Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en JCR. En este artículo se evalúa el impacto social y ambiental de puentes de carretera óptimos de hormigón postesado. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.
La mayoría de las definiciones de sostenibilidad incluyen tres pilares básicos: económico, ambiental y social. El aspecto económico siempre se evalúa, pero no necesariamente en el sentido de la sostenibilidad económica. Por otra parte, el aspecto ambiental se está considerando cada vez más, mientras que el pilar social apenas se ha trabajado en él. Centrándose en los pilares ambiental y social, resulta crucial el uso de metodologías que permitan una evaluación amplia de todos los aspectos y la integración de la evaluación en unos pocos indicadores que sean comprensibles. Este artículo se estructura en dos partes. En la primera parte se hace un examen de los métodos de evaluación del impacto del ciclo de vida, que permiten una evaluación amplia de los aspectos ambiental y social. En la segunda parte, se realiza una evaluación completa de la sostenibilidad ambiental y social utilizando la base de datos de ecoinvent y el método ReCiPe, para el pilar ambiental, y la base de datos SOCA y el método simple de ponderación del impacto social, para el pilar social. Esta metodología se utilizó para comparar tres puentes optimizados: dos puentes de carretera de hormigón postensado de sección en cajón con diversas características iniciales y de mantenimiento, y un puente prefabricado de hormigón pretensado. Los resultados muestran que existe una alta interrelación entre el impacto ambiental y social para cada etapa del ciclo de vida.
Abstract
Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage.
En este artículo se aborda una metodología para reducir al mínimo la influencia subjetiva que tienen los decisores a la hora de tomar decisiones, en este caso, utilizando criterios relacionados con la sostenibilidad. Para este fin se ha utilizado el análisis de componentes principales (ACP), la optimización basada en kriging y el método AHP para buscar soluciones sostenibles, eliminando la relación entre criterios dependientes y asegurando la obtención de una solución sostenible frente a las diferentes perspectivas de los responsables de la toma de decisiones. Os dejo el artículo en abierto.
Referencia:
PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2019). Metodología para valorar la sostenibilidad con baja influencia de los decisores. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 461-473. ISBN: 978–84–17924–58–4
Hoy 12 de marzo de 2020 ha tenido lugar la defensa de la tesis doctoral de D. Vicent Penadés Plà titulada “Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty“, dirigida por Víctor Yepes Piqueras y Tatiana García Segura. La tesis recibió la calificación de “Sobresaliente cum laude” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.
Resumen:
Actualmente existe una tendencia hacia la sostenibilidad, especialmente en los países desarrollados donde la preocupación de la sociedad por el deterioro ambiental y los problemas sociales ha aumentado. Siguiendo esta tendencia, el sector de la construcción es uno de los sectores que mayor influencia tiene debido a su alto impacto económico, ambiental y social. Al mismo tiempo, existe un incremento en la demanda de transporte que provoca la necesidad de desarrollo y mantenimiento de las infraestructuras necesarias para tal fin. Con todo esto, los puentes se convierten en una estructura clave, y por tanto, la valoración de la sostenibilidad a lo largo de toda su vida es esencial.
El objetivo principal de esta tesis es proponer una metodología que permita valorar la sostenibilidad de un puente bajo condiciones iniciales inciertas (subjetividad del decisor o variabilidad de parámetros iniciales) y optimizar el diseño para obtener puentes óptimos robustos. Para ello, se ha realizado una extensa revisión bibliográfica de todos los trabajos en los que se realiza un análisis de la sostenibilidad mediante la valoración de criterios relacionados con sus pilares principales (económico, medio ambiental o social). En esta revisión, se ha observado que la forma más completa de valorar los pilares medioambientales y sociales es mediante el uso de métodos de análisis de ciclo de vida. Estos métodos permiten llevar a cabo la valoración de la sostenibilidad durante todas las etapas de la vida de los puentes. Todo este procedimiento proporciona información muy valiosa a los decisores para la valoración y selección del puente más sostenible. No obstante, las valoraciones subjetivas de los decisores sobre la importancia de los criterios influyen en la evaluación final de la sostenibilidad. Por esta razón, es necesario crear una metodología que reduzca la incertidumbre asociada y busque soluciones robustas frente a las opiniones de los agentes implicados en la toma de decisiones.
Además, el diseño y toma de decisiones en puentes está condicionado por los parámetros inicialmente definidos. Esto conduce a soluciones que pueden ser sensibles frente a pequeños cambios en dichas condiciones iniciales. El diseño óptimo robusto permite obtener diseños óptimos y estructuralmente estables frente a variaciones de las condiciones iniciales, y también diseños sostenibles y poco influenciables por las preferencias de los decisores que forman parte del proceso de toma de decisión. Así pues, el diseño óptimo robusto se convierte en un proceso de optimización probabilística que requiere un gran coste computacional. Por este motivo, el uso de metamodelos se ha integrado en la metodología propuesta. En concreto, se ha utilizado hipercubo latino para la definición de la muestra inicial y los modelos kriging para la definción de la aproximación matemática. De esta forma, la optimización heurística basada en kriging ha permitido reducir más de un 90% el coste computacional respecto a la optimización heurística conveniconal obteniendo resultados muy similares.
El estudio del diseño óptimo y estructuralmente estable frente a variaciones de las condiciones iniciales se ha llevado a cabo variando tres parámetros iniciales (módulo de elasticidad, sobrecarga, y fuerza de pretensado). El objetivo del caso de estudio analizado ha sido obtener el diseño más económico y con menor variación de la respuesta estructural. De esta forma, se consigue una frontera de Pareto que permite seleccionar la solución óptima, la solución más robusta o una solución de compromiso entre las dos. Por otro lado, el estudio de diseños sostenibles y poco influenciables por las preferencias de los decisores se ha llevado a cabo generando una gran cantidad de decisores aleatorios para cubrir todas las posibles preferencias de los interesados. El objetivo del caso de estudio ha sido reducir la participación subjetiva de los decisores. De esta forma, se ha podido reducir todo el abanico de diseños posibles a un número reducido de diseños concretos, y seleccionar aquel diseño con mejor media sostenible o menor variabilidad en la valoración.
Esta tesis proporciona en primer lugar, una amplia revisión bibliográfica, tanto de los criterios utilizados para la valoración de la sostenibilidad en puentes como de los diferentes métodos de análisis de ciclo de vida para obtener un perfil completo de los pilares ambientales y sociales. Posteriormente, se define una metodología para la valoración completa de la sostenibilidad, usando métodos de análisis de ciclo de vida. Asimismo, se propone un enfoque que permite obtener estructuras poco influenciables por los parámetros estructurales, así como por las preferencias de los diferentes decisores frente a los criterios sostenibles. La metodología proporcionada en esta tesis es aplicable a cualquier otro tipo de estructura.
Palabras clave:
Sostenibilidad, Toma de decisiones, Análisis de ciclo de vida, Métodos de valoración del impacto del análisis de ciclo de vida, ReCiPe, Ecoinvent, SOCA, Metamodelos, Kriging, Diseño óptimo robusto, Puentes.
PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design.Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison.Journal of Cleaner Production, 192:411-420. DOI:1016/j.jclepro.2018.04.268
Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer cuartil del JCR. En este artículo tratamos de solucionar uno de los problemas que presentan las estructuras óptimas, que es su cercanía a los estados límite y demás restricciones. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.
En efecto, el diseño de una estructura se lleva a cabo generalmente según un enfoque determinista. Sin embargo, todos los problemas estructurales tienen asociados parámetros iniciales inciertos que pueden diferir del valor de diseño. Esto se vuelve importante cuando el objetivo es alcanzar estructuras optimizadas, pues una pequeña variación de estos parámetros inciertos iniciales puede tener una gran influencia en el comportamiento estructural. El objetivo de la optimización de un diseño robusto es obtener un diseño óptimo con la menor variación posible de las funciones objetivas. Para ello, es necesaria una optimización probabilística para obtener los parámetros estadísticos que representen el valor medio y la variación de la función objetivo considerada. Sin embargo, una de las desventajas del diseño robusto óptimo es su alto costo de cálculo. En el presente artículo, la optimización del diseño robusto se aplica al diseño de un puente peatonal continuo de sección en cajón que sea óptimo en cuanto a su costo y robusto en cuanto a la estabilidad estructural. Además, se utiliza el muestreo de hipercubo latino y el metamodelo de kriging para hacer frente al alto costo computacional. Los resultados muestran que las principales variables que controlan el comportamiento estructural son la profundidad de la sección transversal y la resistencia a la compresión del hormigón y que se puede llegar a una solución de compromiso entre el coste óptimo y la robustez del diseño.
Abstract
The design of a structure is generally carried out according to a deterministic approach. However, all structural problems have associated initial uncertain parameters that can differ from the design value. This becomes important when the goal is to reach optimized structures, as a small variation of these initial uncertain parameters can have a big influence on the structural behavior. The objective of robust design optimization is to obtain an optimum design with the lowest possible variation of the objective functions. For this purpose, a probabilistic optimization is necessary to obtain the statistical parameters that represent the mean value and variation of the objective function considered. However, one of the disadvantages of the optimal robust design is its high computational cost. In this paper, robust design optimization is applied to design a continuous prestressed concrete box-girder pedestrian bridge that is optimum in terms of its cost and robust in terms of structural stability. Furthermore, Latin hypercube sampling and the kriging metamodel are used to deal with the high computational cost. Results show that the main variables that control the structural behavior are the depth of the cross-section and compressive strength of the concrete and that a compromise solution between the optimal cost and the robustness of the design can be reached.
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.
Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.
En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.
El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.
El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.
Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.
Objetivos
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales
Programa
– Lección 1. Conceptos básicos del agua en medio poroso
– Lección 2. El problema del agua en las excavaciones
– Lección 3. La magia de las tensiones efectivas en geotecnia
– Lección 4. El sifonamiento en las excavaciones: el efecto Renard
– Lección 5. Clasificación de las técnicas de control del agua en excavaciones
– Lección 6. Selección del sistema de control del nivel freático
– Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
– Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
– Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
– Lección 10. Cálculo de un agotamiento mediante pozos
– Lección 11. Tipología de las estaciones de bombeo
– Lección 12. Altura neta positiva de aspiración de una bomba
– Lección 13. Bombas empleadas en el control del nivel freático de una excavación
– Lección 14. Procedimientos constructivos de pozos profundos para drenaje
– Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
– Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
– Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
– Lección 18. Drenajes horizontales instalados mediante zanjadoras
– Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
– Lección 20. Drenes de penetración transversal: drenes californianos
– Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
– Lección 22. Drenaje horizontal con pozos radiales
– Lección 23. Galerías de drenaje en el control del nivel freático
– Lección 24. Electroósmosis como técnica de drenaje del terreno
– Lección 25. Procedimientos para la contención del agua
– Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
– Lección 27. Contención de aguas mediante ataguías en excavaciones
– Lección 28. Contención del agua mediante ataguías de tierras y escollera
– Lección 29. Contención del agua mediante tablestacas
– Lección 30. Contención del agua mediante ataguías celulares
– Lección 31. Contención del agua mediante cajones indios
– Lección 32. Contención del agua mediante cajones de aire comprimido
– Lección 33. Contención del agua mediante muros pantalla
– Lección 34. Contención del agua mediante pantallas de pilotes secantes
– Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
– Lección 36. Contención del agua mediante pantallas de suelo-bentonita
– Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
– Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
– Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
– Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
– Lección 41. Contención del agua mediante pantallas de geomembranas
– Lección 42. Contención del agua mediante inyección del terreno
– Lección 43. Contención del agua mediante inyección de lechadas de cemento
– Lección 44. Contención del agua mediante inyección de lechadas de arcilla
– Lección 45. Contención del agua mediante inyección de lechadas químicas
– Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
– Lección 47. Contención del agua mediante congelación de suelos
– Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
– Lección 49. Contención del agua mediante escudos presurizados con lodos
– Lección 50. Contención del agua mediante escudos de presión de tierras
– Supuesto práctico 1.
– Supuesto práctico 2.
– Supuesto práctico 3.
– Batería de preguntas final
Profesorado
Víctor Yepes Piqueras
Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.
Hoy 22 de noviembre de 2019 ha tenido lugar la defensa de la tesis doctoral de D. Ignacio J. Navarro Martínez titulada “Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environments“, dirigida por Víctor Yepes Piqueras y José V. Martí Albiñana. La tesis recibió la calificación de “Sobresaliente Cum Laude” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.
Resumen:
La sostenibilidad ha ido adquiriendo una presencia relevante en nuestra sociedad desde su primera definición en 1987 por parte de la Comisión Brundtland. Desde entonces, la comunidad científica ha llevado a cabo importantes esfuerzos en el desarrollo de normativas, herramientas y criterios para lograr diseños en esa línea. A pesar de ello, estos esfuerzos no han sido suficientes para lograr trazar un futuro realmente sostenible a corto plazo. Como respuesta al estado actual e insuficiente de desarrollo, las Naciones Unidas han establecido recientemente los Objetivos de Desarrollo Sostenible, los cuales deben alcanzarse en 2030. En dichos Objetivos se atiende explícitamente al papel de las infraestructuras, que se revelan como elementos clave para asegurar la consecución de los mencionados Objetivos. Sin embargo, a pesar de las relevantes implicaciones del diseño de infraestructuras, y a pesar de que la mayoría de las infraestructuras están diseñadas para servir a un grupo significativo de personas durante un periodo intergeneracional de tiempo, el diseño sostenible y resiliente de infraestructuras todavía carece de una metodología estandarizada que considere sus ciclos de vida desde una perspectiva holística. En la actualidad, tanto las metodologías de evaluación del ciclo de vida ambiental como las económicas muestran un estado de desarrollo relativamente maduro. Sin embargo, la dimensión social todavía se considera en estado embrionario, comprometiendo por tanto el empleo de métodos de evaluación multidimensionales de la sostenibilidad.
La presente tesis propone una metodología extendida basada en la norma ISO 14040 de enfoque puramente medioambiental para evaluar la sostenibilidad del ciclo de vida de las infraestructuras mediante la consideración simultánea y coherente de las tres dimensiones de la misma, a saber, el medio ambiente, la economía y la sociedad. Se propone aquí una nueva metodología para evaluar las infraestructuras desde la dimensión social, integrando al mismo tiempo dichas evaluaciones en un marco basado en la norma ISO 14040. A continuación, se aplica una técnica de toma de decisión multicriterio para integrar las tres perspectivas. Con el fin de tener en cuenta las incertidumbres no probabilísticas implicadas en la asignación de pesos al emplear dichas técnicas, se propone aquí un nuevo enfoque neutrosófico para la determinación de los pesos resultantes de la aplicación de la técnica AHP con grupos de decisores. Se ha considerado como caso de estudio el diseño sostenible de un puente de hormigón pretensado en un entorno costero para construir la metodología propuesta. El enfoque holístico en la evaluación de la sostenibilidad de las infraestructuras se revela esencial frente a las habituales evaluaciones basadas únicamente en la consideración de la dimensión medioambiental. Se ha observado que el mantenimiento preventivo resulta más sostenible a lo largo del ciclo de vida en comparación con las estrategias de mantenimiento reactivo. Esta tesis proporciona una guía para el diseño sostenible de estructuras de hormigón, aunque la metodología sugerida puede aplicarse a cualquier tipo de infraestructura.
Referencias:
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights.Structure and Infrastructure Engineering, DOI: 10.1080/15732479.2019.1676791
NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective.Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks.Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments.Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
El viaducto del río Ulla, es una obra de celosía tipo mixta propiedad del Ministerio de Fomento (Dirección General de Ferrocarriles), proyectado por IDEAM, construido por la UTE Dragados-Tecsa. Se inauguró el 30 de marzo del 2015. Este puente se convirtió en el récord del mundo en la tipología de celosía mixta de alta velocidad con tres vanos de 225 + 240 + 225 m que superan al del puente de Nantenbach sobre el río Main, en Alemania, que ostentaba el récord desde su conclusión en 1993 con 208 m de luz.
A continuación os paso una simulación en 3D realizada por la empresa PROIN3D del proceso constructivo propuesto para la ejecución de las cimentaciones del viaducto de río Ulla (Eje Atlántico de Alta Velocidad). Espero que os guste. Dura menos de 5 minutos.
También os dejo el artículo que describe el proceso constructivo de este puente singular, firmado por Francisco Miilanes, Miguel Ortega y Rubén A. Estévez, y que se publicó en la revista Hormigón y Acero.
William Howe (1803-1852) patentó en 1840 la celosía Howe, similar a la Múltiple Kingspost pero sustituyendo los montantes traccionados de madera por tirantes de hierro forjado. En aquella época, el coste del hierro era comparativamente elevado y esto justificaba la disposición de los elementos más cortos (los montantes) en tracción. Esta disposición, al contrario que con la celosía Pratt, donde cuando está sometida a cargas equilibradas, las diagonales interiores están traccionadas y los elementos verticales están comprimidos.
Con esta tipología de viga en celosía se construyó en el año 1936 el puente Sioux Narrows, en Kenora (Ontario). Era un puente de vigas de madera de una longitud de 120 m, pero que con sus 64 m de luz fue durante años el puente de madera de un solo vano más largo de América del Norte. Se ubicó al otro lado de un estrecho en el Lago de los Bosques en la histórica comunidad de Sioux Narrows en el norte de Ontario y es propiedad de la Provincia de Ontario, Ministerio de Transporte. En vista de su antigüedad y singularidad, la Provincia de Ontario incluyó la estructura en su Lista de Puentes del Patrimonio.
Hay muchos ejemplos de madera bien tratada que ha durado mucho tiempo a la intemperie. Éste ha sido el caso del puente Sioux Narrows. Después de unos 70 años de servicio ininterrumpido, este puente se demolió, no por falta de durabilidad, sino para dar cabida a un puente más ancho. Las celosías del puente se fabricaron con la madera del abeto Douglas, tratado con creosata impregnada a presión. La madera de este puente fueron tan duraderas que los largueros desechados se utilizaron recientemente para investigar en laboratorio la resistencia al corte de los largueros.
En 1982, el puente se reconstruyó el puente pretensando las tablas de madera del tablero. En la década de 1990 y principios de la década de 2000, el deterioro de la calidad de la estructura requirió restricciones de carga y de carril en el puente, prohibiendo el paso de vehículos pesados de transporte forzados a desviarse por desvíos alternativos.
En 2002 se descubrió que el puente se encontraba en un estado de colapso progresivo y finalmente se tomó la decisión de reemplazarlo. Se construyó un puente temporal en 2003, y el puente de madera fue desmantelado. Desde el punto de vista de la planificación y la ingeniería, la designación del patrimonio requería que el equipo del proyecto considerara los aspectos patrimoniales y estéticos como un componente integral al examinar las alternativas para abordar las deficiencias estructurales. La solución final fue una en la que se preservaron las características patrimoniales originales del puente, a la vez que se proporcionó un puente nuevo, duradero y altamente funcional. Para preservar el carácter de este puente histórico y de atracción turística, se diseñó un nuevo puente con una celosía de acero ornamental que estaría revestida de madera. Todos los revestimientos de madera fueron precortados, pretaladrados y tratados.
La madera laminada se forma con piezas de madera unidas con adhesivo por sus extremos y caras, de forma que las fibras queden paralelas al eje del elementos. De esta forma, se pueden construir elementos que no se encuentran limitados en cuanto a su sección transversal, longitud o forma. A diferencia de la madera maciza, la madera laminada es un producto homogéneo, lo cual permite ajustar los cálculos de forma más precisa.
Si bien los antecedentes de la madera ensamblada, para dar acabados curvos, la empezó a utilizar el arquitecto francés Philibert Delorme en el Palacio de las Tullerías, en el siglo XVI. Tres siglos después, el coronel Emy, también en Francia, utilizó un sistema que consiste en vigas laminadas unidas con pernos y correas metálicas. Pero fue a principios del siglo XX cuando el suizo Karl Friedrich Otto Hetzer patentó la “madera laminada encolada para uso estructural”.
La construcción actual de puentes de madera es modular, transportándose las piezas a obra para posteriormente instalar la estructura en su ubicación definitiva. Las nuevas tecnologías en el uso de la madera laminada y la aplicación de protectores dan una mayor durabilidad. Es fácil llegar a construir puentes de madera laminada de luces que llegan a 50 m. A continuación os paso un par de vídeos sobre el montaje de puentes de madera. Espero que os gusten.
Colocación del nuevo puente de madera sobre el rio Mandeo – Betanzos (04/11/11)
Montaje de puente de madera en el río Mero, A Coruña. Este modelo de puente corresponde a una tipología de arcos portantes de madera laminada y tablero peatonal suspendido de tirantes metálicos.
Os dejo también un reportaje sobre este material que amplía la información que os he dado anteriormente de forma muy breve.
DIMALIFE: Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos
Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges under restrictive budgets
Víctor Yepes*, a, Eugenio Pellicer b, José V. Martí c, Moacir Kripka d
a Dr. Ingeniero de Caminos. Catedrático de Universidad. ICITECH, Universitat Politècnica de València.
b Dr. Ingeniero de Caminos. Catedrático de Universidad. Universitat Politècnica de València.
c Dr. Ingeniero de Caminos. Profesor Titular de Universidad. ICITECH, Universitat Politècnica de València.
d Dr. Ingeniero Civil. Catedrático de Universidad. Universidade de Passo Fundo, Brasil.
* Persona de contacto / Corresponding author
RESUMEN
El artículo expone los resultados alcanzados dentro del proyecto de investigación DIMALIFE. Se desarrolla una metodología que incorpora la variabilidad en los procesos de toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, de forma que se contemplen las necesidades e intereses sociales y ambientales con presupuestos restrictivos. La variabilidad inherente a los parámetros, variables y restricciones del problema resulta crítica si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad. Se precisa introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos.
ABSTRACT
The article presents the results achieved within the DIMALIFE research project. It develops a methodology that incorporates variability in decision-making processes during the whole life cycle of bridges and highway infrastructures, so that social and environmental needs and interests are taken into account with restrictive budgets. The variability inherent in the parameters, variables and constraints of the problem is critical if they are given by good optimized solutions, which can be on the verge of infactibility. Multi-objective optimisation based on reliability needs to be introduced into the analysis and robust optimal designs achieved.
PALABRAS CLAVE: puentes, sostenibilidad, ciclo de vida, optimización multiobjetivo, fiabilidad.
KEYWORDS: bridges, sustainability, life cycle, multi-objective optimisation, reliability
INTRODUCCIÓN
Las vías de comunicación terrestre, y en especial los puentes, son infraestructuras básicas en el desarrollo económico, en el equilibrio territorial y en el bienestar social, cuya construcción, diseño, conservación y desmantelamiento se ven afectados significativamente cuando los presupuestos son restrictivos. Su deterioro y su incidencia en la seguridad son objeto de gran alarma social. Si además el mantenimiento es ineficiente, la reparación conlleva costes mayores. El objetivo principal del proyecto DIMALIFE consiste en desarrollar una metodología que permita incorporar la variabilidad en los procesos analíticos en la toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, incluyendo la licitación de proyectos de obra nueva y de mantenimiento de activos existentes, de forma que se contemplen las necesidades e intereses sociales y ambientales.
Una alternativa al proyecto secuencial de infraestructuras y del mantenimiento de las existentes es el diseño totalmente automático utilizando técnicas de optimización, capaces de incorporar múltiples funciones objetivo y cuyo resultado es la generación de un conjunto de soluciones eficientes. No obstante, esta metodología presenta limitaciones que el proyecto DIMALIFE pretende superar.
El empleo de técnicas de análisis del valor y toma de decisiones ha supuesto un gran avance en la definición de un indicador de sostenibilidad. Este enfoque se amplió en anteriores proyectos de investigación al considerar el ciclo completo de la vida de una estructura o el uso de hormigones de baja huella de carbono, incluyendo, asimismo en el proceso los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio tanto de forma previa a los procesos de optimización multiobjetivo, como posteriormente en la priorización de las soluciones eficientes. Sin embargo, en el mundo real, las infraestructuras presentan una variabilidad inherente a los parámetros, variables y restricciones del problema. Este aspecto resulta crítico si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad en cuanto se altera mínimamente alguno de los valores que definen el problema. Se precisa, por ello, introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos, tanto de infraestructuras nuevas como del mantenimiento de las existentes, considerando el ciclo de vida hasta su desmantelamiento. Para que este procedimiento sea abordable en tiempos de cálculo razonable se precisa el uso de metamodelos (redes neuronales, modelos Kriging, superficie de respuesta, etc.) dentro de las técnicas de optimización.
Por otra parte, la fuerte limitación presupuestaria presente en momentos de crisis compromete seriamente las políticas de creación y conservación de las infraestructuras. Los resultados esperados, tras un análisis de sensibilidad de distintas políticas presupuestarias asociadas a un horizonte temporal, pretenden detallar qué tipologías, actuaciones concretas de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos ambientales y sociales considerando la variabilidad. En este sentido, un aspecto importante consiste en determinar los criterios e indicadores clave para garantizar una efectiva integración de la sostenibilidad en la licitación de proyectos de obra y de mantenimiento de infraestructuras viarias.
ANTECEDENTES Y JUSTIFICACIÓN DEL PROYECTO
La sostenibilidad económica y social depende directamente del comportamiento fiable y duradero de sus infraestructuras [1]. La construcción y mantenimiento de las infraestructuras viarias y puentes afectan fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, estas actividades impactan en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras que maximicen su beneficio social sin comprometer su sostenibilidad [2].
Por otra parte, el envejecimiento de las infraestructuras, la mayor demanda en su desempeño (aumento de tráfico, por ejemplo) o los riesgos naturales extremos afectan a su al rendimiento [3]. Si a ello añadimos la crisis financiera que ha afectado la economía de nuestro país, el panorama se complica. Las infraestructuras que se crearon con una financiación a largo plazo presentan actualmente déficits de conservación y es posible que las generaciones futuras tengan que hacer un esfuerzo adicional para actualizar los requisitos de seguridad y funcionalidad a su nivel de servicio previsto [4].
Existen dificultades cuando se emprende un análisis de ciclo de vida de una infraestructura debido a las incertidumbres presentes en la definición de las entradas y salidas del sistema. El reto implica un proceso de toma de decisiones que minimice los impactos sociales y medioambientales al coste más bajo posible [5]. Varios trabajos han tratado de cuantificar la sostenibilidad en los proyectos de puentes [6-8].
Con todo, la línea de investigación no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. El proyecto DIMALIFE pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, los proyectos anteriores se centraban en la fase de diseño [9-12]. Sin embargo, este es un aspecto muy específico, siendo necesario abordar en mayor profundidad el análisis dual sobre la necesidad de nuevas infraestructuras o la mejora de las existentes para el mejor aprovechamiento del parque actual. En efecto, todo parece indicar que en una situación de restricción presupuestaria como la actual va a ser difícil que el grueso del presupuesto se dedique a nueva construcción, siendo razonable su empleo en el mantenimiento y rehabilitación [13]. En segundo lugar, las infraestructuras viarias incluyen no solo puentes: el abanico estructural contiene incluso el mantenimiento del pavimento; en este sentido, algunos trabajos afrontados recientemente por el grupo han abordado este aspecto con restricciones presupuestarias [14,15]. En tercer lugar, y aunque se han utilizado técnicas de decisión multicriterio para tratar aspectos complejos de sostenibilidad social y medioambiental [5,8] en el ámbito de las infraestructuras, existen limitaciones que se deben superar. Éstas tienen que ver con la sensibilidad que presentan las soluciones óptimas respecto a la variabilidad intrínseca de las variables y parámetros de los problemas estructurales, así como la influencia que presenta esta variabilidad en los resultados de los procesos de toma de decisiones. Por último, la toma de decisiones y la optimización multiobjetivo de los problemas reales conlleva un trabajo muy laborioso de programación de software propio que, en ocasiones, presenta tiempos de cálculo elevados que obliga a replantear las metodologías empleadas hasta el momento, a pesar de que las capacidades de cálculo de los ordenadores son cada vez mayores. Es el campo propicio para integrar metamodelos en los procesos de optimización, tal y como se ha empezado a realizar en algunos trabajos muy recientes del grupo en el caso de las redes neuronales [11].
En efecto, a pesar de que se ha avanzado fuertemente en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los valores de los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). De hecho, los códigos estructurales consideran las incertidumbres de forma simplificada definiendo los valores característicos para las variables aleatorias como percentiles de sus distribuciones y especifican unos coeficientes parciales de seguridad. Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que cualquier pequeña variación puede hacer que la estructura no cumpla con algunos de los estados límites previstos. La necesidad de incorporar las incertidumbres ha estimulado el interés por procedimientos capaces de proporcionar diseños más robustos y fiables [16]. De todas formas, se diferencian dos enfoques que consideran la respuesta probabilista en el proceso de diseño óptimo: el diseño basado en fiabilidad y el diseño óptimo robusto. En el primero se incluyen los efectos de la incertidumbre por medio de probabilidades de fallo y de valores esperados [17], mientras que el segundo trata de determinar un diseño menos sensible a las incertidumbres de las variables y de los parámetros que intervienen en la respuesta estructural [18,19].
Uno de los grandes problemas de la optimización multiobjetivo al incorporar las incertidumbres es su elevado coste computacional. Este inconveniente ya se detectó en el caso de la optimización multiobjetivo basada en fiabilidad del mantenimiento de puentes [20] donde se tuvieron que emplear redes neuronales como metamodelos [11]. Los metamodelos, también llamados modelos subrogados, proporcionan una relación aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Estas aproximaciones se utilizan para reemplazar los análisis informáticos costosos facilitando la optimización multiobjetivo. Entre otros, podemos distinguir el diseño de experimentos, la metodología de la superficie de respuesta, los métodos Taguchi, las redes neuronales, las funciones de base radial o los modelos Kriging [21,22].
Por último, un aspecto no tratado que se incorpora al proyecto es aprovechar las conclusiones de los análisis de optimización para incluir criterios y recomendaciones que mejoren la contratación pública sostenible de las infraestructuras, dado que se considera que este aspecto posee el potencial de influir fuertemente en las políticas futuras [23]. Es por ello que DIMALIFE pretende determinar, dentro de sus objetivos, criterios e indicadores clave que garanticen una integración efectiva de la sostenibilidad en la licitación de proyectos. Dichos desarrollos pretenden ser la base para la definición de una guía que facilite a las Administraciones incorporar la sostenibilidad en los procedimientos de licitación de una manera efectiva; de modo que se influya sobre las tres etapas clave del procedimiento de licitación: definición de criterios de selección, definición de criterios de adjudicación y definición de especificaciones técnicas y cláusulas de desempeño.
OBJETIVOS GENERALES DEL PROYECTO
La metodología habitual, tanto en el diseño como en el mantenimiento óptimo de puentes e infraestructuras viarias, puede conducir a soluciones cercanas a la infactibilidad. Por tanto, las incertidumbres deben considerarse en el diseño y el mantenimiento óptimo de infraestructuras basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida, contemplando las fluctuaciones tanto de los parámetros como de los escenarios, especialmente en el caso de restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos capaces de acelerar los complejos procesos de cálculo. Además, se contempla la hipótesis adicional que establece que la contratación pública de las infraestructuras públicas debe incluir criterios de sostenibilidad por su fuerte influencia potencial en los mercados.
El objetivo general perseguido en este proyecto se basa en afrontar el reto social que supone la creación y la conservación de las infraestructuras viarias en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas (puentes de hormigón pretensado prefabricados o “in situ”, puentes mixtos, puentes de acero, tipologías de muros, bóvedas y marcos de paso inferior). Para ello se precisa un salto científico que integre a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas de optimización multiobjetivo basadas en fiabilidad, junto el empleo de metamodelos, aplicadas no solo al proyecto de nuevas infraestructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporciona conocimiento no trivial sobre las mejores prácticas. Esta metodología se aplica también a otro tipo de infraestructuras del transporte.
Los objetivos generales se desarrollan mediante los siguientes objetivos específicos:
Análisis de funciones de distribución para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio
Determinación de los criterios e indicadores clave para garantizar una efectiva integración de la sostenibilidad en la licitación de proyectos de obra y de mantenimiento de infraestructuras viarias
Identificación de estrategias de mantenimiento robusto óptimo de puentes e infraestructuras viarias ya construidos
Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de los puentes e infraestructuras viarias mediante metamodelos
Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida
Para alcanzar estos objetivos, se ha colaborado con los grupos de investigación de los profesores Frangopol y Moleenar (EE.UU.), del profesor Haukaas (Canadá), del profesor Kripka (Brasil), del profesor Partskhaladze (Georgia) y del profesor Sierra (Chile).
METODOLOGÍA
La investigación combina técnicas y disciplinas diversas tales como el análisis estructural, la toma de decisiones multicriterio, la optimización heurística multiobjetivo, el análisis del ciclo de vida, el análisis basado en fiabilidad, el diseño óptimo robusto, los metamodelos y las técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales. Los trabajos desarrollados en proyectos anteriores se centraron en la optimización con múltiples objetivos, empleando técnicas sin información a priori del decisor. En este caso, la optimización proporciona alternativas eficientes al decisor. También ha utilizado técnicas con información a priori, donde el decisor informa sobre las preferencias al analista, que optimiza su modelo. En la metodología propuesta (Figura 1) se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el decisor debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.
RESULTADOS
Aunque el proyecto de investigación empezó en el año 2018 y termina a finales del 2020, las aportaciones realizadas hasta el momento son significativas. La principal contribución es la incorporación de la variabilidad de los parámetros y restricciones del problema de optimización multiobjetivo basado en criterios de sostenibilidad social y medioambiental. Los resultados obtenidos se pueden clasificar en:
Formulación de una metodología de participación social que definan un proceso de decisión multicriterio, que integre aspectos objetivos y subjetivos, así como la aplicación de técnicas analíticas sistémicas (ANP) y análisis de valor, con inclusión expresa de la incertidumbre (técnicas fuzzy, modelos bayesianos, teoría neutrosófica) [24-37].
Propuesta de nuevas técnicas de optimización multiobjetivo basada en fiabilidad que integran metamodelos para acelerar la convergencia de cálculo considerando el ciclo de vida [38-50].
Definición del tipo de política presupuestaria que perjudica en mayor medida la sostenibilidad social y ambiental a lo largo del ciclo de vida de puentes e infraestructuras viarias [51-53].
Desarrollo de criterios para la Administración que potencie la incorporación de criterios sostenibles en los procedimientos de licitación de manera efectiva [54,55].
Como resultado del proyecto, también se menciona la culminación de cinco tesis doctorales [56-60], estando en marcha tres más.
CONCLUSIONES
El proyecto de investigación DIMALIFE ha profundizado en la optimización multiobjetivo en fase de diseño y construcción que incorporaban la visión social y el análisis completo del ciclo de vida. El objetivo ha sido incorporar a distintos actores y grupos de expertos en la toma de decisiones la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se han aplicado técnicas de optimización multiobjetivo basadas en fiabilidad, junto el empleo de metamodelos, al proyecto y mantenimiento de puentes e infraestructuras viarias.
El motivo de este planteamiento también constituye una necesidad social. En efecto, las incertidumbres relacionadas con la toma de decisiones, no solo en el diseño de nuevas infraestructuras, sino especialmente en el mantenimiento, que contemplen aspectos de sostenibilidad social y ambiental en situaciones extremas de restricciones presupuestarias, es un problema que afecta directamente a las infraestructuras viarias. El problema es altamente complejo cuando se realizan análisis basados en la fiabilidad. Se ha profundizado en el diseño robusto y el uso de metamodelos para asegurar que las soluciones optimizadas sean poco sensibles ante la variabilidad intrínseca de los parámetros. Se ha agregado la contratación pública sostenible, tanto de nuevas infraestructuras como de su mantenimiento, debido a su elevada influencia en el sector, con el fin de proponer políticas de actuación: las exigencias de las administraciones públicas serán de gran importancia futura para el diseño, construcción y mantenimiento de las infraestructuras, teniendo en cuenta las restricciones presupuestarias existentes.
Sin haber terminado el proyecto, de los resultados obtenidos y publicados hasta el momento, se puede concluir que la línea de investigación ofrece una amplia posibilidad de ramificaciones. Ello obliga a profundizar en aspectos complejos que, probablemente requieran de acuerdos de colaboración con otros grupos de investigación para conseguir resultados de mayor alcance.
AGRADECIMIENTOS
Este estudio ha sido financiado por el Ministerio de Economía, Industria y Competitividad, así como por fondos FEDER (BIA2017-85098-R).
REFERENCIAS
[1] D.M. Frangopol, Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges, Structure and Infrastructure Engineering. 7(6) (2011) 389–413.
[2] A. Aguado, A. del Caño, M.P. de la Cruz, D. Gómez, A. Josa, Sustainability assessment of concrete structures within the Spanish structural concrete code, Journal of Construction Engineering and Management. 138(2) (2012) 268–276.
[3] F. Biondini, D.M. Frangopol, Life-cycle of deteriorating structural systems under uncertainty: Review, Journal of Structural Engineering. 142(9) (2016) F4016001.
[4] J.K. Nishijima, D. Straub, M. faber, Ingergenerational distribution of the life-cycle cost of an engineering facility, Journal of Reliability of Structures and Materials. 1(3) (2007) 33–43.
[5] V. Penadés-Plà, T. García-Segura, J.V. Martí, V. Yepes, A review of multi-criteria decision making methods applied to the sustainable bridge design, Sustainability. 8(12) (2016) 1295.
[6] P.C. Spencer, C.R. Hendy, R. Petty, Quantification of sustainability principles in bridge projects, Proceedings of the Institution of Civil Engineers – Bridge Engineering. 165(2) (2012) 81–89.
[7] V. Yepes, J.V. Martí, T. García-Segura, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering. 15(4) (2015) 123–134.
[8] L.A. Sierra, E. Pellicer, V. Yepes, Method for estimating the social sustainability of infrastructure projects, Environmental Impact Assessment Review. 65 (2017) 41–53.
[9] J.V. Martí, V. Yepes, F. González-Vidosa., Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement, Journal of Structural Engineering. 141(2) (2015) 04014114.
[10] T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Engineering Structures. 125 (2016) 325–336.
[11] T. García-Segura, V. Yepes, D.M. Frangopol, Multi-objective design of post-tensioned concrete road bridges using artificial neural networks, Structural and Multidisciplinary Optimization. 56(1) (2017) 139–150.
[12] V. Yepes, J.V. Martí, T. García-Segura, F. González-Vidosa, Heuristics in optimal detailed design of precast road bridges, Archives of Civil and Mechanical Engineering. 17(4) (2017) 738–749.
[13] M. Sánchez-Silva, D.M. Frangopol, J. Padgett, M. Soliman, Maintenance and operation of infrastructure systems: Review, Journal of Structural Engineering. 142(9) (2016) F4016004.
[14] V. Yepes, C. Torres-Machí, A. Chamorro, E. Pellicer, Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm, Journal of Civil Engineering and Management. 22(4) (2016) 540–550.
[15] C. Torres-Machí, E. Pellicer, V. Yepes, A. Chamorro, E. Pellicer, Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions, Journal of Cleaner Production. 148 (2017) 90–102.
[16] J. Martínez-Frutos, P. Martí, Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas, Revista Internacional de Métodos Numéricos en Ingeniería. 30(2) (2014) 97–105.
[17] Z.L. Huang, C. Jiang, Y.S. Zhou, J. Zheng, X.Y. Long, Reliability-based design optimization for problems with interval distribution parameters, Structural and Multidisciplinary Optimization. 55(2) (2017) 513–528.
[18] I. Doltsinis, Z. Kang, Robust design of structures using optimization methods, Computer methods in applied mechanics and engineering. 193(23-26) (2004) 2221–2237.
[19] H. Beyer, B. Sendhoff, Robust optimization – A comprehensive survey, Methods in Applied Mechanics and Engineering. 196(33-34) (2007) 3190–3218.
[20] T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges, Engineering Structures. 145 (2017) 381–391.
[21] T.W. Simpson, J.D. Poplinski, P.N. Koch, J.K. Allen, Metamodels for computer-based engineering design: Survey and recommendations, Engineering with Computers. 17(2) (2001) 129–150.
[22] J.P.C. Kleijnen, Regression and Kriging metamodels with their experimental designs in simulation: A review, European Journal of Operational Research. 256(1) (2017) 1–16.
[23] A. Sourani, M. Sohail, Barriers to addressing sustainable construction in public procurement strategies, Engineering Sustainability. ES4 (2010) 229–237.
[24] M. Kripka, V. Yepes, C.J. Milani, Selection of sustainable short-span bridge design in Brazil, Sustainability. 11(5) (2019) 1307.
[25] R. Martín, V. Yepes, The concept of landscape within marinas: Basis for consideration in the management, Ocean & Coastal Management. 179 (2019) 104815.
[26] I.J. Navarro, V. Yepes, J.V. Martí, Social life cycle assessment of concrete bridge decks exposed to aggressive environments, Environmental Impact Assessment Review. 72 (2018) 50–63.
[27] I.J. Navarro, V. Yepes, J.V. Martí, A review of multi-criteria assessment techniques applied to sustainable infrastructures design, Advances in Civil Engineering. (2019) 6134803.
[28] I.J. Navarro, V. Yepes, J.V. Martí, Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights, Structure and Infrastructure Engineering. (2019) DOI: 10.1080/15732479.2019.1676791.
[29] V. Penadés-Plà, J.V. Martí, T. García-Segura, V. Yepes, Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges, Sustainability. 9(10) (2017) 1864.
[30] J.J. Pons, V. Penadés-Plà, V. Yepes, J.V. Martí, Life cycle assessment of earth-retaining walls: An environmental comparison, Journal of Cleaner Production. 192 (2018) 411–420.
[31] J. Salas, V. Yepes, A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models, Journal of Cleaner Production. 176 (2018) 1231–1244.
[32] J. Salas, V. Yepes, Urban vulnerability assessment: Advances from the strategic planning outlook, Journal of Cleaner Production. 179 (2018) 544–558.
[33] J. Salas, V. Yepes, VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain, Sustainability. 11(8) (2019) 2191.
[34] J. Salas, V. Yepes, MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems, Journal of Cleaner Production. 216 (2019) 607–623.
[35] L.A. Sierra, V. Yepes, E. Pellicer, Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty, Environmental Impact Assessment Review. 67 (2017) 61–72.
[36] L.A. Sierra, V. Yepes, T. García-Segura, E. Pellicer, Bayesian network method for decision-making about the social sustainability of infrastructure projects, Journal of Cleaner Production. 176 (2018) 521–534.
[37] L.A. Sierra, V. Yepes, E. Pellicer, A review of multi-criteria assessment of the social sustainability of infrastructures, Journal of Cleaner Production. 187 (2018) 496–513.
[38] J. Alcalá, F. González-Vidosa, V. Yepes J.V. Martí, Embodied energy optimization of prestressed concrete slab bridge decks, Technologies. 6(2) (2018) 43.
[39] J.T. Boscardin, V. Yepes, M. Kripka, Optimization of reinforced concrete building frames with automated grouping of columns, Automation in Construction. 104 (2019) 331–340.
[40] T. García-Segura, V. Penadés-Plà, V. Yepes, Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty, Journal of Cleaner Production. 202 (2018) 904–915.
[41] P. Martínez-Fernández, I. Villalba-Sanchís, R. Insa-Franco, V. Yepes, A review of modelling and optimisation methods applied to railways energy consumption, Journal of Cleaner Production. 222 (2019) 153–162.
[42] F. Molina-Moreno, J.V. Martí, V. Yepes, Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs, Journal of Cleaner Production. 164 (2017) 872–884.
[43] F. Molina-Moreno, T. García-Segura, J.V. Martí, V. Yepes, Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms, Engineering Structures. 134 (2017) 205–216.
[44] G. Partskhaladze, I. Mshvenieradze, E. Medzmariashvili, G. Chavleshvili, V. Yepes, J. Alcalá, Buckling Analysis and Stability of Compressed Low Carbon Steel Rods in Elasto-Plastic Region of Material, Advances in Civil Engineering. (2019) 7601260.
[45] V. Penadés-Plà, T. García-Segura, J.V. Martí, V. Yepes, An optimization-LCA of a prestressed concrete precast bridge, Sustainability. 10(3) (2018) 685.
[46] V. Penadés-Plà, T. García-Segura, V. Yepes, Accelerated optimization method for low-embodied energy concrete box-girder bridge design, Engineering Structures. 179 (2019) 556–565.
[47] V. Penadés-Plà, V. Yepes, M. Kripka, Optimización de puentes pretensados mediante la metodología de la superficie de respuesta, Revista CIATEC-UPF. 11(2) (2019) 22–35.
[48] V. Yepes, E. Pérez-López, J. Alcalá, T. García-Segura, Parametric study of concrete box-girder footbridges, Journal of Construction Engineering, Management & Innovation. 1(2) (2018) 67–74.
[49] V. Yepes, M. Dasí-Gil, D. Martínez-Muñoz, V.J. López-Desfilís, J.V. Martí, Heuristic techniques for the design of steel-concrete composite pedestrian bridges, Applied Sciences. 9 (2019) 3253.
[50] V. Yepes, E. Pérez-López, T. García-Segura, J. Alcalá, Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges, International Journal of Computational Methods and Experimental Measurements. 7(2) (2019) 118–129.
[51] I.J. Navarro, V. Yepes, J.V. Martí, Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides, Sustainability. 10(3) (2018) 845.
[52] I.J. Navarro, V. Yepes, J.V. Martí, Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks, Journal of Cleaner Production. 196 (2018) 698–713.
[53] I.J. Navarro, J.V. Martí, V. Yepes, Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective, Environmental Impact Assessment Review. 74 (2019) 23–34.
[54] L. Montalbán-Domingo, T. García-Segura, M.A. Sanz, E. Pellicer, Social sustainability criteria in public-work procurement: an international perspective, Journal of Cleaner Production. 198 (2018) 1355–1371.
[55] L. Montalbán-Domingo, T. García-Segura, M.A. Sanz, E. Pellicer, Social sustainability in delivery and procurement of public construction contracts, Journal of Management in Engineering. 35(2) (2018) 04018065.
[56] L.A. Sierra, Evaluación multicriterio de la sostenibilidad social para el desarrollo de infraestructuras, Tesis Doctoral, Universitat Politècnica de València, 2017.
[57] J. Salas, Vulnerabilidad urbana. Nueva caracterización y metodología para el diseño de escenarios óptimos, Tesis Doctoral, Universitat Politècnica de València, 2019.
[58] L. Montalbán-Domingo, Social sustainability in public-work procurement, Tesis Doctoral, Universitat Politècnica de València, 2019.
[59] I.J. Navarro, Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environment, Tesis Doctoral, Universitat Politècnica de València, 2019.
[60] V. Penadés-Plà, Toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos, Tesis Doctoral, Universitat Politècnica de València, 2020.