¿Más allá del ladrillo? El sorprendente futuro de la vivienda social sostenible

Introducción: El reto de los 1 600 millones.

La crisis de la vivienda no es solo una estadística, sino una emergencia humanitaria. Según UN-Habitat, más de 1 600 millones de personas carecen de una vivienda adecuada y, para cerrar esta brecha, el mundo debe enfrentarse al titánico reto de construir 96 000 viviendas al día hasta el año 2030. Este desafío tiene un rostro concreto en distritos como Carabayllo, en Lima (Perú), una zona de expansión urbana acelerada donde la necesidad de soluciones rápidas suele chocar con la falta de recursos y la precariedad constructiva.

Ante este panorama, surge la pregunta central: ¿es posible construir viviendas económicas y rápidas que también respeten el medio ambiente y la dignidad de quienes las habitan? Para responderla, la ciencia del urbanismo recurre hoy a métodos avanzados de evaluación, como el análisis del ciclo de vida (LCA), el análisis de costes del ciclo de vida (LCC) y el análisis del ciclo de vida social (S-LCA). Los resultados de aplicar estas herramientas en el contexto peruano revelan que el futuro de la vivienda social no radica en el ladrillo tradicional, sino en la construcción industrializada.

Punto 1: el acero ligero (LSF) es el nuevo referente en materia de sostenibilidad.

En la búsqueda del sistema constructivo ideal, el acero ligero, también conocido como Light Steel Frame (LSF), ha destronado a las opciones convencionales. Su éxito se debe a su equilibrio casi perfecto entre peso, resistencia y sostenibilidad. Al ser un sistema de baja intensidad material, el LSF utiliza los recursos de forma quirúrgica, minimizando el desperdicio que abunda en las obras tradicionales.

Desde el punto de vista financiero, el LSF no solo es competitivo, sino también transformador: reduce el coste inicial de construcción en un 15 % y los costes de fin de vida (demolición y reciclaje) en un asombroso 77 % en comparación con la mampostería confinada (RCF-M). Al ser altamente reciclable, el acero hace que el edificio, al final de su vida útil, no se convierta en escombro, sino en un recurso.

«El Life Cycle Steel Frame (LSF) ha obtenido la máxima puntuación en sostenibilidad en todas las categorías».

Punto 2: lo social ya no es secundario (pesa un 40 %).

Quizás el hallazgo más revolucionario de la investigación es que la sostenibilidad ya no se mide solo en toneladas de CO₂. Los indicadores sociales representaron casi el 40 % del peso total (38,93 %) en la toma de decisiones, superando por primera vez a los factores económicos y ambientales.

Este estudio introduce una métrica basada en el factor humano: las horas de riesgo medio (MRH). En lugar de limitarse a calcular el ahorro de energía, el análisis cuantifica la seguridad del trabajador, las condiciones laborales y el impacto en la comunidad local. Lo fascinante es que estos resultados son robustos: el análisis de sensibilidad (S-BWM) demostró que, independientemente de si el evaluador era un experto sénior con 35 años de experiencia o un especialista júnior, los datos señalaban de manera consistente al LSF como el camino más ético y eficiente.

Punto 3: La trampa del coste inicial frente al ciclo de vida.

En urbanismo sostenible, lo que hoy es barato puede resultar carísimo mañana. Existe una brecha crítica entre el presupuesto de obra y el LCC (costo del ciclo de vida) a 50 años. Aquí es donde entra en juego la funcionalidad (C9): no debemos considerar la vivienda social como un «refugio temporal», sino como un activo permanente que garantiza la dignidad y el patrimonio familiar.

Los sistemas pesados, como los paneles sándwich, pueden prometer rapidez, pero imponen cargas de mantenimiento y de demolición mucho más elevadas. Para evitar esta trampa, la evaluación debe considerar tres momentos:

  • Construcción: el gasto inmediato en materiales y mano de obra especializada.
  • Uso (mantenimiento): la inversión necesaria para que la casa sea habitable y segura (pintura, anticorrosión).
  • Fin de vida (EoL): el coste de «desaparecer» la estructura de forma responsable.

Punto 4: El «efecto dominó» del coste medioambiental.

Gracias al análisis causal DEMATEL, hemos descubierto que la sostenibilidad funciona como un juego de dominó. El coste de construcción es la pieza clave: el motor principal que impulsa el resto de los impactos.

La ciencia nos dice que no podemos mejorar la salud humana (C5), lo cual actúa como un criterio dependiente o «efecto» si simplemente nos enfocamos en indicadores sanitarios aislados. Para proteger la salud de las poblaciones urbanas, debemos «atacar» los impulsores causales: si optimizamos el coste inicial y la gestión de recursos desde el diseño, reduciremos inevitablemente la contaminación y el estrés ambiental que enferma a las ciudades décadas después.

Punto 5: El mito de que lo prefabricado siempre es mejor.

El estudio revela una ironía tecnológica. Los paneles sándwich con conexiones de pernos (LBSPS), que a primera vista parecen la cúspide de la innovación «prefabricada», ocuparon el último lugar en el ranking de sostenibilidad.

¿Por qué este sistema falló en el contexto de Lima? El análisis revela una paradoja: resultó un 20 % más costoso que la mampostería tradicional que pretendía reemplazar. El sistema se penalizó por una cadena de suministro local inmadura y la necesidad de una mano de obra extremadamente especializada. Esto debe servir de advertencia a los responsables de la toma de decisiones: la tecnología sin un marco institucional y un mercado local preparado es solo una solución teórica, no una realidad social.

Conclusión: una brújula para la política de vivienda.

No existe un sistema «perfecto», sino decisiones equilibradas basadas en datos. Mientras el LSF lidera la vanguardia, los muros de hormigón armado (RCW) se consolidan como la segunda opción: una alternativa económicamente sólida y viable en contextos donde la capacidad industrial del acero es limitada.

Como especialistas, nuestra misión es avanzar hacia procesos de evaluación que no sacrifiquen la calidad de vida en aras de la rapidez. Debemos comprender que cada ladrillo o cada perfil de acero es una decisión que afecta la salud y la economía de las generaciones futuras.

Ante el déficit global de vivienda, ¿estamos dispuestos a cambiar nuestra cultura constructiva para garantizar un hogar digno y sostenible para las generaciones futuras?

Aquí tienes una conversación en la que puedes escuchar argumentos sobre este trabajo.

En este vídeo puedes ver un resumen de las ideas más interesantes sobre este tema.

También os dejo un documento resumen, a modo de presentación.

Vivienda Social Sostenibilidad y Decisiones Integrales.pdf

 

Referencia:

LUQUE CASTILLO, X.; YEPES-BELLVER, L.; YEPES, V. (2026). Towards Sustainable Social Housing: An Integrative Life Cycle and Multi-Criteria ApproachSustainable Cities and Society, 137, 107164. DOI:10.1016/j.scs.2026.107164

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nuestro trabajo seleccionado entre los mejores de Engineering Structures (Edición vols. 342-345)

Nos complace compartir una excelente noticia: nuestro artículo Life-cycle environmental impact optimization of an RC-THVS composite frame for sustainable construction ha sido reconocido con el Featured Paper Award de la revista Engineering Structures, de Elsevier.

Este galardón distingue a un número muy reducido de trabajos que destacan por su excelencia científica, originalidad y relevancia en la revista. Por tanto, se trata de un reconocimiento de alto nivel al impacto y la calidad de la investigación realizada.

¿Qué es Engineering Structures?

Engineering Structures es una de las revistas internacionales de referencia en el ámbito de la ingeniería civil y estructural. Su objetivo principal es publicar investigaciones avanzadas, tanto teóricas como aplicadas, relacionadas con el análisis, el diseño, el comportamiento y la optimización de estructuras, incluidos puentes, edificios y sistemas estructurales innovadores. La revista hace especial hincapié en los enfoques modernos que integran la sostenibilidad, los nuevos materiales, los métodos computacionales y la evaluación del ciclo de vida.

En términos bibliométricos, Engineering Structures se sitúa en el primer decil (D1) del Journal Citation Reports (JCR) en el área de ingeniería civil, lo que significa que se encuentra entre el 10 % de las revistas con mayor impacto científico a nivel mundial en su campo.

El significado del Featured Paper Award

Recibir el Featured Paper Award implica que el artículo ha sido considerado especialmente relevante por el equipo editorial de la revista, no solo por su calidad metodológica, sino también por su contribución al avance del conocimiento y su interés para la comunidad científica internacional. En este caso, el trabajo aborda la optimización del impacto ambiental a lo largo del ciclo de vida de sistemas estructurales compuestos, lo que lo alinea con uno de los grandes retos actuales de la ingeniería: el desarrollo de infraestructuras más sostenibles y eficientes.

Este reconocimiento aumenta la visibilidad del trabajo publicado y destaca la importancia de integrar criterios ambientales y de sostenibilidad en el diseño estructural, un enfoque cada vez más necesario en el contexto de la transición ecológica del sector de la construcción.

Desde nuestro equipo, agradecemos este reconocimiento y esperamos que el artículo contribuya a seguir impulsando la investigación en ingeniería estructural sostenible y en el análisis del ciclo de vida.

Podéis leer el artículo de forma gratuita si accedéis a este enlace: https://www.sciencedirect.com/science/article/pii/S0141029625018528

Referencia:

Negrín, I., Kripka, M., & Yepes, V. (2025). Life-cycle environmental impact optimization of an RC-THVS composite frame for sustainable construction. Engineering Structures, 345, 121461. https://doi.org/10.1016/j.engstruct.2025.121461

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vivienda social sostenible: un enfoque integrador de ciclo de vida y evaluación multicriterio

Acaban de publicar un artículo nuestro en Sustainable Cities and Society, una de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. En este trabajo se propone un enfoque integrador basado en el ciclo de vida y en métodos de evaluación multicriterio para analizar la vivienda social sostenible. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo.

Los principales resultados revelan que el sistema Light Steel Frame (LSF) es la alternativa más sostenible, ya que logra un equilibrio superior entre la eficiencia en el uso de los recursos, la durabilidad y la reducción del mantenimiento. Un descubrimiento crucial es el papel de la dimensión social, que representó casi el 40 % del peso total en la evaluación, por encima de las dimensiones económica y medioambiental. El análisis causal identifica el coste de construcción, la funcionalidad y los agentes de la cadena de valor como los principales factores que condicionan el rendimiento sostenible del resto del sistema.

El artículo presenta un marco metodológico integrador que combina evaluaciones basadas en el ciclo de vida —análisis de ciclo de vida (LCA), análisis de coste del ciclo de vida (LCC) y análisis de ciclo de vida estocástico (S-LCA)— con técnicas avanzadas de decisión multicriterio: método mejor-peor (BWM), análisis DEMATEL difuso y análisis MARCOS. Esta integración permite incorporar ponderaciones de expertos, modelar relaciones causales entre criterios y sintetizar resultados frente a soluciones ideales o anti-ideales, lo que aumenta la transparencia en la priorización de alternativas constructivas. Este enfoque se ha aplicado a un caso real de vivienda social en Perú, en el que se han comparado cinco sistemas estructurales representativos: LSF, LBSPS, RCW, RCF-M y RCF-CP. El estudio ha proporcionado pruebas empíricas sobre los costes del ciclo de vida, los impactos ambientales y las prestaciones sociales que respaldan las decisiones de diseño y las políticas.

El estudio analiza cinco sistemas constructivos adaptados a contextos de urbanización rápida (específicamente en Lima, Perú), que van desde métodos convencionales hasta industrializados:

Entre las aportaciones metodológicas, la combinación de BWM con una agregación basada en credenciales profesionales reduce la carga de comparación y atenúa los sesgos en la agregación de juicios, mientras que la extensión difusa de DEMATEL permite identificar los criterios que funcionan como impulsores del sistema y los que actúan como receptores. Esta capacidad para distinguir entre causas y efectos permite aclarar qué palancas hay que modificar para lograr efectos amplificados en la sostenibilidad. Por último, la validación cruzada con otros métodos de MCDM y los ensayos de sensibilidad aumentan la confianza en la estabilidad de los resultados.

Discusión de resultados

Los análisis económicos muestran que, en un horizonte de 50 años y por metro cuadrado, los sistemas basados en acero ligero (LSF) tienen los menores costes totales de ciclo de vida, mientras que algunas alternativas prefabricadas, como el LBSPS, tienen los mayores costes de construcción. Estos datos implican que si solo se tiene en cuenta la inversión inicial, se pueden tomar decisiones subóptimas, ya que no se consideran el mantenimiento y el fin de vida.

En términos ambientales, la evaluación con ReCiPe (endpoint) sitúa al LSF como el sistema con el menor impacto agregado, principalmente debido a su menor intensidad material. Por el contrario, las soluciones con mayor presencia de hormigón y ladrillo presentan una carga superior, especialmente en la dimensión de recursos. Esta diferenciación pone de manifiesto la influencia del perfil material y del proceso de fabricación en la huella medioambiental de la vivienda y sugiere que, en la práctica profesional, se deben priorizar medidas que reduzcan la demanda de materiales energéticamente intensivos en la fase de fabricación.

La S-LCA revela una tensión entre la industrialización y la exposición social: las alternativas más industrializadas, como el LSF y el LBSPS, presentan mayores valores de exposición laboral y de funcionalidad exigente, mientras que las tipologías convencionales de hormigón muestran menores riesgos sociales, medidos en Medium Risk Hours. Este resultado indica que la adopción de sistemas industrializados exige prestar atención explícita a la gestión del trabajo, la formación y la coordinación de la cadena de suministro para evitar que los impactos negativos se transfieran al personal y a la comunidad.

La síntesis mediante MARCOS ubica a LSF como la alternativa mejor valorada en el escenario analizado, seguida de RCW y RCF-M. Los sistemas LBSPS y RCF-CP quedan en posiciones inferiores. Las pruebas de sensibilidad (variación de los pesos de ±15 %, escenarios de distancia de transporte y estratificación de expertos) muestran que el orden general se mantiene, lo que indica cierta robustez frente a perturbaciones razonables en los supuestos. Estos resultados permiten extraer una conclusión práctica: en contextos con características similares a las del caso estudiado, las soluciones ligeras industrializadas pueden mejorar la relación entre coste, impacto ambiental y rendimiento técnico, siempre que se gestionen adecuadamente los aspectos sociales y de ejecución.

Un aspecto metodológico de interés es la identificación de los criterios causales. La técnica DEMATEL identifica el coste de construcción, la funcionalidad y las interacciones con la cadena de valor como criterios que inciden en el resto del sistema, mientras que los indicadores ambientales, como la salud humana y la conservación de los ecosistemas, se presentan principalmente como efectos. Esto sugiere que las intervenciones en los costes de construcción y en la organización funcional pueden provocar mejoras indirectas en la sostenibilidad ambiental y social, lo cual resulta relevante al diseñar políticas y contratos que incentiven las prácticas integradas.

Futuras líneas de investigación

Una línea de trabajo inmediata consiste en ampliar la diversidad y el tamaño del panel de agentes consultados para captar las variaciones en las prioridades y las competencias profesionales. Esto permitiría evaluar la sensibilidad de las ponderaciones y mejorar la representatividad social del proceso. Otra opción es trasladar y recalibrar el marco a otros contextos geográficos y tipologías constructivas, como viviendas de mayor altura o equipamientos públicos, para evaluar la transferibilidad de la clasificación y de la estructura causal identificada en este estudio.

En el ámbito técnico, utilizar datos primarios de obras reales en lugar de bases de datos secundarias aumentará la fiabilidad de la evaluación del ciclo de vida (LCA) y del análisis del ciclo de vida (S-LCA) y mejorará la precisión de los modelos de coste del ciclo de vida (LCC). La incorporación de enfoques dinámicos, como la LCA dinámica o las simulaciones acopladas a plataformas BIM, puede facilitar las evaluaciones en etapas iniciales y permitir análisis de sensibilidad más detallados relacionados con la sustitución de componentes, las reparaciones y las evoluciones tecnológicas. Asimismo, explorar técnicas de optimización multiobjetivo que vinculen explícitamente las restricciones económicas con las metas ambientales y sociales podría proporcionar soluciones de diseño más operativas para promotores y organismos públicos.

Desde la perspectiva social, investigar intervenciones concretas de capacitación, reorganización de procesos y de contratos que reduzcan la exposición de los trabajadores a los sistemas industrializados aportará pruebas sobre cómo mantener los beneficios ambientales y económicos sin incrementar los impactos sociales. Por último, el estudio de la interacción entre políticas públicas, incentivos financieros y la adopción tecnológica ofrecerá información útil para diseñar instrumentos que favorezcan soluciones constructivas más equilibradas en el marco de los programas de vivienda social.

Conclusión

El estudio proporciona un marco metodológico replicable y sólido que combina la evaluación del ciclo de vida con técnicas multicriterio capaces de representar las interdependencias y la incertidumbre. Los resultados empíricos indican que, en el caso analizado, las soluciones ligeras industrializadas presentan ventajas en términos de coste y de huella ambiental, aunque se requieren medidas específicas para reducir los riesgos sociales derivados de su ejecución. La metodología y los resultados obtenidos sientan las bases para orientar las políticas y las decisiones de los proyectos y ponen de manifiesto la necesidad de ampliar los datos primarios, diversificar la muestra de expertos y conectar el análisis con herramientas digitales de diseño y gestión.

Referencia:

LUQUE CASTILLO, X.; YEPES-BELLVER, L.; YEPES, V. (2026). Towards Sustainable Social Housing: An Integrative Life Cycle and Multi-Criteria ApproachSustainable Cities and Society, 137, 107164. DOI:10.1016/j.scs.2026.107164

Dejo a continuación el artículo completo, ya que está publicado en abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Neutralidad de carbono: tres claves de las nuevas normas ISO

En el mundo de la sostenibilidad empresarial, términos como «neutralidad de carbono» y «cero neto» están en todas partes. Sin embargo, existe una gran confusión acerca de su verdadero significado y muchas empresas utilizan estos términos como una potente herramienta de marketing, a menudo sin un respaldo claro ni riguroso. Esta situación ha generado escepticismo y alimentado las acusaciones de greenwashing. Para aportar claridad a este panorama, la Organización Internacional de Normalización (ISO) ha publicado nuevas normas para otorgar rigor y credibilidad a las declaraciones climáticas. En concreto, la norma ISO 14068-1 sustituye y supera la PAS 2060 como punto de referencia anterior y proporciona un marco global más estricto. Este artículo desglosa los aspectos más relevantes de estas nuevas normas (ISO 14068-1 y la futura ISO 14060) de manera fácil de entender.

1. La jerarquía es inegociable: primero reducir, luego compensar.

El cambio más fundamental que introduce la norma ISO 14068-1 es el establecimiento de una jerarquía estricta para alcanzar la neutralidad de carbono. Se acabaron los atajos. La norma formaliza un principio de mitigación que prioriza la descarbonización intrínseca sobre las acciones compensatorias. La máxima prioridad y el primer paso obligatorio son la reducción de las emisiones de gases de efecto invernadero (GEI), tanto directas como indirectas, y el aumento de la eliminación de GEI en la propia cadena de valor de la organización.

La compensación de emisiones mediante la compra de créditos de carbono solo está permitida como último recurso y para equilibrar las «emisiones residuales». La norma define estas emisiones de forma muy precisa como «las emisiones de gases de efecto invernadero (GEI) no abatidas que quedan después de aplicar todas las acciones de reducción de emisiones de GEI técnicamente y económicamente viables».

Este punto es crucial, ya que pone fin a una de las prácticas más criticadas: la de que las empresas adquieren créditos baratos para declarar una supuesta neutralidad sin haber descarbonizado sus operaciones. Esto supone un cambio fundamental en la rendición de cuentas corporativa, pues se pasa de preguntar «¿qué podemos comprar para parecer sostenibles?» a «¿qué debemos cambiar fundamentalmente en nuestras operaciones?».

2. «Neutralidad de carbono» y «cero neto» no son sinónimos (y las normas lo saben).

Aunque a menudo se usan indistintamente, los estándares de la ISO los tratan como conceptos complementarios, pero distintos. Esta distinción es clave para entender la estrategia climática de una organización y revela una hoja de ruta de dos velocidades: una para el corto plazo y otra para la transformación a largo plazo.

  • La norma ISO 14068-1 (Neutralidad de carbono) aplica a corto plazo, durante el período de un informe específico. Su ámbito de aplicación es amplio, ya que abarca tanto organizaciones como productos y eventos. Permite alcanzar la neutralidad mediante la compensación con créditos de carbono externos (fuera de los límites de la organización) para equilibrar las emisiones no reducidas. Supone un paso intermedio importante, pero no es el destino final.
  • La futura ISO 14060 (Cero Neto) se concibe como un plan a largo plazo (por ejemplo, con el objetivo de 2050) y está alineada con el Acuerdo de París. Su ámbito de aplicación es más limitado, ya que se aplica a organizaciones, pero no a productos ni servicios. La diferencia filosófica y estratégica más importante es que, para neutralizar las emisiones residuales, esta futura norma exige dar prioridad a las eliminaciones de carbono realizadas dentro del inventario de gases de efecto invernadero (GEI) de la propia organización, en lugar de depender de compensaciones externas.
https://revistanormalizacion.une.org/87/nuevos-estandares-iso-para-alcanzar-la-neutralidad-de-carbono-y-el-cero-neto/

Esta distinción ofrece a las empresas una hoja de ruta más clara y honesta: un objetivo inmediato y verificable (la neutralidad) y una meta final mucho más ambiciosa y transformadora (el cero neto).

3. Se acabaron los créditos de carbono de «dudosa calidad».

Uno de los mayores riesgos de ecoblanqueo proviene del uso de créditos de carbono baratos y de bajo impacto, que no suponen una reducción real de emisiones. La norma ISO 14068-1 aborda este problema de frente, exigiendo que cualquier crédito utilizado sea de «alta calidad».

Para garantizarlo, la norma establece una serie de criterios específicos y verificables:

  • Deben cumplir con el criterio de adicionalidad (la reducción de emisiones no habría ocurrido sin el proyecto).
  • Deben ser medibles, permanentes y certificados.
  • Deben evitar la doble contabilidad (es decir, que el mismo crédito sea reclamado por dos entidades).
  • Deben ser ex post, es decir, que correspondan a reducciones o remociones ya ocurridas.
  • Su fecha de emisión debe ser inferior a cinco años del inicio del periodo para el que se declara la neutralidad.

El impacto de estos requisitos es profundo: los criterios «ex post» y la antigüedad máxima de cinco años reducirán drásticamente el volumen de créditos aceptables en el mercado. Esto obligará a las empresas a ser más selectivas, aumentará el coste de la compensación creíble y, en consecuencia, incentivará aún más la reducción interna de emisiones.

El objetivo de estos requisitos es claro: la norma proporciona una lista detallada de lo que se entiende por alta calidad con el fin de minimizar el riesgo de lavado de imagen verde y de que las declaraciones puedan verificarse internamente o por terceros.

Con estos requisitos tan estrictos se pretende restaurar la credibilidad de la compensación de carbono y garantizar que, cuando se utilice, sea una herramienta legítima y efectiva.

Conclusión: Hacia una ambición climática verificable.

Estas nuevas normas ISO no son meros tecnicismos. Suponen un cambio de paradigma y son herramientas fundamentales para impulsar la acción climática empresarial. Los principios de ambición y urgencia, centrales en la ISO 14068-1, sientan las bases de todo el marco. La estricta jerarquía (punto 1) y los rigurosos criterios para los créditos (punto 3) materializan el principio de urgencia, exigiendo una acción inmediata y real. Por su parte, la hoja de ruta que distingue entre neutralidad y cero neto (Clave 2) encarna el principio de ambición, ya que establece un camino claro hacia una descarbonización profunda y alineada con la ciencia.

El objetivo final es claro: pasar de las meras declaraciones de marketing a un progreso medible, transparente y verificable. Se pretende que la neutralidad de carbono deje de ser una etiqueta y se convierta en el resultado de una estrategia climática sólida y creíble.

Con estas reglas más claras sobre la mesa, ¿estamos ante el fin de la era del greenwashing y el comienzo de una verdadera carrera hacia la neutralidad climática?

En este audio podemos escuchar una conversación sobre este tema.

En este vídeo se resumen las ideas más importantes sobre la neutralidad de la huella de carbono.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El coste humano de la innovación: Lo que revela el análisis del ciclo de vida social

La ingeniería actual ha evolucionado más allá de lo técnico para integrar la responsabilidad social como un pilar fundamental de la ética profesional. En este artículo, destacamos la importancia de la Evaluación del Ciclo de Vida Social (SLCA), una herramienta esencial para medir el impacto en los derechos humanos y las condiciones laborales de cada proyecto. A continuación, ofrecemos una síntesis de las ideas clave de la revisión sistemática presentada en el artículo “Social life cycle assessment: a systematic review from the engineering perspective”, de Yagmur Atescan Yuksel y colaboradores. Exploraremos cómo esta metodología está cobrando importancia en sectores como el de la energía y el de la mecánica, y analizaremos sus principales tendencias y desafíos metodológicos. Al final, en las referencias, podéis ver también algunos de los trabajos que hemos realizado en nuestro grupo de investigación al respecto.

Introducción: El lado oculto de la sostenibilidad.

Cuando pensamos en «sostenibilidad» en el ámbito de la ingeniería, solemos imaginar paneles solares, turbinas eólicas y procesos de producción extremadamente eficientes. Hablamos de reducir emisiones, optimizar el uso de recursos y minimizar el impacto ambiental. Sin embargo, esta visión, aunque correcta, es incompleta. La sostenibilidad tiene una tercera dimensión crucial que a menudo se pasa por alto en los cálculos técnicos: el impacto social y humano.

Para medir esta dimensión, se desarrolló una herramienta específica conocida como Análisis del Ciclo de Vida Social (ACVS) o Social Life Cycle Assessment (SLCA), impulsada por organizaciones de referencia como el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) y la Sociedad de Toxicología y Química Ambiental (SETAC). El objetivo del ACVS es sencillo, pero profundo: evaluar cómo los productos y procesos afectan a las personas a lo largo de toda su vida útil. En este artículo se presenta una revisión sistemática de 196 estudios de ACVS en ingeniería, que revela los hallazgos más impactantes sobre el verdadero coste humano de la innovación.

1. El foco universal: la seguridad y el bienestar del trabajador.

A pesar de la enorme diversidad de campos de la ingeniería —desde la energía y la automoción hasta la construcción y la química—, el análisis de casi doscientos estudios revela una preocupación principal y constante: el impacto en los trabajadores. Antes de analizar las complejas dinámicas comunitarias o el bienestar del consumidor, la atención se centra abrumadoramente en las personas que hacen posible la producción. Las subcategorías que se han evaluado de forma más consistente en todas las disciplinas son salud y seguridad, salario justo, horas de trabajo, trabajo infantil y trabajo forzoso.

Si bien estas preocupaciones son universales, el análisis muestra matices: la ingeniería mecánica, por ejemplo, pone un énfasis particular en la «formación y educación» de los trabajadores, reconociendo el valor del capital humano en la fabricación avanzada.

Este resultado es fundamental. No se trata de un enfoque arbitrario, sino de una consecuencia directa de dónde se materializan los impactos de la ingeniería. La mayoría de los estudios se centran en la extracción de materias primas, la fabricación y la cadena de suministro, ámbitos en los que los efectos sobre los trabajadores y las comunidades cercanas son más pronunciados. Esto subraya que la base de una ingeniería socialmente responsable consiste en garantizar la dignidad y la seguridad de todas las personas a lo largo de la cadena de producción, antes de aspirar a impactos más abstractos.

2. La transición energética tiene su propia carga social.

Resulta sorprendente que el sector de la energía, con un 30 % del total, sea el campo de la ingeniería en el que más se aplica el análisis de ciclo de vida social. Esto resulta sorprendente, ya que instintivamente asociamos la producción de energía con debates ambientales sobre las emisiones de carbono y el agotamiento de los recursos.

Sin embargo, los estudios demuestran que, además de las preocupaciones laborales comunes, el sector energético presenta impactos únicos que van desde el consumidor hasta la sociedad en su conjunto. Entre ellos, destacan los siguientes: — La desigualdad en el coste de la electricidad (un impacto directo en el consumidor), así como la seguridad energética y el agotamiento de las reservas de combustibles fósiles (impactos que afectan a la sociedad en general).

Esto supone una advertencia crítica para los líderes políticos e industriales. Debido al papel fundamental que desempeña el sector en la infraestructura nacional y en la transición hacia la sostenibilidad, una mala gestión de sus aspectos sociales no solo afecta a un producto, sino que también puede poner en peligro la seguridad energética de un país y aumentar la desigualdad social. La carrera hacia la energía limpia no es solo un desafío técnico, sino también un complejo problema de justicia y equidad.

3. El gran desafío: medir lo social sin una «regla» estándar.

A diferencia de las evaluaciones ambientales (ACV), que cuentan con metodologías más estandarizadas, la evaluación del ciclo de vida social (ACVS) enfrenta un obstáculo considerable: la falta de un marco universalmente aceptado. La revisión de estudios concluye que esta falta de estandarización dificulta enormemente la comparación de resultados entre diferentes proyectos, tecnologías e incluso países.

Un ejemplo perfecto de este problema es la inconsistencia en el uso de la «unidad funcional» (UF). En un análisis ambiental, la UF es fundamental (por ejemplo, «el impacto por cada 1000 kilómetros recorridos por un coche»). Sin embargo, muchos estudios de ACVS no la definen ni la aplican de manera consistente. La razón es simple, pero crucial: mientras que las emisiones pueden medirse por producto (por ejemplo, por coche), los impactos sociales, como las «condiciones laborales», se extienden a toda una organización o a un sector, por lo que resulta casi imposible atribuirlos a una sola «unidad» de producción.

Este desafío nos enseña una lección valiosa: medir el impacto humano es inherentemente más complejo y depende del contexto en el que se miden las emisiones de CO₂. Esta flexibilidad metodológica no solo supone un reto académico, sino que también plantea un segundo obstáculo más práctico: la lucha persistente por obtener datos fiables.

4. La falta de datos fiables: el talón de Aquiles del análisis social.

Una de las mayores limitaciones para realizar un ACVS preciso es la disponibilidad y la calidad de los datos. A diferencia de los datos económicos o medioambientales, que suelen ser cuantitativos y estar bien documentados, los datos sociales tienden a ser cualitativos, difíciles de verificar, incompletos o desactualizados, sobre todo en cadenas de suministro globales y opacas.

Para mitigar este problema, han surgido bases de datos especializadas como la Social Hotspots Database (SHDB) y la Product Social Impact Life Cycle Assessment (PSILCA). Su función no es proporcionar datos exactos de un proveedor concreto, sino evaluar el nivel de riesgo social (desde bajo hasta muy alto) en combinaciones específicas de país y sector industrial, con el fin de identificar los denominados «puntos calientes» en la cadena de suministro. Por ejemplo, pueden alertar sobre un alto riesgo de trabajo infantil en el sector textil de un país determinado, y así guiar a las empresas sobre dónde deben enfocar sus auditorías.

No obstante, la calidad de los datos sigue siendo un desafío sistémico. Como concluye el estudio, los datos sociales a menudo están desactualizados, incompletos o sesgados, lo que puede dar lugar a evaluaciones imprecisas o engañosas.

5. El futuro es inteligente: cómo la tecnología podría resolver el problema.

A pesar de los desafíos, el futuro del ACVS parece prometedor y la solución podría provenir de la propia ingeniería. Para superar los obstáculos metodológicos y de datos, la investigación futura se centra en la integración de tecnologías avanzadas capaces de transformar el análisis social.

Entre las soluciones propuestas se incluye el uso de herramientas de la Industria 4.0 para lograr la trazabilidad de datos sociales en tiempo real. También se plantea el uso del análisis de datos impulsado por inteligencia artificial para validar y verificar la información recopilada. Asimismo, se sugieren modelos de dinámica de sistemas para comprender las relaciones de causa y efecto entre distintos factores sociales. Por último, se consideran los modelos basados en agentes (ABM) para simular la influencia de las decisiones individuales en los resultados sociales.

En resumen, el futuro de la evaluación social podría dejar de ser un análisis retrospectivo y estático para convertirse en una herramienta dinámica y predictiva. En lugar de ser un informe que se elabora al final, podría convertirse en un panel de control en tiempo real, integrado directamente en los procesos de toma de decisiones de los ingenieros, para guiar el diseño hacia resultados verdaderamente sostenibles.

Conclusión: ¿Estamos haciendo las preguntas correctas?

La ingeniería se encuentra en medio de una profunda transformación. Su enfoque se está ampliando, pasando del «qué» y el «cuánto» al «cómo» y al «para quién». El análisis del ciclo de vida social es una manifestación de esta evolución, ya que busca dar voz y establecer métricas de los impactos humanos de la tecnología.

Aunque los desafíos metodológicos y de disponibilidad de datos siguen siendo significativos, el campo avanza a gran velocidad. La creciente aplicación del ACVS en sectores clave y la exploración de soluciones tecnológicas demuestran un compromiso real con una visión más integral de la sostenibilidad.

Así surge una pregunta final que no solo interpela a quienes trabajan en ingeniería, sino también a toda la sociedad: ¿se está diseñando el futuro teniendo en cuenta no solo qué construir, sino también cómo y para quién? Al proyectar el futuro, ¿se están incorporando de manera consciente estas mismas preguntas?

Esta conversación nos permite conocer este tema de manera entretenida y clara.

En este vídeo se presenta una síntesis de las ideas más interesantes del tema.

Aquí os dejo una presentación que resume lo más interesante del artículo.

Pincha aquí para descargar

Referencias:

Luque Castillo, X., & Yepes, V. (2025). Multi-criteria decision methods in the evaluation of social housing projects. Journal of Civil Engineering and Management, 31(6), 608–630. https://doi.org/10.3846/jcem.2025.24425

Luque Castillo, X., & Yepes, V. (2025). Life cycle assessment of social housing construction: A multicriteria approach. Building and Environment, 282, Article 113294. https://doi.org/10.1016/j.buildenv.2025.113294

Navarro, I. J., Martí, J. V., & Yepes, V. (2023). DEMATEL-based completion technique applied for the sustainability assessment of bridges near shore. International Journal of Computational Methods and Experimental Measurements, 11(2). https://doi.org/10.18280/ijcmem.110206

Navarro, I. J., Villalba, I., Yepes-Bellver, L., & Alcalá, J. (2024). Social life cycle assessment of railway track substructure alternatives. Journal of Cleaner Production, 450, Article 142008. https://doi.org/10.1016/j.jclepro.2024.142008 

Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2025). Game theory-based multi-objective optimization for enhancing environmental and social life cycle assessment in steel-concrete composite bridges. Mathematics, 13(2), Article 273. https://doi.org/10.3390/math13020273

Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2022). Social impact assessment comparison of composite and concrete bridge alternatives. Sustainability, 14(9), Article 5186. https://doi.org/10.3390/su14095186

Salas, J., & Yepes, V. (2024). Improved delivery of social benefits through the maintenance planning of public assets. Structure and Infrastructure Engineering, 20(5), 699–714. https://doi.org/10.1080/15732479.2022.2121844

Sánchez-Garrido, A. J., Navarro, I. J., & Yepes, V. (2026). Multivariate environmental and social life cycle assessment of circular recycled-plastic voided slabs for data-driven sustainable construction. Environmental Impact Assessment Review, 118, Article 108297. https://doi.org/10.1016/j.eiar.2025.108297 

Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496–513. https://doi.org/10.1016/j.jclepro.2018.03.022

Sierra-Varela, L., Calabi-Floody, A., Valdés-Vidal, G., Yepes, V., & Filun-Santana, A. (2025). Determination of the social contribution of sustainable additives for asphalt mixes through fuzzy cognitive mapping. Applied Sciences, 15(7), Article 3994. https://doi.org/10.3390/app15073994

Yüksek, Y. A., Haddad, Y., Cox, R., & Salonitis, K. (2026). Social life cycle assessment: A systematic review from the engineering perspective. International Journal of Sustainable Engineering, 19(1), Article 2605864. https://doi.org/10.1080/19397038.2025.2605864 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas y respuestas sobre la DANA de Valencia que nos obligan a reflexionar

1. ¿Cómo explica el «modelo del queso suizo» que la DANA de 2024 no fuera solo un fenómeno natural, sino un fallo de múltiples barreras de defensa?

Esta pregunta aborda la raíz del desastre y la diferencia entre las condiciones latentes —infraestructuras obsoletas, urbanismo en zonas inundables y falta de mantenimiento— y los fallos activos —retrasos en las alertas y errores en la coordinación de la emergencia—. El análisis revela que la catástrofe ocurrió porque los «agujeros» de distintas áreas —la política, la supervisión, la infraestructura y la respuesta inmediata— se alinearon, lo que permitió que el peligro atravesara todas las defensas. Además, subraya que los desastres no son puramente «naturales», sino el resultado de decisiones humanas y de la ocupación de cauces críticos.

2. ¿Por qué se considera la infraestructura hidráulica un «seguro de vida» y qué consecuencias tuvo la falta de ejecución de las obras proyectadas en el barranco del Poyo?

El significado central de las fuentes técnicas y de las comisiones de investigación radica en que demuestran que las obras hidráulicas salvan vidas. Mientras que Valencia se salvó gracias al nuevo cauce del Turia y las poblaciones del río Magro vieron reducidos sus daños por la presa de Forata, la cuenca del Poyo carecía de infraestructuras de laminación, por lo que se produjo una avenida destructiva sin precedentes. La falta de inversión, la ralentización administrativa y la priorización de criterios ambientales por encima de los estructurales impidieron la ejecución de proyectos ya diseñados y aprobados.

3. ¿De qué manera el «fin de la estacionariedad climática» obliga a la ingeniería y al urbanismo a abandonar los registros históricos y adoptar un diseño basado en el rendimiento y la resiliencia?

Las fuentes consultadas destacan que el cambio climático ha invalidado el uso exclusivo de datos históricos para predecir el futuro. Fenómenos como la DANA de 2024 demuestran que lo que antes se consideraba un evento con un periodo de retorno de 500 años ahora puede ocurrir con mucha mayor frecuencia. Por tanto, es necesario rediseñar las infraestructuras con mayores márgenes de seguridad (retornos de 1000 años), utilizar modelos probabilísticos y aplicar el diseño basado en el desempeño (PBD), que garantiza que un sistema pueda seguir funcionando o recuperarse rápidamente cuando se vea superado.

4. ¿Por qué la «retirada estratégica» de las zonas de alto riesgo y el rediseño arquitectónico resiliente son ahora imperativos para convivir con el «riesgo residual» que las infraestructuras no pueden eliminar?

Esta pregunta aborda el hecho de que, durante décadas, se ha construido con una grave «amnesia hidrológica», ocupando zonas de flujo preferente que la naturaleza ha acabado por reclamar. El análisis de las fuentes indica que, dado que el «riesgo cero» no existe y las presas pueden verse superadas por eventos extremos, la reconstrucción no debe limitarse a reparar, sino a reubicar las infraestructuras críticas (colegios, centros de salud) fuera de las zonas de alto riesgo. En cuanto a las viviendas que permanecen en áreas inundables, se propone un cambio radical en los códigos de edificación: prohibir dormitorios y garajes en las plantas bajas, elevar las instalaciones críticas (electricidad, calderas) y utilizar materiales resistentes al agua que permitan recuperar rápidamente la funcionalidad. Por último, las fuentes subrayan que la educación pública y la cultura de la prevención (siguiendo modelos como el japonés) son medidas de bajo coste y alto impacto que salvan vidas cuando las barreras físicas fallan.

5. ¿Qué cambios son imprescindibles en la gobernanza y la coordinación institucional para evitar que la reconstrucción sea una mera réplica de los errores del pasado?

Las fuentes coinciden en que la reconstrucción no puede limitarse a reponer lo perdido, pues, de lo contrario, se perpetuaría la vulnerabilidad. Se recomienda la creación de un «ministerio del pensamiento» o de un equipo de reflexión que establezca directrices estratégicas a largo plazo y evite la «rapidez ilusoria» de las obras tácticas. Además, se reclama una gobernanza interadministrativa eficaz, posiblemente mediante consorcios en los que las administraciones deleguen competencias para unificar presupuestos y decisiones técnicas sobre las políticas, y así superar la fragmentación y la parálisis burocrática.

Creo que dos analogías o metáforas pueden aclarar algunos conceptos básicos:

  • Gestionar el territorio hoy es como construir en la ladera de un volcán. Podemos instalar sensores y construir diques para desviar la lava (infraestructuras), pero la verdadera seguridad depende de no construir los dormitorios en el camino de la colada (ordenación del territorio) y de que todos los habitantes sepan exactamente qué mochila coger y hacia dónde correr cuando suene la alarma (concienciación comunitaria).
  • Gestionar el riesgo de inundaciones hoy en día es como conducir un coche moderno por una autopista peligrosa: no basta con tener un motor potente (infraestructuras hidráulicas), también es necesario que los cinturones de seguridad y el airbag funcionen (alertas y protección civil), que el conductor esté capacitado (concienciación comunitaria) y que las normas de circulación se adapten a las condiciones meteorológicas de la vía, y no a cómo era el asfalto hace cincuenta años.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación multidimensional de losas aligeradas con plástico reciclado.

Acaban de publicar un artículo nuestro en Environmental Impact Assessment Reviewuna de las revistas de mayor impacto científico, dentro del primer decil del JCR. En este trabajo se sintetizan los resultados de un estudio exhaustivo sobre un sistema constructivo innovador: las losas biaxiales de hormigón armado aligeradas con esferas o discos de plástico 100 % reciclado (Losa Aligerada, VS). La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.

La investigación aborda la necesidad crítica de reducir el impacto ambiental del sector de la construcción, responsable de casi la mitad del consumo mundial de materias primas y de más de un tercio del consumo de energía. El estudio integra un análisis estadístico multivariado basado en datos empíricos de 67 edificios reales, así como una evaluación del ciclo de vida ambiental (E-LCA) y una evaluación del ciclo de vida social (S-LCA), para ofrecer una valoración multidimensional completa.

Hallazgos clave:

  • Modelo predictivo robusto: se desarrolló un modelo estadístico de alta precisión (R² ajustado = 98,26 %) para el predimensionamiento del espesor de las losas aligeradas, utilizando como variables clave el canto del aligerante, la sobrecarga de uso y el cuadrado de la luz. Este modelo ofrece una herramienta práctica para optimizar el diseño en las etapas iniciales.
  • Ahorro sustancial de materiales: en comparación con un sistema de losa reticular convencional con bloques de EPS (losas convencionales), el sistema VS reduce el consumo de hormigón entre un 23 % y un 33 % y el de acero de refuerzo hasta un 29 %.
  • Beneficios ambientales cuantificados: el sistema VS demuestra una reducción media del 25 % en el impacto ambiental total a nivel de punto final. El potencial de calentamiento global (PCG) se reduce en media en un 24 %, alcanzando un 30 % en luces de seis metros. El hormigón sigue siendo el principal contribuyente de emisiones en ambos sistemas.
  • Mejoras en el desempeño social: la S-LCA revela que el sistema VS disminuye los riesgos sociales hasta en un 20 % en la categoría de «Comunidad local» y en un 19 % en la de «Trabajadores». Estas mejoras se deben a una menor demanda de mano de obra en obra, a la reducción de los movimientos de materiales pesados y a una mayor seguridad laboral.

En conclusión, el estudio demuestra empíricamente que el sistema de losas aligeradas con plástico reciclado es una alternativa materialmente eficiente y sostenible que promueve los principios de la economía circular. Los resultados proporcionan una base de pruebas sólida que respalda la adopción de esta tecnología, informa sobre el desarrollo de códigos de construcción y guía las políticas públicas hacia prácticas constructivas más resilientes y con bajas emisiones de carbono.

1. Contexto: El desafío de la sostenibilidad en la construcción.

El sector de la construcción es un importante motor económico a nivel mundial, pero también uno de los principales contribuyentes al cambio climático y al agotamiento de los recursos. Es responsable de aproximadamente el 50 % del uso de materiales y del 36 % del consumo total de energía a nivel mundial. Solo la producción de cemento representa entre un 5 % y un 7 % de las emisiones globales de CO₂. Se prevé que la demanda de materiales superará los 90 mil millones de toneladas para 2050, por lo que resulta imperativo alinear las prácticas constructivas con los Objetivos de Desarrollo Sostenible (ODS) en el marco de la Economía Circular (EC).

Dentro de los edificios, los forjados y las losas estructurales son los elementos que más impacto ambiental tienen debido a la gran cantidad de hormigón y acero que se emplea en su fabricación. Las innovaciones en los sistemas de losas, como los métodos modernos de construcción (MMC), son fundamentales para la descarbonización. Sin embargo, la adopción de estas tecnologías se ve obstaculizada por la falta de marcos de evaluación estandarizados que integren de manera coherente las tres dimensiones de la sostenibilidad: ambiental, social y económica. En particular, la dimensión social a menudo se pasa por alto.

2. Análisis de sistemas constructivos.

El estudio realiza una evaluación comparativa entre un sistema de losa innovador (VS) y otro convencional (CS) desde un enfoque de ciclo de vida integral.

Sistema innovador: losa aligerada biaxial (VS).

  • Descripción: consiste en una losa plana de hormigón armado bidireccional y sin vigas, aligerada mediante la inclusión de elementos huecos. Dichos aligerantes son esferas o discos fabricados con polietileno de alta densidad (HDPE) reciclado al 100 %. El sistema está diseñado para ser totalmente reciclable al final de su vida útil.
  • Configuración: Los discos se utilizan en losas de entre 16 y 28 cm de espesor, mientras que las esferas se emplean en losas de entre 28 y 42 cm de espesor. Al eliminar el hormigón no estructural del núcleo de la losa, el peso propio se reduce hasta un 35 % respecto a una losa maciza.
  • Ventajas: permite luces más largas, reduce las cargas sísmicas, simplifica los encofrados, acelera la ejecución y puede disminuir la altura total del edificio.
Losa aligerada biaxial (VS) mediante la inclusión de elementos huecos.

Sistema de referencia: losa convencional (CS).

  • Descripción: se define como una losa reticular bidireccional (también llamada «waffle») de hormigón armado, aligerada con bloques de poliestireno expandido (EPS).
  • Configuración: Este sistema se apoya sobre vigas y presenta nervios visibles en su cara inferior (intradós), ya que los bloques de EPS que conforman dichos nervios quedan expuestos.

3. Metodología de evaluación integrada.

El estudio emplea un marco metodológico triple para evaluar y comparar exhaustivamente los sistemas de losas. El análisis abarca «de la cuna a la tumba» y la unidad funcional se define como 1 m² de losa diseñada para 50 años de servicio.

3.1. Análisis estadístico multivariado.

Para compensar la ausencia de códigos de diseño estandarizados para el sistema VS, se ha desarrollado un modelo predictivo para dimensionar su espesor.

  • Base de datos: El análisis se basa en datos empíricos de 75 tipos de losas procedentes de 67 edificios reales construidos principalmente en Argentina. El conjunto de datos abarca luces de entre 5,2 y 15 metros y espesores de entre 16 y 42 centímetros.
  • Proceso: se realizó un análisis de regresión multivariado en tres etapas, comenzando por una regresión lineal simple y avanzando hasta un modelo más complejo que considera múltiples variables predictoras.
  • Validación: La solidez del modelo final se verificó mediante pruebas estadísticas, como la prueba de Durbin-Watson (para detectar autocorrelación), el análisis de residuos estudiantados (para detectar valores atípicos) y la comprobación de la homocedasticidad y la normalidad de los residuos.

3.2. Evaluación del ciclo de vida ambiental (E-LCA)

  • Metodología: se utilizó el método ReCiPe 2016 con una perspectiva jerárquica (H), evaluando los impactos a nivel de punto medio (18 categorías específicas) y de punto final (agrupados en tres áreas de daño: salud humana, ecosistemas y disponibilidad de recursos).
  • Bases de datos y software: el inventario del ciclo de vida se modeló con el programa informático OpenLCA, utilizando la base de datos Ecoinvent v3.2.
  • Asignación de cargas: para el plástico reciclado, se aplicó el método de asignación «cut-off», según la norma ISO 14044. Esto significa que los aligerantes de HDPE reciclado solo heredan las cargas ambientales de su propio proceso de reciclaje y no las de la producción de plástico virgen.

3.3. Evaluación del ciclo de vida social (S-LCA).

  • Metodología: el análisis se realizó siguiendo las directrices de UNEP/SETAC y utilizando un modelo coherente con el de la E-LCA.
  • Bases de datos y software: se utilizó la base de datos SOCA v2, una ampliación de Ecoinvent que adapta el marco de PSILCA (Evaluación del ciclo de vida del impacto social de los productos).
  • Indicadores y grupos de interés: los riesgos sociales se cuantificaron mediante el indicador de Riesgo Medio por Hora (MRH). Se evaluaron cuatro grupos de interés (trabajadores, comunidades locales, sociedad y actores de la cadena de valor) mediante veinte subcategorías relevantes para el sector de la construcción.

4. Resultados clave y hallazgos

4.1. Modelo predictivo para el predimensionamiento de losas VS.

El análisis estadístico culminó en un modelo de regresión múltiple robusto y preciso para estimar el espesor de la losa (t).

  1. Precisión del modelo: el modelo final (ecuación 3) alcanzó un coeficiente de determinación ajustado (R²) del 98,26 %, lo que indica un poder explicativo excepcional.
  2. Variables significativas: las variables con mayor influencia estadística en el espesor de la losa fueron las siguientes:
    – Canto del aligerante de plástico (He).
    – Cuadrado de la luz principal (L²).
    – Sobrecarga de uso característica (Q₁).

Fórmula simplificada: para facilitar su aplicación práctica en el diseño preliminar, se derivó una fórmula simplificada (ecuación 4) que reemplaza los coeficientes decimales por fracciones simples, manteniendo una alta precisión con un margen conservador.

Ecuación refinada (3): 𝑡 (cm) = 6,0064 + (0,7717 ∙ 𝐻𝑒) + (0,3679 ∙ 𝑄1) + (0,0553 ∙ 𝐿2)

Ecuación simplificada (4): 𝑡 (cm) = 6 + (4/5 ∙ 𝐻𝑒) + (2/5 ∙ 𝑄1) + (𝐿/√18)²

4.2. Resultados de la evaluación ambiental (E-LCA)

La E-LCA demuestra claras ventajas ambientales del sistema VS frente al CS.

Indicador clave Reducción lograda por el sistema VS Observaciones
Ahorro de hormigón 23 % – 33 % La mayor reducción se observa en luces más cortas (6 m).
Ahorro de acero Hasta 29 % La mayor reducción se observa en luces de 6 m.
Potencial de calentamiento global (PCG) 24 % (promedio), hasta 30 % (luz de 6 m) El hormigón es el principal contribuyente (53,5 % en VS, 55,8 % en CS).
Impacto ambiental total (punto final) 25 % (promedio) Reducciones de hasta el 29 % en salud humana y del 31% en recursos.
Etapa del ciclo de vida dominante Fabricación Representa el 89 % del impacto total en ambos sistemas.
  • Análisis de punto medio: el sistema VS muestra un mejor rendimiento en 17 de las 18 categorías de impacto evaluadas. La única excepción es la categoría «Ocupación de suelo agrícola», ya que la base de datos Ecoinvent atribuye el uso del suelo a los plásticos (incluidos los reciclados). Las reducciones más notables se observan en el agotamiento de fósiles (29 %) y en la formación de oxidantes fotoquímicos (28 %).

4.3. Resultados de la evaluación social (S-LCA)

El sistema VS también genera beneficios sociales cuantificables, principalmente gracias a su eficiencia en el uso de materiales y a la simplificación de los procesos de construcción.

  • Principales reducciones del riesgo social:
    • Comunidad local: reducción de hasta un 20 % (para una luz de 6 m).
    • Trabajadores: reducción de hasta un 19 % a una altura de 6 m.
  • Causas de las mejoras: estas reducciones se deben a la disminución de las horas de trabajo en obra, a la reducción del transporte y del movimiento de materiales pesados y a una menor exposición a riesgos laborales.
  • Focos de riesgo del sector: para ambos sistemas, las categorías con mayor riesgo social son:
    • Trabajadores: factores relacionados con la carga de trabajo, como las contribuciones a la Seguridad Social, los riesgos de trabajo infantil y los gastos sindicales (77 % del impacto en el VS).
    • Sociedad: la falta de educación es el factor predominante (76 % del impacto en ambos casos)

5. Implicaciones, limitaciones y conclusiones

Este estudio aporta una validación empírica rigurosa que demuestra que el sistema de losas aligeradas con plástico reciclado constituye un avance significativo hacia una construcción circular y de bajo carbono.

Implicaciones clave:

  • Para diseñadores e ingenieros, el modelo de predimensionamiento ofrece una herramienta fiable para acelerar la toma de decisiones en las primeras fases del diseño, optimizar el uso de materiales sin comprometer la seguridad.
  • Para la industria y los reguladores, los datos cuantitativos sobre los beneficios ambientales y sociales pueden informar la creación de nuevos códigos de construcción, guías de diseño y políticas de compra pública verde que incentiven la adopción de la construcción modular.
  • Contribución a la economía circular: el sistema no solo reduce el consumo de materiales vírgenes, sino que también otorga un uso de alto valor a los residuos de plástico HDPE, inmovilizándolos de forma segura en la estructura del edificio durante décadas y evitando que contaminen los ecosistemas.

Limitaciones reconocidas:

  • Análisis económico: no se realizó una evaluación del coste del ciclo de vida (LCCA) debido a la falta de datos económicos detallados, lo cual es crucial para su adopción en el mercado.
  • Contexto geográfico: la mayoría de los casos de estudio (63 de 67) provienen de Argentina, por lo que los resultados reflejan las prácticas constructivas y la combinación energética de este país. Para extrapolar los resultados a otras regiones, sería necesario validarlos con datos locales.
  • Alcance del análisis: el estudio se centra en el componente (1 m² de losa) y no cuantifica los impactos per cápita según la tipología de vivienda.

Conclusión final:

El sistema de losas aligeradas (VS) con plástico reciclado es una tecnología superior en términos de sostenibilidad multidimensional en comparación con un sistema convencional. Al combinar un análisis estructural empírico con una evaluación medioambiental y social exhaustiva, esta investigación aporta las pruebas necesarias para superar las barreras normativas y acelerar la transición hacia un entorno construido más eficiente en el uso de los recursos, socialmente responsable y alineado con los objetivos de sostenibilidad global.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Multivariate Environmental and Social Life Cycle Assessment of Circular Recycled-Plastic Voided Slabs for Data-Driven Sustainable Construction. Environmental Impact Assessment Review, 118, 108297. DOI:10.1016/j.eiar.2025.108297

En esta conversación se pueden escuchar algunas de las ideas más importantes del trabajo.

Este vídeo sintetiza algunos de los conceptos y resultados del artículo.

Aquí os dejo un documento de síntesis.

Pincha aquí para descargar

Dejo para su descarga el artículo completo, ya que está publicado en abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 lecciones sorprendentes de la IA para construir puentes más sostenibles y económicos.

La tesis doctoral leída recientemente por Lorena Yepes Bellver se centra en la optimización del diseño de puentes de losa de hormigón pretensado para pasos elevados con el fin de mejorar la sostenibilidad económica y ambiental mediante la minimización de costes, energía incorporada y emisiones de CO₂. Con el fin de reducir la elevada carga computacional del análisis estructural, la metodología emplea un marco de optimización de dos fases asistido por modelos sustitutos, en el que se destaca el uso de Kriging y redes neuronales artificiales (RNA).

En concreto, la optimización basada en Kriging condujo a una reducción de costes del 6,54 % al disminuir significativamente el consumo de hormigón y acero activo sin comprometer la integridad estructural. Si bien las redes neuronales demostraron una mayor precisión predictiva global, el modelo Kriging resultó más eficaz para identificar los óptimos locales durante el proceso de búsqueda. El estudio concluye que las configuraciones de diseño óptimas priorizan el uso de altos coeficientes de esbeltez y suponen una reducción del hormigón y del acero activo en favor del acero pasivo, con el fin de mejorar la eficiencia energética. Finalmente, la investigación integra la toma de decisiones multicriterio (MCDM, por sus siglas en inglés) para evaluar de manera integral los diseños en función de sus objetivos económicos, estructurales y ambientales.

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, suele venirnos a la mente la imagen de proyectos masivos, increíblemente caros y con un gran impacto ambiental. Son gigantes de hormigón y acero que, aunque necesarios, parecen irrenunciablemente vinculados a un alto coste económico y ecológico.

Sin embargo, ¿y si la inteligencia artificial nos estuviera mostrando un camino para que estos gigantes de hormigón fueran más ligeros, económicos y respetuosos con el planeta? Una reciente tesis doctoral sobre la optimización de puentes está desvelando hallazgos impactantes y, en muchos casos, sorprendentes. Este artículo resume esa compleja investigación en cinco lecciones clave y a menudo sorprendentes que no solo se aplican a los puentes, sino que anuncian una nueva era en el diseño de infraestructuras.

1. La sostenibilidad cuesta mucho menos de lo que crees.

Uno de los descubrimientos más importantes de la investigación es que la idea de que la sostenibilidad siempre implica un alto sobrecoste es, en gran medida, un mito. La optimización computacional demuestra que la viabilidad económica y la reducción del impacto ambiental no son objetivos opuestos.

La tesis doctoral lo cuantifica con precisión: un modesto aumento de los costes de construcción (inferior al 1 %) puede reducir sustancialmente las emisiones de CO₂ (en más de un 2 %). Este dato es muy relevante, ya que demuestra que con un diseño inteligente asistido por modelos predictivos se puede conseguir un beneficio medioambiental significativo con una inversión mínima. La sostenibilidad y la rentabilidad pueden y deben coexistir en el diseño de las infraestructuras del futuro.

2. El secreto está en la esbeltez: cuanto más fino, más eficiente.

En el diseño de un puente, la «relación de esbeltez» es un concepto clave que define la proporción entre la altura del tablero (su grosor) y la longitud del vano principal. Tradicionalmente, podríamos pensar que «más robusto es más seguro», pero la investigación demuestra lo contrario.

El estudio identificó una relación de esbeltez óptima para minimizar el impacto ambiental. Concretamente, el estudio halló una relación de esbeltez de aproximadamente 1/30 para optimizar las emisiones de CO₂ y de aproximadamente 1/28 para optimizar la energía incorporada. Esto significa que, en lugar de construir puentes masivos por defecto, los modelos de IA demuestran que un diseño más esbelto y afinado no solo es estructuralmente sólido, sino también mucho más eficiente en el uso de materiales. Este diseño más esbelto se logra no solo usando menos material en general, sino también mediante un sorprendente reequilibrio entre los componentes clave de la estructura, como veremos a continuación.

3. El equilibrio de materiales: menos hormigón, más acero (pasivo).

Quizás uno de los descubrimientos más sorprendentes es que el diseño más sostenible no consiste simplemente en utilizar menos cantidad de todos los materiales. La solución óptima es más un reequilibrio inteligente que una simple reducción general.

La investigación revela que los diseños optimizados lograron reducir el uso de hormigón en un 14,8 % y de acero activo (el acero de pretensado que tensa la estructura) en un 11,25 %. Sin embargo, este descenso se compensa con un aumento de la armadura pasiva (el acero convencional que refuerza el hormigón). Esto resulta contraintuitivo, ya que la intuición ingenieril a menudo favorece una reducción uniforme de los materiales. Sin embargo, los modelos computacionales identifican un complejo intercambio —sacrificar un material más barato (hormigón) por otro más caro (acero pasivo)— para alcanzar un diseño globalmente óptimo en términos de coste y emisiones de CO₂, un equilibrio que sería extremadamente difícil de lograr con métodos de diseño tradicionales.

4. Precisión frente a dirección: El verdadero poder de los modelos predictivos.

Al comparar diferentes modelos de IA, como las redes neuronales artificiales y los modelos Kriging, la tesis doctoral reveló una lección fundamental sobre su verdadero propósito en ingeniería.

El estudio reveló que, si bien las redes neuronales ofrecían predicciones absolutas más precisas, el modelo Kriging era más eficaz para identificar las regiones de diseño óptimas. Esto pone de manifiesto un aspecto crucial sobre el uso de la IA en el diseño: su mayor potencial no radica en predecir un valor exacto, como si fuera una bola de cristal, sino en guiar al ingeniero hacia la «región» del diseño donde se encuentran las mejores soluciones posibles. La IA es una herramienta de exploración y dirección que permite navegar por un universo de posibilidades para encontrar de forma eficiente los diseños más prometedores.

5. La optimización va directo al bolsillo: reducción de costes superior al 6 %.

Más allá de los objetivos medioambientales, la investigación demuestra que estos modelos de IA son herramientas muy potentes para la optimización económica directa. Este descubrimiento no se refiere al equilibrio entre coste y sostenibilidad, sino a la reducción pura y dura de los costes del proyecto.

La tesis doctoral muestra que el método de optimización basado en Kriging consigue una reducción de costes del 6,54 %. Esta importante reducción se consigue principalmente minimizando el uso de materiales: un 14,8 % menos de hormigón y un 11,25 % menos de acero activo, el acero de pretensado más especializado y costoso. Esto demuestra de forma contundente que los modelos sustitutivos no solo sirven para alcanzar metas ecológicas, sino que también son una herramienta de gran impacto para la optimización económica en proyectos a gran escala.

Conclusión: Diseñando el futuro, un puente a la vez.

La inteligencia artificial y los modelos de optimización han dejado de ser conceptos abstractos para convertirse en herramientas prácticas que permiten descubrir formas novedosas y eficientes de construir la infraestructura del futuro. Los resultados de esta investigación demuestran que es posible diseñar y construir puentes que sean más económicos y sostenibles al mismo tiempo.

Estos descubrimientos no solo se aplican a los puentes, sino que abren la puerta a una nueva forma de entender la ingeniería. Si la IA puede rediseñar algo tan grande como un puente para hacerlo más sostenible, ¿qué otras grandes industrias están a punto de transformarse con un enfoque similar?

En este audio podéis escuchar una conversación sobre este tema.

Este vídeo resume las ideas principales.

Aquí tenéis un documento resumen de las ideas básicas.

Pincha aquí para descargar

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tesis doctoral: Optimización sostenible y resiliente de edificios con estructuras híbridas y mixtas

De izquierda a derecha: Fermín Navarrina, Víctor Yepes, Iván Negrín, Tatiana García y Rasmus Rempling.

Hoy, 19 de diciembre de 2025, ha tenido lugar la defensa de la tesis doctoral de D. Iván Antonio Negrín Díaz, titulada “Metaheuristic optimization for the sustainable and resilient design of hybrid and composite frame building structures with advanced integrated modeling”, dirigida por los profesores Víctor Yepes y Moacir Kripka. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un breve resumen de la misma.

El cambio climático y la rápida expansión de las áreas urbanas han intensificado el impacto ambiental del sector de la construcción, responsable de cerca del 37 % de las emisiones globales de CO₂ y de más de un tercio del consumo energético mundial. Por tanto, mejorar la sostenibilidad y la resiliencia de las estructuras de edificios se ha convertido en una prioridad esencial, plenamente alineada con los Objetivos de Desarrollo Sostenible de las Naciones Unidas. Esta tesis doctoral aborda este reto mediante el desarrollo de un marco de diseño optimizado que permite obtener soluciones innovadoras, sostenibles y resilientes para estructuras porticadas.

El objetivo principal de la investigación es crear y validar metodologías avanzadas que integren tipologías estructurales híbridas y mixtas con estrategias de optimización de vanguardia apoyadas en modelos estructurales de alta fiabilidad. Para ello, se formulan problemas de optimización que consideran conjuntamente criterios económicos, ambientales, constructivos, de durabilidad y de seguridad estructural, e incorporan, además, aspectos frecuentemente ignorados, como la interacción suelo-estructura, la robustez frente al colapso progresivo y el desempeño ambiental a lo largo del ciclo de vida de la estructura. Entre los objetivos específicos, destacan los siguientes: evaluar metaheurísticas avanzadas y técnicas de optimización asistida por metamodelos; cuantificar los riesgos de modelos estructurales simplificados; integrar la resiliencia como restricción de diseño; valorar los beneficios de tipologías híbridas y mixtas; explorar estrategias de optimización multiobjetivo; y comparar enfoques de diseño basados en fases iniciales y en el ciclo de vida.

Los resultados muestran que las estrategias metaheurísticas avanzadas y asistidas por metamodelos (como BBO-CINS, enfoques basados en Kriging y Optimización Escalarizada de Pareto) superan claramente a los algoritmos tradicionales, ya que logran reducciones de hasta el 90 % en el coste computacional en problemas de un solo objetivo y mejoras de hasta el 140 % en la calidad del frente de Pareto en problemas de varios objetivos. Asimismo, se evidencia el riesgo de simplificar en exceso los modelos estructurales: omitir aspectos críticos, como la interacción suelo-estructura o los elementos secundarios (forjados, muros), puede distorsionar el diseño, comprometer la seguridad (por ejemplo, al subestimar la resistencia al colapso) y aumentar los impactos ambientales a largo plazo, debido al deterioro acelerado y a las mayores necesidades de mantenimiento. También se demuestra que, al incorporar la resiliencia como restricción de diseño en lugar de tratarla como un objetivo de optimización, es posible mejorar la robustez frente al colapso progresivo sin perjudicar la sostenibilidad y reducir la carga ambiental del diseño robusto en torno al 11 % al considerar elementos estructurales secundarios.

A nivel de componentes estructurales, la optimización de las vigas de acero soldadas confirmó las ventajas de la hibridación y de las geometrías variables, lo que dio lugar a la tipología Transversely Hybrid Variable Section (THVS), que reduce los costes de fabricación hasta en un 70 % respecto a las vigas I convencionales. Su integración en pórticos compuestos de hormigón armado y elementos THVS proporcionó mejoras adicionales en sostenibilidad, con reducciones del 16 % en emisiones y del 11 % en energía incorporada en las fases iniciales de diseño, y hasta un 30 % en emisiones de ciclo de vida en comparación con los sistemas tradicionales de hormigón armado. La inclusión de forjados y muros estructurales amplificó estos beneficios, reduciendo los impactos del ciclo de vida hasta en un 42 % respecto a configuraciones de pórticos en las que solo el esqueleto trabaja estructuralmente (omitiendo forjados y muros).

En conjunto, esta tesis demuestra que las metodologías de diseño basadas en la optimización, apoyadas en modelos estructurales realistas y en estrategias computacionales avanzadas, permiten concebir edificios que, al mismo tiempo, son más sostenibles y resilientes. Al resaltar las ventajas de las tipologías híbridas y mixtas e integrar la resiliencia sin comprometer la sostenibilidad, la investigación establece un marco claro para el diseño contemporáneo. Además, al enfatizar la optimización a lo largo de todo el ciclo de vida, ofrece una base metodológica sólida para impulsar una nueva generación de edificaciones alineadas con los objetivos globales de sostenibilidad y de acción climática.

Referencias:

  1. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Life-cycle environmental impact optimization of an RC-THVS composite frame for sustainable construction. Engineering Structures, 345, 121461. DOI:10.1016/j.engstruct.2025.121461
  2. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2
  3. NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z
  4. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607
  5. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487
  6. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.
  7. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildingsJournal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115
  8. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657
  9. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131
  10. TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.
  11. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006

 

Optimización multiobjetivo de pasarelas mixtas: un equilibrio entre sostenibilidad y protección frente al fuego

Acaban de publicar un artículo nuestro en Structural Engineering and Mechanicsuna de las revistas de referencia del JCR. Este trabajo sintetiza los resultados de un estudio en el que se presenta un marco de optimización multiobjetivo innovador para el diseño de pasarelas peatonales con estructuras mixtas de acero y hormigón.

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información contextual.

El objetivo principal de esta investigación ha sido equilibrar la eficiencia económica y medioambiental con la seguridad estructural y el confort del usuario, integrando de manera única la resiliencia ante incendios. A diferencia de investigaciones previas, este trabajo incorpora seis escenarios distintos de exposición al fuego, desde 320 hasta 720 segundos, para evaluar el rendimiento de la estructura en condiciones extremas.

Los resultados revelan una relación directa y lineal entre el coste y las emisiones de CO₂, lo que demuestra que por cada dólar estadounidense (1 USD) ahorrado en el coste por metro de la estructura, se reduce la emisión de 0,7727 kg de CO₂. Este descubrimiento posiciona la optimización de costes como una estrategia que favorece la sostenibilidad económica y medioambiental.

Un descubrimiento clave es que se pueden lograr mejoras sustanciales en la seguridad contra incendios con inversiones moderadas. Un aumento del 23 % en el coste permite que la estructura resista casi 8 minutos (460 segundos) de exposición al fuego antes de colapsar, mientras que incrementos menores, del 3,91 % y 15,06 %, aseguran la estabilidad durante 320 y 400 segundos, respectivamente. El estudio también pone de manifiesto un cambio fundamental en la configuración del diseño óptimo: mientras que los diseños esbeltos son más eficientes en términos de coste y emisiones en condiciones normales, las configuraciones más compactas son necesarias para garantizar la seguridad en caso de exposición prolongada al fuego. Estos resultados ofrecen directrices prácticas para el desarrollo de infraestructuras urbanas más seguras, resilientes y sostenibles.

1. Marco de optimización multiobjetivo.

El estudio aborda una brecha crítica en ingeniería estructural: la falta de investigaciones que apliquen métodos de optimización a infraestructuras reales, integrando simultáneamente criterios de sostenibilidad (económicos, medioambientales y sociales) y de seguridad, especialmente en condiciones extremas, como la exposición al fuego.

1.1. Metodología aplicada

El análisis se centra en una pasarela peatonal de estructura mixta de acero y hormigón, con una luz de 17,5 metros, ubicada en el sur de Brasil. Con el fin de hallar las soluciones óptimas, se empleó un algoritmo de Búsqueda de Armonía Multiobjetivo (MOHS, por sus siglas en inglés), desarrollado a medida en Python. El proceso de optimización busca minimizar simultáneamente tres funciones objetivo:

  • Coste: coste de los materiales necesarios para construir la estructura, basado en los precios del mercado brasileño.
  • Emisiones de CO₂: el impacto ambiental, medido por las emisiones de CO₂ asociadas a la producción de los materiales, para lo que se han utilizado indicadores específicos de la región objeto de estudio.
  • Aceleración vertical máxima: medida del confort de los peatones, calculada a partir de las vibraciones inducidas por su movimiento.

El modelo tiene en cuenta ocho variables de diseño discretas, como el espesor de la losa de hormigón y las dimensiones de las vigas de acero, lo que da como resultado un espacio de búsqueda de 7×10¹¹ soluciones posibles.

Ilustración de la pasarela mixta

1.2. Escenarios de exposición al fuego.

Una de las innovaciones centrales del estudio es incorporar la resiliencia al fuego en el proceso de optimización. Se ha simulado un escenario de incendio de un vehículo debajo de una pasarela utilizando una curva tiempo-temperatura específica, desarrollada a partir de pruebas experimentales realizadas en puentes no confinados. Además de la condición a temperatura ambiente (0 segundos), se analizaron seis periodos de exposición al fuego que provocaron una degradación significativa de las propiedades mecánicas del acero.

Periodo de exposición al fuego (s) Temperatura del acero (°C) Factor de reducción (límite elástico) Factor de reducción (módulo de elasticidad)
0 20 1,00 1,00
320 200 1,00 0,90
400 300 1,00 0,80
460 400 1,00 0,70
510 500 0,78 0,60
560 600 0,47 0,31
720 700 0,23 0,13

2. Hallazgos clave y análisis de resultados.

El proceso de optimización generó un frente de Pareto tridimensional que muestra los equilibrios entre coste, emisiones y confort en los distintos escenarios de incendio.

2.1. Relación lineal entre el coste y las emisiones de CO₂.

Se identificó una relación directa y consistente entre el coste de fabricación y las emisiones de CO₂ en todos los escenarios analizados. Los datos demuestran que cada real brasileño (R$) ahorrado mediante la optimización equivale a una reducción de 0,1358 kg de CO₂. Convertido a dólares estadounidenses, esto equivale a una reducción de 0,7727 kg de CO₂ por cada dólar estadounidense ahorrado por metro de pasarela.

Esta correlación confirma que la optimización económica es una herramienta eficaz para promover la sostenibilidad medioambiental, especialmente en regiones que necesitan desarrollar infraestructuras sin sacrificar la eficiencia económica.

2.2. Intercambio entre la resistencia al fuego y el coste.

Como era de esperar, aumentar la resistencia de la estructura al fuego implica un mayor coste y, por tanto, más emisiones. Sin embargo, el estudio demuestra que es posible lograr mejoras significativas en la seguridad con incrementos de coste relativamente bajos o moderados.

  • Un incremento del 3,91 % en el coste permite que la estructura resista durante 320 segundos (5 minutos) de fuego.
  • Un incremento del 15,06 % extiende la resistencia a 400 segundos (6,5 minutos).
  • Un incremento moderado del 23 % evita el colapso durante casi ocho minutos (460 segundos), lo que proporciona un tiempo valioso para la evacuación.
  • Diseñar para resistir un incendio de 12 minutos (720 segundos) incrementa el coste en más del 400 %, por lo que resulta inviable en la mayoría de los casos.

2.3. Impacto en el confort de los peatones.

Los objetivos de coste y confort son conflictivos: un mayor confort (menor aceleración vertical) exige una mayor rigidez estructural, lo que se traduce en un mayor consumo de materiales.

  • Pasar de un nivel de confort «mínimo» a «medio» implica un aumento del coste promedio del 44 %.
  • Mejorar el nivel de confort de «medio» a «máximo» solo requiere un aumento promedio del 6 % en el coste, lo que sugiere que es una inversión factible en la mayoría de los escenarios.
  • La excepción es el escenario de 12 minutos de fuego, en el que alcanzar el nivel de confort «máximo» supone un 68 % más que el «medio», debido a la grave degradación del rendimiento del acero.

3. Implicaciones prácticas y configuraciones óptimas de diseño.

El análisis de las variables de diseño de las soluciones óptimas revela patrones claros y ofrece implicaciones prácticas para la ingeniería.

3.1. Evolución del diseño en función de la exposición al fuego.

La configuración geométrica óptima de la pasarela varía drásticamente según el tiempo de exposición al fuego considerado.

  • En ausencia de fuego o con una exposición breve, la solución más eficiente es un diseño de alta esbeltez, con vigas de acero altas y delgadas que se acercan a los límites normativos. Así se minimiza el consumo de material, lo que reduce costes y emisiones.
  • Con una exposición prolongada al fuego (es decir, superior a 510 segundos), la solución óptima se desplaza hacia configuraciones más compactas y menos esbeltas. Se observa un aumento considerable del espesor del alma y de las alas de las vigas de acero.

Este cambio se debe a que, a altas temperaturas, el límite de esbeltez (que depende del módulo de elasticidad y del límite elástico del acero) disminuye considerablemente. En los escenarios más extremos, el límite de esbeltez deja de ser una restricción activa y el algoritmo prioriza la robustez geométrica para cumplir con otros requisitos de diseño.

Periodo de exposición (s) Esbeltez óptima / Límite de esbeltez
0 99,17 %
460 99,54 %
560 68,45 %
720 46,98 %

3.2. Estrategias de materiales.

  • Preferencia por el acero: el estudio revela que, para aumentar la seguridad contra incendios, es más rentable y sostenible incrementar el consumo de acero (a pesar de la degradación de sus propiedades) que aumentar la rigidez mediante una losa de hormigón más gruesa.
  • Interacción total: en todas las soluciones óptimas de menor coste, el grado de interacción entre la viga de acero y la losa de hormigón es del 100 % (α = 1,0), lo que indica que el comportamiento compuesto completo es la opción más eficiente.

4. Conclusiones principales

El estudio presenta un marco sólido para el diseño de pasarelas mixtas de acero y hormigón y demuestra que es posible equilibrar sostenibilidad, economía y seguridad. Las conclusiones más relevantes son las siguientes:

  • Sostenibilidad y coste vinculados: existe una relación lineal y cuantificable entre la reducción de costes y la disminución de las emisiones de CO₂, por lo que la optimización económica puede utilizarse como herramienta para la sostenibilidad ambiental.
  • Seguridad contra incendios asequible: es posible mejorar significativamente la seguridad de una pasarela ante un incendio con incrementos de coste moderados y económicamente viables.
  • El diseño se adapta al riesgo: la configuración óptima de una estructura no es universal; los diseños esbeltos son ideales para condiciones normales, pero las configuraciones compactas son cruciales para la resiliencia en escenarios de incendio prolongados.
  • Implicaciones para el diseño: los resultados subrayan la importancia de incorporar escenarios de riesgo extremo en las primeras fases del diseño estructural para crear infraestructuras más seguras y resilientes sin comprometer desproporcionadamente los recursos.

Estas conclusiones se aplican únicamente a la tipología de estructura y al escenario de incendio estudiados, así como a los costes y a los factores de emisión regionales. Por tanto, se requieren más investigaciones para validar y extender estos resultados a otros contextos.

Referencia:

TRES JUNIOR, F.L.; DE MEDEIROS, G.F.; KRIPKA, M.; YEPES, V. (2025). Designing for Safety and Sustainability: Optimization of Fire-Exposed Steel-Concrete Composite Footbridges. Structural Engineering and Mechanics, 96 (4):337-350. DOI:10.12989/sem.2025.96.4.337

En esta conversación puedes escuchar información interesante sobre este tema.

En este vídeo se resumen las ideas más importantes de esta investigación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.