Esto permite a los ingenieros realizar mantenimientos preventivos y mejorar la seguridad de las infraestructuras.
  • Optimización de recursos en construcción: en la planificación de proyectos, el aprendizaje supervisado optimiza el uso de recursos como, por ejemplo, materiales y mano de obra. Al predecir la demanda de recursos en función de variables como el clima y la evolución del proyecto, es posible reducir costes y mejorar la eficiencia.
  • Análisis de riesgos: los modelos de aprendizaje supervisado son útiles para evaluar riesgos en proyectos de ingeniería civil. Al analizar datos sobre desastres naturales, como inundaciones y terremotos, se pueden identificar zonas vulnerables y desarrollar estrategias de mitigación eficaces.
  • Control de infraestructuras: la incorporación de sensores en infraestructuras permite la recolección de datos en tiempo real. Los algoritmos de aprendizaje supervisado pueden analizar estos datos para detectar anomalías y prever el mantenimiento necesario, lo que contribuye a la sostenibilidad y durabilidad de las estructuras.

Por tanto, el aprendizaje supervisado se está consolidando como una herramienta esencial en ingeniería civil, ya que ofrece soluciones innovadoras para predecir, optimizar y controlar infraestructuras. Su capacidad para analizar grandes volúmenes de datos y ofrecer información valiosa está transformando la forma en que se gestionan los proyectos en este ámbito.

Os dejo un mapa mental acerca del aprendizaje supervisado.

También os dejo unos vídeos al respecto. Espero que os sean de interés.

Referencias

  1. Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction142, 104532.
  2. Kaveh, A. (2024). Applications of artificial neural networks and machine learning in civil engineering. Studies in computational intelligence1168, 472.
  3. Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in construction: A systematic literature review. Automation in construction129, 103760.
  4. Mostofi, F., & Toğan, V. (2023). A data-driven recommendation system for construction safety risk assessment. Journal of Construction Engineering and Management149(12), 04023139.
  5. Naderpour, H., Mirrashid, M., & Parsa, P. (2021). Failure mode prediction of reinforced concrete columns using machine learning methods. Engineering Structures248, 113263.
  6. Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer‐Aided Civil and Infrastructure Engineering12(4), 295-310.
  7. Thai, H. T. (2022). Machine learning for structural engineering: A state-of-the-art review. In Structures (Vol. 38, pp. 448-491). Elsevier.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aprendizaje no supervisado en la ingeniería civil

El aprendizaje no supervisado es una rama del aprendizaje automático (Machine Learning) que se centra en analizar y estructurar datos sin etiquetas ni categorías predefinidas. A diferencia del aprendizaje supervisado, en el que los modelos se entrenan con datos etiquetados, en el aprendizaje no supervisado los algoritmos deben identificar de manera autónoma patrones, relaciones o estructuras ocultas dentro de los datos. Se trata de una herramienta poderosa para explorar y entender datos complejos sin la necesidad de etiquetas predefinidas, descubriendo patrones y estructuras ocultas que pueden ser de gran valor en diversas aplicaciones prácticas.

El aprendizaje no supervisado permite analizar datos sin un objetivo definido o sin conocimiento previo de su estructura. Este enfoque es ideal para explorar patrones latentes y reducir la dimensionalidad de grandes conjuntos de datos, lo que facilita una mejor comprensión de su estructura. Además, al no depender de etiquetas previamente asignadas, permite adaptarse de manera flexible a diversos tipos de datos, incluidos aquellos cuya estructura subyacente no es evidente. Esta característica lo hace especialmente valioso en ámbitos como la exploración científica y el análisis de datos de mercado, donde los datos pueden ser abundantes, pero carecer de categorías predefinidas.

A pesar de sus ventajas, el aprendizaje no supervisado plantea desafíos como la interpretación de los resultados, ya que sin etiquetas predefinidas puede ser difícil evaluar la precisión de los modelos. Además, la elección del número óptimo de grupos o la validación de las reglas de asociación descubiertas puede requerir la intervención de expertos y métodos adicionales de validación.

El aprendizaje no supervisado incluye diversas técnicas que permiten analizar y extraer patrones de grandes conjuntos de datos sin necesidad de etiquetas. Una de las principales técnicas es el agrupamiento (clustering), que busca dividir los datos en grupos basados en similitudes inherentes. Existen dos tipos de algoritmos de agrupamiento: el agrupamiento duro, que asigna un dato a un único grupo, y el agrupamiento suave, que permite que un dato pertenezca a varios grupos con diferentes grados de pertenencia. Técnicas como k-means y k-medoids se utilizan mucho en este contexto. Mientras que k-means busca minimizar la distancia entre los datos y los centros de los grupos, k-medoids es más robusto frente a valores atípicos y adecuado para datos categóricos. Por otro lado, el agrupamiento jerárquico genera un dendrograma que permite explorar relaciones jerárquicas en los datos. Los mapas autoorganizados, que emplean redes neuronales, se utilizan para reducir la dimensionalidad de los datos sin perder su estructura y facilitar su interpretación en campos como la bioinformática y la economía.

En situaciones donde los datos tienen relaciones difusas, el agrupamiento suave, como el fuzzy c-means, asigna grados de pertenencia a cada dato, lo que resulta útil en áreas como la biomedicina. Los modelos de mezcla gaussiana, que utilizan distribuciones normales multivariadas, también se aplican a problemas complejos como la segmentación de mercado o la detección de anomalías. Además, el aprendizaje no supervisado incluye técnicas de asociación que buscan descubrir relaciones entre variables en grandes bases de datos, como el análisis de la cesta de la compra, donde se identifican productos que suelen comprarse juntos. También se utilizan técnicas de reducción de la dimensionalidad, que simplifican los datos de alta dimensionalidad sin perder mucha variabilidad. El análisis de componentes principales (PCA) es una técnica común en este ámbito, ya que transforma los datos en combinaciones lineales que facilitan su visualización y análisis, especialmente en casos de datos ruidosos, como los procedentes de sensores industriales o dispositivos médicos. Otras técnicas, como el análisis factorial y la factorización matricial no negativa, también se utilizan para reducir la complejidad de los datos y hacerlos más manejables, y son útiles en áreas como la bioinformática, el procesamiento de imágenes y el análisis de textos.

El aprendizaje no supervisado tiene diversas aplicaciones, como el análisis de clientes, que permite identificar segmentos con características o comportamientos similares, lo que optimiza las estrategias de marketing y la personalización de los servicios. También se utiliza en la detección de anomalías, ya que ayuda a identificar datos atípicos que pueden indicar fraudes, fallos en los sistemas o comportamientos inusuales en áreas industriales y financieras; en este campo, el análisis factorial revela dinámicas compartidas entre sectores económicos, lo que mejora la predicción de tendencias de mercado. En el procesamiento de imágenes, facilita tareas como la segmentación, que consiste en agrupar píxeles con características similares para identificar objetos o regiones dentro de una imagen. Además, en el análisis de textos, técnicas como la factorización matricial no negativa permiten descubrir temas latentes en grandes colecciones de documentos, mejorando los sistemas de recomendación y el análisis de sentimientos. En la investigación genómica, el clustering suave ha permitido identificar genes implicados en el desarrollo de enfermedades, lo que ha contribuido a avanzar en la medicina personalizada. Esta capacidad para analizar patrones complejos en datos biológicos ha acelerado el descubrimiento de biomarcadores y posibles dianas terapéuticas. Este enfoque también permite identificar correlaciones entre variables macroeconómicas que de otra manera podrían pasar desapercibidas. Por otro lado, el PCA se ha aplicado con éxito en la monitorización de sistemas industriales, ya que permite predecir fallos y reducir costes operativos mediante el análisis de variaciones en múltiples sensores. En el ámbito de la minería de textos, la factorización no negativa permite descubrir temas latentes, lo que mejora los sistemas de recomendación y análisis de sentimiento. Esto resulta particularmente valioso en aplicaciones de marketing digital, donde la segmentación precisa del contenido puede aumentar la eficacia de las campañas.

El aprendizaje no supervisado ha encontrado diversas aplicaciones en el ámbito de la ingeniería civil, ya que permite optimizar procesos y mejorar la toma de decisiones. A continuación, se destacan algunas de ellas:

  • Clasificación de suelos y materiales de construcción: Mediante técnicas de agrupación (clustering), es posible agrupar muestras de suelo o materiales de construcción según sus propiedades físicas y mecánicas. Esto facilita la selección adecuada de materiales para proyectos específicos y optimiza el diseño de cimentaciones y estructuras.
  • Análisis de patrones de tráfico: El aprendizaje automático permite identificar patrones en los flujos de tráfico, detectando comportamientos anómalos o recurrentes. Esta información es esencial para diseñar infraestructuras viales más eficientes y aplicar medidas de control de tráfico.
  • Monitorización de estructuras: Mediante la reducción dimensional y el análisis de datos procedentes de sensores instalados en puentes, edificios y otras infraestructuras, se pueden detectar anomalías o cambios en el comportamiento estructural. Esto contribuye a la prevención de fallos y al mantenimiento predictivo.
  • Optimización de rutas para maquinaria pesada: En proyectos de construcción a gran escala, el aprendizaje no supervisado ayuda a determinar las rutas más eficientes para la maquinaria, considerando factores como el terreno, el consumo de combustible y la seguridad, lo que se traduce en una mayor productividad y reducción de costes.
  • Segmentación de imágenes por satélite y aéreas: Las técnicas de aprendizaje no supervisado permiten clasificar y segmentar imágenes obtenidas de satélites o drones, identificando áreas urbanas, vegetación, cuerpos de agua y otros elementos. Esto es útil para la planificación urbana y la gestión de recursos naturales.
  • Análisis de datos de sensores en tiempo real: En la construcción de túneles y excavaciones, el análisis en tiempo real de datos de sensores puede realizarse mediante algoritmos no supervisados para detectar condiciones peligrosas, como deslizamientos de tierra o acumulación de gases, lo que mejora la seguridad en las obras.

En conclusión, el aprendizaje no supervisado es una herramienta versátil y potente para abordar problemas complejos y descubrir patrones ocultos en datos sin etiquetar. Su aplicación trasciende sectores, ya que ofrece soluciones prácticas para la investigación, la industria y el análisis de datos. En un mundo impulsado por el crecimiento exponencial de la información, el dominio de estas técnicas se presenta como una ventaja competitiva fundamental. La capacidad para analizar grandes volúmenes de datos y extraer información útil sigue siendo un motor clave de innovación y progreso.

Os dejo un mapa mental acerca del aprendizaje no supervisado.

Para profundizar en este tema, puedes consultar la siguiente conferencia:

Pincha aquí para descargar

Referencia:

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Investigación reciente muestra cómo la inteligencia artificial optimiza la gestión del agua

En un estudio pionero, investigadores de la Universitat Politècnica de València y la Pontificia Universidad Católica de Valparaíso (Chile) han revelado el enorme potencial del aprendizaje automático (Machine Learning, ML) en la mejora de la integridad y calidad de las infraestructuras hídricas.

Publicado en la Applied Sciences, revista del primer cuartil del JCR, el estudio analiza en profundidad la literatura científica reciente sobre el tema, para lo cual revisa 1087 artículos con el fin de identificar las áreas más prometedoras en la aplicación de estas tecnologías a la gestión del agua. Esta revisión va más allá de lo convencional al aplicar modelos avanzados de procesamiento del lenguaje natural (NLP), específicamente BERTopic, que permiten comprender el contexto y los temas emergentes en esta área de investigación.

Contexto y relevancia del estudio

El mantenimiento de infraestructuras de agua seguras y eficientes es un desafío global, especialmente en un contexto de cambio climático, urbanización creciente y escasez de recursos hídricos. A medida que aumentan los eventos climáticos extremos, las infraestructuras se ven sometidas a un estrés adicional. Estas condiciones afectan al acceso y a la distribución de agua de calidad, clave para la salud pública, el medio ambiente y sectores estratégicos como la agricultura, la industria y la energía.

En este contexto, el aprendizaje automático se presenta como una herramienta potente para gestionar y optimizar la calidad y el suministro del agua. Los algoritmos de ML pueden procesar grandes volúmenes de datos de sensores y otras fuentes para mejorar las predicciones y la toma de decisiones en tiempo real. Además, permiten diseñar protocolos de tratamiento del agua más eficientes, reducir las pérdidas en las redes de distribución y anticiparse a los problemas antes de que se conviertan en fallos significativos.

Metodología y clasificación de temas

Para explorar el uso del ML en la gestión de infraestructuras hídricas, el equipo realizó una búsqueda sistemática en la base de datos Scopus, centrada en artículos en inglés publicados desde 2015. Los investigadores aplicaron el modelo BERTopic, una técnica de NLP que utiliza redes neuronales (transformers) entrenadas para identificar y organizar los principales temas en la literatura. Esto permitió clasificar con precisión los estudios en cuatro grandes áreas de aplicación:

  1. Detección de contaminantes y erosión del suelo: El uso de ML en esta área permite la detección avanzada de contaminantes como los nitratos y los metales pesados en las aguas subterráneas. Mediante imágenes satelitales y sensores en campo, estos modelos analizan factores ambientales y condiciones del suelo para predecir y mapear zonas de riesgo de contaminación y erosión.
  2. Predicción de niveles de agua: El estudio destaca cómo las técnicas de aprendizaje automático, incluidas las redes neuronales y los modelos de series temporales, pueden prever las fluctuaciones en los niveles de agua de ríos, lagos y acuíferos. Esto resulta crucial para la gestión de los recursos hídricos en situaciones climáticas extremas, como las inundaciones y las sequías, y también para optimizar el uso del agua en la agricultura y la industria.
  3. Detección de fugas en redes de agua: Las pérdidas de agua suponen un problema significativo en las redes de distribución, especialmente en las zonas urbanas. El estudio descubrió que el ML, junto con tecnologías de sensores IoT, permite la detección precisa de fugas mediante el análisis de patrones de flujo y presión en las tuberías. Los algoritmos pueden identificar y localizar fugas, lo que reduce el desperdicio y mejora la eficiencia de la distribución.
  4. Evaluación de la potabilidad y calidad del agua: Garantizar el acceso a agua potable es fundamental para la salud pública, y el estudio subraya la utilidad del aprendizaje profundo en el control de la calidad del agua. Los algoritmos analizan parámetros de calidad como la turbidez, el pH y la presencia de sustancias químicas nocivas, con el fin de asegurar la potabilidad. Estos modelos también permiten automatizar los sistemas de alerta temprana en zonas con infraestructuras hídricas vulnerables.

Implicaciones y futuros pasos

Este estudio concluye que el uso de aprendizaje automático en la gestión del agua permite una mayor eficiencia y sostenibilidad, y supone un paso adelante en la administración de los recursos hídricos frente a los desafíos ambientales en aumento. Los autores señalan que la combinación de ML con sistemas de monitoreo avanzado puede transformar la forma en que gestionamos las infraestructuras hídricas, permitiendo predicciones precisas y decisiones basadas en datos en tiempo real.

En el futuro, se centrarán en mejorar la precisión de los modelos para áreas específicas, así como en implementar estos sistemas a gran escala. Además, se abren nuevas oportunidades para optimizar las redes de distribución mediante sistemas automatizados, algo vital en un contexto donde el agua es un recurso cada vez más valioso y escaso.

Este estudio no solo aporta conocimiento a la comunidad científica, sino que también proporciona una base sólida para que gestores y responsables de políticas públicas integren el aprendizaje automático en sus prácticas de gestión del agua, avanzando así hacia una gestión hídrica más sostenible y resiliente.

Referencia:

GARCÍA, J.; LEIVA-ARAOS, A.; DÍAZ-SAAVEDRA, E.; MORAGA, P.; PINTO, H.; YEPES, V. (2023). Relevance of Machine Learning Techniques in Water Infrastructure Integrity and Quality: A Review Powered by Natural Language Processing. Applied Sciences, 13(22):12497. DOI:10.3390/app132212497

Pincha aquí para descargar

Revisión de estado del conocimiento en infraestructuras hídricas usando técnicas de aprendizaje automático

Acabamos de recibir la noticia de la publicación de nuestro artículo en la revista Applied Sciences, la cual está indexada en el JCR. Este estudio explora las diversas aplicaciones del aprendizaje automático (Machine Learning, ML) en relación con la integridad y calidad de las infraestructuras hidráulicas, identificando cuatro áreas clave donde se ha implementado con éxito. Estas áreas abarcan desde la detección de contaminantes en el agua y la erosión del suelo, hasta la predicción de niveles hídricos, la identificación de fugas en redes de agua y la evaluación de la calidad y potabilidad del agua.

Cabe destacar que esta investigación se llevó a cabo en el marco de una colaboración fructífera entre nuestro grupo de investigación e investigadores chilenos, liderados por el profesor José Antonio García Conejeros. El proyecto en sí, denominado HYDELIFE, forma parte de las iniciativas que superviso como investigador principal en la Universitat Politècnica de València.

Se realizó un análisis bibliográfico de artículos científicos a partir de 2015, que arrojó un total de 1087 artículos, para explorar las aplicaciones de las técnicas de aprendizaje automático en la integridad y la calidad de la infraestructura hídrica. Entre las contribuciones realizadas por el trabajo, caben destacar las siguientes:

  • Se identificaron cuatro áreas clave en las que el aprendizaje automático se ha aplicado a la gestión del agua: los avances en la detección de contaminantes del agua y la erosión del suelo, la previsión de los niveles del agua, las técnicas avanzadas para la detección de fugas en las redes de agua y la evaluación de la calidad y potabilidad del agua.
  • Destacó el potencial de las técnicas de aprendizaje automático (Random Forest, Support Vector Regresion, Convolutional Neural Networks y Gradient Boosting) combinadas con sistemas de monitoreo de vanguardia en múltiples aspectos de la infraestructura y la calidad del agua.
  • Proporcionó información sobre el impacto transformador del aprendizaje automático en la infraestructura hídrica y sugirió caminos prometedores para continuar con la investigación.
  • Empleó un enfoque semiautomático para realizar análisis bibliográficos, aprovechando las representaciones codificadas bidireccionales de Transformers (BERTopic), para abordar las limitaciones y garantizar una representación precisa de los documentos.
  • Las técnicas de aprendizaje automático ofrecen una alta precisión, un tiempo de procesamiento reducido y datos valiosos para la toma de decisiones en materia de gestión sostenible de los recursos y sistemas de alerta temprana.
  • La colaboración interdisciplinaria, los marcos integrados y las tecnologías avanzadas, como la teledetección y la IoT, son esenciales para avanzar en la investigación sobre la integridad y la calidad de la infraestructura hídrica.

Abstract:

Water infrastructure integrity, quality, and distribution are fundamental for public health, environmental sustainability, economic development, and climate change resilience. Ensuring the robustness and quality of water infrastructure is pivotal for sectors like agriculture, industry, and energy production. Machine learning (ML) offers the potential for bolstering water infrastructure integrity and quality by analyzing extensive data from sensors and other sources, optimizing treatment protocols, minimizing water losses, and improving distribution methods. This study delves into ML applications in water infrastructure integrity and quality by analyzing English-language articles from 2015 onward, compiling 1087 articles. A natural language processing approach centered on topic modeling was initially adopted to classify salient topics. From each identified topic, key terms were extracted and utilized in a semi-automatic selection process, pinpointing the most relevant articles for further scrutiny. At the same time, unsupervised ML algorithms can assist in extracting themes from the documents, generating meaningful topics often requires intricate hyperparameter adjustments. Leveraging the Bidirectional Encoder Representations from Transformers (BERTopic) enhanced the study’s contextual comprehension in topic modeling. This semi-automatic methodology for bibliographic exploration begins with broad categorizing topics, advancing to an exhaustive analysis. The insights drawn underscore ML’s instrumental role in enhancing water infrastructure’s integrity and quality, suggesting promising future research directions. Specifically, the study has identified four key areas where ML has been applied to water management: (1) advancements in the detection of water contaminants and soil erosion; (2) forecasting of water levels; (3) advanced techniques for leak detection in water networks; and (4) evaluation of water quality and potability. These findings underscore the transformative impact of ML on water infrastructure and suggest promising paths for continued investigation.

Keywords:

Water infrastructure integrity; machine learning; environmental sustainability; natural language processing; BERTopic

Reference:

GARCÍA, J.; LEIVA-ARAOS, A.; DÍAZ-SAAVEDRA, E.; MORAGA, P.; PINTO, H.; YEPES, V. (2023). Relevance of Machine Learning Techniques in Water Infrastructure Integrity and Quality: A Review Powered by Natural Language Processing. Applied Sciences, 13(22):12497. DOI:10.3390/app132212497

Pincha aquí para descargar

Objetivos y metodología del proyecto de investigación HYDELIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Figura 1. Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores detallamos los antecedentes, la motivación, las hipótesis de partida, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar los objetivos y la metodología de este proyecto, del cual soy investigador principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Los investigadores de este proyecto pertenemos al Instituto de Ciencia y Tecnología del Hormigón (ICITECH).

El objetivo general perseguido se basa en afrontar el reto social que supone la creación y la conservación de las construcciones modulares y puentes mixtos en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para ello se precisa un salto científico capaz de integrar a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas metaheurísticas híbridas basadas en fiabilidad, aplicadas no sólo al proyecto de nuevas estructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporcionará conocimiento no trivial sobre las mejores prácticas. Esta metodología será aplicable también a otro tipo de infraestructuras.

El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales será responsable el investigador principal:

  • OE-1: Análisis de funciones de distribución específicas para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio.
  • OE-2: Determinación de indicadores clave basados en redes bayesianas y lógica neutrosófica para garantizar una efectiva integración de la sostenibilidad ambiental y social en la licitación de proyectos mantenimiento de construcciones modulares, puentes mixtos e híbridos.
  • OE-3: Identificación de estrategias de mantenimiento robusto óptimo de construcciones modulares y puentes mixtos y estructuras híbridas.
  • OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de construcciones modulares, puentes mixtos y estructuras híbridas mediante metaheurísticas híbridas.
  • OE-5: Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida.
  • OE-6: Difusión de resultados y redacción de informes.
Figura 2.- Objetivos específicos del proyecto HYDELIFE

Metodología propuesta en relación con los objetivos y con el estado del arte

El análisis del estado del arte alumbró dos huecos en la investigación, el empleo de metaheurísticas híbridas con Deep Learning y su aplicación a construcciones modulares, puentes mixtos y estructuras híbridas. Además, el empleo de la lógica neutrosófica y las redes bayesianas abre puertas en el ámbito de la decisión multicriterio. Estas novedades se combinan en la metodología con técnicas y disciplinas ya empleadas en otros proyectos: análisis del ciclo de vida, análisis basado en fiabilidad, diseño óptimo robusto, metamodelos y técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, en el caso de estructuras de nueva planta, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales.

La Figura 3 muestra el esquema metodológico propuesto para HYDELIFE, relacionando las fases con los objetivos propuestos. Se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el responsable debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.

Figura 3.- Esquema metodológico diseñado para HYDELIFE en relación con los objetivos

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

En este momento llevamos seis meses de trabajo, pues el proyecto comenzó en septiembre del 2021. Pero ya podemos dar algunos resultados que se pueden ver en la siguiente lista de referencias.

Referencias:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, (accepted, in press).

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

YEPES, V.; LOPEZ, S. (2021). Knowledge management in the construction industry: Current state of knowledge and future research. Journal of Civil Engineering and Management, 27(8):671-680. DOI:10.3846/jcem.2021.16006

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

MARTÍN, R.; YEPES, V. (2021). Bridging the gap between landscape and management within marinas: A review. Land, 10(8), 821. DOI:10.3390/land10080821

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

TANG, M.; LIAO, H.; YEPES, V.; LAURINAVICIUS, A.; TUPENAITE, L. (2021). Quantifiying and mapping the evolution of a leader journal in the field of civil engineering. Journal of Civil Engineering and Management, 27(2):100-116. DOI:10.3846/jcem.2021.14365

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Salto cualitativo en el proyecto de investigación HYDELIFE

ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Universitat Politècnica de València

La línea de investigación emprendida por nuestro grupo no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. En anteriores proyectos (HORSOST, BRIDLIFE, DIMALIFE) afrontados por nuestro grupo se abordó tanto el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos, como la toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos. También se emplearon metamodelos y el diseño óptimo robusto y basado en fiabilidad para obtener diseños automáticos de puentes e infraestructuras que consideraban hormigones con baja huella de carbono, donde se incluían los aspectos de durabilidad, de consumo energético y de emisiones de CO2, de seguridad, y otros que se estudiaban a lo largo del ciclo de vida de las estructuras, en especial en puentes de hormigón pretensado, tanto prefabricados, como construidos “in situ”. Además, se emplearon técnicas de decisión multicriterio para abordar, en primer lugar, la decisión de la mejor tipología constructiva de un puente, y posteriormente, para decidir la mejor de las opciones resultantes de la frontera de Pareto.

La producción científica de estos proyectos fue significativa. Se ha abordado la optimización multiobjetivo (coste, CO2 y energía) de puentes con vigas artesa (Martí et al., 2015; Martí et al., 2016; Yepes et al., 2015;2017), de puentes cajón (García-Segura et al., 2016;2017a;b). Se ha abordado la optimización del mantenimiento de puentes en ambiente marino (Navarro et al., 2017;2018), del mantenimiento de redes de pavimento (Yepes et al., 2016; Torres-Machí, 2017). Se ha analizado la sostenibilidad social de las infraestructuras (Sierra et al., 2017a;b). Se han utilizado metodologías emergentes en la toma de decisiones como la lógica neutrosófica (Navarro et al., 2020) o redes bayesianas (Sierra et al., 2018). Se han utilizado en la optimización metamodelos de redes neuronales (García-Segura et al., 2017b), modelos kriging (Penadés-Plà et al., 2019), el análisis de fiabilidad (García-Segura et al., 2017a). Se han propuesto sistemas de indicadores de sostenibilidad social y medioambiental (Milani et al., 2020; Sánchez-Garrido y Yepes, 2020). Se ha aplicado el diseño robusto a los puentes (Penadés-Plà et al., 2020). Se ha analizado la resiliencia de las infraestructuras (Salas et al., 2020). Se han realizado análisis del ciclo de vida de estructuras e infraestructuras óptimas (Penadés-Plà et al. 2017; Zastrow et al., 2017; Pons et al., 2018;2020; Navarro et al. 2018; Zhou et al., 2020). También se encuentra en fase de evaluación la patente “Viga en cajón mixta acero-hormigón, P202030530” (Alcalá y Navarro, 2020), autor que forma parte del equipo de investigación.

Sin embargo, con el fin de poder dar un paso adelante, es necesario abordar las limitaciones y el alcance de estos proyectos previos. El proyecto HYDELIFE busca un salto cualitativo en nuestra línea de investigación que pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, no se puede perder la oportunidad de incorporar las técnicas emergentes procedentes del DL en la hibridación de las metaheurísticas, pues sería renunciar a la potencia predictiva de la inteligencia artificial y a la eficiencia de esta nueva generación de algoritmos. En segundo lugar, debe abordarse la construcción industrializada modular tanto en edificación como en obra civil, estudiando en detalle y confrontando los puentes mixtos y estructuras híbridas con las soluciones de hormigón en un análisis completo de ciclo de vida que incluya la sostenibilidad social y medioambiental. Para ello se pretende profundizar en las técnicas de decisión multicriterio emergentes como la lógica neutrosófica y otras como las redes bayesianas. En este contexto, a pesar de que se ha avanzado en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables (Martínez-Frutos et al., 2014), tanto desde el diseño basado en fiabilidad como en el diseño óptimo robusto.

El gran problema de la optimización multiobjetivo de estructuras al incorporar las incertidumbres es su muy elevado coste computacional. Tal y como hemos visto en algunos de nuestros trabajos, este problema lo hemos abordado con metamodelos que proporcionan una relación funcional aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Sin embargo, las metaheurísticas híbridas basadas en DL emergen como técnicas que pueden mejorar estos planteamientos previos.

Los trabajos desarrollados hasta el momento por nuestro grupo de investigación han permitido avances importantes en el diseño automatizado y óptimo de las estructuras de hormigón con múltiples criterios a lo largo del ciclo de vida, sin embargo, existen una serie de limitaciones que este HYDELIFE tiene intención de superar:

  • Ampliación del análisis del ciclo de vida no solo a los puentes de hormigón, sino a otras tipologías como puentes mixtos y estructuras híbridas, además de estructuras industrializadas modulares.
  • Utilizar metaheurísticas híbridas basadas en la inteligencia artificial con un doble objetivo: mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generadas en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
  • Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo robusto y del diseño óptimo basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
  • Profundización en las funciones de distribución de los impactos sociales y ambientales en las construcciones modulares y mixtas.
  • Profundización en la investigación dirigida a la fase de mantenimiento, centrando más el problema social que plantean las estructuras modulares y mixtas en servicio.
  • Analizar la sensibilidad que existe en las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras. Ello supone modelar distintos escenarios económicos y analizar las soluciones eficientes derivadas, especialmente en épocas de crisis.
  • Profundización en la determinación de los factores determinantes en la toma de decisión multicriterio.
  • Profundización en los costes de mantenimiento y los esperados en caso de fallo. Además, las incertidumbres asociadas con el deterioro requieren métodos probabilísticos.
  • Profundizar en el análisis de ciclo de vida la inclusión de la demolición y reutilización de los materiales de las infraestructuras, siendo una de las variables de diseño la durabilidad.

Lo indicado hasta ahora, que resume los antecedentes y las realizaciones del grupo, se podría sintetizar en los siguientes aspectos:

  1. La temática a investigar se ha ido profundizando en cada uno de los proyectos realizados, acorde a los objetivos previstos.
  2. Los estudios realizados estaban basados en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida y el diseño robusto y basado en fiabilidad de puentes pretensados. El objetivo es dar un salto al incorporar en las metaheurísticas el aprendizaje profundo y ampliar el alcance a otro tipo de construcciones industrializadas modulares y puentes mixtos e híbridos.

Referencias

  • AFZAL, M.; LIU, Y.H.; CHENG, J.C.P.; GAN, V.J.L. (2020). Reinforced concrete structural design optimization: A critical review. Clean. Prod., 260:120623.
  • AGUADO, A. et al. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/
  • BIONDINI, F., FRANGOPOL, D. M. (2016). Life-Cycle of Deteriorating Structural Systems under Uncertainty: Review. J Struct Eng ASCE, 142(9), F4016001.
  • CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.
  • FRANGOPOL, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Struct Infrast Eng, 7(6), 389-413.
  • GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6), 862.
  • GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics, 8(4), 555.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Struct., 125:325-336.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017a). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017b). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Struct., 145:381-391.
  • GOBIERNO DE ESPAÑA (2020). Estrategia Nacional de Inteligencia Artificial. https://www.lamoncloa.gob.es/presidente/actividades/Documents/2020/021220-ENIA.pdf
  • MARI, A. (2007). Educar para la sostenibilidad en el ámbito de la ingeniería. Conferencia de clausura. II Jornadas de enseñanza del hormigón estructural. ACHE, Madrid, pp. 33-49.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Clean. Prod., 120:231-240.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J. Struct. Eng., 141(2): 04014114.
  • MARTÍNEZ-FRUTOS, J.; MARTÍ, P. (2014). Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas. Rev Int Metod Numer., 30(2):97-105.
  • MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Civ. Eng., 2020, 8823370.
  • MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. J. Environ. Res. Public Health, 17(12):4488.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018a). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018b). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Impact Assess. Rev., 72:50-63.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018c). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Clean. Prod., 196: 698-713.
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Impact Assess. Rev., 74:23-34.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Struct., 179:556-565.
  • PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265.
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Clean. Prod., 192:411-420.
  • RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows
  • RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Manage. Eng., 30(1):69-77.
  • SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. J. Environ. Res. Public Health, 17(3): 962.
  • SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Struct., 171:170-189.
  • SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Clean. Prod., 258: 120556.
  • SARMA, K.C.; ADELI, H. (1998). Cost optimization of concrete structures. J Struct Eng ASCE, 124(5): 570-578.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017a). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Impact Assess. Rev., 67:61-72.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017b). Method for estimating the social sustainability of infrastructure projects. Impact Assess. Rev., 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • TAFFESE, W.Z.; SISTONEN, E. (2017). Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Constr., 77:1-14.
  • THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Inst. Civ. Eng. – Forensic Engineering, 166(3):134-142.
  • TONG, X.; YANG, H.; WANG, L.; MIAO, Y. (2019). The development and field evaluation of an IoT system of low-power vibration for bridge health monitoring. Sensors, 19(5):1222.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Clean. Prod., 148:90-102.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Civ. Eng. Manage., 22(4):540-550.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Sci., 9(16), 3253.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Clean. Prod., 140:1037-1048.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. J. Environ. Res. Public Health, 17(16):5953.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hipótesis de partida del proyecto HYDELIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH). http://congress.cimne.com/SAHC2020/frontal/JoseM.Adam.asp

En varios artículos anteriores detallamos los antecedentes, la motivación, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar las hipótesis e partida sobre las que se basa este proyecto.

La hipótesis principal de partida es que las emergentes metaheurísticas híbridas son capaces de extraer información no trivial de las inmensas bases de datos procedentes de la optimización y mejorar la calidad y el tiempo de cálculo tanto en el diseño como en el mantenimiento óptimo de puentes y estructuras. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real planteando el diseño y el mantenimiento óptimo basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente en el caso de fuertes restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar los complejos procesos de cálculo.

Para la consecución de los objetivos del proyecto, es necesario alcanzar una serie de objetivos específicos que, a su vez, se basan en unas determinadas hipótesis:

  • Hipótesis 1: Las metaheurísticas mejoran la calidad y reducen el tiempo de cálculo cuando se hibridan con el aprendizaje profundo (DL).
  • Hipótesis 2: El análisis del ciclo de vida de la construcción industrializada modular presenta mejores indicadores medioambientales y sociales que la construcción tradicional.
  • Hipótesis 3: La optimización multiobjetivo de los puentes mixtos de hormigón y acero y las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida.
  • Hipótesis 4: La optimización multiobjetivo puede llevar a soluciones que pueden ser infactibles con pequeñas variaciones en los parámetros o en las restricciones.
  • Hipótesis 5: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
  • Hipótesis 6: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de puentes mixtos y estructuras modulares.
  • Hipótesis 7: Las soluciones de mantenimiento óptimo de puentes mixtos y estructuras modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
  • Hipótesis 8: Incluso considerando la variabilidad innata al mundo real, es posible integrar múltiples actores, escenarios y criterios (tangibles e intangibles) en técnicas analíticas que asistan en la toma de decisiones complejas que incluyan aspectos de sostenibilidad social y ambiental mediante herramientas colaborativas.
  • Hipótesis 9: Las decisiones públicas (instituciones) y privadas (empresas) adecuadas pueden mejorar la sostenibilidad, las prestaciones a largo plazo y la durabilidad de las estructuras incluso con escenarios presupuestarios muy restrictivos.
  • Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
  • Hipótesis 11: Las medidas estratégicas, de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones multicriterio son preferibles por su menor coste social y ambiental a la reparación severa de los puentes y estructuras modulares.
  • Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, conservación, mantenimiento y desmantelamiento de los puentes y estructuras modulares que sean robustas a cambios en los escenarios presupuestarios.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El aprendizaje profundo (deep learning) en la optimización de estructuras

Figura 1. Relación de pertenencia entre la inteligencia artificial, el aprendizaje automático y el aprendizaje profundo

En este artículo vamos a esbozar las posibilidades de la inteligencia artificial en la optimización de estructuras, en particular, el uso del aprendizaje profundo. El aprendizaje profundo (deep learning, DL) constituye un subconjunto del aprendizaje automático (machine learning, ML), que a su vez lo es de la inteligencia artificial (ver Figura 1). Si la inteligencia artificial empezó sobre los años 50, el aprendizaje automático surgió sobre los 80, mientras que el aprendizaje profundo nació en este siglo XXI, a partir del 2010, con la aparición de grandes superordenadores y por el aumento de los datos accesibles. Como curiosidad, uno de los grandes hitos del DL se produjo en 2012, cuando Google fue capaz de reconocer un gato entre los más de 10 millones de vídeos de Youtube, utilizando para ello 16000 ordenadores. Ahora serían necesarios muchos menos medios.

En cualquiera de estos tres casos, estamos hablando de sistemas informáticos capaces de analizar grandes cantidades de datos (big data), identificar patrones y tendencias y, por tanto, predecir de forma automática, rápida y precisa. De la inteligencia artificial y su aplicabilidad a la ingeniería civil ya hablamos en un artículo anterior.

Figura 2. Cronología en la aparición de los distintos tipos de algoritmos de inteligencia artificial. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Si pensamos en el cálculo estructural, utilizamos modelos, más o menos sofistificados, que permiten, si se conocen con suficiente precisión las acciones, averiguar los esfuerzos a los que se encuentran sometidos cada uno de los elementos en los que hemos dividido una estructura. Con dichos esfuerzos se identifican una serie de estados límite, que son un conjunto de situaciones potencialmente peligrosas para la estructura y comparar si la capacidad estructural del elemento analizado, dependiente de las propiedades geométricas y de sus materiales constituyentes, supera el valor último de la solicitación a la que, bajo cierta probabilidad, puede llegar a alcanzar el elemento estructural analizado.

Estos métodos tradicionales emplean desde hipótesis de elasticidad y comportamiento lineal, a otros modelos con comportamiento plástico o no lineales más complejos. Suele utilizarse, con mayor o menos sofisticación, el método de los elementos finitos (MEF) y el método matricial de la rigidez. En definitiva, en determinados casos, suelen emplearse los ordenadores para resolver de forma aproximada, ecuaciones diferenciales parciales muy complejas, habituales en la ingeniería estructural, pero también en otros campos de la ingeniería y la física. Para que estos sistemas de cálculo resulten precisos, es necesario alimentar los modelos con datos sobre materiales, condiciones de contorno, acciones, etc., lo más reales posibles. Para eso se comprueban y calibran estos modelos en ensayos reales de laboratorio (Friswell y Mottershead, 1995). De alguna forma, estamos retroalimentando de información al modelo, y por tanto «aprende».

Figura 2. Malla 2D de elementos finitos, más densa alrededor de la zona de mayor interés. Wikipedia.

Si analizamos bien lo que hacemos, estamos utilizando un modelo, más o menos complicado, para predecir cómo se va a comportar la estructura. Pues bien, si tuviésemos una cantidad suficiente de datos procedentes de laboratorio y de casos reales, un sistema inteligente extraería información y sería capaz de predecir el resultado final. Mientras que la inteligencia artificial debería alimentarse de una ingente cantidad de datos (big data), el método de los elementos finitos precisa menor cantidad de información bruta (smart data), pues ha habido una labor previa muy concienzuda y rigurosa, para intentar comprender el fenómeno subyacente y modelizarlo adecuadamente. Pero, en definitiva, son dos procedimientos diferentes que nos llevan a un mismo objetivo: diseñar estructuras seguras. Otro tema será si éstas estructuras son óptimas desde algún punto de vista (economía, sostenibilidad, etc.).

La optimización de las estructuras constituye un campo científico donde se ha trabajado intensamente en las últimas décadas. Debido a que los problemas reales requieren un número elevado de variables, la resolución exacta del problema de optimización asociado es inabordable. Se trata de problemas NP-hard, de elevada complejidad computacional, que requiere de metaheurísticas para llegar a soluciones satisfactorias en tiempos de cálculo razonables.

Una de las características de la optimización mediante metaheurísticas es el elevado número de iteraciones en el espacio de soluciones, lo cual permite generar una inmensa cantidad de datos para el conjunto de estructuras visitadas. Es el campo ideal para la inteligencia artificial, pues permite extraer información para acelerar y afinar la búsqueda de la solución óptima. Un ejemplo de este tipo es nuestro trabajo (García-Segura et al., 2017) de optimización multiobjetivo de puentes cajón, donde una red neuronal aprendía de los datos intermedios de la búsqueda y luego predecía con una extraordinaria exactitud el cálculo del puente, sin necesidad de calcularlo. Ello permitía reducir considerablemente el tiempo final de computación.

Sin embargo, este tipo de aplicación es muy sencilla, pues solo ha reducido el tiempo de cálculo (cada comprobación completa de un puente por el método de los elementos finitos es mucho más lenta que una predicción con una red neuronal). Se trata ahora de dar un paso más allá. Se trata de que la metaheurística sea capaz de aprender de los datos recogidos utilizando la inteligencia artificial para ser mucho más efectiva, y no solo más rápida.

Tanto la inteligencia artificial como el aprendizaje automático no son una ciencia nueva. El problema es que sus aplicaciones eran limitadas por la falta de datos y de tecnologías para procesarlas de forma rápida y eficiente. Hoy en día se ha dado un salto cualitativo y se puede utilizar el DL, que como ya hemos dicho es una parte del ML, pero que utiliza algoritmos más sofisticados, construidos a partir del principio de las redes neuronales. Digamos que el DL (redes neuronales) utiliza algoritmos distintos al ML (algoritmos de regresión, árboles de decisión, entre otros). En ambos casos, los algoritmos pueden aprender de forma supervisada o no supervisada. En las no supervisadas se facilitan los datos de entrada, no los de salida. La razón por la que se llama aprendizaje profundo hace referencia a las redes neuronales profundas, que utilizan un número elevado de capas en la red, digamos, por ejemplo, 1000 capas. De hecho, el DL también se le conoce a menudo como «redes neuronales profundas». Esta técnica de redes artificiales de neuronas es una de las técnicas más comunes del DL.

Figura. Esquema explicativo de diferencia entre ML y DL. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Una de las redes neuronales utilizadas en DL son las redes neuronales convolucionales, que es una variación del perceptrón multicapa, pero donde su aplicación se realiza en matrices bidimensionales, y por tanto, son muy efectivas en las tareas de visión artificial, como en la clasificación y segmentación de imágenes. En ingeniería, por ejemplo, se puede utilizar para la monitorización de la condición estructural, por ejemplo, para el análisis del deterioro. Habría que imaginar hasta dónde se podría llegar grabando en imágenes digitales la rotura en laboratorio de estructuras de hormigón y ver la capacidad predictiva de este tipo de herramientas si contaran con suficiente cantidad de datos. Todo se andará. Aquí os dejo una aplicación tradicional típica (Antoni Cladera, de la Universitat de les Illes Balears), donde se explica el modelo de rotura de una viga a flexión en la pizarra y luego se rompe la viga en el laboratorio. ¡Cuántos datos estamos perdiendo en la grabación! Un ejemplo muy reciente del uso del DL y Digital Image Correlation (DIC) aplicado a roturas de probetas en laboratorio es el trabajo de Gulgec et al. (2020).

Sin embargo, aquí nos interesa detenernos en la exploración de la integración específica del DL en las metaheurísticas con el objeto de mejorar la calidad de las soluciones o los tiempos de convergencia cuando se trata de optimizar estructuras. Un ejemplo de este camino novedoso en la investigación es la aplicabilidad de algoritmos que hibriden DL y metaheurísticas. Ya hemos publicado algunos artículos en este sentido aplicados a la optimización de muros de contrafuertes (Yepes et al., 2020; García et al., 2020a, 2020b). Además, hemos propuesto como editor invitado, un número especial en la revista Mathematics (indexada en el primer decil del JCR) denominado «Deep learning and hybrid-metaheuristics: novel engineering applications«.

Dejo a continuación un pequeño vídeo explicativo de las diferencias entre la inteligencia artificial, machine learning y deep learning.

Referencias:

FRISWELL, M.; MOTTERSHEAD, J. E. (1995). Finite element model updating in structural dynamics (Vol. 38). Dordrecht, Netherlands: Springer Science & Business Media.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020a). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862. https://doi.org/10.3390/math8060862

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020b). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0

GULGEC, N.S.; TAKAC, M., PAKZAD S.N. (2020). Uncertainty quantification in digital image correlation for experimental evaluation of deep learning based damage diagnostic. Structure and Infrastructure Engineering, https://doi.org/10.1080/15732479.2020.1815224

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767. DOI:10.3390/su12072767

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.