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Abstract: Most of the definitions of sustainability include three basic pillars: economic, environmental,
and social. The economic pillar has always been evaluated but not necessarily in the sense of
economic sustainability. On the other hand, the environmental pillar is increasingly being considered,
while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use
of methodologies to allow a wide assessment of these pillars and the integration of the assessment in
a few understandable indicators is crucial. This article is structured into two parts. In the first part,
a review of life cycle impact assessment methods, which allow a comprehensive assessment of the
environmental and social pillars, is carried out. In the second part, a complete environmental and
social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the
environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social
pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned
concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed
concrete precast bridge. The results show that there is a high interrelation between the environmental
and social impact for each life cycle stage.
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1. Introduction

Since its definition in 1987 by the World Commission on Environment and Development [1],
the concept of sustainability has been attracting increasing attention in many sectors of our society.
However, it was not until 2015 that the first set of Sustainable Development Goals was established as
a response to growing social needs and environmental degradation [2].

Despite social assessment being an important part of the sustainability definition, its evaluation is
underestimated or relatively weak with respect to the other pillars of sustainability when sustainability
assessments of products, processes, or services have been carried out [3,4]. Vallance et al. [5] stated that
this is due to the fact that the definition of social sustainability is quite ambiguous, and Murphy [3]
indicated that there are no clear criteria for assessing sustainability. However, social equity, education,
basic health, and participatory democracy are important for sustainability development [6]. At present,
there is a trend toward giving the social pillar the same importance as the economic and environmental
pillars [7–10]. This is demonstrated by the fact that 6 of the 17 sustainable development goals proposed
by the United Nations focus on social problems.

The complex stakeholder situation in construction projects makes performing a social sustainability
assessment difficult [11]. Valdes-Vasquez and Klotz [12] indicated that projects in the construction sector
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involve clients, employees, the community, and industry, and have the intention of satisfying current
and future needs. Later, Almahmoud and Doloi [13] stated that the social aspect in the construction
sector can be represented through the satisfaction of the different stakeholders involved in the projects,
including industry, users, and the community. They also indicated that the importance of the impact
of the project for future generations and the impact on present generations through health, safety,
and conditions of workers must be taken into account.

A sustainability assessment becomes a decision-making problem [14–17]. In addition,
this decision-making problem can be assessed taking into account the different perspectives of
the decision-makers reaching robust sustainable solutions [18]. Bridges have been widely investigated
from the technical point of view [19–21]. This provides a great number of different designs of bridges
that engineers must select from a sustainable point of view. Penadés-Plà et al. [22] reviewed the criteria
considered to assess the different pillars of sustainability in bridges, as well as the multi-attribute
decision-making methods used to obtain a global sustainability assessment. This review shows that the
economic pillar is the most developed pillar. Although some early works only studied the initial cost
of the bridge, a life cycle cost assessment (LCCA) is, nowadays, widely used. Conversely, a life cycle
assessment (LCA) is less common. For the environmental part, few studies have applied environmental
life cycle assessments (E-LCAs) to bridges. Horvath and Hendrickson [23] and Widman [24] conducted
the first investigations. Then other works followed. However, most of them did not consider all phases
of the bridge’s life cycle [25,26], or they focused on a limited number of environmental indicators
(usually energy and CO2) [27,28]. It was not before the study by Steele et al. [29] that a full E-LCA
was performed. Pang et al. [30] compared different bridge maintenance operations, and Du et al. [31]
and Hammervold et al. [32] compared several bridge designs. Regarding the social part, there is no
consensus to define the criteria that best represent social life cycle assessment (S-LCA). Some works
have considered criteria as divergent as detour time, dust, or noise [33–35].

In this paper, a bibliographic review of the LCA methods, both environmental and social, will first
be conducted in Section 2. After that, Section 3 explains the methodology used, after discussing the
best methods to assess the social and environmental pillars of bridges. In Section 4, these methods are
used to carry out a sustainability assessment of three road bridges: two box-section road bridges with
different initial and maintenance characteristics, and a pre-stressed concrete precast bridge. Section 5
shows the results of all the pillars of sustainability, focusing on social assessment. As a final point,
conclusions are presented in Section 6.

2. Life Cycle Assessment Methods

To carry out a complete sustainability assessment, it is essential to consider the whole life cycle of
a product, service, or process. This is even more important in the construction sector, because structures
are built to provide a service over a long time, and therefore the assessment of the use and maintenance
stage becomes quite important. For this purpose, a life cycle assessment methodology is used.
At this point, it is necessary to point out that despite the LCA techniques—used to assess both the
environmental and social pillars—having the same central core, there are some differences between
them. For this reason, in this study, the term LCA will be used when referring to the common trunk of
the technique and the terms E-LCA (environmental pillar) and S-LCA (social pillar) are going to be
used for specific assessments.

Focusing on environmental, the ISO 14040 [36] defines LCA as a technique for evaluating the
environmental aspect and impacts caused by a process, product, or service through a system of
input flows (data) that cause output flows (impacts). The most common guide to carry out the social
assessment [37] follows the same steps as this code. ISO 14040 [36] divides the LCA into four phases:

• Goal and scope definition
• Inventory analysis
• Impact assessment
• Interpretation of results
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The impact assessment step of the LCA is crucial since the information obtained from the life
cycle inventory is transformed into a set of understandable indicators. Due to the complexity of this
transformation, some methodologies have been developed to simplify this step, called life cycle impact
assessment (LCIA) methods. In this sense, the assessment and comparison between different cases
become easier.

2.1. Environmental Life Cycle Impact Assessment

In the E-LCA, there are two approaches to transform the life cycle inventory into understandable
indicators: the “midpoint approach” and the “endpoint approach”. The midpoint approach refers to
environmental impact, while the endpoint approach refers to environmental damage. The midpoint
approach provides more complete information, and the endpoint approach allows for more concise
information (Figure 1).
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Another way to understand the differences between these two approaches is to consider that the
midpoint approach is the direct cause, while the endpoint approach is the long-term consequence.
For example, any process, product, or service that affects climate change has gas emissions to the
atmosphere that cause several environmental problems such as ozone depletion or global warming
(midpoint approach); in the long-term approach, these gas emissions will cause damage to the
ecosystem, human health, or resources. In this example, ozone depletion can lead to increased skin
cancer problems (endpoint approach).

Table 1 shows the most common methods for each category and the indicators (midpoint indicators
for the midpoint approach and endpoint indicators for the endpoint approach) considered for each
E-LCIA method. Each approach uses different methods to convert environmental information into
comprehensible and understandable indicators. Within midpoint approach methods, the classical
methods are the CML [38], EDIP 2003 [39], and TRACI [40]. These methods provide a set of midpoint
indicators that indicate the direct cause by a process, product, or service. The total number of these
indicators is usually quite high, providing accurate information, but which is sometimes difficult
to interpret. In addition, midpoint indicators are more difficult to understand because they depict
an earlier stage in the cause–effect chain. Endpoint approach methods are damage-oriented methods,
such as the Eco-indicator 99 [41], EPS [42], and eco-scarcity [43]. These methods provide a set of endpoint
indicators that indicate the long-term consequences for a process, product, or service. The number of
these indicators is usually quite small because it is an aggregation of the midpoint indicators. Therefore,
there is a loss of detail and the information is not as accurate as in the case of midpoint methods,
but much easier to interpret. In addition, there is a set of new methods, which combines the methods
of midpoint and endpoint approaches, such as the ReCiPe [44,45], LIME [46], and IMPACT 2008 [47].
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Table 1. Environmental life cycle impact assessment (E-LCIA) indicators.

E-LCIA Group E-LCIA
Method Midpoint Indicators Endpoint Indicators

Midpoint approach

CML 2000

Obligatory impact categories: Depletion of abiotic resources, climate
change, land competition, stratospheric ozone depletion, human
toxicity, freshwater aquatic ecotoxicity, terrestrial ecotoxicity, marine
aquatic ecotoxicity, photo-oxidant formation, acidification,
and eutrophication.
Optional impact categories: Loss of life support function, loss of
biodiversity, marine sediment ecotoxicity, freshwater sediment
ecotoxicity, impacts of ionizing radiation, waste heat, malodorous air,
noise, casualties, lethal, non-lethal, depletion of biotic resources,
desiccation, and malodorous water

EDIP 2003
Global warming, ozone depletion, terrestrial eutrophication,
acidification, aquatic eutrophication, photochemical ozone
formation, ecotoxicity, human toxicity, and noise

TRACI
Ozone depletion, global warming, smog formation, eutrophication,
acidification, eco-toxicity, human health cancer, human health
non-cancer, human health criteria pollutants, and fossil fuel depletion

Endpoint approach

EI99
Climate change, ozone layer depletion, acidification, eutrophication,
respiratory effects, carcinogenicity, ionizing radiation, ecotoxicity,
land use, mineral resources, fossil resources

EPS

Life expectancy, severe morbidity and suffering, morbidity, severe
nuisance, wood production capacity, nuisance crop production
capacity, fish and meat production capacity, base cation capacity,
production capacity for water, share of species extinction, depletion
of element reserves, depletion of fossil reserves (coal), depletion of
fossil reserves (gas), depletion of fossil reserves (oil), and depletion
of mineral reserves

Eco-scarcity

Ozone depletion, photochemical oxidant formation, respiratory
effects, air emissions, surface water emissions, radioactive emissions,
cancer caused by radionuclides emitted to the sea, emissions to
groundwater, emissions to soil, radioactive wastes, landfill municipal
(reactive) wastes, hazardous wastes (stored underground), water
consumption, gravel consumption, primary energy resources,
endocrine disruptors, and biodiversity losses
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Table 1. Cont.

E-LCIA Group E-LCIA
Method Midpoint Indicators Endpoint Indicators

Midpoint/Endpoint
approach

ReCiPe

Climate change, ozone depletion, terrestrial acidification, freshwater
eutrophication, marine eutrophication, human toxicity,
photochemical oxidant formation, particulate matter formation,
marine ecotoxicity, terrestrial ecotoxicity, freshwater ecotoxicity,
ionizing radiation, agricultural land occupation, urban land
occupation, natural land transformation, water depletion, mineral
resource depletion, fossil fuel depletion

Damage to human health, damage to ecosystem diversity, and
damage to resource availability

LIME

Ozone layer depletion, global warming, acidification, photochemical
oxidant formation, regional air pollution, human-toxic chemicals,
ecotoxic chemicals, eutrophication, waste landfill, land use,
resources, and consumption

Cataracts, skin cancer, other cancers, respiratory diseases, thermal
stress, infectious diseases, agricultural production, hypoalimentation,
disaster causality, forestry production, fishery production, loss of
land-use, energy consumption, user cost, terrestrial ecosystem,
aquatic ecosystem

IMPACT
2000+

Human toxicity, respiratory effects, ionizing radiation, ozone
depletion, photochemical oxidant formation, terrestrial ecotoxicity,
aquatic ecotoxicity, aquatic eutrophication, terrestrial eutrophication
and acidification, land occupation, global warming, non-renewable
energy, and mineral extraction

Damage to human health, damage to ecosystem quality, damage to
climate change, and damage to resources
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2.2. Social Life Cycle Impact Assessment

The social pillar of sustainability is the least studied and probably the most diffuse and weakest
pillar of sustainability. However, for a complete sustainability assessment, it is necessary to obtain
a complete set of social indicators that can be used to carry out an accurate comparison and assessment
of alternatives. Currently, a simple Social Impact Weighting Method is used to convert the life
cycle inventory into understandable indicators. However, there are two important social databases:
PSILCA (Product Social Impact Life Cycle Assessment) [48] and SHDB (Social Hotspots Database) [49].
Both S-LCIA databases are inspired by UNEP/SETAC guidance [37] and use the activity variable
“worker hour” in order to quantify the social impacts. Table 2 shows existing and planned categories of
both methods grouped by stakeholders for the PSILCA database [50] and for the SHDB database [51].
However, the number of categories is lower nowadays.

Table 2. Social life cycle impact assessment (S-LCIA) categories.

S-LCIA Database CATEGORIES

Product Social Impact Life Cycle
Assessment (PSILCA)

WORKERS: Child labor, fair salary, discrimination, forced labor, health
and safety, social benefits and legal issues, working time, workers’ rights.
VALUE CHAIN ACTORS: Corruption, promoting social responsibility,
fair competition, supplier relationships.
SOCIETY: Contribution to economic development, health and safety,
prevention and mitigation of conflicts.
LOCAL COMMUNITY: Access to material resources, respect of
indigenous rights, local employment, safe and healthy living
conditions, migration.
CONSUMERS: Health and safety, transparency, end of life responsibility.

Social Hotspot Database (SHDB)

LABOR RIGHTS AND DECENT WORK: Child labor, discrimination,
excessive working time, freedom of association, forced labor, labor laws,
migrant labor, poverty, social benefits, unemployment, wage assessment.
HUMAN RIGHTS: Indigenous rights, human health issues, gender
equity, high conflicts.
HEALTH AND SAFETY: Injuries and fatalities, toxins and hazards.
GOVERNANCE: Legal system, corruption.
COMMUNITY: Drinking water, children out of school, hospital beds,
sanitation, smallholder vs. commercial farms.

The PSILCA database was developed by GreenDelta and presented in 2013. This database provides
information to carry out the assessment of the social pillar of products, processes, or services for their
whole life cycle. The PSILCA covers 189 individual countries represented by around 15,000 units
classified by entities (i.e., industries and commodities). Currently, there are 54 indicators grouped into
18 categories and 4 affected stakeholders, and it is expected to reach 88 indicators [50].

The SHDB database is a project, which was developed by New Earth in 2009 and published in
2013. The project seeks to provide in-depth information on human rights and working conditions along
supply chains, to assess risks and provide methods to calculate social footprints. This database covers
113 individual countries represented by around 6500 units classified by entities (i.e., industries and
commodities). Currently, there are over 157 indicators grouped into 26 themes and 5 big groups [51].

3. Methodology

Section 2 reviews the most important methodologies used to carry out a complete E-LCA and S-LCA.
Although E-LCA is a methodology that is increasingly being implemented, the bibliographic review shows
that only a few works have applied E-LCIA methods to evaluate the environmental pillar of sustainability
in bridges. These works only use three different E-LCIA methods: CML 2000 (midpoint approach) [52–54],
EI99 (endpoint approach) [29], and ReCiPe (midpoint/endpoint approach) [10,31,55,56].



Sustainability 2020, 12, 4265 7 of 18

This paper tries to show a methodology to carry out the environmental assessment at all
levels. For this purpose, a midpoint/endpoint approach method is necessary. Among the different
midpoint/endpoint approaches, the ReCiPe [44,45] method is considered an evolution of CML
(midpoint method) and Eco-indicator (endpoint method). The Eco-indicator and CML methods are
currently obsolete and have been substituted with the ReCiPe method that has updated characterization
and weight factors.

The midpoint approach of the ReCiPe method groups the results into 18 midpoint impact
categories, measuring each according to its respective units: agricultural land occupation (ALO), climate
change (GWP), fossil depletion (FD), freshwater eutrophication (FEP), freshwater ecotoxicity (FEPT),
human toxicity (HTP), ionizing radiation (IRP), marine ecotoxicity (MEPT), marine eutrophication
(MEP), particulate matter formation (PMF), metal depletion (MD), natural land transformation
(NLT), ozone depletion (OD), photochemical oxidant formation (POFP), terrestrial acidification
(TAP), terrestrial ecotoxicity (TEPT), urban land occupation (ULO), and water depletion (WD).
These environmental midpoint impact categories have a high level of detail, providing accurate results,
although they are more difficult to interpret. The endpoint approach of the ReCiPe method integrates
several midpoint impact categories into three endpoint areas of protection: human health (HH),
ecosystems (E), and resource availability (R). These endpoint areas of protection have the advantage of
being easier to interpret and understand. However, the uncertainty of these results increases due to the
high level of aggregation of them. In order to integrate all environmental midpoint impact categories
into an overall score, the E-LCIA results are normalized under the use of the ReCiPe normalization
factors with respect to Europe per capita emissions [44,57]. In this way, a global score of the total
environmental impact caused by the bridge throughout all of its life cycle can be obtained. This overall
score is measured in points. In addition, in order to include the long-term perspective of environmental
impacts, the hierarchical perspective was used, due to the inclusion of recycling and the subsequent
use of steel and concrete for other purposes after the end of the useful life of the structure.

Regarding the S-LCA, although some authors have stated that this methodology is important [3],
it is rarely studied, and even less so in the construction sector. The bibliographic review did not find
studies that have used the PSILCA or SHDB databases to assess the social pillar of sustainability.
This work considers the PSILCA database because it has the most updated available data source,
transparent documentation of original data sources, and risk assessment, and provides data quality
assessment. In addition, the social information from the PSILCA database can be associated with the
processes of the ecoinvent database by the means of an add-on called SOCA developed by Green Delta.
In this way, the social assessment can be carried out using the same processes as the environmental
assessment, giving coherence to the overall assessment. The SOCA database uses the first version of
PSILCA, and provides 54 quantitative and qualitative indicators addressing 18 categories and 4 affected
stakeholder groups [48]. In this way, the final indicators of the environmental and social pillars
broadly represent the assessment of these pillars, as these indicators group all the information from
the databases into the indicators described. In addition, both environmental and social evaluations
are carried out using the open source life cycle assessment OpenLCA software. Figure 2 shows the
methodology used in this work. To reduce the number of outputs, the endpoint approach of ReCiPe is
used to assess the environmental pillar of sustainability, and the indicators provided by the SOCA
database are grouped into the four stakeholders represented.
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4. Case Study

4.1. Goal and Scope

The present work aims to provide a comparative life cycle assessment of three alternative concrete
bridge designs, from the social and the environmental perspectives. The results of such an approach
shall provide valuable information regarding the relationship existing between both dimensions when
it comes to the sustainable design of infrastructures. In particular, special emphasis is put on the
assessment of the social impacts derived from the different designs under analysis. The conclusions
drawn from this case study aim to contribute to the existing knowledge on the social consequences of
transport infrastructures.

4.1.1. Functional Unit

Three optimized bridges are analyzed: two box-section post-tensioned concrete road bridges
that have different initial and maintenance characteristics, and a pre-stressed concrete precast
bridge. These bridges have a width of 12 m and are situated in a seaside region of eastern Spain,
whose environment is classified as XC-4 according to EN 206-1 [58]. Therefore, corrosion is mostly due to
carbonation and these bridges are subject to the same environmental and traffic conditions. In addition,
they have the same width and similar lengths. Therefore, the bridges can be considered equivalent.

The box-section post-tensioned concrete road bridges have a continuous span of 35.2 m, 44 m,
and 35.2 m. The first bridge (or alternative A1) was constructed using 50 MPa of concrete and requires
one maintenance period, while the second bridge (or alternative A2) was constructed using 35 MPa of
concrete and requires two maintenance periods. These bridges are optimized to meet the codes during
a service life of 150 years. The distances considered for these bridges are 20 km to carry the aggregate
to the concrete plant, 10 km to carry the cement to the concrete plant, 20 km to carry the concrete to the
construction place, and 100 km to carry the steel to the construction place.
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The pre-stressed concrete precast bridge has three spans of 40 m. This bridge (or alternative A3)
was constructed using 35 MPa of concrete in the beams and 40 MPa of concrete in the slab, and requires
one maintenance period. This bridge is optimized to meet the codes during a service life of 120 years.
The distances considered are 50 km to carry the aggregate to the precast concrete plant, 10 km to carry
the cement to the concrete plant, 50 km to carry the precast concrete beams to the construction place,
and 100 km to carry the steel to the construction place. Figure 3 shows the three alternatives considered.
Due to the total length and service life being a bit different among the three alternatives, the functional
unit considered is meter length × year [30,59].
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4.1.2. System Boundaries

The present study considers a “cradle-to-grave” approach, including every relevant manufacturing
process related to both the construction and the maintenance activities of each alternative. Given that
this assessment is intended for comparative purposes, processes assumed to be identical between
alternatives are excluded from the evaluation, following the cut-off criterion established in ISO 14044.
This approach has been widely considered in recent comparative life cycle assessments [10,60].

The environmental pillar of the two box-section post-tensioned concrete road bridges have already
been assessed by Penadés-Plà et al. [55], and the pre-stressed concrete precast bridge was evaluated by
Penadés-Plà et al. [56]. These previous works show the flowchart of the different processes considered
in this study. In this work, the social pillar is also considered to obtain a complete life cycle assessment.

4.2. Inventory Analysis

Table 3 shows the quantity of material per 1 m2 of bridge and the dosage required to manufacture
1 m3 of concrete according to the concrete strength level. The concrete manufacturing residues are
as indicated by Marceau et al. [61]. Reinforced steel is achieved as a mix of the different methods of
steel production in accordance with the place of the study. In Spain, the electric arc furnace process
manufactures about 67% of steel, while the basic oxygen furnace process manufactures the other 33%
of steel. Taking the same steel recycled ratio for each process as in ecoinvent (100% in the electric
arc furnace process and 19% in the basic oxygen furnace process), the steel recycled ratio obtained is
71%. These amounts of materials have been obtained from the design of the bridges which follow
the Spanish codes for this structure type [62,63], as also the Eurocodes [64,65]. The serviceability and
ultimate limit states of compression and tension stress, punching shear, vertical shear, longitudinal
shear, torsion, torsion combined with bending and shear, bending, vibration, and cracking have been
checked. Furthermore, the geometrical and constructability requirements have been verified.

The construction is organized in this manner: the concrete box girder road bridges prestressed
with post-tensioning tendons and the slab of the pre-stressed concrete precast bridge is supposed to be
cast in place. Afterward, the beams of the pre-stressed concrete precast bridge are transported to the
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construction site with special transport and lifted and positioned using tower cranes. Furthermore,
the heavy machinery taken into consideration in this section were classified into two categories:
the concrete machinery and post-tensioned steel handlings. The quantity of CO2 emissions and energy
for each category was taken from the BEDEC database [66]. In addition, the concrete needs to be
handled by heavy equipment that generates 32.24 kg of CO2 and requires 123.42 MJ of energy per m3

of concrete produced. Additionally, the machinery for the production of active reinforcement emits
2.62 kg of CO2 and consumes 10.2 MJ of energy for each kg of active steel. Finally, the formwork taken
into account in this study is made of wood and reusable thrice.

Table 3. Amount of materials.

A1 A2
A3

Precast Concrete Beam Concrete Slab

Strength (MPa) 50 35 35 40
Passive steel (kg/m2) 74.67 66.89 12.52 23.92
Active steel (kg/m2) 19.8 21.98 10.53 –
Concrete (m3/m2) 0.67 0.674 0.1117 0.1797
Cement (kg/m3) 400 300 300 320
Gravel (kg/m3) 726 848 848 829
Sand (kg/m3) 1136 1088 1088 1102
Water (kg/m3) 160 160 160 162

Superplasticizer (kg/m3) 7 4 4 5

For each rehabilitation period, maintenance interventions and infrastructure closures are the same.
Hence, the different strategies differ in the number of maintenance periods necessary. Each period
of rehabilitation, whose duration is 7 days, involves the removal of the deteriorated concrete surface
and its substitution with repair mortar. Furthermore, the traffic detour was quantified considering the
percentage of trucks (12%) of the average daily traffic, equal to 8500 vehicles/day, and computing a detour
distance of 2.9 km. The process of concrete rehabilitation consists of several phases. First, the deteriorated
concrete cover is removed through water blasting. Secondly, by applying an adhesion coating,
an appropriate surface for the correct adherence of the new concrete cover is obtained. To conclude,
the concrete cover is built by casting the repair mortar. The aforementioned activities are performed
by employing a truck-mounted platform [67]. As explained above, the estimation of energy and CO2

emissions associated with the use of the machinery was acquired from the BEDEC database [66] and
amounts to 584.28 MJ and 46.58 CO2 for each m2 repaired per maintenance period. Lastly, fixed CO2

during the entire service life is taken into consideration [68].
The end of life includes the equipment used for the demolition of the bridge and the management

of the materials. In this work, the ratio of recycled steel considered is 71% and all the concrete is
crushed and disposed of in a landfill. The crushed concrete is supposed to be completely carbonated,
and the ratio of recycled steel considered in the manufacturing phase corresponds to that of the end of
life phase. Thus, the life cycle of the bridge is closed.

4.3. Impact Assessment

Environmental and social dimensions of sustainability are considered to carry out a complete
life cycle assessment: the environmental dimension was evaluated using the ReCiPe method and the
ecoinvent database, and the social dimension is assessed by means of the Social Impact Weighting
Method and the SOCA database. Due to the large number of indicators in the environmental and social
dimensions, this study aims to obtain a smaller number of indicators so that results are understandable
and complete for these dimensions. For this purpose, the environmental assessment is made according
to the endpoint areas of protection of the endpoint approach of the ReCiPe method, and stakeholders
made the social assessment.
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The endpoint areas of protection obtained by the endpoint approach of the ReCiPe method that
represent the environmental dimension are the ecosystems (E), resources (R), and human health (HH).
In addition, the four obtained by the SOCA method that represent the social dimension are workers (W),
local communities (LC), society (S), and value chain actors (VCA). Such stakeholders are in accordance
with those suggested in the Guidelines [37] and are considered representative of the social context of
the Spanish region where the structures under analysis are located.

The weighting step of the impact assessment is considered essential when it comes to the holistic
evaluation of the sustainability performance of products. However, subjective weighting may lead to
jeopardized solutions that might result in inappropriate solutions [69]. This is particularly relevant
when it comes to decision making in the field of sustainability, where the complex relations between
criteria are usually in conflict. Consequently, great efforts have been applied in recent times to study the
influence of such subjectivity in decision-making processes related to sustainable designs in the field of
construction [70–72]. As stated above, the scope of the present work is to draw objective conclusions
regarding the environmental and social perspectives of infrastructure design. As a consequence, and
given that this study is not intended to provide a decision, but to assess the relations existing between
the abovementioned dimensions, the different indicators have been considered equally important.
Such an approach has been proved to be consistent when assessing the social impacts related to the
design of concrete bridge decks [8]. In this way, the subjective assignment of weights is avoided.

5. Results and Discussion

Tables 4–6 show the environmental and social impacts on sustainability for the alternatives A1,
A2, and A3, respectively. These tables show the environmental and social impact for each life cycle
stage. Here, impacts have been grouped into four stages: impacts related to the manufacturing of the
materials required for the construction of the alternatives, including every extraction activity of raw
materials and production of the final construction materials, as well as the transport activities from the
production facilities to the installation site. Impact results included under the “construction” category
consider those related to the machinery involved in construction activities and in the production of
auxiliary elements, such as formwork panels. The impacts related to the production of construction
materials, as well as to the energy consumption and transport associated with construction activities
related to maintenance have been summarized as “use and maintenance”. Finally, the results under
“EoL” include the impacts associated with the recycling of materials.

Table 4. Sustainability assessment of A1.

Assessment Unit Manufacturing Construction Use and Maintenance EoL Total

Environmental

HH p 1.33 0.30 0.42 −0.20 1.86
R p 1.05 0.10 0.36 0.02 1.53
E p 0.69 0.26 0.18 −0.13 1.01

Total 4.40

Social

W mrh 227.17 20.27 57.87 2.25 307.56
LC mrh 273.58 22.03 71.49 2.54 369.65
S mrh 320.67 25.05 79.56 2.98 428.26

VCA mrh 199.67 14.09 56.44 1.90 272.11

Total 1377.58

Note: p—points, mrh—med risk hour, E—ecosystems, R—resources, HH—human health, W—workers, LC—local
communities, S—society, VCA—value chain actors, EoL—impacts associated with the recycling of materials.
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Table 5. Sustainability assessment of A2.

Assessment Unit Manufacturing Construction Use and Maintenance EoL Total

Environmental

HH p 1.13 0.32 0.86 −0.15 2.16
R p 0.93 0.11 0.72 0.01 1.77
E p 0.57 0.28 0.31 −0.10 1.06

Total 4.98

Social

W mrh 197.63 20.68 115.75 2.26 336.31
LC mrh 238.77 22.36 142.98 2.55 406.67
S mrh 285.49 25.42 159.12 3.00 473.02

VCA mrh 174.01 14.34 112.87 1.91 303.14

Total 1519.14

Note: p—points, mrh—med risk hour, E—ecosystems, R—resources, HH—human health, W—workers, LC—local
communities, S—society, VCA—value chain actors, EoL—impacts associated with the recycling of materials.

Table 6. Sustainability assessment of A3.

Assessment Unit Manufacturing Construction Use and Maintenance EoL Total

Environmental

HH p 0.74 0.08 0.56 0.00 1.38
R p 0.64 0.05 0.46 0.03 1.17
E p 0.36 0.04 0.23 −0.01 0.63

Total 3.19

Social

W mrh 124.88 4.02 82.27 2.81 213.97
LC mrh 151.20 5.08 101.62 3.44 261.34
S mrh 182.92 5.93 113.08 4.05 305.98

VCA mrh 109.66 4.11 80.22 2.73 196.72

Total 978.02

Note: p—points, mrh—med risk hour, E—ecosystems, R—resources, HH—human health, W—workers, LC—local
communities, S—society, VCA—value chain actors, EoL—impacts associated with the recycling of materials.

In general, the manufacturing phase is the life cycle stage with the highest impact in every
alternative. A3 has the lowest impact for all the indicators. However, A1 has a lower impact in the
use and maintenance and end-of-life phases. This is because A1 requires one maintenance period
for 150 years of service life, while A2 requires two maintenance periods for the same service life
and A3 requires one maintenance period for 120 years of service life. Therefore, A1 has the lowest
ratio between maintenance days and service life. Similar trends were recently observed by Tait and
Cheung [73] and García-Segura et al. [71], who concluded that, in general, sustainable solutions based
on the use of conventional construction materials should focus on reducing the maintenance needs
of the designs, given the relevance of this stage in aggressive environments. It is interesting to note
that the greater the surface of the deck exposed to chlorides, the greater the impact related to each
maintenance activity from both the environmental and the social perspectives.

Figure 4 compares the social and environmental impacts of the three alternatives for each life
cycle stage. For this purpose, the upper vertical axis represents the social impact, and the lower
vertical axis represents the environmental impact. It is observed that, in general, the negative social
impacts considered here are proportional to the environmental impacts associated with each alternative
and, consequently, there is a symmetry between these two dimensions of sustainability. However,
this observation shall be considered carefully, as it is highly dependent on the social context associated
with each alternative analyzed [74]. The observed proportionality is due to the fact that the three
alternatives under study are assumed to affect the same social system.

A3 has the lowest global social and environmental impacts and the lowest social and environmental
impacts in the manufacturing and construction stages. However, A1 has the lowest social and
environmental impacts in the use and maintenance and end-of-life phase. The manufacturing stage
has the highest contribution to both impacts. It is observed that, but for the alternative A1, the impacts
related to maintenance take a significant proportion of the total life cycle impacts both from a social as
well as from an environmental perspective. Such results are in good accordance with other studies on
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the life cycle impacts of bridges. Navarro et al. [75] observed that, in chloride-laden environments,
environmental impacts related to maintenance can even double the impacts related to construction in
very aggressive exposures.
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In addition, more detailed information can be obtained for each social indicator. Thirteen social
indicators have been selected according to a hot spot analysis carried out to identify the relevant
social concerns for the specific location of the case study analyzed [76]: association and bargaining
rights (ACB), non-fatal accidents (NFA), fatal accidents (FA), gender wage gap (GW), violations of
employment laws and regulations (VL), safety measures (SM), frequency of forced labor (FL), trade
unionism (TU), fair salary (FS), workers affected by natural disasters (ND), weekly hours of work per
employee (WH), social security expenditures (SS) and international migrant workers (IMW). Table 7
shows the influence of the main materials used along the whole bridge life cycle for the selected
social indicators. Both concrete and steel manufacturing are the processes with the biggest impacts.
This table shows that steel production is the bridge process with the main social impact, followed
by concrete production. However, there are two indicators for which diesel consumption has the
highest contribution: FA and IMW. Figures 5 and 6 show the contribution of steel production, concrete
production, and diesel consumption in these indicators. These figures show that the contribution of
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diesel consumption in A1 is relatively weak when compared with A2 and A3 because the importance
of the materials is higher for A1. In A2 and A3, around half of the impact is due to diesel consumption.

Table 7. Contribution of material in the social impact.

A1 A2 A3

Steel Concrete Steel Concrete Steel Concrete

FL 57.93% 24.11% 53.04% 17.82% 54.82% 16.46%
FS 55.63% 29.60% 53.14% 22.73% 55.42% 21.10%

WH 49.90% 27.02% 43.92% 19.26% 45.12% 17.74%
GW 41.82% 42.58% 42.18% 34.56% 48.36% 34.60%
NFA 31.87% 49.36% 30.03% 37.22% 31.67% 34.12%
FA 35.70% 28.26% 28.27% 18.23% 28.64% 16.59%
SM 24.51% 49.95% 23.15% 36.30% 26.02% 36.09%
ND 51.76% 28.34% 46.35% 20.56% 47.38% 18.65%
SS 50.01% 27.31% 44.01% 19.49% 45.21% 17.88%
VL 53.19% 29.07% 49.35% 21.92% 51.51% 20.32%

ACB 58.06% 29.96% 57.53% 23.94% 62.05% 22.52%
TU 48.20% 29.57% 42.91% 21.32% 44.28% 19.64%

IMW 37.90% 22.07% 28.26% 13.29% 27.11% 11.98%

Note: FL—frequency of forced labor, FS—fair salary, WH—weekly hours of work per employee, GW—gender
wage gap, NFA—non-fatal accidents, FA—fatal accidents, SM—safety measures, ND—workers affected by natural
disasters, SS—social security expenditures, VL—violations of employment laws and regulations, ACB—association
and bargaining rights, TU—trade unionism, IMW—international migrant workers.
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and a pre-stressed concrete precast bridge. For this purpose, the environmental and social pillars were
evaluated following the LCA methodology. After reviewing and discussing the different LCIA that best
represent these pillars, a full sustainability assessment was performed using existing LCIA methods.
The ReCiPe method and ecoinvent database were used to carry out the environmental assessment,
and the Social Impact Weighting Method and the PSILCA database with the SOCA add-on were used
to carry out the social assessment.

The comparison between the three bridges shows that the most sustainable bridge is the pre-stressed
concrete precast bridge. This bridge has the lowest impact for all environmental and social indicators.
In addition, when the different phases of the bridge life cycle are compared, results show that the
manufacturing stage has the highest environmental and social impact. In this phase, concrete production
is the process with the highest environmental impact, and steel production is the process with the
highest social impact. Focusing on the social assessment, the processes of concrete and steel production
have a higher contribution to the social impact. However, other indicators such as the FA and INW are
more affected by diesel consumption.

This work aims to propose a complete methodology to evaluate the environmental and social
sustainability of bridges using a small number of indicators. This methodology can be applied to other
case studies. However, this study has potential limitations. One limitation is that results cannot be
compared with other works as they use different methodologies. The wide variety of methods means
that the contrast of the environmental and social assessment can only be done with works that use the
same methodology, and this leads to a global loss of information about the sustainability assessment.
For this reason, future research may unify the methodology to carry out environmental and social
assessments. Thus, engineers would have a standard methodology to choose the most sustainable
structure among different alternatives.
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