Predimensionamiento óptimo de tableros de puentes losa pretensados aligerados

Figura 1. Vista aérea de paso superior. Google Maps.

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Yepes-Bellver, Martínez-Pagán, Alcalá, y Yepes es un análisis integral del predimensionamiento de los tableros de puentes losa pretensados aligerados.

Este informe detalla su importancia y sugiere mejoras en el diseño estructural mediante la optimización con métodos avanzados como el modelo Kriging y algoritmos de optimización heurística.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

1. Contexto del empleo de los puentes losa pretensados aligerados

Los puentes de losa pretensada son fundamentales en las infraestructuras de carreteras y vías ferroviarias debido a su capacidad para cubrir luces de entre 10 y 45 metros, lo que los hace más resistentes, duraderos y adaptables a distintos diseños geométricos. El coste de estos puentes suele representar entre un 5 % y un 15 % de los gastos totales de una infraestructura de transporte. Además, los puentes losa ofrecen una mayor flexibilidad y una apariencia estética superior, ya que eliminan las juntas de calzada, lo que mejora la comodidad y reduce el desgaste del tablero al tráfico.

Principales ventajas de los puentes losa pretensados:

  • Resistencia y durabilidad: estos puentes ofrecen una alta resistencia a la torsión y la flexión, por lo que son ideales para soportar cargas variables y condiciones climáticas adversas.
  • Versatilidad en el diseño: gracias a su construcción in situ, es posible adaptarlos a terrenos irregulares o a condiciones complejas, como curvas pronunciadas y anchos variados, lo que permite construirlos con rasantes bajas.
  • Ahorro de materiales y costes: Al diseñarse sin juntas y con posibilidades de aligeramiento, su mantenimiento resulta menos costoso en comparación con otras tipologías.

2. Predimensionamiento y limitaciones en los métodos actuales

El predimensionamiento es esencial en la fase preliminar del diseño de puentes con losas pretensadas. Tradicionalmente, los ingenieros utilizan reglas empíricas basadas en la experiencia para definir parámetros geométricos iniciales, como el espesor de la losa, la relación entre el canto y la luz y la cantidad de armadura activa y pasiva. Sin embargo, estos métodos tradicionales tienen limitaciones en cuanto a eficiencia y sostenibilidad, ya que no optimizan el uso de materiales ni reducen el impacto ambiental.

Desventajas de los métodos convencionales de predimensionamiento:

  • Rigidez en el diseño: los métodos empíricos pueden ser inflexibles, lo que limita las opciones de diseño y hace que la estructura no se adapte eficientemente a los criterios de optimización moderna.
  • Ineficiencia económica y ambiental: al no tener en cuenta factores de sostenibilidad y costes, estos métodos pueden provocar un uso excesivo de materiales, lo que aumenta la huella de carbono y el consumo energético.

3. Propuesta de optimización con modelos Kriging y metaheurísticas

La propuesta de los investigadores consiste en aplicar una optimización bifase mediante modelos Kriging combinados con el recocido simulado, un algoritmo heurístico. Esta técnica permite reducir el tiempo de cómputo en comparación con los métodos de optimización tradicionales sin perder precisión. La optimización se centra en tres objetivos clave:

  • Minimización del coste
  • Reducción de emisiones de CO₂
  • Disminución del consumo energético

El Kriging, un tipo de metamodelo, facilita la interpolación de datos en una muestra determinada, lo que permite que los valores estimados sean predictivos y evite el alto coste computacional que conllevan las simulaciones estructurales completas. Para implementar esta técnica, se usa un muestreo de hipercubo latino (LHS), que permite generar variaciones en el diseño inicial de los puentes y proporciona una base sobre la que se aplica el modelo Kriging para ajustar las alternativas optimizadas de diseño.

4. Resultados y comparación con diseños convencionales

A continuación, se exponen los principales hallazgos del estudio, basados en la optimización de puentes reales y en la comparación con métodos empíricos:

  • Esbeltez y espesor de la losa: la investigación recomienda que aumentar la relación entre el canto y la luz mejora la sostenibilidad del diseño. Los puentes optimizados presentan relaciones de hasta 1/30, en comparación con el rango usual de 1/22 a 1/25.
  • Volumen de hormigón y armaduras: los resultados muestran una disminución del volumen de hormigón y del número de armaduras activas necesarias, mientras que aumenta el número de armaduras pasivas. Este ajuste permite reducir tanto el coste como las emisiones.
  • Uso de materiales de construcción: se recomienda el uso de hormigón de resistencia entre 35 y 40 MPa para obtener una combinación óptima entre coste y sostenibilidad. La cantidad de aligeramientos interiores y exteriores también contribuye significativamente a la reducción del peso total sin comprometer la resistencia.

Comparativa de materiales:

  • Cuantía de hormigón: entre 0,55 y 0,70 m³ por m² de losa. La optimización reduce el consumo a 0,60 m³ para puentes económicos y a 0,55 m³ para priorizar la reducción de emisiones.
  • Armadura activa: la cantidad recomendada es inferior a 17 kg/m² de tablero. Esto representa una reducción significativa en comparación con los diseños tradicionales, que promedian alrededor de 22,64 kg/m².
  • Armadura pasiva: se debe aumentar la cuantía hasta 125 kg/m³ para proyectos de alta sostenibilidad, en contraste con los valores convencionales.

5. Herramientas prácticas para los proyectistas: nomogramas para el predimensionamiento

Uno de los aportes más valiosos del estudio es la creación de nomogramas que permiten a los ingenieros realizar predimensionamientos precisos con un mínimo de datos. Los nomogramas se desarrollaron mediante modelos de regresión múltiple y ofrecen una forma rápida de estimar:

  • La cantidad de hormigón necesaria.
  • El espesor de la losa.
  • La armadura activa en función de la luz del puente y los aligeramientos aplicados.

Estos nomogramas son útiles en las primeras fases de diseño, ya que permiten obtener valores cercanos a los óptimos de manera rápida y eficiente. Los gráficos incluyen secuencias de cálculo específicas con ejemplos de puentes con luces de 34 m y aligeramientos medios (interior de 0,20 m³/m² y exterior de 0,40 m³/m²), lo que facilita un proceso de diseño preliminar que cumple con criterios de sostenibilidad.

Figura 2. Nomograma para estimar el canto del tablero (m). Fuente: Yepes-Bellver et al. (2024)

6. Recomendaciones para el diseño sostenible de puentes losa pretensados aligerados

Basándose en los resultados de optimización, el estudio recomienda ajustar ciertos parámetros de diseño para mejorar la sostenibilidad y reducir los costes:

  • Aumento de la relación canto/luz: se debe aumentar la relación a 1/26 o incluso 1/30 para conseguir diseños sostenibles.
  • Reducción del hormigón utilizado: limitar el uso de hormigón a 0,60 m³/m², o menos si la prioridad es reducir las emisiones.
    Cuantía de armaduras: para la armadura pasiva, se recomienda un mínimo de 125 kg/m³, mientras que la armadura activa debe reducirse a 15 kg/m² de losa.
    Aligeramientos amplios: utilizar aligeramientos significativos (interior de 0,20 m³/m² y exterior de 0,50 m³/m²) para reducir el peso estructural y minimizar el material empleado.

7. Conclusión: innovación en el diseño de infraestructuras sostenibles

El uso de modelos predictivos, como el Kriging, y de técnicas de optimización avanzada en el diseño de puentes supone un gran avance hacia la construcción de infraestructuras sostenibles y eficientes. Estos métodos permiten reducir costes y minimizar el impacto ambiental, dos factores críticos en la ingeniería moderna. Al promover estos enfoques, la investigación allana el camino hacia políticas de infraestructura más responsables y sostenibles, un objetivo alineado con los Objetivos de Desarrollo Sostenible (ODS).

8. Perspectivas futuras: expansión de la metodología de optimización

Los autores proponen continuar esta línea de investigación aplicando el modelo Kriging y otros metamodelos a diversas estructuras de ingeniería civil, como marcos de carretera, muros de contención y otros tipos de puentes. Esta expansión podría sentar las bases para nuevos estándares en el diseño de infraestructuras sostenibles.

Este estudio se presenta como una herramienta esencial para ingenieros y proyectistas interesados en mejorar el diseño estructural mediante métodos modernos de optimización, ya que ofrece un enfoque práctico y avanzado para lograr una ingeniería civil más sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 1.98MB)

Referencia:

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 407-419. DOI:10.61547/2402010

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Modelo para la construcción sostenible: reducción de emisiones y eficiencia estructural hacia 2100

Un artículo reciente en Sustainable Cities and Society revista del primer decil del JCR, explora un innovador modelo de evaluación de la sostenibilidad en la industria de la construcción, con aplicaciones de gran impacto a nivel global.

Esta investigación, llevada a cabo por un equipo de expertos de la Universidad de Ciencia e Ingeniería de Hunan (China) y de la Universitat Politècnica de València (España), introduce el «modelo de acoplamiento multidisciplinar», una metodología que integra conocimientos avanzados de matemáticas, ingeniería, ciencias ambientales y sociología económica para analizar, de manera más precisa, los efectos de la construcción sobre la sostenibilidad a largo plazo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Objetivos y contexto de la investigación

El trabajo parte de un desafío global urgente: reducir las emisiones de carbono en la industria de la construcción, que representa un porcentaje significativo del consumo energético y de las emisiones contaminantes a nivel mundial. Según estimaciones previas, esta industria generará más del 50 % de las emisiones de carbono para 2050 si no se implementan políticas de mitigación eficaces. En este contexto, el equipo de investigación plantea un enfoque innovador para analizar el ciclo de vida completo de las construcciones, desde la selección de materiales y el diseño, hasta la construcción, el mantenimiento y el desmantelamiento, conocido como evaluación del ciclo de vida (LCA, por sus siglas en inglés).

Además, para obtener una visión integrada que abarque el impacto ambiental, social y económico de cada proyecto, se emplea la evaluación social del ciclo de vida (SIA), que permite analizar los efectos en la sociedad y en la economía. El objetivo principal de la investigación es ofrecer un marco más robusto que ayude a los gobiernos y a las empresas del sector a tomar decisiones informadas que favorezcan el desarrollo urbano sostenible.

Metodología y desarrollo del modelo

Para desarrollar este modelo, los investigadores implementaron una técnica de «acoplamiento multidisciplinar» novedosa que incorpora algoritmos avanzados y teorías de optimización de estructuras en tres dimensiones. Este enfoque se basa en el uso de algoritmos de interpolación y ajuste de datos, capaces de proyectar los impactos de la construcción de manera más precisa. Además, el modelo emplea herramientas de software de análisis ambiental, como OpenLCA, que permite integrar datos económicos y medioambientales para evaluar la sostenibilidad.

El equipo realizó pruebas del modelo en cuatro regiones económicas clave de China: las provincias de Hubei, Jiangsu, Henan y Guangdong, seleccionando puentes de gran escala en cada una como ejemplos de estudio. A través de análisis finitos y optimización de topología de estas estructuras, lograron proyectar cómo variará el impacto ambiental y social a lo largo de los próximos cien años.

Resultados más destacados y proyecciones futuras

Los resultados obtenidos indican que la industria de la construcción en China alcanzará su máximo de emisiones en el año 2030, con un estimado de 2,73 giga toneladas (GT) de CO₂. Tras este pico, se proyecta una significativa reducción de las emisiones, con niveles de -2,78 GT anuales entre 2061 y 2098, debido a la implementación de técnicas de construcción más eficientes y al uso de materiales más sostenibles. A nivel social, la evaluación SIA prevé un pico de impacto en 2048, con 4,26 GT de CO₂ equivalente en afectaciones sociales, seguido también de una reducción en las décadas posteriores.

Para obtener estas cifras, el estudio utilizó un algoritmo de optimización de la estructura en las distintas fases del ciclo de vida, con el que identificó puntos de mejora y áreas críticas de impacto. Así, el modelo no solo ofrece una herramienta para la proyección de emisiones, sino que también permite evaluar el desempeño de cada estructura en términos de durabilidad, coste y adaptabilidad a cambios estructurales, lo cual podría ser crucial en regiones urbanas que experimentan un crecimiento acelerado.

Conclusiones y aplicación global

Este trabajo es una contribución pionera en la investigación sobre sostenibilidad en construcción, ya que ofrece un marco metodológico con potencial para ser replicado en otros países y sectores de la construcción. Su aplicación no solo está dirigida a la reducción de emisiones, sino también a la mejora de la resiliencia estructural y a la reducción de costes a largo plazo mediante un diseño optimizado. Los investigadores destacan que este modelo podría adaptarse a otros países que, como China, se enfrentan a grandes desafíos en la gestión de la sostenibilidad urbana y que buscan avanzar hacia economías bajas en carbono.

En conclusión, el modelo de acoplamiento multidisciplinar de esta investigación establece un estándar robusto para el análisis de sostenibilidad en construcciones complejas. Con este enfoque, gobiernos y empresas de construcción podrían optimizar sus prácticas para reducir los impactos negativos, no solo ambientales, sino también sociales y económicos, en sintonía con las metas de desarrollo sostenible. Este estudio ofrece, además, una guía para que la industria de la construcción pueda abordar sus desafíos actuales y proyectar una trayectoria sostenible para las próximas décadas.

Referencia:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

Curso en línea de “Fabricación y puesta en obra del hormigón”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso en línea sobre “Fabricación y puesta en obra del hormigón”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-fabricacion-y-puesta-en-obra-del-hormigon/

 

 

Acerca de este curso

Este curso ofrece una visión completa sobre la fabricación y la puesta en obra del hormigón. No se requieren conocimientos previos específicos, ya que está diseñado para beneficiar a un amplio espectro de profesionales, tanto con experiencia como sin ella, así como a estudiantes de disciplinas relacionadas con la construcción, tanto en el ámbito universitario como en la formación profesional. El proceso de aprendizaje está estructurado de manera gradual, lo que permite a los participantes profundizar en los aspectos que más les interesen, apoyándose en material complementario y enlaces a recursos en línea, como vídeos y catálogos.

En este curso, adquirirás conocimientos fundamentales sobre la fabricación de hormigones y el uso de maquinaria relacionada, incluyendo centrales de hormigonado, transporte y bombeo de hormigón, cintas transportadoras, gunitado, colocación de hormigón bajo el agua y en condiciones de frío o calor, así como grandes vertidos, compactación por vibrado, hormigón al vacío, curado, juntas de construcción, hormigón precolocado y tipos de hormigón como el de fibra de vidrio, autocompactantes, compactados con rodillo y ligeros.

El enfoque principal del programa es comprender los principios que rigen la fabricación y la puesta en obra del hormigón, tanto prefabricado como ejecutado en obra, prestando atención a sus características más importantes y a los aspectos constructivos relevantes en ingeniería civil y edificación. El curso abarca un amplio espectro y profundiza en los fundamentos de la ingeniería de la construcción, además de destacar la importancia de fomentar el pensamiento crítico de los estudiantes, especialmente en relación con la selección de métodos, técnicas y maquinaria que se deben aplicar en situaciones concretas. Además, este curso trata de llenar el vacío que a menudo deja la bibliografía habitual y está diseñado para que los estudiantes puedan profundizar en los conocimientos adquiridos y adaptarlos a su experiencia previa o a sus objetivos personales y empresariales.

El contenido del curso se organiza en 50 lecciones, cada una de las cuales constituye una secuencia de aprendizaje completa. Además, se ofrece un amplio conjunto de problemas resueltos que complementan la teoría presentada en cada lección. Se estima que se necesitan entre dos y tres horas para completar cada lección, en función del interés del estudiante por profundizar en los temas mediante el material adicional proporcionado.

Al finalizar cada unidad didáctica, el estudiante se enfrenta a una serie de preguntas diseñadas para consolidar los conceptos fundamentales y fomentar la curiosidad sobre aspectos relacionados con el tema tratado. También se han diseñado tres unidades adicionales para reforzar los conocimientos adquiridos a través del desarrollo de casos prácticos, en los que se fomenta el pensamiento crítico y la capacidad para resolver problemas reales. Finalmente, al concluir el curso, se llevará a cabo un conjunto de preguntas tipo test con el objetivo de evaluar el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está diseñado para una dedicación total de 75 horas por parte del estudiante. Se busca mantener un ritmo moderado, con una dedicación semanal de aproximadamente 10 a 15 horas, en función del nivel de profundidad que cada estudiante desee alcanzar. La duración total del curso es de seis semanas de aprendizaje.

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria empleada en la fabricación del hormigón, tanto prefabricado como elaborado en obra
  2. Evaluar y seleccionar los procedimientos constructivos para la colocación del hormigón, atendiendo a criterios económicos y técnicos
  3. Conocer las buenas prácticas y los aspectos de seguridad implicados en el transporte, vertido, compactación y curado del hormigón
  4. Analizar las características específicas en la fabricación y colocación de hormigones especiales como los autocompactantes, ligeros, con fibras, precolocados, compactados con rodillo y otros.

Programa del curso

  • Lección 1. Fabricación de hormigones
  • Lección 2. Homogeneidad en la fabricación del hormigón
  • Lección 3. Amasado del hormigón
  • Lección 4. Amasadoras de hormigón
  • Lección 5. Centrales de fabricación de hormigón
  • Lección 6. Hormigoneras
  • Lección 7. Cálculo de la temperatura de fabricación del hormigón
  • Lección 8. Almacenamiento de áridos
  • Lección 9. Corrección de humedad de los áridos
  • Lección 10. Transporte del cemento
  • Lección 11. Silos fijos de cemento
  • Lección 12. Cemento para hormigones resistentes a sulfatos en cimentaciones
  • Lección 13. Carretillas manuales o a motor para el transporte del hormigón
  • Lección 14. Hormigonado con cubilote
  • Lección 15. Transporte del hormigón mediante cintas transportadoras
  • Lección 16. Colocación del hormigón mediante bombeo
  • Lección 17. Torres distribuidoras de hormigón
  • Lección 18. Problemas de bombeo de hormigón
  • Lección 19. Hormigón proyectado: gunitado
  • Lección 20. Recomendaciones para el vertido de hormigón
  • Lección 21. Trompas de elefante para la colocación del hormigón
  • Lección 22. Hormigonado con tubería Tremie
  • Lección 23. Técnicas de colocación del hormigón bajo el agua
  • Lección 24. Fabricación y colocación del hormigón en tiempo caluroso
  • Lección 25. Fabricación y colocación del hormigón en tiempo frío
  • Lección 26. Hormigonado en condiciones de viento
  • Lección 27. Vertido y compactación de hormigón en soportes de sección reducida
  • Lección 28. Grandes vertidos de hormigón
  • Lección 29. Razones para compactar el hormigón
  • Lección 30. Compactación manual del hormigón: picado y apisonado
  • Lección 31. Compactación del hormigón por vibrado
  • Lección 32. Vibradores de aguja para compactar el hormigón
  • Lección 33. Vibradores externos para encofrados de hormigón
  • Lección 34. Mesa vibrante de hormigón
  • Lección 35. Compactación del hormigón con regla vibrante
  • Lección 36. Compactación del hormigón por centrifugación
  • Lección 37. Hormigón al vacío
  • Lección 38. Alisadoras rotativas o fratasadoras
  • Lección 39. Revibrado del hormigón
  • Lección 40. Agrietamiento plástico durante el fraguado del hormigón: Nomograma de Menzel
  • Lección 41. Necesidad y fases del curado del hormigón
  • Lección 42. Curado de pavimentos y otras losas de hormigón sobre tierra
  • Lección 43. Curado al vapor del hormigón e índice de madurez
  • Lección 44. Hormigón de limpieza en fondos de excavación
  • Lección 45. Las juntas de construcción en el hormigón
  • Lección 46. Hormigón precolocado: Prepakt y Colcrete
  • Lección 47. Hormigón reforzado con fibra de vidrio
  • Lección 48. Hormigón autocompactante
  • Lección 49. Hormigones compactados con rodillo
  • Lección 50. Hormigones ligeros
  • Supuesto práctico 1.
  • Supuesto práctico 2.
  • Supuesto práctico 3.
  • Batería de preguntas final

Conozca a los profesores

Víctor Yepes Piqueras

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de 175  artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 17 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.

Lorena Yepes Bellver

Lorena Yepes Bellver es Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.

Nuevo estudio propone solución clave para reducir la huella de carbono en grandes proyectos de construcción internacionales

Un estudio innovador, titulado «Research on coupling optimization of carbon emissions and carbon leakage in international construction projects» y publicado en la prestigiosa revista Scientific Reports, aborda un desafío crítico para la construcción internacional: cómo optimizar las emisiones y las fugas de carbono en grandes proyectos de infraestructura.

Liderado por Zhiwu Zhou, de la Hunan University of Science and Engineering, y colaboradores como Víctor Yepes de la Universitat Politècnica de València, el artículo desarrolla un modelo matemático avanzado para analizar y predecir las emisiones de carbono a lo largo de todo el ciclo de vida de los proyectos de construcción en diferentes países. Este estudio es especialmente relevante en un contexto donde la globalización y el comercio internacional están impulsando el crecimiento económico, pero también contribuyendo de manera significativa al cambio climático.

Contexto y relevancia del estudio

El fenómeno conocido como «fuga de carbono» se ha convertido en un problema clave en la lucha contra el cambio climático. Este término se refiere al traslado de actividades productivas intensivas en carbono desde países con regulaciones estrictas sobre emisiones a países con normativas más laxas, lo que, paradójicamente, puede aumentar las emisiones globales. A medida que los países desarrollados implementan políticas más estrictas para reducir sus emisiones, existe la preocupación de que esto pueda incentivar a las empresas a trasladar su producción a países en desarrollo, exacerbando el problema en lugar de solucionarlo.

La construcción es uno de los sectores que más contribuye a las emisiones de carbono a nivel mundial. De hecho, la infraestructura está vinculada al 50 % de las emisiones globales, y se prevé que la inversión en infraestructuras alcance los 94000 millones de dólares para 2040, lo que pone de manifiesto la importancia de abordar el problema en este sector. El estudio de Zhou y su equipo se centra en ofrecer una herramienta para medir y mitigar la fuga de carbono en los grandes proyectos internacionales de construcción.

Metodología del estudio

La investigación combina una revisión bibliográfica extensa con el desarrollo de un modelo matemático que tiene en cuenta múltiples factores de incertidumbre asociados a los proyectos internacionales. Para analizar las emisiones y fugas de carbono, los investigadores emplearon bases de datos de cadenas de suministro reconocidas a nivel internacional, como Ecoinvent y OpenLCA, conforme a los estándares ISO 14040 e ISO 14044. Estas bases de datos permiten rastrear el ciclo de vida completo de los materiales y la energía utilizados en un proyecto, desde la extracción de materias primas hasta el transporte, la construcción y la eventual demolición.

El estudio utilizó como caso práctico un importante proyecto de infraestructura: el puente transnacional China-Indonesia, un proyecto internacional clave gestionado bajo el modelo EPC (ingeniería, contratación y construcción). Este puente, que conecta ambos países, se convirtió en un ejemplo ideal para analizar la huella de carbono debido a su complejidad técnica y logística, así como su impacto transnacional. El análisis de este caso permitió a los autores validar la robustez de su modelo teórico.

Resultados más destacados

Uno de los hallazgos más importantes del estudio es la notable diferencia en la huella de carbono entre los países exportadores e importadores. En el caso del puente China-Indonesia, los datos revelaron que la proporción de emisiones de carbono entre los países exportadores e importadores era de 0,577:100, lo que indica que los países que producen materiales y maquinaria (en este caso, China) soportan una mayor parte de la carga de emisiones. Esto sugiere que los países importadores, que son los principales beneficiarios de los proyectos de infraestructura, deberían asumir una mayor responsabilidad en la compensación de estas emisiones.

Además, el estudio pone de relieve que la utilización de acero, cemento y otros materiales intensivos en carbono es una de las principales fuentes de emisiones en los proyectos de construcción internacionales. Sin embargo, los resultados mostraron que optimizar la cadena de suministro y aplicar técnicas de transporte más eficientes pueden reducir significativamente estas emisiones. Por ejemplo, el uso de transporte marítimo en lugar de aéreo o terrestre para mover grandes volúmenes de materiales redujo las emisiones de manera sustancial.

Otro resultado clave es que la fuga de carbono no solo se produce durante la fase de construcción, sino también a lo largo de todo el ciclo de vida del proyecto, desde el diseño hasta la demolición. Las emisiones asociadas al diseño, el transporte y el montaje de los materiales también representan una parte significativa del impacto ambiental total de los proyectos.

Implicaciones del estudio

Este estudio tiene importantes implicaciones para los responsables políticos y las empresas constructoras. En primer lugar, los autores destacan la necesidad de desarrollar políticas más eficaces para gestionar la fuga de carbono en el comercio internacional. Las políticas actuales, como los ajustes en las fronteras de carbono (Carbon Border Adjustment Mechanisms, CBAM), son un buen paso hacia la reducción de la fuga de carbono, pero no son suficientes si no se aplican de manera coordinada a nivel global. Los investigadores sugieren que las empresas que participan en proyectos internacionales de construcción deben tener en cuenta no solo el coste económico, sino también el impacto ambiental y la huella de carbono de sus operaciones.

Por otro lado, el estudio subraya la importancia de optimizar las cadenas de suministro internacionales para reducir las emisiones de carbono. Esto implica seleccionar cuidadosamente los materiales, gestionar de manera eficiente el transporte y adoptar tecnologías más limpias durante el proceso de construcción. Los investigadores argumentan que los esfuerzos por reducir las emisiones deben extenderse a todas las fases del proyecto, no solo a la construcción, y que las empresas deben colaborar más estrechamente con los gobiernos para diseñar estrategias eficaces de mitigación del carbono.

Conclusiones

En resumen, el estudio ofrece una herramienta valiosa para evaluar y mitigar las emisiones y fugas de carbono en proyectos de construcción internacionales. Al utilizar un enfoque matemático riguroso y bases de datos internacionales de alto nivel, este trabajo proporciona un marco científico sólido para ayudar a los gobiernos y a las empresas a tomar decisiones más informadas sobre cómo reducir el impacto ambiental de sus proyectos.

Este enfoque no solo es relevante para los proyectos de infraestructura a gran escala, sino que también tiene el potencial de influir en la forma en que las políticas de carbono se diseñan e implementan a nivel global. La investigación concluye que, aunque los costes iniciales de adoptar prácticas más sostenibles pueden ser elevados, los beneficios a largo plazo, tanto en términos económicos como ambientales, justifican plenamente esta inversión.

Referencia:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 10.82MB)

Redes neuronales y metamodelos Kriging para la optimización de la energía en puentes losa pretensados

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. El artículo evalúa la eficacia de las redes neuronales artificiales y los modelos sustitutos de Kriging para optimizar la energía incorporada de los puentes de losas pretensadas, y proporciona recomendaciones prácticas para mejorar el diseño y la sostenibilidad.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

A continuación se recoge un resumen sintético del trabajo.

 

 

Introducción

  • La industria de la construcción contribuye significativamente al consumo mundial de energía y a las emisiones de gases de efecto invernadero, lo que suscita un interés creciente en mejorar las prácticas de sostenibilidad.
  • El hormigón pretensado destaca por sus ventajas, que incluyen la durabilidad, la reducción del mantenimiento y la rapidez de construcción, a pesar de los costes iniciales más altos en comparación con los métodos tradicionales.
  • Las investigaciones indican que existe una brecha en la optimización de la energía incorporada en los puentes de losas de hormigón, lo que exige una mayor exploración y metodologías innovadoras, como el Kriging y las redes neuronales artificiales, para optimizar su diseño de manera efectiva.

Descripción de la cubierta del puente de losa aligerada

  • Los diseñadores suelen utilizar una relación canto/luz de 1/25 para las losas de carreteras con el fin de garantizar su integridad estructural. Los diseños de losas aligeradas ofrecen ventajas en cuanto a rigidez a la flexión y adaptabilidad.
  • El estudio se centra en una configuración de losas aligeradas pretensadas adecuada para los pasos superiores, con el objetivo de mejorar la eficiencia del diseño y el rendimiento estructural.
  • La teoría del estado límite se emplea para verificar la resistencia estructural mediante el uso de software avanzado para el modelado tridimensional y el análisis de cargas.
Figura 2. Imagen aérea de la estructura, situada en Cocentaina (Alicante). Imagen: Google Maps.

Metodología

  • El estudio analiza varios materiales, incluidos tipos específicos de acero y calidades de hormigón, para optimizar el diseño del puente de losa aligerada.
  • Se utilizan dos metamodelos predictivos, Kriging y las redes neuronales, con el fin de optimizar el diseño propuesto del puente de losas.
  • La metodología incluye una fase de diversificación para la optimización inicial y una fase de intensificación para refinar los resultados, midiendo los errores de predicción mediante el error cuadrático medio (RMSE).

Metamodelo Kriging

  • Kriging se emplea para estimar las necesidades de energía del puente de losas, utilizando un enfoque determinista que proporciona respuestas consistentes basadas en los datos de entrada.
  • La «caja de herramientas Kriging de MATLAB» se utiliza para crear un modelo sustituto, y el LHS (LHS) mejora el proceso de muestreo para representar mejor el espacio de diseño.
  • Este método permite realizar pruebas computacionales eficientes y, al mismo tiempo, minimizar los errores sistemáticos, lo que lo hace adecuado para tareas complejas de optimización estructural.

Red neuronal artificial

  • Las ANN están estructuradas con capas de neuronas, donde las capas ocultas utilizan funciones sigmoideas para procesar las entradas y la capa de salida emplea funciones lineales para las predicciones.
  • El modelo de perceptrón multicapa (MLP) destaca por su capacidad para aproximar funciones de manera eficaz, basándose en el algoritmo de retropropagación para el entrenamiento.
  • El estudio hace hincapié en la importancia de la validación cruzada para evitar el sobreaprendizaje y garantizar que el rendimiento de la red neuronal sea sólido en los diferentes conjuntos de datos.

Visualización de los datos observados

  • La gráfica de contorno de los datos observados revela múltiples valores óptimos locales, lo que indica la complejidad del problema de optimización y las limitaciones de los modelos de regresión tradicionales.
  • Esta complejidad requiere el uso de modelos predictivos avanzados para identificar con precisión las soluciones óptimas dentro del espacio de diseño.

Comparación de modelos predictivos

  • Los modelos de Kriging son deterministas, mientras que las redes neuronales introducen variabilidad debido a que se basan en la selección aleatoria de datos para su entrenamiento y validación.
  • El rendimiento de la red neuronal se estabiliza mediante múltiples ejecuciones, lo que permite una comparación más fiable de los valores medios con las predicciones de Kriging.

Análisis de errores

  • El promedio de las predicciones de la red neuronal coincide estrechamente con los resultados del modelo de Kriging, aunque la red neuronal presenta un error cuadrático medio (MSE) y un error cuadrático medio (RMSE) más bajos.
  • El análisis destaca la necesidad de una evaluación exhaustiva de la capacidad de la red neuronal para identificar los valores óptimos, comparando las predicciones entre todos los puntos de datos.

Recomendaciones prácticas

  • El estudio proporciona recomendaciones prácticas para reducir las emisiones en los puentes de losas pretensadas, incluidas directrices específicas sobre el contenido de hormigón y refuerzo.
  • Los hallazgos sugieren que tanto las redes neuronales como las de Kriging pueden identificar eficazmente los valores óptimos locales, lo que ayuda a los ingenieros estructurales a optimizar los diseños para obtener beneficios económicos y ambientales.
  • Haciendo hincapié en la importancia de los modelos sustitutivos, la investigación aboga por su uso para perfeccionar los procesos de diseño y mejorar los resultados en materia de sostenibilidad.

Conclusiones

  • Se subraya la complejidad de la superficie de respuesta al consumo de energía, ya que tanto Kriging como las redes neuronales predicen valores superiores a los observados.
  • El modelo de Kriging muestra un error relativo menor en las predicciones óptimas locales en comparación con la red neuronal, que, sin embargo, muestra un rendimiento de RMSE superior.
  • El estudio concluye que, si bien Kriging proporciona resultados deterministas, las redes neuronales requieren múltiples iteraciones para estabilizar los resultados, lo que aporta información valiosa para optimizar los diseños estructurales.

ABSTRACT:

The main objective of this study is to assess and contrast the efficacy of distinct spatial prediction methods in a simulation aimed at optimizing the embodied energy during the construction of prestressed slab bridge decks. A literature review and cross-sectional analysis have identified crucial design parameters that directly affect the design and construction of bridge decks. This analysis determines the critical design variables to improve the deck’s energy efficiency, providing practical guidance for engineers and professionals in the field. The methods analyzed in this study are ordinary Kriging and a multilayer Perceptron neural network. The methodology involves analyzing the predictive performance of both models through error analysis and assessing their ability to identify local optima on the response surface. Results show that both models generally overestimate observed values. The Kriging model with second-order polynomials yields a 4% relative error at the local optimum, while the neural network achieves lower root-mean-square errors (RMSE). Neither the Kriging model nor the neural network provide precise predictions, but point to promising solution regions. Optimizing the response surface to find a local minimum is crucial. High slenderness ratios (around 1/28) and 40 MPa concrete grade are recommended to improve energy efficiency.

KEYWORDS:

bridges; embodied energy; optimization; prestressed concrete; artificial neural network; surrogate model; Kriging; sustainability

REFERENCE:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450; DOI:10.3390/su16198450

Descargar (PDF, 4.78MB)

Comunicaciones presentadas al 28th International Congress on Project Management and Engineering AEIPRO 2024

Durante los días 3-4 de julio de 2024 tiene lugar en Jaén (Spain) el 28th International Congress on Project Management and Engineering AEIPRO 2024. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Esta investigación propone una metodología para dimensionar losas innovadoras de hormigón armado sin vigas, que permiten el uso eficiente de materiales. Utilizando un enfoque estadístico y modelos de regresión lineal, se proporcionan criterios para calcular el espesor de la losa aligerada con esferas o discos plásticos presurizados, minimizando el número de variables. Este espesor puede estimarse a partir de la luz principal entre apoyos, la altura del disco o el diámetro de la esfera, así como el uso previsto del edificio. El modelo final ajustado logra explicar el 98% de la variabilidad en el espesor de la losa para luces comprendidas entre 5 m y 16 m. Este tipo de forjado contribuye a la reducción del consumo de hormigón y acero, lo que resulta en una disminución del peso y las cargas aplicadas. Esto impacta directamente en los costos y mejora los indicadores ambientales en comparación con los sistemas tradicionales. Se presenta como una alternativa eficiente para edificaciones, permitiendo la combinación de parámetros estructurales, constructivos y sostenibles.

SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Esta nueva forma de construir implica, necesariamente, un cambio en la forma de dirigir los proyectos, que pasan a ser industrializados, donde la eficiencia estructural, constructiva y la sostenibilidad ambiental y social son protagonistas. El objetivo del artículo es identificar los aspectos característicos de estas construcciones innovadoras que influyen en la ingeniería de proyectos, integrando a grupos multidisciplinares como arquitectos, ingenieros estructurales y empresas constructoras. Para ello se realizará un estudio para el caso de edificios construidos con losas planas aligeradas mediante elementos aligerantes multiaxiales. Los resultados muestran que estos diseños permiten integrar el proyecto, la fabricación de elementos y el procedimiento constructivo. El proyecto de estas construcciones permite aligerar y reducir las cuantías de hormigón y acero en aquellas zonas de las losas donde la capacidad portante es insignificante. Además, se ha comparado este diseño con otros tradicionales, destacando una reducción de costes y un aumento de la sostenibilidad a lo largo del ciclo de vida.

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

El proyecto estructural normalmente se basa en la experiencia del proyectista. En ocasiones, dicha experiencia se plasma en fórmulas de predimensionamiento que, si bien ofrecen buenos resultados, en ocasiones arrastran ineficiencias cuando se comparan con técnicas actuales de optimización que tenga en cuenta las dimensiones económicas y ambientales. En este artículo se comparan reglas de dimensionamiento previo de estructuras basadas en la experiencia con técnicas de optimización. Se aplica al caso del proyecto de tableros de puentes tipo losa pretensados aligerados. El resultado de la investigación resalta la importancia de aplicar métodos basados en la optimización heurística y en metamodelos para actualizar la experiencia de los proyectistas y proponer nuevas fórmulas de predimensionamiento más ajustadas a la optimización económica y ambiental. Además, en el trabajo se ofrecen nomogramas de predimensionamiento, con el mínimo número de datos posible, que pueden ser de utilidad al proyectista en sus diseños previos.

Os paso el vídeo de presentación del congreso.

Premio para Mehrdad Hadizadeh-Bazaz en el IX Encuentro de Estudiantes de Doctorado

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del IX Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal. Es el segundo año consecutivo que Mehrdad consigue este premio.

Hoy en día, debido a los elevados costes de construcción, reparación y mantenimiento de grandes estructuras como los puentes, así como la creciente atención al ciclo de vida sostenible en todas las etapas, desde el diseño hasta el final de su vida útil, es crucial emplear diversos métodos para identificar daños y evaluar su eficacia en diferentes estructuras y condiciones. Esto no solo puede aumentar la vida útil de las estructuras y reducir los costes, sino también minimizar el impacto ambiental y social.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Descargar (PDF, 830KB)

Referencias:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Structural Engineering and Mechanics, 85(2):197-206. DOI:10.12989/sem.2023.85.2.197

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2022). Performance comparison of structural damage detection methods based on Frequency Response Function and Power Spectral Density. DYNA, 97(5):493-500. DOI:10.6036/10504

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El puente de Astilleros de Valencia

Figura 1. Puente de Astilleros, Valencia. https://puentesvalencia.com/2023/09/15/puente-de-astilleros/

El enorme tráfico que presentaba el puerto de Valencia a finales del siglo XIX hizo pensar en la conveniencia de ensanchar la carretera existente en la margen derecha del Turia y en la construcción de un nuevo puente en el poblado de Nazaret. La primera alternativa la presentó D. Antonio Guijarro Montó en el año 1891, a la que siguió otra de D. Fernando Prósper y González, siendo ambas rechazadas por el Ayuntamiento.

El 2 de septiembre de 1901, los ingenieros municipales Casimiro Meseguer y J. Blanco firman un nuevo proyecto, cuyas obras dieron comienzo el 14 de mayo de 1904. Surgieron problemas con los terraplenes laterales y se añadieron unos tramos metálicos en los extremos, con lo que quedó un puente de cinco vanos metálicos de 12 m de luz. Sin embargo, la estructura duró poco y en 1921 la Dirección de Caminos la declara en ruina, y se cierra durante dos años. Después se rehabilitó y se añadió un tramo más, quedando su longitud en 72 m con una anchura de calzada de 3,5 m y dos aceras de 0,5 m.

El actual puente de Nazaret o de Astilleros (1928-1931), que se hubiera llamado “Príncipe de Asturias” si no hubiese sido por los avatares políticos de entonces, se adjudicó a “Cubiertas y Tejados, que empezaron las obras un 16 de julio de 1928 y las terminaron el 22 de septiembre de 1931, siendo inaugurado el puente el 14 de noviembre de ese mismo año. Su ubicación fue unos 165 m aguas abajo del antiguo puente de Hierro que, para peatones y carros, existía frente a la calle Mayor del poblado de Nazaret. Se trata de un puente que se proyectó en 1926 y cuya forma, materiales y procedimientos constructivos son los propios de aquella época.

Figura 2. Plano de sección en proyecto original del puente de Astilleros. https://valenciaactua.es/puente-de-astilleros/

Su longitud es de 175 m y su anchura de 25. Formado por cinco vanos de hormigón armado de 23 m y cuatro vanos de 9,45 m, todos rectos. Se tuvieron que resolver las dificultades propias de una cimentación sobre un terreno fangoso mediante pilotes de hormigón armado clavados algunos a más de 12 m. Sus barandas son de hierro forjado, con adornos de hierro fundido, ornamentadas entre pilastras de hormigón que forman la base de las farolas. El coste de la obra se situó en torno a los 2 millones de pesetas de entonces, siendo sus autores los ingenieros Federico Gómez de Membrillera y Piazza y Luis Dicenta Vera.

Su estilo modernista tiene gran influencia del art-decó, destacando la belleza de las farolas y las barandillas. Las aceras vuelan sobre los paramentos y se apoyan en sus extremos en las pilas y en el centro de una gran ménsula de piedra artificial. Además, cuenta en sus pilas con relieves alusivos a la marina, las obras públicas, etc. En su origen tuvo una zona central adoquinada y raíles para los tranvías, pero posteriormente se eliminó transformándose en calzada para el tráfico. La riada de 1949 provocó daños que debió reparar, dándole solidez y capacidad viaria, la Junta del Puerto. Fue ampliado hasta adquirir su fisonomía actual con dos aceras y seis carriles para circulación rodada.

Figura 3. Detalle de la barandilla del puente de Astilleros.

Si bien este puente no fue el primero que se realizó en la Comunidad Valenciana en hormigón armado, sí que lo fue sobre el cauce del Turia, en Valencia, pues se trató de un puente que debía soportar el tráfico de vehículos, ferrocarriles y tranvías. Eso lo diferenciaba de la pasarela de la Exposición de 1909, cuya función solo fue peatonal.

Referencia:

YEPES, V. (2010). Puentes históricos sobre el viejo cauce del Turia. Una aproximación histórica, estética y constructiva a la Valencia foral. Universitat Politècnica de València, 372 pp. Registro de la Propiedad Intelectual 09/2011/643.

 

Investigación sobre la optimización de las emisiones de carbono en proyectos internacionales de construcción

Acaban de publicarnos un artículo en Scientific Reports, revista indexada en el JCR. El documento enfatiza la importancia de contar con modelos de evaluación sólidos para abordar las emisiones y de carbono en los proyectos internacionales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El trabajo presenta el proyecto del puente marítimo de Suramadu en Indonesia, construido según el modelo EPC por el gobierno chino, y muestra las especificaciones de diseño detalladas y los procesos de construcción. Además, establece un modelo de evaluación de las emisiones de carbono de los proyectos de inversión internacionales, que integra ocho etapas para analizar las fugas de carbono, destacando la importancia de evaluar con precisión las emisiones de carbono en los proyectos internacionales.

De Sakurai Midori – Trabajo propio, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=8028163

El documento contribuye al demostrar la fiabilidad y la naturaleza científica de los datos de evaluación mediante la combinación de la bibliografía, la evaluación y el acoplamiento multidisciplinario de modelos matemáticos, lo que contribuye a la formulación de políticas de emisiones y aranceles al carbono.

Analiza de manera innovadora los complejos efectos de acoplamiento de varios datos e indicadores de incertidumbre en los proyectos internacionales, proporcionando modelos y evaluaciones precisos de los efectos interactivos, algo esencial para los responsables políticos.

Abstract:

Due to the rapid economic development of globalization and the intensification of economic and trade exchanges, cross-international and regional carbon emissions have become increasingly severe. Governments worldwide establish laws and regulations to protect their countries’ environmental impact. Therefore, selecting robustness evaluation models and metrics is an urgent research topic. This article proves the reliability and scientificity of the assessment data through literature coupling evaluation, multidisciplinary coupling, mathematical model, and international engineering case analysis. The innovation of this project’s research lies in the comprehensive analysis of the complex coupling effects of various discrete data and uncertainty indicators on the research model across international projects and how to accurately model and evaluate interactive effects. This article provides scientific measurement standards and data support for governments worldwide to formulate carbon tariffs and carbon emission policies. Case analysis data shows that the carbon emission ratio of exporting and importing countries is 0.577:100; the carbon trading quota ratio is 32.50:100.

Keywords:

Construction industry, Environmental impact, Carbon trading, Model evaluation.

Reference:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

Como el artículo está publicado en abierto, os lo paso para su descarga:

Descargar (PDF, 10.82MB)

Técnica Dematel aplicada a la evaluación de la sostenibilidad de puentes en ambiente marino

Figura 1. Puente de A Illa de Arousa. Imagen: V. Yepes (2023).

Acaban de publicar un artículo en el International Journal of Computational Methods and Experimental Measurements. El estudio evalúa diferentes alternativas de diseño para un puente de hormigón situado cerca de la costa utilizando técnicas de toma de decisiones como TOPSIS, COPRAS y VIKOR, con un enfoque en la sostenibilidad y la evaluación del ciclo de vida. La investigación destaca que el hormigón con humo de sílice funciona mejor a lo largo de su ciclo de vida en comparación con otras soluciones que mejoran la durabilidad, como la modificación de la relación agua/cemento o el aumento del recubrimiento del hormigón. Esta adición puede mejorar significativamente la sostenibilidad al aumentar la durabilidad frente a los cloruros y reducir los requisitos de mantenimiento. El estudio destaca que las decisiones de diseño de infraestructuras deben tener en cuenta los impactos sociales junto con los factores económicos y ambientales, y que las diferentes alternativas de diseño muestran diferentes impactos sociales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción es un sector crítico para alcanzar los Objetivos de Desarrollo Sostenible. Sin embargo, las actividades de construcción y las propias infraestructuras producen impactos positivos y negativos. Ello provoca que el diseño de infraestructuras sea el centro de la investigación actual para encontrar la mejor manera de satisfacer las demandas de sostenibilidad de la sociedad. Aunque los métodos para evaluar el ciclo de vida económico, medioambiental y social de las infraestructuras son bien conocidos, el reto reside en combinar estas dimensiones en un indicador global que ayude a la toma de decisiones. Este estudio utiliza tres técnicas de toma de decisiones, a saber, TOPSIS, COPRAS y VIKOR, para evaluar cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero. Para mejorar la coherencia del proceso de toma de decisiones multicriterio, se aplica un enfoque basado en DEMATEL. Los resultados del estudio demuestran que el hormigón que contiene incluso pequeñas cantidades de humo de sílice se comporta mejor a lo largo de su ciclo de vida que otras soluciones habitualmente consideradas para aumentar la durabilidad, como la reducción de la relación agua/cemento o el aumento del recubrimiento de hormigón.

ABSTRACT:

The construction industry has recently been recognized as a critical sector in achieving the Sustainable Development Goals. However, construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design the focus of current research in finding the best way to meet society’s demands for sustainability. Although methods for economic, environmental, and social life cycle assessments of infrastructures are well-known, the challenge lies in combining these dimensions into a comprehensive indicator that aids decision-making. This study uses three decision-making techniques, namely TOPSIS, COPRAS, and VIKOR, to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. To enhance the consistency of the multi-criteria decision-making process, a DEMATEL-based approach is applied. The study’s results demonstrate unanimously that concrete containing even small amounts of silica fume performs better over its life cycle than other solutions typically considered to increase durability, such as reducing the water/cement ratio or increasing concrete cover.

KEYWORDS:

Sustainable design, bridges, life cycle assessment, DEMATEL, TOPSIS, VIKOR, COPRAS, multi-criteria decision-making.

REFERENCE:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2023). Dematel-Based Completion Technique Applied for the Sustainability Assessment of Bridges Near ShoreInternational Journal of Computational Methods and Experimental Measurements, 11(2):115-122. DOI:10.18280/ijcmem.110206

El artículo está publicado en abierto. Os lo dejo para su descarga.

Descargar (PDF, 1.13MB)