Cambio climático y resiliencia comunitaria

En los artículos de este blog sobre resiliencia y cambio climático que estoy escribiendo, me centraré en los aspectos relacionados con la resiliencia comunitaria.

Acontecimientos como las inundaciones catastróficas ocurridas en la provincia de Valencia el 29 de noviembre de 2024 ponen de manifiesto la importancia de estas ideas.

Estas reflexiones se enmarcan dentro del proyecto RESILIFE que desarrollo en la actualidad como investigador principal, y se han basado en algunas ideas desarrolladas en el trabajo reciente de Ellingwood et al. (2024).

Este artículo trata sobre la resiliencia comunitaria y cómo incorporar los efectos del cambio climático en la planificación y diseño de edificios e infraestructuras a nivel comunitario. Se discuten los desafíos y consideraciones clave para lograr una mayor resiliencia de las comunidades frente a eventos climáticos extremos.

La resiliencia comunitaria es la capacidad para adaptarse a las situaciones adversas, adaptarse a condiciones cambiantes y mantener sus funciones e infraestructuras fundamentales, así como recuperarse rápidamente ante eventos extremos. En este contexto, «comunidad» se refiere a un lugar delimitado por fronteras geográficas que opera bajo la jurisdicción de una estructura de gobernanza, como una ciudad, área metropolitana o región. Es dentro de esta gobernanza local donde se identifican, aprueban, financian y ponen en marcha las decisiones, acciones y proyectos relacionados con la resiliencia. Este concepto subraya la importancia de guiar los procesos adaptativos dentro de la comunidad para preservar su identidad básica y permitir los cambios necesarios con el tiempo. La identidad de una comunidad la forman los valores y prioridades de sus miembros, por lo que los esfuerzos para aumentar la resiliencia deben implicarles en la definición de lo que valoran colectivamente y lo que pretenden proteger (Ellingwood et al., 2024).

Las repercusiones económicas del cambio climático varían mucho, con beneficios potenciales en las regiones templadas a niveles más bajos de calentamiento, pero con pérdidas crecientes a medida que aumentan las temperaturas. Los hogares y los países más pobres pueden experimentar efectos desproporcionados sobre su bienestar, aun cuando sus contribuciones económicas sean menos significativas. Las respuestas de adaptación efectivas, como el desarrollo de infraestructuras resilientes y tecnologías climáticamente inteligentes, pueden ayudar a mitigar estos impactos y mejorar la resiliencia de las comunidades (O’Neill et al., 2022).

Proceso para la planificación de la resiliencia comunitaria. https://www.nist.gov/community-resilience/planning-guide

El éxito de la resiliencia comunitaria no solo se centra en la recuperación de eventos relacionados con el cambio climático, sino que también abarca una variedad más amplia de retos, incluidos los sociales y económicos. Este concepto influye en las decisiones relativas al entorno construido, que abarca desde instalaciones individuales hasta sistemas de infraestructura regional. Para que la planificación de la resiliencia sea efectiva, es crucial incluir diversas perspectivas de las partes interesadas y comprender los sistemas sociales, políticos y económicos de la comunidad, así como sus vulnerabilidades inherentes (Eisenhauer et al., 2024). El entorno construido abarca todos los sistemas diseñados en una comunidad o región, como edificios, instalaciones y redes de infraestructura. Aunque muchas viviendas unifamiliares no son diseñadas por ingenieros, deben tenerse en cuenta en la evaluación de la resiliencia comunitaria. Este enfoque integrado permite identificar los objetivos de rendimiento de los edificios e infraestructuras y garantizar que las estrategias de resiliencia se adapten a las necesidades específicas de la comunidad.

Para lograr resiliencia a nivel comunitario, los edificios y sistemas de infraestructura deben cumplir los criterios de resiliencia establecidos a nivel local. Esta interdependencia entre escalas diferentes de resiliencia conecta la planificación regional con el diseño de infraestructuras individuales. Para que las instalaciones y los sistemas den un paso adelante y alcancen un desempeño resiliente, es necesario ir más allá de los requisitos de códigos y normas actuales, que se centran principalmente en la seguridad de las personas y en limitar el fallo estructural, especialmente en la recuperación de la funcionalidad. Los edificios e infraestructuras proporcionan refugio, servicios básicos y otros recursos, como escuelas y hospitales, y respaldan instituciones sociales y económicas esenciales para el bienestar de la comunidad.

Para desarrollar planes sólidos de resiliencia comunitaria, es fundamental involucrar a las partes interesadas. Una oficina dedicada a la resiliencia puede garantizar un liderazgo firme y un compromiso coherente entre los agentes locales. Es crucial comprender la identidad y los recursos únicos de la comunidad, así como fomentar la participación de los líderes sociales (Eisenhauer et al., 2024). Incluir las voces de todos los miembros de la comunidad en el proceso de planificación hace que los esfuerzos de resiliencia sean más equitativos y eficaces.

La resiliencia comunitaria se enfrenta a diversas limitaciones que deben abordarse para mejorar su capacidad de adaptación. Entre estas dificultades se encuentran las barreras económicas, los factores sociales y culturales, las limitaciones de capacidad humana, los problemas de gobernanza, los recursos financieros, la accesibilidad a la información, los obstáculos físicos y las influencias climáticas (O’Neill et al., 2022). Reconocer y superar estas limitaciones es fundamental para que las comunidades desarrollen su capacidad de adaptación ante amenazas actuales y emergentes.

Los sectores vulnerables dentro de las comunidades suelen verse afectados de manera desproporcionada por los peligros derivados del cambio climático, como las inundaciones, debido a políticas de uso del suelo, desventajas económicas y otros factores demográficos, como la raza/etnia, el género y la edad. Por lo tanto, los objetivos de resiliencia pueden variar de una comunidad a otra debido a diferencias en las características sociodemográficas, la edad y el estado de los edificios e infraestructuras, así como a los enfoques adoptados para abordar la equidad en los objetivos de resiliencia.

El cambio climático no solo afecta a los medios de subsistencia físicos, sino que también amenaza las estructuras sociales y las prácticas culturales. La erosión del capital social, exacerbada por la degradación de los recursos y la competencia, puede provocar un aumento de la tensión en el seno de las comunidades y entre ellas, lo que puede dar lugar a conflictos y migraciones forzosas. Los grupos vulnerables, como las personas mayores y con discapacidad, se ven afectados de forma desproporcionada por estos cambios, lo que subraya la necesidad de estrategias de adaptación específicas (IPCC, 1997) .

Consideraciones de proyecto para la resiliencia y los impactos climáticos

La consideración de eventos climáticos extremos futuros (como huracanes, olas de calor y precipitaciones intensas) está cobrando una importancia cada vez mayor para las comunidades. Aunque actualmente no se tienen en cuenta en los códigos o normas de construcción, muchas comunidades locales exigen que los efectos climáticos se integren en los proyectos. (Vogel et al., 2016). Además, el cambio climático puede agravar los impactos de los eventos de peligro extremo con el tiempo, no solo al modificar las cargas sobre las estructuras, sino también al afectar a su capacidad debido a procesos de envejecimiento y deterioro. Por ello, es fundamental tener en cuenta la resiliencia y los problemas climáticos en la planificación comunitaria, especialmente en el diseño de edificios e infraestructuras civiles.

El impacto de eventos extremos compuestos (como un tsunami posterior a un terremoto, o marejadas ciclónicas e inundaciones fluviales tras vientos de huracán) también puede intensificarse debido a los efectos climáticos (Bruneau et al., 2017). Actualmente, existe una falta de guías o herramientas suficientes para considerar estos eventos compuestos y su impacto en el entorno construido. Además de predecir peligros futuros, la no estacionariedad de los efectos climáticos en los eventos de peligro requerirá nuevos enfoques para abordar y comunicar la incertidumbre (Cooke, 2015).

El concepto de resiliencia se basa en la funcionalidad, que puede medirse a nivel de edificios, sistemas de infraestructura o comunidades. Por ello, los análisis de resiliencia deben adaptarse a la escala evaluada y utilizar métodos claros para agregar y desagregar información entre diferentes escalas. Las múltiples escalas de análisis de resiliencia también tienen implicaciones para las proyecciones climáticas regionales, en las que pueden ser necesarias proyecciones correlacionadas en lugares específicos.

Los edificios y los sistemas de infraestructura civil se diseñan y mantienen según diversas regulaciones, códigos y mejores prácticas, cada uno con su propia base de diseño y fiabilidad para evaluar el rendimiento (McAllister et al., 2022). Cada sistema tiene distintos objetivos de rendimiento, como la seguridad en edificios frente a eventos poco frecuentes o la interrupción en los servicios de electricidad y agua ante eventos frecuentes. La falta de coordinación genera disparidades en el rendimiento del entorno construido ante un mismo evento de peligro, que aumentan aún más al considerar el desempeño en términos de recuperación. Aunque la fiabilidad mide si se logran los objetivos de rendimiento, se requieren métricas diferentes para evaluar la recuperación de la funcionalidad.

En algunos sistemas, la fase de recuperación se mide en horas (por ejemplo, en los sistemas de distribución eléctrica), mientras que en otros puede medirse en meses (por ejemplo, en la reparación de un puente o túnel dañado). Estas disparidades se identifican y abordan mejor con una evaluación a nivel comunitario que permita identificar las necesidades específicas de cada proyecto. Una herramienta comúnmente utilizada es la denominada tabla de resiliencia, introducida por primera vez en San Francisco (Poland, 2009). En estas tablas, la comunidad establece el tiempo deseado para alcanzar un conjunto de métricas de desempeño de diversas infraestructuras (por ejemplo, el 75 % de las carreteras funcionales en 3 meses). Estas metas se comparan con el tiempo de recuperación previsto, evaluado por expertos técnicos. Los sectores donde la discrepancia entre la recuperación deseada y la prevista es mayor son aquellos donde más se necesitan intervenciones.

Tabla 1. Plazos para los objetivos de reconstrucción en un seísmo (Poland, 2009).

Fase Marco temporal Condición del entorno construido
1 1 a 7 días Respuesta inicial y preparación para la reconstrucción
Inmediato El alcalde ha declarado una emergencia local y ha abierto el Centro de Operaciones de Emergencia. Los hospitales, las comisarías, los parques de bomberos y los centros de operaciones de los departamentos de la ciudad están operativos.
Dentro de 4 horas Las personas que salgan o regresen a la ciudad para llegar a sus hogares pueden hacerlo
Dentro de 24 horas Los trabajadores de respuesta a emergencias pueden activarse y sus operaciones están completamente operativas. Los hoteles designados para alojar a estos trabajadores son seguros y están operativos. Los refugios están abiertos. Todos los hogares ocupados son inspeccionados por sus ocupantes y menos del 5 % de las viviendas son consideradas inseguras para ser ocupadas. Los residentes se refugiarán en edificios con daños superficiales, aunque los servicios públicos no funcionen.
Dentro de 72 horas El 90 % de los sistemas de servicios públicos (energía, agua, aguas residuales y comunicación) están operativos y prestan apoyo a las instalaciones de emergencia y a los vecindarios. Asimismo, el 90 % de las principales rutas de transporte, incluidos los cruces de la bahía y los aeropuertos, están abiertos al menos para la respuesta a emergencias. Los esfuerzos de recuperación inicial y reconstrucción se centrarán en reparar viviendas, escuelas y oficinas de proveedores médicos para que puedan utilizarse, además de restablecer los servicios públicos necesarios. Los servicios esenciales de la ciudad están completamente restablecidos.
2 30 a 60 días Viviendas restauradas – necesidades sociales continuas cubiertas
Dentro de 30 días Todos los sistemas de servicios públicos y las rutas de transporte que atienden a los vecindarios han recuperado el 95 % de los niveles de servicio previos al evento. El transporte público funciona al 90 % de su capacidad. Las escuelas públicas están abiertas y en funcionamiento. El 90 % de los negocios del barrio están abiertos y atendiendo a la fuerza laboral.
Dentro de 60 días Los aeropuertos están operativos y se pueden utilizar con normalidad. El transporte público funciona al 95 % de su capacidad. Las rutas de transporte menores se están reparando y reabriendo.
3 Varios años Reconstrucción a largo plazo
Dentro de 4 meses Los refugios temporales se han cerrado. Todos los hogares desplazados han regresado a sus hogares o han sido reubicados de forma permanente. El 95 % de los servicios minoristas de la comunidad han reabierto. El 50 % de los negocios de apoyo que no forman parte de la fuerza laboral están reabiertos.
Dentro de 3 años Todas las operaciones comerciales, incluidos todos los servicios de la ciudad que no estén relacionados con la respuesta a emergencias o la reconstrucción, se han restablecido a los niveles previos al seísmo.

Esta herramienta sencilla se utiliza para representar posibles efectos de los riesgos en un conjunto de escenarios posibles. Actualmente, estos se identifican para cada comunidad en función de los riesgos previstos y de las directrices disponibles. Los efectos del cambio climático pueden incorporarse seleccionando un conjunto de escenarios de eventos extremos que representen el clima futuro. Para avanzar en los análisis y resultados de resiliencia, es necesario un enfoque estandarizado para identificar estos escenarios de riesgo.

Los edificios, puentes y otras infraestructuras tienden a diseñarse para vidas útiles de entre 50 y 100 años. Sin embargo, muchos edificios e infraestructuras se utilizan más allá de su vida útil y su desempeño depende de rehabilitaciones, actualizaciones y mantenimiento. Por lo tanto, la vida útil de edificios, puentes y otras infraestructuras abarca un período en el que el clima puede cambiar sustancialmente, por lo que dichos sistemas se ven expuestos a condiciones y acciones climáticas diferentes a las especificadas en su proyecto. Esta misma consideración se aplica a las evaluaciones de resiliencia.

Todo el proceso de evaluación de la resiliencia comunitaria, desde la selección de peligros hasta la evaluación de escenarios y las evaluaciones cuantitativas del rendimiento, debe tener en cuenta la no estacionariedad de los efectos climáticos. Al evaluar el impacto del cambio climático en el diseño, el mantenimiento y la remodelación, la propiedad desempeña un papel crucial. Cuando los edificios e infraestructuras tienen el mismo propietario durante su vida útil, hay incentivos más fuertes para incluir consideraciones de resiliencia y cambio climático en la planificación y el mantenimiento. En cambio, los sistemas diseñados y mantenidos por diferentes entidades suelen cumplir solo con los requisitos mínimos, a menos que la demanda de resiliencia, consideraciones climáticas o mejoras que se puedan trasladar a los usuarios sea clara.

Las dependencias e interdependencias entre los sistemas de infraestructura de una comunidad requieren la coordinación de múltiples propietarios, lo que puede resultar difícil. Mejorar la resiliencia de un sistema frente a los efectos climáticos futuros puede ser menos efectivo de lo planeado si los propietarios o administradores de los sistemas de infraestructura interdependientes no realizan mejoras similares.

Desempeño funcional del entorno construido

Los objetivos de desempeño comunitario suelen expresarse como aspiraciones a largo plazo para la funcionalidad de los sistemas físicos, sociales y económicos. La incorporación del cambio climático en la funcionalidad a largo plazo de los sistemas comunitarios debe abordarse urgentemente. Los proyectistas necesitan objetivos cuantitativos de desempeño y criterios de diseño para evaluar instalaciones y sistemas individuales que puedan apoyar los objetivos comunitarios y hacer frente a la considerable incertidumbre asociada al cambio climático y a los eventos futuros.

Un entorno construido con un desempeño aceptable es necesario, pero no suficiente, para establecer la resiliencia comunitaria. Esta resiliencia abarca metas sociales y económicas, así como objetivos relacionados con los servicios físicos. Para vincular la respuesta de los sistemas de infraestructura a los objetivos de resiliencia, es fundamental cuantificar su rendimiento colectivo mediante métricas de funcionalidad y recuperación. Desarrollar métricas que respalden los objetivos sociales es crucial para abordar la resiliencia comunitaria a nivel nacional. A continuación, se muestran algunos ejemplos de metas y métricas de resiliencia comunitaria en la Tabla 2. Las métricas de resiliencia para los servicios de infraestructura son más relevantes para los ingenieros estructurales, pero el rendimiento resiliente del entorno construido también contribuye a los objetivos sociales y económicos. Por lo tanto, estos objetivos deben tenerse en cuenta al evaluar soluciones para el diseño, el mantenimiento o las mejoras estructurales.

Tabla 2. Ejemplos de metas de desempeño comunitario y métricas de resiliencia

Metas de rendimiento comunitario Ejemplos de métricas de resiliencia
Estabilidad poblacional Desplazamiento y migración; disponibilidad de viviendas.
Estabilidad económica Cambio en el empleo, impuestos e ingresos (recursos), presupuesto comunitario (necesidades).
Estabilidad de servicios sociales Acceso a atención médica, educación, comercio minorista, banca.
Estabilidad de servicios físicos Funcionalidad de edificios, transporte, agua, aguas residuales, energía eléctrica, gas, comunicaciones.
Estabilidad gubernamental Acceso a protección policial y contra incendios; servicios gubernamentales públicos esenciales.

Fuente: Ellingwood et al. (2020).

La recuperación funcional se refiere al restablecimiento de las funciones básicas del edificio o sistema de infraestructura tras un evento adverso. Desde la perspectiva de la resiliencia, el diseño de estos sistemas debe tener en cuenta el daño potencial y la forma en que se recuperarán durante el proceso de diseño. Este aspecto se aborda en parte en instalaciones críticas como hospitales y refugios, donde se aumentan los requisitos de carga y deformación para construir estructuras más sólidas.

Desde la perspectiva de la resiliencia comunitaria, otros edificios también pueden considerarse críticos según su función, como residencias de personas mayores y escuelas. Sin embargo, los códigos actuales se centran en la seguridad de las personas en edificios e infraestructuras individuales, sin considerar explícitamente las formas de fallo ni las reparaciones necesarias para restaurar la funcionalidad en un tiempo determinado. Para establecer normas que incluyan objetivos de desempeño en términos de funcionalidad y resiliencia, además de la seguridad, será necesario cambiar el proceso regulatorio, pasando de un diseño basado en componentes a un enfoque sistémico.

Se necesitan orientaciones sobre mejores prácticas y criterios de proyecto con objetivos que respalden las metas de resiliencia comunitaria para incluir la recuperación funcional. Se requieren objetivos funcionales y criterios para abordar mejor el papel de las infraestructuras, incluidos los niveles esperados de daño, el impacto en la funcionalidad de los edificios y otras infraestructuras, las reparaciones necesarias para restablecer la funcionalidad e impactos potenciales en la recuperación social y económica de la comunidad.

A medida que la ingeniería se esfuerza por incorporar los conceptos de resiliencia y recuperación funcional en su práctica, es necesario abordar el cambio climático en paralelo. La ASCE (2015) destacó un dilema clave para los ingenieros en ejercicio: «Aunque la comunidad científica está de acuerdo en que el clima está cambiando, existe una incertidumbre significativa sobre las distribuciones espaciales y temporales de los cambios durante la vida útil de los diseños y planes de infraestructura. La necesidad de que la infraestructura de ingeniería satisfaga las necesidades futuras y la incertidumbre sobre el clima futuro plantean un dilema para los ingenieros».

Los cambios en las condiciones climáticas pueden afectar a las infraestructuras y a su resiliencia de diversas maneras. ASCE (2018) identificó los tipos de impactos relacionados con el clima que deben abordarse, en particular, los relacionados con las inundaciones (el aumento de los niveles, de las velocidades de flujo y de las alturas de las olas), con las precipitaciones (las acciones de lluvia y nieve en los techos y el aumento de las acciones de las heladas en las estructuras) y con el viento (la mayor intensidad y frecuencia de tormentas y huracanes). El Manual de Práctica 144 de ASCE (ASCE, 2021) utiliza métodos probabilísticos para el análisis y la gestión de riesgos en los proyectos para abordar las incertidumbres dentro de un horizonte temporal. Este enfoque incluye la identificación y el análisis de riesgos, fallos del sistema, probabilidades asociadas y consecuencias, incluyendo pérdidas directas e indirectas, cuantificación de fallos y recuperación para la resiliencia, efectos en las comunidades, la economía de la resiliencia y las tecnologías para mejorar la resiliencia tanto en infraestructuras nuevas como existentes.

La resiliencia incorpora la dimensión temporal a través del proceso de recuperación y reconstrucción, pero los modelos de recuperación aún se encuentran en una etapa inicial de desarrollo. Además, durante la recuperación es necesario tener en cuenta las interdependencias, por ejemplo, cuando un edificio o sistema es funcional, pero otro sistema del que depende (por ejemplo, servicios públicos) aún no puede proporcionar el servicio necesario.

Cuando los edificios no son funcionales debido a retrasos en la financiación de reparaciones u otras causas, los efectos son enormes. En efecto, los retrasos en la recuperación de la funcionalidad de los edificios afectan directamente a la población, que se ve obligada a desplazarse y aumenta la probabilidad de emigrar, lo que repercute negativamente en las métricas de estabilidad poblacional (Tabla 2). La emigración también depende de la cohesión social y de factores como la fuente de refugio, empleo y educación de los niños en un hogar.

Desafíos para la resiliencia comunitaria en un clima cambiante

En la próxima década, probablemente evolucionen las mejores prácticas de los profesionales del diseño y las decisiones de los planificadores urbanos y las autoridades reguladoras para apoyar la forma en que se aborda el cambio climático en lo que respecta a la resiliencia comunitaria. El Diseño Basado en el Desempeño (PBD) ofrece una forma de abordar este conflicto y resolver los desafíos inherentes que surgirán al atender tanto las necesidades de las instalaciones como las de la comunidad. Desarrollar e incorporar enfoques PBD que aborden los peligros e impactos del cambio climático en las mejores prácticas, estándares y códigos es una necesidad urgente para la profesión de la ingeniería y la sociedad.

Los desafíos para los ingenieros estructurales incluyen los siguientes (Ellingwood et al., 2020):

  • Identificación de metas comunes de resiliencia comunitaria que aborden los futuros impactos del cambio climático, las cuales deberían ser establecidas por un grupo amplio de partes interesadas.
  • Objetivos de desempeño para los edificios, según categorías funcionales o agrupaciones (por ejemplo, edificios residenciales, instalaciones comerciales, gubernamentales) o instituciones socioeconómicas (por ejemplo, educación, atención médica), deben expresarse como requisitos compatibles con la práctica de ingeniería y ser prácticos de implementar desde una perspectiva de ingeniería.
  • Objetivos de fiabilidad para los edificios individuales en la práctica de diseño estructural actual (por ejemplo, ASCE 7-22, Sección 1.3) identifican requisitos mínimos de rendimiento a nivel de componente para la mayoría de las acciones, excepto las sísmicas. Se necesitan fiabilidades objetivo y criterios de desempeño a nivel de sistema para todas las cargas, con el fin de apoyar las metas de resiliencia comunitaria.
  • Códigos, normas y regulaciones para los sistemas de infraestructura (por ejemplo, edificios, puentes, comunicaciones críticas) deben coordinarse para apoyar las metas de resiliencia comunitaria e impactos del cambio climático, y para abordar la funcionalidad y recuperación de la infraestructura civil, así como la seguridad de las personas.

En resumen, la resiliencia comunitaria se refiere a la capacidad de las comunidades para adaptarse a situaciones adversas, mantener sus funciones esenciales y recuperarse rápidamente después de eventos extremos. Para desarrollar estrategias de adaptación eficaces, especialmente frente al cambio climático, es crucial que los miembros de la comunidad participen activamente en la identificación de sus valores y prioridades. Las comunidades vulnerables suelen sufrir impactos desproporcionados debido a factores socioeconómicos y demográficos, lo que subraya la necesidad de enfoques equitativos en la planificación de la resiliencia. Además, es fundamental tener en cuenta las interdependencias entre los sistemas de infraestructura y la coordinación entre múltiples propietarios para mejorar la resiliencia. La planificación debe incluir objetivos de rendimiento claros y métricas que aborden tanto la funcionalidad como la recuperación de los sistemas, para que las comunidades puedan hacer frente a los desafíos climáticos futuros de manera efectiva.

Aquí tenéis un mapa mental sobre el contenido de las reflexiones anteriores, que espero, os sea útil.

Dejo a continuación un documento que creo que os puede interesar sobre este tema.

Descargar (PDF, 3.82MB)

Referencias:

ASCE. (2015). Adapting infrastructure and civil engineering practice to a changing climate. Reston, VA: ASCE.

ASCE. (2018). Climate-resilient infrastructure: Adaptive design and risk management, MOP 140. Reston, VA: ASCE.

ASCE. (2021). Hazard-resilient infrastructures: Analysis and design, MOP 144. Reston, VA: ASCE.

Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., et al. (2017). State-of-the-art on multihazard design. Journal of Structural Engineering, 143(10), 03117002.

Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change, 5(1), 8–10.

Ellingwood, B. R., van de Lindt, J. W., & McAllister, T. (2020). Community resilience: A new challenge to the practice of structural engineering. Structural Magazine, 27(11), 28–30.

Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.

Eisenhauer, E., Henson, S., Matsler, A., Maxwell, K., Reilly, I., Shacklette, M., Julius, S., Kiessling, B., Fry, M., Nee, R., Bryant, J., Finley, J., & Kieber, B. (2024). Centering equity in community resilience planning: Lessons from case studies. Natural Hazards Forum, Washington, D.C.

IPCC (1997). The regional impacts of climate change: an assessment of vulnerability. IPCC, Geneva.

McAllister, T., Walker, R., & Baker, A. (2022). Assessment of resilience in codes, standards, regulations, and best practices for buildings and infrastructure systems. NIST Technical Note 2209. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.TN.2209

O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., & Warren, R. (2022). Key risks across sectors and regions. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2411–2538). Cambridge University Press. https://doi.org/10.1017/9781009325844.025

Poland, C. D. (2009). The resilient city: Defining what San Francisco needs from its seismic mitigation policies. San Francisco Planning and Urban Research Association Report. Earthquake Engineering Research Institute.

Vogel, J., Carney, K. M., Smith, J. B., Herrick, C., et al. (2016). Climate adaptation: The state of practice in US communities. The Kresge Foundation and Abt Associates.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas reflexiones sobre el impacto del cambio climático en el comportamiento de las infraestructuras

El diseño estructural de infraestructuras, como edificios y puentes, se basa en códigos que establecen los criterios necesarios para garantizar su resistencia a diversas condiciones climáticas y ambientales. Estos códigos se actualizan periódicamente para reflejar los avances científicos y tecnológicos. Sin embargo, el cambio climático plantea un desafío disruptivo, ya que altera las condiciones climáticas de manera impredecible, lo que cuestiona la suposición de que las cargas climáticas son estacionarias.

En estas líneas se aborda cómo la transición del diseño estructural basado en estados límites ha influido en la forma en que se tienen en cuenta las variables climáticas. También aborda las dificultades que surgen al integrar el cambio climático en los modelos de riesgo estructural y analiza la necesidad de ajustar los métodos de estimación y diseño para tener en cuenta la creciente incertidumbre sobre el futuro climático.

Estas reflexiones se enmarcan dentro del proyecto RESILIFE, que actualmente desarrollo como investigador principal, y se han basado en algunas ideas desarrolladas en el trabajo reciente de Ellingwood et al. (2024).

Los códigos estructurales establecen los criterios necesarios para diseñar edificios, puentes y otras infraestructuras capaces de resistir las demandas de uso y los eventos ambientales o climáticos, como la nieve, el hielo, las lluvias, las tormentas de viento e inundaciones fluviales y costeras. Para garantizar que reflejen los últimos avances en ciencia e ingeniería, estos códigos se actualizan periódicamente, generalmente cada 5 o 10 años.

En las últimas cuatro décadas, los códigos estructurales de todo el mundo, como el “Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7-22)”, las “LRFD Bridge Design Specifications (AASHTO)”, el “International Building Code“, el “National Building Code of Canada” y los Eurocódigos, han adoptado los principios del diseño basado en estados límite. Durante este tiempo, los ingenieros estructurales y la normativa han reconocido la importancia de las herramientas de análisis de fiabilidad estructural y gestión del riesgo para modelar las incertidumbres asociadas a las cargas estructurales y la respuesta de las estructuras, y así garantizar un rendimiento adecuado en servicio (García-Segura et al., 2017). Con la transición del diseño basado en tensiones admisibles al diseño por estados límite, los criterios para las cargas climáticas han evolucionado gradualmente. Hasta ahora, estos criterios, basados en registros climáticos históricos y en evaluaciones de fiabilidad estructural, han tratado las cargas operativas y climáticas como estacionarias, asumiendo que el pasado es representativo del futuro.

El cambio climático plantea un desafío disruptivo y significativo para la evolución gradual de los códigos basados en el riesgo, así como para las prácticas de diseño estructural (ASCE, 2015a, 2018). La suposición de estacionariedad en el análisis de riesgos naturales deja de ser válida al tener en cuenta los efectos del cambio climático. Además, las incertidumbres asociadas a las proyecciones climáticas para el resto del siglo XXI son considerables, especialmente en lo que respecta a las cargas de viento, hielo y nieve (Tye et al., 2021). Las condiciones climáticas más agresivas podrían acelerar el deterioro estructural en ciertos casos, así como aumentar la intensidad y duración de los peligros. El cambio climático también ha suscitado controversia desde el punto de vista económico y político. Lograr consenso en los comités encargados de los códigos sobre el impacto del cambio climático en las infraestructuras requerirá una gestión técnica eficaz y una separación clara entre los aspectos políticos, como las causas del cambio climático, y los aspectos técnicos, como su impacto en las estructuras. Asimismo, podría haber oposición pública ante los costes adicionales que conlleven las modificaciones en los códigos climáticos. No obstante, ignorar los efectos del cambio climático en el comportamiento a largo plazo de las estructuras e infraestructuras podría incrementar el riesgo de daños y fallos, aumentar los costes de diseño, construcción y mantenimiento, agravar problemas de salud y seguridad públicas, interrumpir servicios esenciales y generar impactos socioeconómicos y ambientales negativos a nivel nacional.

Es fundamental abordar varias preguntas clave para considerar las exigencias del cambio climático en el desarrollo de los códigos estructurales. Entre ellas se encuentran (Ellingwood et al., 2024) :

  • ¿Cómo se debe modelar la no estacionariedad en la ocurrencia e intensidad de los eventos climáticos extremos provocados por el cambio climático?
  • ¿Cómo se deben integrar estas incertidumbres en un análisis de fiabilidad estructural dependiente del tiempo, con el fin de estimar el comportamiento futuro y demostrar el cumplimiento de los objetivos de rendimiento expresados en términos de fiabilidad?
  • ¿Cómo se puede convencer a los ingenieros estructurales y al público en general de la necesidad de aceptar estos cambios en interés nacional (Cooke, 2015), incluso si en algunos casos los costes de los sistemas de infraestructura aumentan?

Problemas y desafíos en el análisis de datos climáticos para el diseño estructural

Las variables climáticas empleadas en los códigos estructurales se basan principalmente en datos históricos. Los vientos extratropicales, la nieve, la temperatura y las precipitaciones se analizan exclusivamente a partir de estos datos. En el caso de los huracanes, se integran datos históricos en un marco que modela su génesis en la cuenca del Atlántico Norte, su desarrollo hasta convertirse en huracanes plenamente formados que impactan en infraestructuras costeras y su disipación tras tocar tierra. Estos análisis suponen que las variables climáticas pueden evaluarse como si fueran estacionarias, es decir, que el pasado es representativo del futuro y que sus intensidades pueden determinarse en función de sus periodos de retorno. Los datos se han recopilado para fines distintos al diseño de edificaciones, como la aviación comercial, la hidrología local, la gestión de recursos hídricos y la agricultura, y generalmente abarcan menos de 100 años.

La mayoría de las variables climáticas incluidas en los códigos se suelen determinar ajustando el parámetro extremo anual a una distribución de probabilidad. Entre las distribuciones más comunes utilizadas para este propósito se encuentran la distribución Tipo I de valores máximos y la distribución generalizada de valores extremos. El periodo de retorno o intervalo medio de recurrencia de una carga se calcula como el recíproco de la probabilidad anual de que dicha carga se supere. El error de muestreo en la estimación de los eventos base de diseño en una secuencia estacionaria para periodos de retorno superiores a 100 años puede ser considerable. Sin embargo, las estimaciones de las medias de las muestras suelen ser razonablemente estables cuando se actualizan en intervalos típicos de 10 años con datos climáticos adicionales.

La suposición de estacionariedad en los datos no puede justificarse en un contexto de cambio climático (Pandey y Lounis, 2023), y el concepto de un evento asociado a un periodo de retorno específico no es aplicable en sentido estricto. El aumento (o disminución) de las variables climáticas, junto con la creciente incertidumbre en los modelos de predicción climática, especialmente a partir del año 2060, afectará a la forma de analizar y especificar los datos para fines de diseño estructural. Quizás lo más relevante sea el impacto que tendrá sobre la forma en que se comunicarán los peligros de diseño a la comunidad profesional de la ingeniería y a sus clientes (Cooke, 2015).  Ellingwood et al. (2024) recuerdan claramente la confusión generada por el concepto de periodo de retorno cuando se introdujo a finales de la década de 1960. El periodo de retorno se concibió como una herramienta para reconocer que el parámetro de carga es aleatorio y para definir indirectamente la probabilidad anual de que se supere su intensidad de diseño, sin necesidad de recurrir a probabilidades pequeñas que no eran habituales entre los ingenieros estructurales de esa época. Esto podría explicar por qué algunos investigadores climáticos han intentado presentar sus estimaciones de parámetros utilizando el concepto de periodo de retorno (Ribereau et al., 2008; Salas y Obeysekera, 2014). Este problema requiere una reflexión cuidadosa al tratar con un clima cambiante, donde las probabilidades anuales no son constantes a lo largo de la vida útil de una estructura.

El crecimiento proyectado de las variables climáticas y sus incertidumbres más allá del año 2060 indica que será necesario desarrollar métodos para gestionar la incertidumbre epistémica -se refiere a la incertidumbre del modelo- en la estimación de parámetros, un aspecto que no se había tenido en cuenta previamente al estimar las variables climáticas para desarrollar códigos estructurales. Aunque la precisión de las técnicas generales de pronóstico climático ha mejorado gracias a la recopilación continua de datos, los modelos climáticos actuales son más capaces de predecir el impacto del cambio climático sobre la temperatura y las precipitaciones que sobre fenómenos como inundaciones, nevadas y vientos. Esto resulta problemático a la hora de considerar los niveles de probabilidad apropiados para el análisis de seguridad estructural.

Las futuras investigaciones podrían centrarse en el desarrollo de modelos más precisos para cargas climáticas específicas, como ciclones tropicales o sequías prolongadas, que aún presentan elevadas incertidumbres en sus proyecciones. Además, sería valioso explorar la aplicación de estos principios a sistemas de infraestructura emergentes, como redes de energía renovable o tecnologías de transporte resilientes. Por último, se sugiere investigar métodos para integrar datos climáticos en tiempo real en el diseño y seguimiento de infraestructuras, fomentando un enfoque dinámico y adaptable al cambio climático.

En resumen, los códigos estructurales establecen los criterios necesarios para diseñar infraestructuras capaces de resistir eventos climáticos como tormentas, nieve e inundaciones, y se actualizan periódicamente para reflejar los avances científicos y tecnológicos. Sin embargo, el cambio climático plantea un reto significativo, ya que altera las condiciones climáticas de manera impredecible, lo que hace que la suposición de estacionariedad que hasta ahora ha guiado el diseño estructural sea obsoleta. Este artículo explora cómo los códigos estructurales han evolucionado hacia un diseño basado en estados límite y la necesidad urgente de ajustar los métodos de análisis de riesgos ante la creciente incertidumbre climática. Además, se analizan los problemas derivados del uso exclusivo de datos históricos para modelar cargas climáticas y las dificultades que plantea el cambio climático a la hora de predecir eventos extremos. Finalmente, se destaca la necesidad de desarrollar nuevos modelos y enfoques analíticos que garanticen la seguridad de las infraestructuras en un entorno climático en constante cambio.

Os dejo un mapa conceptual sobre las reflexiones anteriores.

Referencias:

ASCE (2015). Adapting infrastructure and civil engineering practice to a changing climate. Committee on Adaptation to a Changing Climate. American Society of Civil Engineers.

ASCE (2018). Climate-resilient infrastructure: Adaptive design and risk management. Reston, VA: Committee on Adaptation to a Changing Climate. American Society of Civil Engineers.

Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change5(1), 8-10.

Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.

García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures145, 381-391.

Pandey, M. D., & Lounis, Z. (2023). Stochastic modelling of non-stationary environmental loads for reliability analysis under the changing climate. Structural Safety103, 102348.

Ribereau, P., Guillou, A., & Naveau, P. (2008). Estimating return levels from maxima of non-stationary random sequences using the Generalized PWM method. Nonlinear Processes in Geophysics15(6), 1033-1039.

Salas, J. D., & Obeysekera, J. (2014). Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. Journal of hydrologic engineering19(3), 554-568.

Tye, M. R., & Giovannettone, J. P. (2021, October). Impacts of future weather and climate extremes on United States infrastructure: Assessing and prioritizing adaptation actions. Reston, VA: American Society of Civil Engineers.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

DANA 2024. Causas, consecuencias y soluciones

En el marco del Observatorio de la Inversión en Obra Pública, el Colegio de Ingenieros de Caminos, Canales y Puertos celebró el 2 de diciembre de 2024, la jornada «DANA 2024: causas, consecuencias y soluciones».

Durante la sesión, se analizó el desastre natural que asoló la Comunidad Valenciana, Castilla-La Mancha y Andalucía desde un punto de vista técnico. Miguel Ángel Carrillo, presidente del Colegio, también realizó una declaración institucional sobre la DANA.

A continuación os dejo el vídeo del acto celebrado, un resumen y un mapa conceptual del mismo. Espero que os sea de interés.

Resumen detallado del vídeo: DANA 2024. Causas, consecuencias y soluciones

El vídeo analiza la jornada dedicada al desastre natural DANA 2024, un fenómeno extremo que afectó gravemente a Valencia, y explora las causas, consecuencias y posibles soluciones desde diversas perspectivas técnicas y sociales. Organizada por el Colegio de Ingenieros de Caminos, esta jornada tiene como objetivo generar conocimientos prácticos y estratégicos para prevenir y mitigar futuros desastres similares. A lo largo de la jornada, expertos en ingeniería, planificación urbana y gestión ambiental reflexionan sobre la importancia de la planificación hidrológica, la resiliencia urbana y la reconstrucción sostenible.


Introducción y contexto inicial

[00:21]
El evento comienza con una introducción realizada por el Presidente del Colegio, Miguel Ángel Carrillo, donde detallada el desastre de la DANA de 2024, consideradolo uno de los más devastadores de Valencia en el último siglo. La jornada se organizó para analizar en profundidad las causas y consecuencias de este fenómeno y proponer soluciones basadas en la experiencia y el conocimiento técnico. El Colegio de Ingenieros de Caminos resaltó la necesidad de desarrollar respuestas integrales a las tragedias y pérdidas humanas, materiales y económicas derivadas de la catástrofe. Además, se hizo hincapié en que este tipo de análisis es crucial para fortalecer la capacidad de prevención y respuesta ante fenómenos climáticos extremos, especialmente en una región como Valencia, que es particularmente vulnerable al cambio climático.


Importancia de la evaluación in situ

[41:22]
El vídeo destaca la importancia de evaluar directamente las zonas afectadas por desastres naturales. Según los expertos, estar presente en el lugar del desastre permite observar de primera mano los daños, lo que es crucial para comprender la magnitud del problema y priorizar soluciones efectivas. Javier Machí, decano de la Demarcación de Valencia, comparte su experiencia personal al inspeccionar los daños sufridos en su comunidad y describe cómo estas visitas le permitieron identificar puntos críticos que requerían intervenciones inmediatas. Asimismo, se expresa una preocupación generalizada por el riesgo de que, con el tiempo, las huellas del desastre desaparezcan sin que se hayan documentado y aprendido las lecciones esenciales. Según los expertos, este olvido limitaría la capacidad de prevenir futuros eventos similares.


Impacto de las intensas lluvias y los desbordamientos

[01:22:46]
El análisis técnico de las lluvias torrenciales que caracterizaron el evento la DANA 2024 revela cifras impactantes. Para ilustrar la magnitud de las precipitaciones, que superaron ampliamente los promedios anuales en un corto periodo de tiempo, se utilizaron mapas de isoyetas. Uno de los ejemplos más notables fue la crecida del río Ojos de Moya, que provocó graves inundaciones en localidades como Utiel y afectó al río Magro. Estos desbordamientos pusieron de manifiesto las limitaciones de las infraestructuras existentes para manejar lluvias de esta intensidad. Además, se resaltó la relación directa entre este tipo de fenómenos meteorológicos extremos y el cambio climático, lo que obliga a reconsiderar la planificación y gestión de los recursos hídricos en la región.


Renaturalización y soluciones medioambientales

[02:04:11]
Una de las soluciones propuestas durante la jornada fue la renaturalización de los cauces fluviales para mitigar el impacto de las inundaciones. Este enfoque busca restaurar el equilibrio natural de los ecosistemas fluviales, lo que no solo reduce el impacto ambiental, sino que también mejora la capacidad de desagüe en zonas críticas. Sin embargo, en áreas urbanas densamente pobladas, las limitaciones espaciales obligan a adoptar medidas más drásticas, como la reforestación estratégica y la construcción de micropresas. También se mencionó un plan implementado en 2006 que incluyó el desvío de ciertos cauces para proteger ecosistemas vulnerables. Algunos expertos señalaron que estas medidas podrían requerir sacrificar áreas agrícolas para crear corredores verdes que reduzcan el riesgo de inundaciones, lo que ha abierto un debate sobre las prioridades entre la sostenibilidad ambiental y la producción agrícola.


Organización de la jornada y reconstrucción

[02:46:17]
La jornada contó con una notable participación presencial y virtual, lo que refleja el interés público y técnico en abordar las consecuencias de la DANA de 2024. En la tercera sesión, los ponentes debatieron sobre las inversiones necesarias para la reconstrucción de las zonas afectadas, haciendo hincapié en la solidaridad con las víctimas. En esta sesión se reunieron representantes de sectores clave, como la ingeniería, la construcción y la banca, que ofrecieron perspectivas complementarias sobre cómo financiar y ejecutar proyectos de reconstrucción. También se hizo hincapié en la importancia de coordinar esfuerzos entre diferentes actores para garantizar una recuperación eficiente y sostenible que no solo repare los daños, sino que también fortalezca la resiliencia de las comunidades.


Infraestructura hidráulica y cambio climático

[03:26:58]
Se hizo hincapié en la necesidad de realizar inversiones significativas en infraestructura hidráulica para hacer frente a los desafíos que plantea el cambio climático. Según los datos presentados, solo se ejecuta actualmente el 30 % de los planes hidrológicos en España, lo que deja un amplio margen para la mejora. Los expertos hicieron hincapié en la necesidad de desarrollar un proyecto nacional que destine suficientes recursos a la protección contra inundaciones. La colaboración público-privada también se identificó como un componente clave para financiar y ejecutar proyectos complejos, como encauzamientos y presas de laminación, que son esenciales para proteger a las comunidades en riesgo.


Planificación hidrológica y ordenación territorial

[04:08:21]
En este segmento, se destacó que una de las lecciones más importantes de la DANA 2024 es la necesidad de una planificación hidrológica y una ordenación territorial más efectivas. En una mesa redonda, expertos analizaron las causas y consecuencias del desastre, así como las acciones necesarias para la reconstrucción. Los ponentes hicieron hincapié en que, además de reparar las infraestructuras dañadas, es fundamental planificar a largo plazo para prevenir desastres futuros. Se debatió sobre cómo la ingeniería, en combinación con una ordenación territorial adecuada, puede reducir significativamente los riesgos asociados a fenómenos extremos.


Resiliencia urbana y gestión estratégica

[04:49:46]
La jornada concluyó con un análisis sobre la importancia de la resiliencia urbana en la gestión del territorio. Este concepto, que implica la capacidad de las ciudades para adaptarse y recuperarse de los desastres, se ha convertido en una prioridad global. Se mencionó el caso de Barcelona, que forma parte de una red internacional de ciudades resilientes y constituye un ejemplo de buenas prácticas. También se reflexionó sobre el Plan Sur, una ley que inicialmente buscaba coordinar estrategias urbanas en España, pero que ha perdido impulso en los últimos años. Los expertos hicieron un llamamiento para adoptar una visión integral y a largo plazo que permita a las ciudades hacer frente a los desafíos del cambio climático, al tiempo que se fomenta la responsabilidad ciudadana en la gestión del territorio.


Conclusión general

El vídeo destaca que la DANA 2024 no solo es una tragedia climática, sino también una oportunidad para reflexionar y actuar. Las propuestas abarcan desde soluciones técnicas, como la renaturalización y mejora de infraestructuras, hasta enfoques estratégicos, como la planificación hidrológica y el fortalecimiento de la resiliencia urbana. Los expertos coinciden en que hacer frente al cambio climático requerirá un esfuerzo conjunto, inversiones significativas y un compromiso político y social continuado.

A continuación os dejo un mapa conceptual del contenido del vídeo.

 

El programa completo del acto fue el siguiente:

Descargar (PDF, 5.24MB)

Gestión del riesgo de inundación en infraestructuras críticas: estrategias y medidas de resiliencia

Las inundaciones suponen una amenaza significativa para las infraestructuras críticas (IC), como el suministro de electricidad, las telecomunicaciones, el agua potable, el tratamiento de aguas residuales y el gas. La gestión del riesgo de inundación en las infraestructuras críticas cobra mayor importancia en un contexto de cambio climático, en el que los eventos extremos son más frecuentes e intensos. Este informe aborda la gestión del riesgo de inundación en las infraestructuras críticas y expone medidas específicas para incrementar su resiliencia, la aplicación de modelos para evaluar el impacto de estos eventos y la implementación de estrategias para mejorar la capacidad de recuperación.

Infraestructuras críticas y el riesgo de inundación: marco de referencia

Las infraestructuras críticas son sistemas esenciales para el funcionamiento de una sociedad, que incluyen sectores clave como la energía, las telecomunicaciones, el agua y los servicios de saneamiento. Estos sectores son interdependientes y se organizan en redes complejas, por lo que una interrupción en uno de ellos puede desencadenar efectos en cascada que afecten a múltiples sistemas, comprometiendo la seguridad y el bienestar de la población. La gestión del riesgo de inundación (GRI) en estas infraestructuras es fundamental, pues permite reducir la vulnerabilidad y mejorar la capacidad de recuperación ante eventos adversos.

Papel de las infraestructuras hidráulicas en la gestión del riesgo de inundación

Las infraestructuras hidráulicas, como las presas, los tanques de tormenta, las canalizaciones y los corredores verdes, desempeñan un papel crucial en la gestión de inundaciones y en la protección de las infraestructuras críticas (IC). Estas infraestructuras ayudan a gestionar el flujo de agua y evitan que las lluvias torrenciales y las crecidas de los ríos afecten directamente a las IC y a las áreas urbanas densamente pobladas.

  1. Presas y embalses: Estas estructuras permiten almacenar grandes volúmenes de agua y controlar el caudal de los ríos, además de regular el flujo hacia áreas vulnerables. Durante una tormenta, las presas pueden retener el exceso de agua y liberarla de forma gradual una vez que los niveles han disminuido, lo que reduce el riesgo de desbordamientos y minimiza el impacto aguas abajo.
  2. Tanques de tormenta: Son estructuras de almacenamiento subterráneo que recogen el agua de lluvia durante eventos intensos. Actúan como amortiguadores temporales, evitando que el sistema de alcantarillado se sature y se reduzca el riesgo de inundaciones en las áreas urbanas. Posteriormente, el agua acumulada puede liberarse de manera controlada hacia los sistemas de tratamiento o directamente a los cuerpos de agua cuando el caudal ha disminuido.
  3. Canalizaciones y sistemas de drenaje: Canalizar los ríos y desarrollar sistemas de drenaje bien planificados es esencial para redirigir el agua de inundación de manera segura, reduciendo la velocidad del flujo y mitigando el riesgo de erosión y daños estructurales en las áreas urbanas..
  4. Corredores verdes y zonas de retención natural: Estos espacios, a menudo ubicados en áreas urbanas o suburbanas, están diseñados para absorber y retener el exceso de agua de lluvia, y funcionan como «esponjas» naturales que reducen el caudal de agua que llega a los sistemas de alcantarillado. Además, estas zonas verdes actúan como amortiguadores, reteniendo el agua y liberándola lentamente, lo cual es particularmente útil para proteger infraestructuras sensibles a las inundaciones.
  5. Áreas de infiltración y pavimentos permeables: En las ciudades, los pavimentos permeables y las áreas de infiltración permiten que el agua de lluvia penetre en el suelo, recargando los acuíferos y reduciendo la escorrentía superficial. Esto alivia la presión sobre los sistemas de drenaje y evita que el agua llegue rápidamente a las áreas de IC, lo que disminuye el riesgo de inundación.

Ciclo de gestión de riesgos de desastres (GRD) en infraestructuras críticas

El proceso de GRI en IC suele estructurarse en cinco fases, que permiten implementar medidas específicas en cada etapa:

  1. Preparación: Incluye todas las acciones de planificación y recursos necesarios para reducir el impacto de las inundaciones, incluyendo la incorporación de infraestructuras hidráulicas y la capacitación del personal.
  2. Prevención y mitigación: Consiste en la implementación de infraestructuras hidráulicas, medidas de control y sistemas de drenaje para minimizar la vulnerabilidad de las IC frente a las inundaciones.
  3. Impacto: Se refiere a la capacidad de las infraestructuras para soportar los efectos de una inundación y a cómo estas protegen a las IC regulando el flujo de agua.
  4. Respuesta: Acciones de emergencia implementadas para reducir los daños y restaurar los servicios críticos.
  5. Recuperación y rehabilitación: Estrategias para devolver a las IC su estado funcional o mejorado, integrando lecciones aprendidas y mejorando la infraestructura para incrementar su resistencia a futuros eventos.

Impacto de las inundaciones en las infraestructuras críticas y la función de las infraestructuras hidráulicas

Las infraestructuras críticas, al depender de una red de servicios interconectados, son especialmente vulnerables a las inundaciones. Las infraestructuras hidráulicas desempeñan un papel esencial en la mitigación de estos efectos, ya que protegen los sistemas de IC de daños directos o indirectos:

  • Electricidad: El contacto con el agua puede provocar cortocircuitos, daños en estaciones de transformación y la interrupción del suministro a gran escala. Esto no solo afecta al servicio eléctrico, sino que también genera riesgos para la salud debido a la posibilidad de descargas eléctricas en áreas inundadas.
  • Telecomunicaciones: La infraestructura de telecomunicaciones incluye componentes activos (como nodos de red y antenas) que dependen de la electricidad y, por tanto, son altamente vulnerables a las interrupciones de suministro eléctrico. La interrupción de las comunicaciones complica la coordinación de emergencias y la respuesta rápida.
  • Suministro de agua: Las inundaciones pueden introducir contaminantes en el sistema de suministro de agua, especialmente en instalaciones de captación de agua cercanas a ríos u otras fuentes de agua superficial. Además, los sistemas de bombeo pueden verse interrumpidos, lo que afecta a la presión y la calidad del agua suministrada.
  • Tratamiento de aguas residuales: Este sector es especialmente vulnerable, ya que las inundaciones pueden dañar las plantas de tratamiento y provocar que las aguas residuales no tratadas se liberen al medio ambiente, con consecuencias ambientales y para la salud pública.
  • Gas: Aunque los sistemas de tuberías de gas suelen estar más protegidos, las estaciones de regulación y control pueden verse afectadas por las inundaciones, lo que interrumpiría el servicio y supondría posibles riesgos de seguridad.

Estrategias y medidas de resiliencia en la gestión del riesgo de inundación

Una estrategia integral de resiliencia frente a las inundaciones para infraestructuras críticas abarca una combinación de medidas estructurales y no estructurales. Estas medidas se estructuran de acuerdo con el ciclo de gestión del riesgo de desastre, como se detalla a continuación:

1. Preparación

La fase de preparación incluye la planificación y el equipamiento para mejorar la respuesta ante una emergencia. Algunas medidas clave son:

  • Planes de contingencia: Crear planes detallados para responder a situaciones de emergencia, incluyendo la designación de roles y responsabilidades para cada tipo de infraestructura.
  • Almacenamiento de equipos de emergencia: Disponer de generadores, bombas y otras unidades de repuesto listas para usar en caso de interrupciones.
  • Entrenamiento y simulacros: Capacitar al personal para que lleve a cabo los planes de emergencia y realizar simulacros periódicos de inundación.
  • Monitoreo y colaboración meteorológica: Establecer una estrecha colaboración con los servicios meteorológicos para monitorizar el riesgo de inundaciones en tiempo real, utilizando sistemas avanzados de alerta.

2. Prevención y mitigación

Las medidas de prevención y mitigación incluyen la infraestructura necesaria para controlar el flujo de agua y proteger las IC:

  • Construcción de infraestructuras resilientes: Elevar o construir instalaciones en áreas con menor riesgo de inundación, y utilizar materiales resistentes al agua en instalaciones críticas.
  • Barreras físicas: Instalar barreras móviles o permanentes alrededor de infraestructuras clave para protegerlas de las aguas de inundación.
  • Redundancia de sistemas: Desarrollar redundancias en la red para que, si un componente falla, otros puedan compensar la pérdida de servicio.
  • Planificación territorial y zonificación: Garantizar que las infraestructuras críticas se sitúen fuera de las zonas de alto riesgo de inundación, siempre que sea posible.

3. Impacto

La fase de impacto contempla la reducción de los efectos de una inundación mediante infraestructuras hidráulicas que controlen y disminuyan el caudal en zonas urbanas.

  • Gestión de flujos con presas y embalses: Control de la liberación de agua en embalses, asegurando que no se libere de manera repentina y que el flujo se distribuya para minimizar el impacto en las áreas críticas.
  • Desviación del flujo en canalizaciones: Redirigir el agua de inundación mediante canalizaciones y drenajes que la alejen de áreas vulnerables, como plantas de tratamiento y subestaciones eléctricas.
  • Evaluación de vulnerabilidad: Identificar los puntos más débiles en las infraestructuras para priorizar las medidas de protección y mitigación.
  • Medición y control de los niveles de agua: Implementar sensores para controlarlos en tiempo real, lo que permite respuestas más informadas y rápidas.

4. Respuesta

La respuesta es clave para minimizar el tiempo de interrupción de los servicios críticos y reducir los posibles daños adicionales. Las medidas que se deben tomar en esta etapa son:

  • Despliegue de unidades de reemplazo: Utilizar generadores móviles, bombas y sistemas de comunicación alternativos para restaurar  temporalmente los servicios mientras se repara la infraestructura dañada.
  • Prioridades en la restauración: Establecer listas de prioridades para el despliegue de recursos en las áreas de mayor impacto y donde se vean afectadas poblaciones vulnerables.
  • Comunicación pública: Informar a la comunidad sobre las interrupciones y los tiempos estimados de restauración, ofreciendo recomendaciones de seguridad.

5. Recuperación y rehabilitación

La fase de recuperación y rehabilitación se centra en restaurar los servicios de infraestructura de manera eficaz y reforzar su resiliencia futura. Las medidas en esta etapa incluyen:

  • Reparación y sustitución de componentes dañados: Restablecer los servicios lo antes posible mediante la reparación de las instalaciones dañadas y la sustitución de componentes.
  • Evaluación posterior al evento: Realizar un análisis detallado del impacto de la inundación y de la eficacia de las medidas implementadas, documentando lecciones aprendidas para mejorar los planes futuros.
  • Mejoras en la infraestructura: Donde sea posible, aplicar el principio de «reconstruir mejor», introduciendo mejoras en la infraestructura para aumentar su resistencia frente a futuros eventos.
  • Revisión y mantenimiento de las infraestructuras hidráulicas: Evaluar el estado de las presas, los tanques de tormenta y los sistemas de drenaje, y realizar mejoras en función de los eventos recientes.
  • Evaluación de la eficacia de las medidas implementadas: Análisis del impacto de las infraestructuras hidráulicas en la contención del flujo y ajuste del sistema de almacenamiento y drenaje según los datos recopilados.

Modelado del riesgo y evaluación de medidas hidráulicas

Para optimizar la planificación de la resiliencia, el modelado de redes de infraestructura crítica permite evaluar el impacto potencial de las inundaciones y probar diferentes medidas de mitigación. Este tipo de modelado incluye:

  • Análisis de impacto en redes: Representación de las interdependencias entre sectores críticos mediante modelos de red que simulan cómo los fallos en un sector pueden afectar a otros.
  • Evaluación de vulnerabilidades: Determinar los componentes más sensibles a las inundaciones dentro de cada red, como estaciones de bombeo o transformadores eléctricos, para priorizar su protección.
  • Simulación de medidas de resiliencia: Implementar simulaciones que muestran cómo diferentes medidas (como barreras de contención o sistemas de redundancia) pueden reducir los daños y acelerar la recuperación.
  • Cálculo de riesgo poblacional: Integrar datos de densidad poblacional para cuantificar el impacto de las interrupciones en términos de personas afectadas y tiempo de recuperación, lo que facilita la toma de decisiones informadas para la implementación de medidas.
  • Simulación de impacto y respuesta: Permite simular diferentes escenarios de inundación y evaluar la eficacia de las infraestructuras hidráulicas para proteger las IC, comparando opciones de almacenamiento, liberación controlada y desviación de agua.
  • Optimización del sistema de retención y almacenamiento: Determina la cantidad óptima de agua que debe almacenarse en embalses y tanques de tormenta para minimizar el riesgo de desbordamiento y daños a las IC.

Desafíos y recomendaciones para la resiliencia ante inundaciones

La gestión del riesgo de inundación en infraestructuras críticas plantea varios desafíos, entre los cuales se encuentran:

  • Interdependencias complejas: La dependencia mutua entre diferentes sectores hace que el fallo en uno de ellos pueda generar efectos en cascada que agraven el impacto global.
  • Cambio climático y eventos extremos: La mayor frecuencia e intensidad de las inundaciones requieren que las infraestructuras se diseñen y operen considerando escenarios extremos.
  • Disponibilidad de datos: La falta de datos integrados y fiables sobre las características de las infraestructuras y su vulnerabilidad ante las inundaciones limita la precisión de los modelos y la planificación de resiliencia.

Para enfrentar estos desafíos, se recomienda:

  1. Fortalecer la colaboración intersectorial: Establecer redes de cooperación entre operadores de infraestructura crítica para mejorar la planificación y la respuesta.
  2. Integrar herramientas de predicción y alerta temprana: Aprovechar tecnologías avanzadas de monitoreo y modelado climático para anticipar inundaciones y activar respuestas más eficaces.
  3. Aumentar la inversión en infraestructura resiliente: Priorizar la construcción y adaptación de infraestructuras críticas con materiales y diseños capaces de soportar inundaciones.
  4. Desarrollar políticas de zonificación y regulación más estrictas: Promover la construcción fuera de zonas de riesgo y fomentar diseños urbanos que integren espacios de absorción de agua.

Conclusión

La gestión del riesgo de inundación en infraestructuras críticas es fundamental para la resiliencia de las ciudades y la seguridad de la población. Al implementar un enfoque integral basado en el ciclo de gestión del riesgo de desastre (GRD), es posible identificar y aplicar medidas específicas en cada fase, desde la preparación hasta la recuperación. Los modelos de red permiten evaluar y mejorar la capacidad de respuesta de las infraestructuras ante las inundaciones, y ayudan a los operadores y a los gobiernos a tomar decisiones informadas que minimicen el impacto de estos eventos. Al integrar infraestructuras hidráulicas, como presas, tanques de tormenta y zonas de retención natural, en el ciclo de gestión del riesgo de desastres, es posible aumentar la protección de los servicios esenciales y reducir el impacto de las inundaciones. Además, combinar infraestructuras hidráulicas con medidas de resiliencia específicas para cada sector refuerza la capacidad de respuesta y recuperación, minimizando los efectos en cascada y garantizando la continuidad de los servicios esenciales y el bienestar de la población.

Os dejo un domuento denominado “Principios para la infraestructura resiliente”, de Naciones Unidas. Espero que os resulte de interés.

Descargar (PDF, 909KB)

Este otro, del Ministerio para la Transición Ecológica, trata de la “Evaluación de la resiliencia de los núcleos urbanos frente al riesgo de inundación: redes, sistemas urbanos y otras infraestructuras”.

Descargar (PDF, 44.85MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Precipitación en ingeniería hidráulica: conceptos, medición y análisis

El cambio climático está transformando los patrones de precipitación en todo el mundo, y está aumentando tanto la frecuencia como la intensidad de los eventos extremos. Esto supone un gran desafío para la ingeniería y la gestión de los recursos hídricos, ya que las estructuras e infraestructuras se diseñan, por lo general, en función de periodos de retorno determinados, que son intervalos estimados de recurrencia de eventos como tormentas intensas o inundaciones. Estos periodos de retorno se calculan a partir de registros históricos, asumiendo que el clima permanece constante. Sin embargo, el cambio climático altera esa estabilidad histórica, lo que implica que las proyecciones de precipitaciones basadas en periodos de retorno tradicionales podrían ser insuficientes o imprecisas.

Es importante recordar que el periodo de retorno no es una predicción exacta de cuándo ocurrirá un evento, sino una probabilidad de ocurrencia. Un evento con un periodo de retorno de 100 años no significa que ocurrirá exactamente cada 100 años, sino que tiene una probabilidad del 1 % de suceder en cualquier año dado. En el contexto de un clima cambiante, esta probabilidad podría aumentar si los eventos extremos se vuelven más frecuentes y desafían los márgenes de seguridad para los que están diseñadas muchas infraestructuras.

Todo esto nos plantea la necesidad de adaptar los métodos de cálculo y planificación de periodos de retorno, incorporando datos actualizados y modelos que contemplen escenarios futuros, en vez de depender únicamente de registros pasados. Veamos, a continuación, qué es la precipitación en ingeniería hidráulica: conceptos, medición y análisis.

La precipitación es un fenómeno meteorológico esencial que alimenta los recursos hídricos y afecta directamente al diseño de obras civiles, especialmente a las relacionadas con el drenaje y el control de inundaciones. El objetivo de este artículo es explicar detalladamente qué es la precipitación, cómo se mide y analiza, y cómo se utiliza el concepto de periodo de retorno para planificar y mitigar los riesgos en las infraestructuras.

1. ¿Qué es la precipitación?

La precipitación se define como cualquier tipo de agua que cae desde la atmósfera a la superficie terrestre, incluyendo la lluvia, la nieve, el granizo y la llovizna. La medida de precipitación se suele expresar en milímetros (mm), lo que indica la altura de agua que se acumularía si no hubiese escorrentía ni infiltración en el suelo. Un valor de 1 mm de precipitación equivale a un litro de agua sobre un metro cuadrado de superficie.

La precipitación es crucial para el ciclo hidrológico y afecta a numerosos sistemas naturales y humanos, incluido el abastecimiento de agua potable, la agricultura y el diseño de infraestructuras de transporte y drenaje.

2. Métodos de medición de la precipitación

2.1. Pluviómetros

El pluviómetro es un dispositivo común para medir la cantidad de lluvia en un lugar específico. Se instala en el exterior y captura el agua de lluvia, midiendo la cantidad en milímetros. Los pluviómetros son esenciales para generar registros continuos de precipitación y permiten estimar los patrones anuales y mensuales, entre otros datos útiles para el análisis de lluvias extremas.

2.2. Pluviogramas y hietogramas

  • Pluviograma: Es un gráfico que muestra la acumulación de precipitaciones en función del tiempo. El eje vertical representa la altura de la precipitación acumulada, mientras que el horizontal muestra el tiempo. Esto permite visualizar cómo se acumula la lluvia durante un evento particular, como una tormenta.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.
  • Hietograma: Es un gráfico que representa la intensidad de la precipitación en un intervalo de tiempo determinado. A diferencia del pluviograma, el hietograma se centra en la tasa de precipitación (en mm/h). Esta información es crucial en ingeniería para analizar eventos de precipitación intensos y de corta duración, como las tormentas, que pueden provocar inundaciones y desbordes.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.

2.3. Redes de pluviometría y densidad de medición

Una red de estaciones pluviométricas permite recoger datos de precipitación en múltiples puntos de una región. La densidad de esta red es importante para obtener una representación precisa de la distribución espacial de la precipitación. Cuantas más estaciones pluviométricas haya, mayor será la precisión en la interpolación de datos y en el análisis de la variabilidad de la precipitación en áreas amplias.

3. Análisis de la distribución temporal de la precipitación

La distribución temporal de la precipitación se refiere a cómo cambia la intensidad de la lluvia a lo largo del tiempo. Para comprender estos cambios, en ingeniería se utilizan herramientas y modelos que ayudan a prever el comportamiento de la lluvia y su potencial impacto en las infraestructuras.

3.1. Curvas IDF: Intensidad-Duración-Frecuencia

Las curvas IDF (Intensidad-Duración-Frecuencia) son representaciones estadísticas que relacionan tres factores clave de la precipitación:

  • Intensidad (I): Cantidad de lluvia por unidad de tiempo (mm/h).
  • Duración (D): Tiempo durante el cual se mide la precipitación.
  • Frecuencia (F): Probabilidad de que se repita un evento similar en un periodo determinado.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.

Estas curvas se desarrollan a partir del análisis estadístico de eventos pasados de lluvia. En general, la probabilidad de que ocurra un evento de alta intensidad disminuye conforme aumenta la duración y el intervalo de retorno. Por ejemplo, una lluvia de alta intensidad en un periodo de retorno de 100 años es mucho menos frecuente que una lluvia moderada en el mismo intervalo.

3.2. Hietogramas de diseño

Los hietogramas de diseño son modelos simplificados que representan cómo se distribuye la intensidad de la precipitación durante un evento de diseño. En ingeniería, estos diagramas permiten estimar el volumen total de precipitación en un evento y prever el comportamiento de los sistemas de drenaje y almacenamiento de agua.

Algunos tipos de hietogramas de diseño son:

  • Hietograma rectangular: Representa una intensidad de precipitación constante durante toda la duración del evento.
  • Hietograma triangular: Muestra una distribución con un pico de intensidad en un momento específico, lo cual es más realista para muchas tormentas naturales.
  • Hietograma de bloques alternos: Descompone el evento en bloques de intensidad variable, alternando entre períodos de intensidad alta y baja, proporcionando una representación más detallada.

3.3. Importancia de las curvas IDF en el diseño de infraestructuras

Las curvas IDF son fundamentales para el diseño de infraestructuras de drenaje, canales y presas. Permiten calcular la capacidad de estas obras para gestionar caudales generados por eventos de lluvia extremos. Si no se realiza un análisis adecuado de estas curvas, las infraestructuras pueden ser vulnerables a desbordes y fallos durante eventos de precipitación intensa.

4. Análisis de la distribución espacial de la precipitación

La precipitación varía de un lugar a otro, especialmente en regiones con condiciones topográficas complejas, como montañas y valles. Para representar adecuadamente esta variabilidad en proyectos de ingeniería, se utilizan métodos de interpolación espacial para estimar la precipitación en puntos donde no hay mediciones directas.

4.1. Métodos de interpolación y promediación

  • Método de Thiessen: Divide el área de estudio en polígonos de influencia basados en la proximidad de las estaciones pluviométricas. Este método permite asignar una estimación de la precipitación a cualquier punto dentro de un polígono en función de los valores registrados en la estación más cercana.
  • Inverso de la Distancia: Calcula la precipitación en puntos no medidos al asignar mayor peso a las estaciones más cercanas. Este método es especialmente útil cuando la densidad de estaciones es baja, aunque no considera variaciones topográficas.

4.2. Factor de reducción areal

Para grandes áreas, como cuencas hidrográficas, es improbable que las precipitaciones se distribuyan uniformemente en toda la región. Por esta razón, se emplea un factor de reducción areal que disminuye la intensidad de la precipitación puntual al extrapolarla a áreas mayores. Este factor depende del tamaño de la cuenca y de las características meteorológicas de la región.

5. El periodo de retorno y su importancia en hidrología e ingeniería

El periodo de retorno es un concepto estadístico que define el tiempo promedio entre eventos extremos de una magnitud específica. En hidrología, este concepto es fundamental para evaluar la frecuencia y probabilidad de eventos como tormentas intensas o inundaciones.

5.1. Definición y cálculo del periodo de retorno

El periodo de retorno se define como:

donde P[X>x] es la probabilidad anual de que un evento de precipitación exceda un valor umbral x. Por ejemplo, si una tormenta tiene un periodo de retorno de 50 años, esto significa que hay un 2% de probabilidad de que ocurra en cualquier año específico.

5.2. Uso del periodo de retorno en el diseño de infraestructuras

En la práctica, los ingenieros diseñan infraestructuras de drenaje y almacenamiento de agua basándose en periodos de retorno específicos. Por ejemplo, una presa de retención puede construirse para soportar eventos de 100 años, lo que implica una probabilidad de fallo del 1 % cada año.

Este cálculo se ajusta a los requisitos de seguridad y tolerancia al riesgo de cada infraestructura, con el fin de minimizar las probabilidades de fallo, especialmente en áreas densamente pobladas o con activos económicos significativos.

5.3. Riesgo a largo plazo y el periodo de retorno

Aunque un periodo de retorno largo (como 100 años) sugiere una baja probabilidad de ocurrencia anual, es importante entender que, en periodos de tiempo prolongados, la probabilidad acumulada de que el evento ocurra aumenta. Para calcular el riesgo acumulado durante un periodo de N años, se usa la siguiente fórmula:

donde p=1/T  es la probabilidad anual del evento y es el periodo en años. Esto permite estimar la probabilidad de que un evento supere la capacidad de una infraestructura en un número de años especificado. Por ejemplo, el riesgo de que una estructura diseñada para un periodo de retorno de 100 años falle al menos una vez en un periodo de 50 años es de aproximadamente un 40 %. En la gráfica que dejo a continuación tenéis la probabilidad de que ocurra un evento en función del número de años y del periodo de retorno.

Riesgo y periodo de retorno. Elaboración propia.

Nota importante: Una infraestructura no falla exactamente a los 100 años si está diseñada para un periodo de retorno de 100 años. De hecho, su probabilidad es del 63 %. Incluso existe una probabilidad del 10 % de que falle a los 10 años de su construcción. Que te toque la Lotería de Navidad tiene una probabilidad del 0,001 %, pero de hecho, hay gente que le ha tocado la lotería varias veces seguidas. Por tanto, hay que ser cautos con la estadística.

6. Aplicación de la precipitación en el contexto del cambio climático

El cambio climático está afectando a los patrones de precipitación en todo el mundo, incrementando la frecuencia e intensidad de los eventos extremos. Este fenómeno plantea nuevos retos a los ingenieros, ya que las estructuras diseñadas en condiciones climáticas históricas pueden no ser adecuadas para las condiciones futuras.

Adaptar las infraestructuras al cambio climático implica revisar los periodos de retorno y los valores de las curvas IDF para tener en cuenta eventos más intensos o frecuentes. En este contexto, es fundamental contar con bases de datos a largo plazo y modelos predictivos que ayuden a simular condiciones futuras.

Conclusión

El análisis de la precipitación es crucial en la ingeniería hidráulica para prevenir y mitigar riesgos. Desde los métodos de medición y los análisis temporal y espacial, hasta el uso del periodo de retorno, estos conceptos permiten a los ingenieros diseñar infraestructuras resilientes. Dado el impacto creciente del cambio climático, la actualización y adaptación de estos métodos será cada vez más importante para garantizar la seguridad y la sostenibilidad de las infraestructuras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Participación en el Comité Científico de Congreso Internacional IALCCE2023

Tengo el placer de anunciar mi participación en el Comité Científico del IALCCE2023, Eighth International Symposium on Life-Cycle Civil Engineering, que tendrá lugar en el campus del Politécnico de Milán (Italia), entre el 11 y el 15 de junio. Los Presidentes de este congreso son los profesores Fabio Biondini y Dan Frangopol.

El objetivo de IALCCE 2023 es reunir toda la investigación de vanguardia en el campo de la Ingeniería Civil de Ciclo de Vida y avanzar tanto en el estado de la técnica como en el de la práctica en este campo. Este simposio ofrecerá a académicos, ingenieros, arquitectos, consultores, contratistas, autoridades públicas y responsables de la toma de decisiones de todo el mundo la oportunidad de mantenerse al día con los últimos avances en el campo de la Ingeniería Civil de Ciclo de Vida.

Los sistemas de estructuras civiles e infraestructuras son la columna vertebral de la sociedad moderna y uno de los principales motores del crecimiento económico y el desarrollo sostenible de los países. Por lo tanto, es una prioridad estratégica consolidar y mejorar los criterios, métodos y procedimientos para proteger, mantener y mejorar la seguridad, la solidez, la durabilidad, la funcionalidad y la resistencia de los sistemas de estructuras e infraestructuras críticas en condiciones de incertidumbre.

En este contexto, la ingeniería civil está experimentando un profundo cambio hacia una filosofía de diseño orientada al ciclo de vida para satisfacer la creciente demanda de las necesidades económicas, medioambientales, sociales y políticas, y para incorporar los nuevos problemas medioambientales, como los efectos del calentamiento global y el cambio climático. También es necesario esforzarse por colmar el vacío existente entre la teoría y la práctica y fomentar la incorporación de los conceptos de ciclo de vida en los códigos, normas y especificaciones de diseño estructural. Para ello, se promueve la investigación y las aplicaciones en el seno de la Asociación Internacional de Ingeniería Civil del Ciclo de Vida (IALCCE).

 

¿Es obligatorio calcular la huella de carbono en los proyectos de construcción?

Una pregunta que suelen hacerme es si es necesario el cálculo de la huella de carbono en la redacción de los proyectos de construcción. A estas alturas nadie duda de la importancia que tiene la emisión de gases de efecto invernadero. En el ámbito científico y técnico, la metodología del análisis del ciclo de vida de un producto está plenamente desarrollada. Sin embargo, la docencia de este tipo de técnicas en las enseñanzas universitarias no acaba de incorporarse plenamente en los programas curriculares. Voy a relatar brevemente lo que está ocurriendo a nivel legislativo para que veáis hacia dónde va este tema.

Todo ello viene porque el pasado 1 de abril de 2022 el Pleno del Consell aprobó el proyecto de Ley de Cambio Climático y Transición Ecológica de la Comunitat Valenciana. Se trata de una propuesta de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica que traza una hoja de ruta para reducir las emisiones y contribuir a luchar contra el cambio climático.

La nueva normativa establece un objetivo de reducción de emisiones del 40% para 2030 y conseguir la neutralidad en el horizonte del 2050. En cuanto al consumo de energía, el objetivo es disminuir al menos un 35,4% para 2030. En relación con la transición energética, el objetivo es que el 42% del consumo de energía provenga de fuentes renovables, también en 2030. Una de las diversas obligaciones que impone el nuevo texto legislativo es que, a partir del 1 de enero de 2025, todos los municipios de la Comunitat Valenciana con más de 5.000 habitantes estén obligados a calcular y registrar su huella de carbono.

Asimismo, este requisito parece ser cada vez más como una condición necesaria para poder acogerse a determinadas ayudas públicas. A modo de ejemplo, la Resolución de 16 de febrero de 2022, de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, por la que se convocan ayudas a los municipios de la Comunitat Valenciana para potenciar proyectos de lucha contra el cambio climático, para el ejercicio de 2022. Por su parte, las grandes y medianas empresas que operen en todo o parte de la Comunidad Valenciana estarán obligadas, de acuerdo con lo que se establezca reglamentariamente, a calcular y reconocer anualmente la correspondiente huella de carbono de sus actividades.

Este es un ejemplo, en el ámbito regional, de cómo se está imponiendo la evaluación de la huella de carbono en los ámbitos públicos y privados. En muchos más ámbitos y países se está legislando de una forma similar. Por tanto, y respondiendo a la pregunta planteada, la respuesta es que sí no es obligatorio calcular la huella de carbono en los proyectos, lo va a ser en el futuro próximo. Los Colegios Profesionales deberán estar atentos a estos cambios legislativos para exigir estos cálculos cuando se proceda al visado de los proyectos.

Como sabéis, nuestro grupo de investigación no solo está desarrollando la metodología para este cálculo en el ámbito ambiental y social, sino que está aplicando técnicas de decisión multicriterio para que el proyectista sea capaz de decidir la mejor de las opciones en el estudio de soluciones del proyecto. Además, para que estas técnicas sean efectivas, deben aplicarse sobre soluciones optimizadas.

Referencias:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimization. Structures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

VITORIO, P.C., Jr.; YEPES, V.; KRIPKA, M. (2022). Comparison of Brazilian Social Interest Housing Projects considering Sustainability. International Journal of Environmental Research and Public Health, 19(10):6213DOI:10.3390/ijerph19106213

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13599.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

PONS, J.J.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2020). Life cycle assessment of a railway tracks substructures: comparison of ballast and ballastless rail tracks. Environmental Impact Assessment Review, 85:106444. DOI:10.1016/j.eiar.2020.106444

MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. International Journal of Environmental Research and Public Health, 17(12):4488. DOI:10.3390/ijerph17124488

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, 209: 109968. DOI:10.1016/j.engstruct.2019.109968

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2020). Robust design optimization for low-cost concrete box-girder bridge. Mathematics, 8(3): 398. DOI:10.3390/math8030398

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556. DOI:10.1016/j.jclepro.2020.120556

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962. DOI:10.3390/ijerph17030962

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multicriteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803

SALAS, J.; YEPES, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8): 2191. DOI:10.3390/su11082191

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

KRIPKA, M.; YEPES, V.; MILANI, C.J. (2019). Selection of sustainable short-span bridge design in Brazil. Sustainability, 11(5):1307. DOI:10.3390/su11051307

SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216:607-623. DOI:10.1016/j.jclepro.2018.12.083

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:10.1016/j.eiar.2018.10.001

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:10.1016/j.jclepro.2018.08.177

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:10.1016/j.eiar.2018.05.003

PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:10.1016/j.jclepro.2018.04.268

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:10.1016/j.jclepro.2018.03.022

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:10.3390/su10030845

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:10.3390/su10030685

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:10.1016/j.jclepro.2017.12.140

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:10.1007/s00158-017-1653-0

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. DOI:10.1016/j.jclepro.2017.06.246

PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. DOI:10.1016/j.eiar.2017.02.004

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003

TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102. DOI:10.1016/j.jclepro.2017.01.100

ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295

GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI:10.1016/j.engstruct.2016.07.012

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the lifecycle of Chilean public infrastructure. Journal of Construction Engineering and Management, 142(5):05015020. DOI:10.1061/(ASCE)CO.1943-7862.0001099

TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridgesEngineering Structures, 92:112-122. DOI:10.1016/j.engstruct.2015.03.015

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013

TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. DOI:10.4067/S0718-915X2014000200006

TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, 2014, 524329. DOI:10.1155/2014/524329

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0

MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(6):420-432. DOI:10.1631/jzus.A1100304

YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26 (3):378-386. DOI:10.1061/(ASCE)CP.1943-5487.0000140

PAYÁ-ZAFORTEZA, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing. Engineering Structures, 31(7): 1501-1508. DOI: 10.1016/j.engstruct.2009.02.034

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dos trillones de átomos y las infraestructuras sostenibles

Va siendo habitual mi labor de divulgación en medios de comunicación, sobre todo de la radio. Este es el caso de Radio Nacional de España, donde David Sierra conduce un programa de divulgación científica denominado “Dos trillones de átomos”. Es tremendamente interesante, aunque se emite los domingos de 4:00 a 5:00 horas en la madrugada

En este programa, me realizaron una entrevista sobre las infraestructuras sostenibles, pero hablamos de muchas más cosas como la “dureza de los estudios de ingeniería de caminos”, la errónea visión de la construcción como “cultura del ladrillo”, la “internacionalización de las empresas constructoras españolas”, la “inteligencia artificial”, los “gemelos híbridos” y mucho más. Espero que os guste mi apuesta de la ingeniería como “cultura del bienestar”. Os dejo el podcast por si os interesa.

Sostenibilidad y resiliencia de las infraestructuras a través de la planificación multinivel

Acaban de publicarnos un artículo en la revista International Journal of Environmental Research and Public Health (revista indexada en el JCR) sobre la aplicación de la planificación multinivel como herramienta para mejorar la sostenibilidad y la resiliencia de las infraestructuras. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Se aplica una metodología novedosa de control jerárquico con múltiples objetivos para abordar la vulnerabilidad urbana, la mejora del estado de la red de carreteras y la minimización del costo económico como objetivos en un proceso de planificación resistente en el que tanto las acciones como su ejecución se planifican para un desarrollo controlado y sostenible. Basándose en el Sistema de Apoyo al Planeamiento Urbano, una herramienta de planificación desarrollada previamente, el sistema mejorado de apoyo al planeamiento ofrece una alternativa de planificación en la red de carreteras española, con el mejor equilibrio multiobjetivo entre optimización, riesgo y oportunidad. El proceso de planificación formaliza entonces la capacidad de adaptación local como la capacidad de variar la alternativa de planificación seleccionada dentro de ciertos límites, y el control del riesgo global como las obligaciones que deben cumplirse a cambio. Por último, mediante la optimización multiobjetivo, el método revela los equilibrios multiobjetivo entre la oportunidad local, el riesgo global y los derechos y deberes a escala local, proporcionando así una comprensión más profunda para una toma de decisiones mejor informada.

El artículo se ha publicado en una revista de alto impacto internacional, Q1 de la WOS, Impact Factor = 2,468 (2018), en acceso abierto, que se puede descargar desde la siguiente dirección: https://www.mdpi.com/1660-4601/17/3/962

Abstract

Resilient planning demands not only resilient actions, but also resilient implementation, which promotes adaptive capacity for the attainment of the planned objectives. This requires, in the case of multi-level infrastructure systems, the simultaneous pursuit of bottom-up infrastructure planning for the promotion of adaptive capacity, and of top-down approaches for the achievement of global objectives and the reduction of structural vulnerabilities and imbalances. Though several authors have pointed out the need to balance bottom-up flexibility with top-down hierarchical control for better plan implementation, very few methods have yet been developed with this aim, least of all with a multi-objective perspective. This work addressed this lack by including, for the first time, the mitigation of urban vulnerability, the improvement of road network condition, and the minimization of the economic cost as objectives in a resilient planning process in which both actions and their implementation are planned for a controlled, sustainable development. Building on Urban planning support system (UPSS), a previously developed planning tool, the improved planning support system affords a planning alternative over the Spanish road network, with the best multi-objective balance between optimization, risk, and opportunity. The planning process then formalizes local adaptive capacity as the capacity to vary the selected planning alternative within certain limits, and global risk control as the duties that should be achieved in exchange. Finally, by means of multi-objective optimization, the method reveals the multi-objective trade-offs between local opportunity, global risk, and rights and duties at local scale, thus providing deeper understanding for better informed decision-making.

Keywords:

Multi-scale assessment; hierarchical relational modeling; cascading impacts; adaptive capacity; infrastructure integrated planning; road network; decentralization optimization

Referencia:

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17:962; DOI:10.3390/ijerph17030962

Descargar (PDF, 4.49MB)

Entrevista sobre la investigación en optimización y toma de decisiones en puentes e infraestructuras viarias

Con motivo de mi visita a la Pontificia Universidad Católica de Valparaíso (Chile), me hicieron una entrevista sobre el trabajo realizado por nuestro grupo de investigación en la Universitat Politècnica de València.

Dicha entrevista la podéis encontrar en el siguiente enlace: http://icc.pucv.cl/noticias/investigador-de-la-universitat-politecnica-de-valencia-realiza-conferencia-sobre-optimizacion-y-toma-de-decisiones-en-puentes-e-infraestructuras-viarias

 

Desde mi blog agradezco tanto a la Escuela de Ingeniería en Construcción, como a la Escuela de Ingeniería Informática la invitación realizada, y en especial al profesor Matías Andrés Valenzuela Saavedra. Os paso a continuación un resumen de dicha entrevista y el reportaje fotográfico.

NOTICIAS

INVESTIGADOR DE LA UNIVERSITAT POLITÈCNICA DE VALÈNCIA REALIZA CONFERENCIA SOBRE OPTIMIZACIÓN Y TOMA DE DECISIONES EN PUENTES E INFRAESTRUCTURAS VIARIAS

  • Víctor Yepes Piqueras es Doctor Ingeniero de Caminos, Canales y Puertos; catedrático de Universidad en el área de Ingeniería de la Construcción, y fue invitado por las Escuelas de Ingeniería Informática e Ingeniería en Construcción a dictar estas conferencias.

Tanto en Valparaíso, como en Santiago, el ingeniero Dr. Víctor Yepes fue invitado a dictar la Charla “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”.

La primera actividad se llevó a cabo el miércoles 22 en el Aula Mayor del Edificio IBC de la Facultad de Ingeniería, mientras que en Santiago se efectuó el jueves 23 en el Centro de Estudios Avanzados y Extensión PUCV, asistiendo en ambas jornadas, un gran número de participantes, entre quienes se encontraban estudiantes, profesionales de la industria, académicos e investigadores.

“Gracias a la invitación de la PUCV, he tenido la oportunidad para venir a mostrar y explicar las líneas de investigación que en la Universitat Politècnica de València, en particular, desde la Escuela de Ingeniería de Caminos, Canales y Puertos, estamos haciendo en lo que se refiere a la optimización de infraestructuras, específicamente, de puentes”, refiere el Dr. Yepes en relación con su visita.

Durante sus conferencias, el académico centró sus presentaciones en la investigación que lleva realizando por más de 10 años, y cuyo objetivo es apoyar a las administraciones públicas, y sobre todo, a los profesionales que se dedican al diseño de puentes y este tipo de infraestructura, para que sean capaces de acertar en las decisiones que tienen que tomar a la hora del diseño.

“No estamos hablando solo de hacer puentes o carreteras más económicas, sino también que estas supongan un mínimo impacto ambiental y que, además, supongan un impacto social favorable, lo cual es algo que no se ha estudiado mucho hasta ahora y que creo que es una de las novedades que estamos aportando al mundo de la investigación”, señaló sobre la materia.

Por otra parte, señaló la importancia que reviste difundir estas líneas de investigación, puesto “es muy posible que existan líneas conjuntas de colaboración, y podamos aunar las cosas que estamos haciendo nosotros desde España, con otras que desde luego son muy importantes, y están desarrollando en esta Universidad”.

Además de dichas conferencias, el Dr. Yepes complementó su visita con una agenda de reuniones con académicos de la PUCV, profesionales y representantes del Ministerio de Obras Públicas.