Métodos de decisión multicriterio aplicados a los proyectos vivienda social

Acaban de publicarnos un artículo en la revista Journal of Civil Engineering and Management, revista indexada en el JCR. Presenta un análisis exhaustivo de la investigación científica en torno a la evaluación de las viviendas sociales. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

La evaluación de proyectos de vivienda social es un proceso complejo que requiere tener en cuenta múltiples factores para conseguir comunidades más resilientes y sostenibles. Los métodos de decisión multicriterio (MCDM) son herramientas esenciales que proporcionan un marco estructurado para la adopción de decisiones informadas, ya que integran criterios cuantitativos y cualitativos. Esta revisión bibliográfica, basada en 93 artículos publicados entre 1994 y marzo de 2025, destaca la creciente prevalencia de los MCDM, el enfoque en la sostenibilidad (que abarca aspectos ambientales, sociales, económicos y técnicos) y la evolución hacia técnicas más modernas, como la lógica difusa y neutrosófica. Aunque el proceso de jerarquía analítica (AHP) y TOPSIS son los métodos más utilizados, es necesario integrar más los MCDM en todas las fases del proceso de construcción para mejorar la constructibilidad y la sostenibilidad, sobre todo en la vivienda social.

Contexto y desafío de la vivienda social

La vivienda es un elemento clave para cubrir las necesidades básicas de la población y fortalecer la cohesión social. Sin embargo, el crecimiento demográfico y la urbanización han agravado la escasez de viviendas asequibles, sostenibles y socialmente justas en todo el mundo. El modelo tradicional de construcción no solo encarece los costes a lo largo de la vida útil de la vivienda, sino que también provoca impactos negativos en el medio ambiente y en la salud.

En este contexto, la vivienda social se presenta como una solución esencial para atender a las poblaciones más vulnerables, garantizar unas condiciones mínimas de habitabilidad y calidad de vida, y promover la inclusión social.

No obstante, el desarrollo urbano desordenado ha favorecido la expansión de asentamientos informales y la falta de infraestructuras básicas adecuadas. Para que las iniciativas de vivienda social sean efectivas, es necesario adoptar un enfoque integral que tenga en cuenta la viabilidad económica, la sostenibilidad medioambiental y la equidad social. En un mundo donde la urbanización acelerada amenaza los medios de vida de millones de personas, buscar soluciones sostenibles es cada vez más urgente.

Métodos de decisión multicriterio (MCDM)

Los MCDM son herramientas poderosas para la toma de decisiones en escenarios con múltiples objetivos o criterios, facilitando la evaluación y comparación de alternativas basadas en varios aspectos cruciales. Se clasifican en:

  • Métodos de Puntuación: Asignan puntuaciones numéricas a los criterios para comparación (e.g., SAW, COPRAS).
  • Métodos Basados en Distancia: Evalúan alternativas midiendo la distancia a un punto ideal positivo y a un punto ideal negativo (e.g., TOPSIS, VIKOR, ARAS, EDAS).
  • Métodos de Comparación Pareada: Comparan alternativas directamente para determinar preferencias basadas en criterios específicos (e.g., AHP, ANP).
  • Métodos de Superación (Outranking): Se basan en la noción de que una alternativa óptima es preferible si es igual o superior en todos los criterios y al menos uno de ellos (e.g., PROMETHEE, ELECTRE).
  • Funciones de Utilidad (Valor) Multi-atributo: Representan las preferencias del tomador de decisiones a través de funciones de utilidad/valor (e.g., MAUT, SWARA, MIVES).

Prevalencia y tendencias:

  • AHP es el método individual dominante (75% de los casos individuales), seguido por TOPSIS.
  • El 48% de los artículos revisados utilizan la comparación pareada, siendo AHP el método principal (41 artículos).
  • Los métodos basados en distancia representan el 21% del uso, con TOPSIS como la opción predominante.
  • Métodos híbridos: Aunque se aboga por la integración de diferentes MCDM, su adopción generalizada es limitada. La combinación AHP + TOPSIS es frecuente, aprovechando la capacidad de AHP para estructurar criterios y la de TOPSIS para identificar y clasificar alternativas.
  • Números Crisp vs. Lógica Difusa/Neutrosófica: La mayoría de los estudios (84%) emplean números crisp, lo que indica un enfoque en datos exactos. Sin embargo, desde 2011, ha habido un aumento en el uso de la lógica difusa (15% de los manuscritos) para manejar la imprecisión y vaguedad inherentes a los juicios humanos. La lógica neutrosófica (1%) también ha comenzado a explorarse.
  • La Agenda 2030 y el ODS 11 («Ciudades y Comunidades Sostenibles»), junto con la adopción de la Nueva Agenda Urbana en 2015, han impulsado un aumento significativo en las publicaciones (más del 77% entre 2016 y la actualidad), «subrayando el papel fundamental de la vivienda adecuada y sostenible como piedra angular para lograr ciudades sostenibles.

Criterios de evaluación en vivienda social

Los proyectos de vivienda social se evalúan considerando cuatro dimensiones principales, reflejando un enfoque integral de sostenibilidad:

  • Económicos: Predominantemente enfocados en costos de construcción, reparación y mantenimiento, y gastos operativos de los proyectos de vivienda. Solo siete artículos revisados incluyen el Coste del Ciclo de Vida (LCC) según ISO 15686-5.
  • Ambientales: Abordan consumo de energía, eficiencia hídrica, emisiones contaminantes, gestión de residuos y energía del ciclo de vida (LCE). El consumo de energía y las emisiones de contaminantes son los aspectos más evaluados.
  • Sociales: Los criterios incluyen salud y seguridad, nivel de confort, facilidad de servicios y satisfacción del usuario. La accesibilidad a servicios públicos y la inclusión social son aspectos clave.
  • Técnicos: Comprenden especificaciones del proyecto, diseño, construcción y criterios de programación, con énfasis en la innovación, calidad y adhesión a los plazos.

Hay un cambio hacia evaluaciones multidimensionales, con «comparación por pares, superación y métodos basados en la distancia» emergiendo como herramientas esenciales.

Fases del proceso de construcción y MCDM

La aplicación de MCDM se distribuye en varias fases de la constructibilidad:

  • Fase de diseño: Es la fase más estudiada, cubriendo optimización del diseño interior, selección de sistemas de construcción óptimos y diseño MEP (Mecánico, Eléctrico y de Fontanería) priorizando el confort térmico.
  • Fase de planificación conceptual: Se centra en la viabilidad económica, la elección de ubicaciones adecuadas y la consideración de las necesidades de los habitantes, incluyendo acceso a servicios públicos, transporte, seguridad y áreas recreativas.
  • Fase de mantenimiento y puesta en marcha: Evalúa el bienestar de los ocupantes, las renovaciones arquitectónicas y energéticas, y las técnicas de refuerzo estructural.
  • Fase de construcción: Se enfoca en el uso de maquinaria, materiales y mano de obra, abordando preocupaciones de seguridad.
  • Fase de adquisiciones: Aborda la evaluación de proveedores y la gestión de la cadena de suministro, un aspecto vital pero poco representado.

A pesar de las intervenciones de la ciencia de la construcción que se centran en el conocimiento, la planificación, las adquisiciones y la ejecución, la investigación en este ámbito aborda principalmente cuestiones convencionales en lugar de conceptos emergentes como la economía circular y el Análisis del Ciclo de Vida (ACV) completo.

Discusión y direcciones futuras de investigación

La revisión destaca la necesidad de:

  • Integración de MCDM más allá de la viabilidad económica: Ampliar el alcance para abarcar la viabilidad social, técnica y ambiental.
  • Mayor uso de métodos híbridos y lógicas avanzadas: A pesar de la complejidad de los proyectos de vivienda social, la aplicación de la lógica difusa y neutrosófica en MCDM individuales e híbridos sigue siendo limitada en comparación con otras disciplinas de ingeniería. Se recomienda la integración de enfoques híbridos que integren MCDM con lógica difusa o neutrosófica, para evaluaciones más precisas.
  • Estandarización de criterios de evaluación: Existe una falta de consenso en los criterios de evaluación de la sostenibilidad, lo que subraya la «necesidad de un marco estandarizado que integre sistemáticamente estos aspectos. Un enfoque de Evaluación del Ciclo de Vida de la Sostenibilidad (SLCA) podría ser beneficioso.
  • Exploración de MCDM alternativos: Métodos como el Best-Worst Method (BWM) y el Combinative Distance-Based Assessment (CODAS) ofrecen ventajas sobre los métodos tradicionales en ciertos escenarios y deberían ser considerados.
  • Mayor aplicación del análisis de sensibilidad: Solo 17 de los artículos revisados emplearon análisis de sensibilidad, a pesar de su crucial papel para determinar la solidez de los métodos y la validez de los resultados.
  • Integración de tecnologías como GIS y BIM: La combinación de GIS (Sistemas de Información Geográfica), BIM (Modelado de Información de Construcción) y MCDM ha demostrado ser efectiva en la ingeniería civil, permitiendo análisis espaciales y temporales multicriterio. Esta integración puede optimizar la selección de sitios, el uso de recursos y la planificación sostenible a largo plazo. Sin embargo, su combinación es limitada en la literatura revisada.
  • Abordar la interdependencia de los criterios: La naturaleza holística y multifacética de la sostenibilidad implica que los criterios están inherentemente interconectados, lo que desafía los enfoques individuales de MCDM. Un reconocimiento exhaustivo de esta interdependencia es vital.

7. Conclusiones clave

  • Los MCDM son herramientas versátiles y esenciales para evaluar proyectos de vivienda social, con AHP, TOPSIS y COPRAS como los más prevalentes.
  • Existe una tendencia creciente hacia el uso de MCDM con lógicas de incertidumbre como la difusa y neutrosófica, aunque su aplicación todavía es limitada.
  • La sostenibilidad es un factor clave, siendo la dimensión social la más analizada, seguida por la económica, ambiental y técnica. No obstante, se necesita un marco estandarizado y la integración del Análisis del Ciclo de Vida (LCA) para evaluaciones más completas.
  • La aplicación de MCDM en todas las fases de la construcción mejora la toma de decisiones, optimiza los recursos y permite la identificación temprana de riesgos.
  • Es crucial investigar la jerarquización de criterios y la optimización de modelos híbridos para mejorar la aplicabilidad de los MCDM en proyectos de interés social.
  • La adopción de innovaciones como la construcción modular y el uso de materiales sostenibles es fundamental para la eficiencia y sostenibilidad de la vivienda social.

Este documento de información busca guiar a los profesionales de la investigación y a los tomadores de decisiones hacia la integración de métodos MCDM modernos para abordar de manera más efectiva los complejos desafíos de la vivienda social, impulsando así decisiones más informadas y sostenibles.

Os dejo un resumen en audio donde se explican las ideas principales del trabajo.

Al estar publicado en abierto, os dejo el artículo completo.

Pincha aquí para descargar

Glosario de términos clave

  • AHP (Analytic Hierarchy Process / Proceso Analítico Jerárquico): Un método MCDM basado en comparaciones por pares para estructurar y analizar decisiones complejas, determinando la importancia relativa de los criterios y alternativas.
  • ANP (Analytic Network Process / Proceso de Red Analítico): Una extensión del AHP que permite relaciones más complejas entre los criterios y las alternativas, incluyendo interdependencias y retroalimentación.
  • ARAS (Additive Ratio Assessment / Evaluación por Razón Aditiva): Un método MCDM basado en el cálculo de ratios aditivos para clasificar alternativas en función de su rendimiento.
  • BIM (Building Information Modelling / Modelado de Información de Construcción): Un proceso inteligente basado en modelos 3D que permite a los profesionales de la arquitectura, ingeniería y construcción planificar, diseñar, construir y gestionar edificios e infraestructuras de manera más eficiente.
  • COPRAS (Complex Proportional Assessment / Evaluación Proporcional Compleja): Un método MCDM de puntuación que evalúa alternativas basándose en su proximidad a un punto ideal y a un punto anti-ideal.
  • Crisp numbers (Números nítidos): Valores precisos y exactos utilizados en los cálculos matemáticos, que no consideran la imprecisión o la ambigüedad inherente a algunos conceptos humanos o datos subjetivos.
  • Constructability (Constructibilidad): La medida en que el diseño de un proyecto facilita la construcción, permitiendo un uso eficiente de los recursos y la mano de obra para mejorar el costo, el tiempo, la calidad y la seguridad.
  • DEMATEL (Decision Making Trial and Evaluation Laboratory / Laboratorio de Evaluación y Toma de Decisiones): Un método MCDM que ayuda a analizar relaciones causa-efecto entre criterios, permitiendo comprender su interdependencia.
  • EDAS (Evaluation Based on Distance to Average Solution / Evaluación Basada en la Distancia a la Solución Promedio): Un método MCDM que evalúa alternativas en función de su distancia a la solución promedio.
  • ELECTRE (Elimination and Choice Expressing Reality Method / Método de Eliminación y Elección que Expresa la Realidad): Una familia de métodos MCDM de superación que compara alternativas por pares y determina su relación de preferencia o indiferencia.
  • Fuzzy logic (Lógica difusa): Una forma de lógica multivaluada que permite valores de verdad intermedios entre «verdadero» y «falso», utilizada para modelar la incertidumbre y la vaguedad en los juicios humanos.
  • GIS (Geographic Information Systems / Sistemas de Información Geográfica): Un sistema que crea, gestiona, analiza y mapea todo tipo de datos. Relaciona los datos con la ubicación, analizando la información geográfica para organizar capas de información en visualizaciones mediante mapas.
  • Hybrid MCDMs (MCDM híbridos): Combinaciones de dos o más métodos MCDM, o de MCDM con otras herramientas (como BIM o GIS), para aprovechar las fortalezas de cada técnica y abordar la complejidad de los problemas de decisión.
  • LCA (Life Cycle Assessment / Análisis del Ciclo de Vida): Una metodología para evaluar los impactos ambientales asociados a todas las etapas de la vida de un producto o servicio, desde la extracción de materias primas hasta su disposición final.
  • LCC (Life Cycle Cost / Costo del Ciclo de Vida): El cesto total de un activo a lo largo de su vida útil, incluyendo los costos iniciales de adquisición, operación, mantenimiento, y disposición final.
  • MCDM (Multi-Criteria Decision Methods / Métodos de Decisión Multicriterio): Herramientas analíticas y computacionales que ayudan a los tomadores de decisiones a evaluar y priorizar diferentes opciones considerando múltiples factores o criterios, a menudo conflictivos.
  • MIVES (Model Integrated Value for Sustainable Evaluation / Modelo de Valor Integrado para la Evaluación Sostenible): Un método MCDM que integra la toma de decisiones con el análisis de valor, utilizando dimensiones indexadas estandarizadas para comparar indicadores de diferente naturaleza.
  • MOORA (Multi-Objective Optimization by Ratio Analysis / Optimización Multiobjetivo por Análisis de Ratios): Un método MCDM que clasifica alternativas basándose en un ratio de rendimiento y una referencia de desviación.
  • Neutrosophic logic (Lógica neutrosófica): Una generalización de la lógica difusa que introduce la indeterminación (además de la verdad y la falsedad), permitiendo un manejo más completo de la incertidumbre en los procesos de decisión.
  • PROMETHEE (Preference Ranking Organization Method for Enrichment of Evaluations / Método de Organización de Preferencias para el Enriquecimiento de Evaluaciones): Un método MCDM de superación que permite clasificar alternativas según sus preferencias de los criterios.
  • Scoring methods (Métodos de puntuación): Métodos MCDM que asignan puntuaciones numéricas a los criterios relevantes para comparar y evaluar cantidades jerárquicamente estructuradas.
  • Sensitivity analysis (Análisis de sensibilidad): Un estudio que examina cómo la incertidumbre en la salida de un modelo puede atribuirse a diferentes fuentes de incertidumbre en sus entradas, utilizado para probar la robustez de un método y la validez de los resultados.
  • Social housing (Vivienda social): Viviendas diseñadas para ser accesibles a personas y familias de ingresos medios y bajos, asegurando estándares mínimos de habitabilidad y calidad de vida, y fomentando la inclusión social.
  • Sustainability (Sostenibilidad): Un enfoque que busca satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, abarcando dimensiones económicas, ambientales, sociales y técnicas.
  • SWARA (Scaled Weighted Assessment Ratio Analysis): Un método MCDM utilizado para determinar los pesos de los criterios.
  • TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution / Técnica para la Ordenación por Similitud con la Solución Ideal): Un método MCDM que clasifica alternativas basándose en su distancia a una solución ideal positiva y a una solución ideal negativa.
  • VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje / Optimización Multicriterio y Solución de Compromiso): Un método MCDM que clasifica alternativas basándose en su proximidad a una solución ideal.
  • WSM (Weighted Sum Model / Modelo de Suma Ponderada): Un método MCDM de puntuación que calcula una puntuación total para cada alternativa sumando las puntuaciones ponderadas de cada criterio

Cómo construir viviendas sociales más baratas y sostenibles y de forma más rápida

A continuación, os paso el contenido de una nota de prensa que ha lanzado la UPV sobre uno de nuestros trabajos de investigación relacionados con el proyecto RESILIFE. También os dejo enlaces a la noticia. Espero que os resulte interesante.

Investigadores de la UPV han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE

Investigadores de la Universitat Politècnica de València (UPV) han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente. El trabajo, liderado por el investigador del Instituto ICITECH Víctor Yepes y la doctoranda Ximena Luque, se ha centrado en Perú, un país con un elevado déficit habitacional, si bien sus resultados podrían aplicarse a otros países con necesidades similares.

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE y analiza cinco sistemas constructivos diferentes —desde métodos tradicionales como el hormigón con ladrillo hasta métodos industrializados como el Light Steel Frame (LSF). Además, evalúa no solo costes de construcción, sino también los de mantenimiento, demolición e impacto ambiental durante todo el ciclo de vida de la vivienda.

“No se trata de solo construir más, sino de construir mejor. Por eso analizamos cada sistema de principio a fin, con el enfoque conocido como desde la cuna hasta la tumba, evaluando tanto el impacto técnico, económico y medioambiental de la construcción. Nuestro estudio no solo se centra en el precio o la velocidad de construcción. También analizó el impacto de cada tipo de vivienda a lo largo de toda su vida útil: desde la extracción de los materiales hasta su demolición”, explica Víctor Yepes

El sistema más eficiente: rápido, limpio y rentable

De los cinco modelos analizados, el sistema LSF —una estructura metálica prefabricada y liviana— es el más eficiente, según el estudio realizado por Víctor Yepes y Ximena Luque. Es el más barato a largo plazo (en construcción, mantenimiento y demolición); el que menos impacto ambiental genera y el que permite construir más rápido, lo que resulta clave para reducir el déficit habitacional en corto tiempo.

“Los sistemas tradicionales, aunque parecen más baratos al inicio, terminan siendo más costosos a largo plazo por sus residuos y su dificultad para ser reciclados. El estudio también señala que ningún sistema es perfecto. Por ejemplo, los paneles sándwich de hormigón son muy rápidos de montar, pero tienen mayores costes e impactos. El sistema convencional, aunque ampliamente empleado, tarda más en construirse y tiene un impacto ambiental alto. Sin embargo, necesita menos mano de obra especializada, lo que también es un factor que debemos considerar. Aun así, en más del 90 % de los escenarios evaluados, el LSF siguió siendo la mejor alternativa”, explica Yepes.

Guía práctica y modelo replicable

Además de identificar el “sistema para construir mejor”, el equipo de la UPV ha desarrollado una guía práctica para programas de vivienda social, planteando una metodología que se puede replicar en otros países en desarrollo.

Nuestro estudio ofrece una herramienta práctica y replicable que puede ayudar a ingenieros, arquitectos y autoridades a tomar decisiones más informadas. Al tener en cuenta todo el ciclo de vida de una vivienda y varios criterios de sostenibilidad, nuestro trabajo pretende contribuir a conseguir hacia soluciones habitacionales más justas, rápidas y respetuosas con el medio ambiente en aquellos países que lo necesitan”, añade Yepes.

Próximos pasos: sumar el factor humano

El equipo de la UPV trabaja ya en la siguiente fase del proyecto, que incorporará el impacto social de cada sistema constructivo, evaluando cómo influyen en la calidad de vida de las personas, el empleo local y la cohesión comunitaria.

“Construir bien, no es solo colocar ladrillos y hormigón. También es considerar a las personas que habitarán ese espacio y cómo la vivienda puede mejorar su bienestar y sus oportunidades”, concluye Víctor Yepes.

Referencia

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Noticia en À Punt:

Entrevistas en RNE y Ser

Noticia en medios:

La UPV plantea un modelo «replicable» para construir viviendas sociales baratas y sostenibles

https://cadenaser.com/comunitat-valenciana/2025/08/03/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles-y-de-forma-mas-rapida-radio-valencia/

https://www.larazon.es/comunidad-valenciana/mas-baratas-eficientes-upv-tiene-clave-construir-mas-viviendas_20250803688f1efac5e9fd602f666afd.html

https://www.20minutos.es/nacional/estudio-propone-construir-viviendas-sociales-baratas-sostenibles_6233824_0.html

https://valencia.elperiodicodeaqui.com/epda-noticias/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles/374196

https://www.noticiasde.es/comunidad-valenciana/la-upv-ha-propuesto-un-metodo-para-construir-viviendas-sociales-de-forma-mas-economica-sostenible-y-rapida/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Un estudio de la UPV propone cómo construir viviendas sociales «más baratas y sostenibles» y de forma «más rápida»

https://alicanteplaza.es/alicanteplaza/innovacion-alicante/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles

Un estudio de la UPV propone cómo construir viviendas sociales más baratas y sostenibles | Murcia Plaza

https://economia3.com/2025/08/04/701578-upv-impulsa-una-nueva-forma-de-construir-viviendas-sociales-mas-eficientes/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Nou estudi de la UPV revela com construir vivendes socials més econòmiques i sostenibles

 

Preguntas sobre el prefabricado de hormigón: Historia, ventajas y futuro

1. ¿Qué es un elemento prefabricado de hormigón y cómo se diferencia de la construcción con hormigón tradicional?

Un elemento prefabricado de hormigón se define como un producto fabricado con hormigón y elaborado en un lugar distinto de su ubicación final. Durante su fabricación, está protegido de las condiciones ambientales adversas y se obtiene mediante un proceso industrial con un sistema de control de la producción en fábrica. Esto permite acortar los plazos de entrega. En términos prácticos, la prefabricación consiste en aplicar principios industriales a la construcción, como la racionalización de procesos, la búsqueda de la economía de escala y el desarrollo a partir de la repetición de tareas cuidadosamente planificadas, ejecutadas en entornos favorables, con medios suficientes y por personal especializado.

La principal diferencia con el hormigón tradicional (o in situ) radica en el lugar y el método de fraguado y de control. El hormigón tradicional se concibe como un material fresco que cura libremente en la obra (ejecución in situ), mientras que el prefabricado es un producto terminado que se diseña y fabrica previamente en una planta industrial, con todas sus características adquiridas de forma controlada. Esto le confiere una entidad propia y una serie de cualidades inherentes que lo distinguen, como una mayor precisión dimensional, mejores acabados y la eliminación de incertidumbres en el resultado final, lo que a menudo se traduce en precios más competitivos.

https://www.telecinco.es/noticias/catalunya/20250730/levantan-bloque-vivienda-publica-diez-dias-barcelona_18_016247482.html

2. ¿Cuándo y cómo se originó el concepto de prefabricación aplicado al hormigón?

Aunque el uso del hormigón se remonta al Imperio romano (7000 a. C., según algunos historiadores), el origen de la prefabricación, entendida como la aplicación de procesos industriales a la construcción, se sitúa a mediados del siglo XVIII, con la Revolución Industrial y la aparición de nuevos materiales como el acero y el vidrio. Sin embargo, la combinación específica del material (hormigón) y la técnica (prefabricación) es relativamente reciente y ha experimentado un desarrollo espectacular a partir de la segunda mitad del siglo XX.

Un hito clave fue la patente concedida en 1824 a Joseph Aspdin para la producción de «cemento Portland». A partir de 1848 y 1849 se registran los primeros elementos prefabricados de hormigón, como la barca de Joseph Louis Lambot y la jardinera de Joseph Monier. No obstante, un hito trascendental fue la patente del hormigón pretensado presentada por Eugène Freyssinet en 1928, que revolucionó la forma de construir al convertir el hormigón en un material activo y duradero, lo que impulsó la creación de las primeras fábricas de elementos prefabricados.

3. ¿Cuáles fueron los hitos más importantes en el desarrollo del hormigón prefabricado entre 1850 y 1970?

El desarrollo del hormigón prefabricado se puede dividir en varias etapas significativas:

  • 1850-1940 (Primera época): Estuvo marcada por la visión de ingenieros que vieron en el hormigón una alternativa a la piedra natural. Los hitos incluyen:
    • Primeros elementos prefabricados como la barca de Lambot (1848) y la jardinera de Monier (1849).
    • El primer edificio con bloques prefabricados de cemento Portland, Castle House (1851).
    • La invención del concreto armado por William Wilkinson (1854).
    • La patente de un edificio prefabricado con módulos tridimensionales de Eduard T. Potter (1889).
    • La construcción del primer edificio con estructura prefabricada de hormigón, un molino de harina en Swansea (1897).
    • La invención del hormigón pretensado por Eugène Freyssinet (1928) transformó el material.
  • 1940-1970 (Segunda época): Influenciada por la necesidad de reconstrucción rápida y económica tras la Segunda Guerra Mundial y por el aprovechamiento del tejido industrial bélico.
    • Difusión del pretensado (Francisco Fernández Conde obtuvo las patentes para España y América Latina en 1942).
    • La Unión Soviética adoptó masivamente los paneles prefabricados de hormigón para la construcción de barrios urbanos debido a la reducción de costos y a la rapidez (1947-1951).
    • Estandarización de sistemas prefabricados en Inglaterra (1960).
    • Diseños icónicos como la cúpula del Palacio de Deportes de Pier Luigi Nervi para los JJ.OO. de Roma (1960) y el complejo de viviendas Habitat 67 de Moshe Safdie en Montreal (1967).
    • Desarrollo de losas alveolares y de la escuela francesa de «grandes paneles».

4. ¿Cómo ha evolucionado el hormigón prefabricado desde el último tercio del siglo XX hasta la actualidad?

Desde finales del siglo XX, la industria del prefabricado ha experimentado una creciente mecanización y un enfoque hacia una prefabricación más «abierta». Los fabricantes pasaron de producir grandes volúmenes de elementos repetitivos a crear soluciones más flexibles y adaptables a diversas obras y demandas. En este periodo, Italia y los países nórdicos destacaron, ya que su clima favorece la construcción industrializada.

Se mejoraron las posibilidades estéticas del prefabricado, como se evidenció en la Ópera de Sídney, que empleó grandes conchas prefabricadas. Aumentó la demanda de grandes elementos prefabricados para viviendas, escuelas, centros comerciales y estadios, lo que impulsó la mejora de sus propiedades estructurales. En el ámbito de la obra civil, el prefabricado se convirtió en la opción dominante para puentes, canalizaciones, túneles y traviesas ferroviarias.

En la actualidad, la construcción prefabricada es un método con entidad propia que destaca por su capacidad para aplicar técnicas de producción de alto rendimiento con elevados niveles de control, lo que asegura una mayor calidad y precisión dimensional. También se destaca la capacidad de las piezas para su desmontaje y reutilización, lo que contribuye a la sostenibilidad. La evolución informática permite realizar diseños complejos que antes resultaban inviables. Además, se ha logrado combinar la libertad arquitectónica con la eficiencia constructiva, lo que permite realizar diseños flexibles y adaptables que permiten cambiar el uso de los edificios sin afectar a su estructura.

https://resimart.com/beneficios-prefabricados-de-hormigon/

5. ¿Qué ventajas ofrece la prefabricación de hormigón en comparación con los métodos de construcción tradicionales?

La prefabricación de hormigón ofrece múltiples ventajas significativas:

  • Mayor calidad y precisión dimensional: el proceso industrial en fábrica, bajo sistemas de control de producción, asegura una calidad superior, homogeneidad y precisión dimensionales de los elementos, eliminando las incertidumbres del resultado final.
  • Ahorro de tiempo y costes: la fabricación en un entorno controlado acelera los plazos de entrega y permite una planificación más detallada, lo que se traduce en mayor productividad, menores costes laborales in situ y, a menudo, un precio final más competitivo.
  • Mayor durabilidad y resistencia: El hormigón prefabricado utiliza materiales de mejores prestaciones y un curado más controlado, lo que contribuye a una mayor durabilidad y resistencia, especialmente evidente tras la invención del pretensado.
  • Sostenibilidad y eficiencia energética: contribuyen a la reducción de residuos en obra, al uso de hormigones de mejores prestaciones (mayor durabilidad) y a una alta inercia térmica, lo que se traduce en un menor consumo de energía y un mayor confort para los usuarios. La posibilidad de desmontar y reutilizar las piezas también mejora su impacto ambiental a largo plazo.
  • Versatilidad arquitectónica y estructural: permite la creación de formas complejas, texturas, relieves, colores y aligeramientos, así como la adaptación a requisitos arquitectónicos cambiantes sin sacrificar la eficiencia. Los diseños flexibles permiten cambiar el uso de los edificios sin afectar la estructura.
  • Mejores condiciones laborales: La aplicación del hormigón autocompactante en plantas de prefabricados ha mejorado notablemente las condiciones de trabajo de los operarios al reducir la carga sonora y las vibraciones.

6. ¿Cuáles son los principales campos de aplicación del hormigón prefabricado en la actualidad?

El entorno urbano está lleno de elementos prefabricados de hormigón que forman parte de nuestro paisaje cotidiano y tienen una amplia gama de aplicaciones en la edificación y la obra civil.

En edificación (arquitectura), el prefabricado se utiliza masivamente para:

  • Viviendas (Habitat 67 es un ejemplo icónico).
  • Escuelas, pabellones, centros comerciales, aparcamientos.
  • Estadios y hospitales.
  • Elementos estructurales y de cerramiento, incluyendo paneles de fachada de grandes dimensiones con mejoras estéticas (colores, texturas, diseños de vanguardia como fachadas translúcidas).
  • Forjados (desde viguetas y bovedillas hasta losas alveolares).

En obra civil (ingeniería), el desarrollo de los prefabricados de hormigón ha sido fundamental para:

  • Puentes (tanto la estructura como las losas que unen las vigas).
  • Canalizaciones y tuberías.
  • Dovelas para túneles.
  • Traviesas para ferrocarril.
  • Mobiliario urbano y pavimentos.

En general, el prefabricado responde satisfactoriamente a todas las exigencias técnicas y funcionales y se adapta cada vez más a diseños arquitectónicos libres y a la integración de servicios e instalaciones en la estructura prefabricada.

7. ¿Qué mitos persisten sobre el hormigón prefabricado y cómo se están superando?

Aunque la acepción peyorativa del término «prefabricado» está disminuyendo, aún persisten ciertos mitos infundados que impiden un mayor avance de la industria. Estos mitos incluyen la percepción de que los elementos prefabricados son una solución «inferior» o carecen de versatilidad estética y funcional. Se asocia erróneamente con la necesidad de producir grandes cantidades de elementos muy repetitivos para optimizar costes, una idea que la industria ya ha corregido, pues es capaz de producir elementos a costes razonables para demandas más pequeñas y diferenciadas.

La realidad es que el diseño y la fabricación en un entorno técnico y controlado conducen a elementos y soluciones más precisos y de mayor calidad. Los avances tecnológicos en dosificación, curado, control de calidad, moldes, acabados, nuevos materiales y la introducción de hormigones autocompactantes han superado las limitaciones estéticas y funcionales previas. La industria ha sabido responder adecuadamente a las exigencias técnicas, funcionales y estéticas y ha logrado una mayor libertad arquitectónica sin sacrificar la eficiencia. La difusión de sus ventajas y el éxito en obras emblemáticas están ayudando a disipar estos mitos.

8. ¿Cuáles son los principales retos y las vías de innovación para la industria del hormigón prefabricado en los próximos años?

La industria del prefabricado de hormigón se enfrenta a varios retos prometedores para ganar mayor presencia en el mercado:

  • Sostenibilidad: Se trata de un eje fundamental, impulsado por políticas reglamentarias que bonifican las soluciones respetuosas con el medio ambiente. El prefabricado ofrece ventajas como una mayor inercia térmica (que reduce el consumo de energía), una menor generación de residuos y el uso de concretos de mejores prestaciones para aumentar su durabilidad. También se investiga la adición de materia prima para dotar a los elementos de capacidades descontaminantes.
  • Innovación tecnológica: En un entorno competitivo, la innovación es crucial. Se busca la mejora continua mediante la I+D+i, en colaboración con centros tecnológicos y universidades. Las innovaciones incluyen el aumento de la resistencia mecánica del hormigón, la ampliación de las formas, texturas, relieves y colores de los elementos vistos, y la mejora de las materias primas (cementos, aditivos, aceros pretensados y fibras) para lograr dimensiones, ligereza y acabados antes inimaginables.
  • Automatización y digitalización: El progreso tecnológico en la maquinaria permite a las plantas de prefabricados alcanzar altos niveles de automatización, incluyendo la impresión 3D, moldes más duraderos, sistemas de vaciado eficientes, cortes guiados por láser y sistemas de curado más eficaces. La integración de sensores en la fabricación para monitorizar parámetros (por ejemplo, la resistencia a la compresión) y el desarrollo de productos conforme a la metodología BIM también son áreas de profundización.
  • Adaptación a nuevas exigencias: El objetivo es mejorar el comportamiento sísmico, rediseñar las piezas estructurales para cubrir un mayor rango dimensional y optimizar las conexiones de los elementos estructurales, con el fin de seguir expandiendo las aplicaciones y la eficiencia del prefabricado.

Creo que estos vídeos pueden interesarte.

Os dejo un artículo que, espero, sea de vuestro interés.

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encuentros RUITEM. Diseño y estética de las infraestructuras

¿𝐋𝐚𝐬 𝐢𝐧𝐟𝐫𝐚𝐞𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐚𝐬 𝐩𝐮𝐞𝐝𝐞𝐧 𝐬𝐞𝐫 𝐞𝐥𝐞𝐦𝐞𝐧𝐭𝐨𝐬 𝐞𝐬𝐭𝐞́𝐭𝐢𝐜𝐨𝐬?
¿𝐄𝐬𝐭𝐞́𝐭𝐢𝐜𝐚 𝐞𝐧 𝐢𝐧𝐟𝐫𝐚𝐞𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐚𝐬 𝐬𝐢𝐠𝐧𝐢𝐟𝐢𝐜𝐚 𝐞𝐧𝐜𝐚𝐫𝐞𝐜𝐢𝐦𝐢𝐞𝐧𝐭𝐨?

𝗘𝗻𝗰𝘂𝗲𝗻𝘁𝗿𝗼𝘀 𝗥𝘂𝗶𝘁𝗲𝗺 | 𝟭𝟴 𝗱𝗲 𝘀𝗲𝗽𝘁𝗶𝗲𝗺𝗯𝗿𝗲 | 𝟭𝟲:𝟬𝟬 𝗵 (𝗖𝗘𝗧)

🎯 Te invitamos a un nuevo “ENCUENTROS”, 𝐝𝐨𝐧𝐝𝐞 𝟕 𝐈𝐧𝐠𝐞𝐧𝐢𝐞𝐫𝐨𝐬 𝐝𝐞 𝐂𝐚𝐦𝐢𝐧𝐨𝐬 𝐝𝐢𝐬𝐞𝐫𝐭𝐚𝐫𝐚𝐧 𝐲 𝐝𝐞𝐛𝐚𝐭𝐢𝐫𝐚́𝐧 𝐬𝐨𝐛𝐫𝐞 𝐞𝐥 𝐝𝐢𝐬𝐞𝐧̃𝐨 𝐲 𝐥𝐚 𝐞𝐬𝐭𝐞́𝐭𝐢𝐜𝐚 𝐝𝐞 𝐥𝐚𝐬 𝐢𝐧𝐟𝐫𝐚𝐞𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐚𝐬.

🔍 DISEÑO Y ESTÉTICA DE LAS INFRAESTRUCTURAS

Ponentes:

𝗠𝗼𝗱𝗲𝘀𝘁 𝗕𝗮𝘁𝗹𝗹𝗲: Ing. de Caminos, Catedrático de Proyectos, UPC y autor de «Diseño y funcionalidad visual de la Obra Pública»

𝗧𝗲𝗺𝗮: 𝗟𝗮𝘀 𝗳𝘂𝗻𝗰𝗶𝗼𝗻𝗮𝗹𝗶𝗱𝗮𝗱𝗲𝘀, 𝗲𝗹 𝗳𝘂𝘁𝘂𝗿𝗼.

Jorge Bernabeu: Ing. de Caminos. Profesor Titular de Estética de la UPM y autor de «Historia y estética de la Ingeniería Civil»

𝗧𝗲𝗺𝗮: 𝗘𝘀𝘁𝗲́𝘁𝗶𝗰𝗮 𝘆 𝗳𝗼𝗿𝗺𝗮𝗰𝗶𝗼́𝗻

Joaquín Catalá Alís: Ing. de Caminos. Catedrático de Proyectos de la UPV autor de «Poliorcética»

𝗧𝗲𝗺𝗮: 𝗘𝘀𝘁𝗲́𝘁𝗶𝗰𝗮, 𝗽𝗮𝘁𝗿𝗶𝗺𝗼𝗻𝗶𝗼 𝘆 𝗽𝗼𝗹𝗶𝗼𝗿𝗰𝗲́𝘁𝗶𝗰𝗮

𝗦𝗮𝗻𝘁𝗶𝗮𝗴𝗼 𝗛𝗲𝗿𝗻𝗮𝗻𝗱𝗲𝘇: Ing. de Caminos, Profesor Catedrático de Puentes de la UDC autor de «Estética e Ingeniería Civil» y gestor del Congreso Estética e Ingeniería Civil

𝗧𝗲𝗺𝗮: 𝗗𝗶𝘀𝗲𝗻̃𝗼 𝘆 𝘁𝗲𝗰𝗻𝗼𝗹𝗼𝗴𝗶́𝗮.

𝗖𝗮𝗿𝗹𝗼𝘀 𝗡𝗮𝗿𝗱𝗶𝘇: Ing. de Caminos, Profesor Titular de Ordenación del Territorio de la UDC. Director de la Revista de Obras Públicas y autor, entre muchos, de textos como «Entre la Arquitectura y la Ingeniería»

𝗧𝗲𝗺𝗮: 𝗟𝗮 𝗮𝗳𝗲𝗰𝘁𝗮𝗰𝗶𝗼́𝗻 𝗮𝗹 𝗲𝗻𝘁𝗼𝗿𝗻𝗼.

Jose Romo: Ing. de Caminos. CEO de FHECOR Ingenieros, Premio Nacional de Diseño

𝗧𝗲𝗺𝗮: 𝗘𝗺𝗽𝗿𝗲𝘀𝗮 𝘆 𝗱𝗶𝘀𝗲𝗻̃𝗼.

Víctor Yepes: Ing. de Caminos, Catedrático de la UPV. Autor de «Puentes históricos sobre el antiguo cauce del Turia, aproximación histórica, estética y constructiva»

𝗧𝗲𝗺𝗮: 𝗘𝗹 𝗰𝗼𝗹𝗼𝗿.

Los ponentes expondrán sus temas durante una hora. Posteriormente, se establecerá un debate entre ellos y los asistentes.

📣 La duración prevista total es de 1 hora y 30 minutos.

📩 𝐈𝐧𝐬𝐜𝐫𝐢́𝐛𝐞𝐭𝐞 𝐚𝐪𝐮𝐢́ 𝐩𝐚𝐫𝐚 𝐫𝐞𝐜𝐢𝐛𝐢𝐫 𝐞𝐥 𝐞𝐧𝐥𝐚𝐜𝐞 𝐝𝐞 𝐚𝐜𝐜𝐞𝐬𝐨: https://forms.gle/wudmr4nUwpwZFiwP6

Entre acero y poesía: La vida de Joseph Strauss, la cara visible del Golden Gate

Joseph Baermann Strauss (1870-1938). https://magazine.uc.edu/

Joseph Baermann Strauss nació el 9 de enero de 1870 en Cincinnati, Ohio, apenas una década después del fin de la guerra de Secesión estadounidense. Creció en el seno de una familia de artistas de origen judío alemán: su madre era pianista, aunque un accidente frustró su carrera, y su padre, Raphael Strauss, fue pintor y escritor. En ese entorno, Joseph desarrolló desde joven una profunda sensibilidad artística y una pasión por la poesía, con el anhelo inicial de seguir una trayectoria en las artes. Sin embargo, su vida tomaría otro rumbo en el que la ciencia, la ingeniería y la expresión poética acabarían entrelazándose.

Ingresó en la Universidad de Cincinnati para estudiar ingeniería civil, donde destacó tanto por sus cualidades intelectuales como por su liderazgo. Fue elegido delegado de su clase y también poeta oficial. Durante su etapa universitaria, formó parte de la fraternidad Sigma Alpha Epsilon y escribió un extenso poema titulado Reveries, que leyó como discurso de graduación en 1892. En él presentó una tesis ambiciosa: un proyecto utópico para construir un ferrocarril que conectara Alaska con Rusia a través del estrecho de Bering. Aunque su propuesta sorprendió a la audiencia, su sinceridad, visión y entusiasmo le valieron el respeto del público.

Una experiencia marcó profundamente su orientación profesional. Durante una enfermedad, fue hospitalizado en la enfermería universitaria y, desde la cama, podía contemplar el puente colgante John A. Roebling, que cruzaba el río Ohio entre Cincinnati y Covington. Este puente, el más largo del mundo entre 1866 y 1883, le causó una impresión duradera y despertó en él una profunda fascinación por la ingeniería de puentes que definiría el resto de su vida.

Tras graduarse, Strauss comenzó su carrera profesional como delineante en la empresa New Jersey Steel and Iron Company y, posteriormente, en la compañía Lassig Bridge and Iron Works, en Chicago. En 1899, fue contratado como asistente principal del reconocido ingeniero Ralph Modjeski. Durante su etapa en la empresa, Strauss comenzó a especializarse en puentes basculantes, también conocidos como drawbridges. Se dio cuenta de que los contrapesos de hierro que se utilizaban en estas estructuras resultaban caros y pesados, por lo que propuso reemplazarlos por contrapesos de hormigón, que eran más económicos y eficientes. Su sugerencia fue rechazada, por lo que abandonó la empresa y, en 1904, fundó su propia compañía: la Strauss Bascule Bridge Company of Chicago, que posteriormente abrió también oficinas en San Francisco.

Durante las décadas siguientes, Strauss se convirtió en un innovador y referente nacional en el diseño de puentes móviles. Entre sus obras más representativas se encuentra el puente basculante del ferrocarril HB&T sobre el Buffalo Bayou de Houston, diseñado en 1912 y que aún se encuentra parcialmente operativo. También diseñó el puente basculante Cherry Street Strauss Trunnion en Toronto, el puente Skansen en Noruega, el puente Burnside en Portland (Oregón) y el puente Lewis y Clark sobre el río Columbia, que conecta Longview (Washington) con Rainier (Oregón). A lo largo de su carrera, participó en la construcción de más de cuatrocientos puentes basculantes en América del Norte y Europa, consolidándose como el máximo exponente de este tipo de estructuras.

El mayor desafío de su vida llegó en 1916, cuando el ingeniero municipal de San Francisco publicó un artículo en el que afirmaba que no sería posible construir un puente sobre el Golden Gate —el estrecho que conecta la bahía de San Francisco con el océano Pacífico— por menos de 100 millones de dólares. Strauss respondió que él podía hacerlo por 17 millones. Así comenzó una larga cruzada para hacer realidad lo que entonces parecía imposible. Durante más de diez años, Strauss trabajó sin descanso para convencer a ciudadanos, políticos, al ejército, a la marina y a los inversores de que el puente era viable. Se enfrentó a una fuerte oposición por parte de compañías de ferris, ecologistas, administraciones locales e incluso otros ingenieros.

En noviembre de 1930, ya en plena Gran Depresión, los votantes aprobaron una emisión de bonos que dio luz verde al proyecto. La obra comenzó en enero de 1933, con un presupuesto final de 35 millones de dólares, 13 millones menos de lo estimado inicialmente, y se finalizó antes de lo previsto. Aunque Strauss había propuesto inicialmente un diseño híbrido de suspensión y voladizo, finalmente optó por un diseño colgante clásico, con un tramo principal de 1280 metros, lo que lo convirtió en el puente colgante más largo del mundo hasta la década de 1960.

Strauss supervisó personalmente gran parte de la construcción. En homenaje a su alma mater, colocó un ladrillo del edificio McMicken de la Universidad de Cincinnati en el anclaje sur del puente. También introdujo un elemento innovador en materia de seguridad: una red de protección bajo el tablero que salvó la vida de 19 trabajadores, una cifra significativa para la época, lo que supuso una medida pionera en obras civiles de gran escala.

Monumento a Strauss en San Francisco (marzo de 2010). https://es.wikipedia.org/wiki/Joseph_Strauss_(ingeniero)

Sin embargo, el proceso no estuvo exento de conflictos. Aunque Strauss fue la cara visible del proyecto, el diseño estructural detallado fue obra de los ingenieros Charles Alton Ellis y Leon Moissieff. Strauss, empeñado en recibir todo el reconocimiento, minimizó las contribuciones de Ellis, que fue excluido de los créditos en la ceremonia inaugural de 1937. Esta omisión se corrigió finalmente en 2012, cuando se colocó una placa conmemorativa en su honor junto al puente.

Durante los años de construcción, Strauss empezó a mostrar signos de deterioro físico y emocional. Estuvo ausente durante más de seis meses, lo que generó rumores sobre una crisis nerviosa. En ese periodo se divorció de su mujer y se casó con una joven cantante muchos años menor que él. Tras finalizar el puente, agotado, se retiró a Arizona para recuperarse.

El puente Golden Gate se inauguró oficialmente el 27 de mayo de 1937. Strauss celebró el acontecimiento escribiendo y leyendo su poema The Mighty Task is Done, un homenaje lírico a la culminación de su obra más ambiciosa. Este poema supuso su despedida de la ingeniería y también el cierre simbólico de su vida profesional. Menos de un año después, el 16 de mayo de 1938, Strauss falleció en Los Ángeles a causa de un derrame cerebral. Tenía 68 años.

En 1941, su viuda financió la construcción de una estatua en su honor ubicada en el extremo sur del puente, en el lado de San Francisco. La inscripción reza: «Joseph B. Strauss, 1870-1938. El hombre que construyó el puente». Aunque su figura ha sido objeto de controversia, su contribución a la ingeniería es indiscutible. Además de su legado técnico, dejó una notable obra poética, que incluye el poema «Las secuoyas», inspirado en los árboles monumentales de California, y que aún hoy se vende como recuerdo en los parques naturales.

Joseph B. Strauss fue un ingeniero y poeta, un soñador meticuloso que cruzó el puente entre el arte y la técnica. Su vida demuestra que la grandeza de la ingeniería no solo se mide en acero y cemento, sino también en visión, valor y sensibilidad humana. El Golden Gate, con su silueta roja suspendida sobre el océano, sigue siendo el mejor poema que pudo haber escrito.

Pero aquí os dejo la pequeña entrevista que me hicieron sobre el Golden Gate.

Os dejo algunos vídeos sobre el Golden Gate. Pero podéis ver más vídeos sobre la construcción de este puente aquí: https://victoryepes.blogs.upv.es/2013/06/24/golden-gate/

Othmar Ammann: el ingeniero que redefinió los puentes del siglo XX

Othmar Hermann Ammann (1879–1965). https://commons.wikimedia.org/wiki/

Othmar Hermann Ammann (1879-1965) fue un ingeniero civil suizo-estadounidense cuya obra transformó la ciudad de Nueva York y revolucionó el diseño de puentes en el siglo XX. Su enfoque técnico y estético permitió construir estructuras tan emblemáticas como el puente George Washington o el puente Verrazano-Narrows. A lo largo de su carrera, combinó innovación, eficiencia y belleza con una precisión matemática, sin perder de vista el contexto urbano y económico de cada época.

Nació el 26 de marzo de 1879 en Feuerthalen, al norte de Suiza. Provenía de una familia trabajadora: su padre era fabricante y su madre, sombrerera. Comenzó su formación en la Escuela Industrial de Zúrich y la continuó en el Eidgenössische Polytechnikum (ETH Zurich), donde se graduó en 1902 bajo la tutela del destacado profesor Wilhelm Ritter. A diferencia de otras instituciones técnicas de la época, esta escuela otorgaba gran valor a la estética en el diseño estructural, principio que Ammann adoptó como eje rector de su carrera: «Cuando diseñas un puente, el impacto estético es tan importante como los detalles técnicos. ¡Construir un puente feo es un crimen!».

En 1904 emigró a Estados Unidos con la intención inicial de realizar unas prácticas profesionales de corta duración. Llegó a Nueva York el 5 de mayo de ese año y pronto comenzó a trabajar en el diseño de puentes ferroviarios. Al año siguiente, trabajó en la Pennsylvania Steel Company, donde colaboró en la construcción del puente Queensboro. Ese mismo año, viajó temporalmente a Suiza para casarse con Lilly Selma Wehrli, con quien tendría tres hijos: Werner, George y Margot.

Su reputación creció en 1907, cuando redactó un informe técnico sobre el colapso del puente de Quebec, lo que le otorgó prestigio en el ámbito profesional. Entre 1912 y 1923 fue asistente del influyente ingeniero Gustav Lindenthal. Junto a él, participó en la construcción del puente Hell Gate de Nueva York y del puente sobre el río Ohio en Sciotoville. En 1917, propuso una alternativa más realista al ambicioso puente multifuncional que Lindenthal quería construir sobre el río Hudson: su idea de un puente exclusivamente destinado al tráfico rodado marcó un punto de inflexión en su carrera.

Durante los años veinte, Estados Unidos experimentó un gran auge de la motorización y la urbanización. Aunque Ammann era una persona modesta y reservada, supo detectar oportunidades clave. Según el historiador David Witz, «tenía dos caras: la tímida y suiza, pero también la de “ve a por ello”». En 1923, fundó su propia empresa de ingeniería en Nueva York. Al año siguiente se nacionalizó estadounidense y la Autoridad Portuaria de Nueva York aprobó financiar su propuesta para construir un puente entre Nueva Jersey y Manhattan. Su proyecto fue elegido por encima del de su antiguo mentor, Lindenthal.

En 1930, fue invitado a Suiza para recibir un doctorado honoris causa de la ETH de Zúrich, junto con Albert Einstein. Ese mismo año fue nombrado ingeniero jefe de la Autoridad Portuaria de Nueva York, donde dirigió la construcción del puente de Bayonne, el Outerbridge Crossing, el puente de Goethals y el túnel de Lincoln. Entre 1937 y 1939, ya como director de ingeniería, lideró la construcción del puente Bronx-Whitestone y del puente Triborough (hoy puente Robert F. Kennedy). También formó parte de la junta que supervisó la construcción del puente Golden Gate de San Francisco, inaugurado en 1937.

By John O’Connell – originally posted to Flickr as George Washington Bridge from New Jersey, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=10903748

Inaugurado el 24 de octubre de 1931, el puente George Washington supuso un hito en la historia de la ingeniería. Con una luz de 1.067 metros, duplicó el récord mundial de la época. Su tablero aerodinámico redujo costes y resistía fuertes vientos. Se terminó seis meses antes de lo previsto y por debajo del presupuesto. Actualmente, sigue siendo el puente colgante con más carriles del mundo (14) y el más transitado, con más de 100 millones de vehículos al año.

En 1932 se completó el puente Bayonne, que ostentó el récord del arco de acero más largo del mundo durante 45 años. En 1933, tras el fallecimiento de Lilly, su primera esposa, Ammann fue nombrado director de la Triborough Bridge and Tunnel Authority y comenzó a colaborar con el urbanista Robert Moses. En 1935, se casó con Kläry Nötzli, viuda del ingeniero suizo Fred A. Nötzli.

Ammann aplicó la teoría de la deflexión para aligerar estructuras sin comprometer la estabilidad, lo que resultó clave durante la Gran Depresión. Su talento llamó la atención de Robert Moses, con quien trabajó estrechamente en múltiples proyectos. En 1940, participó en la investigación del colapso del puente de Tacoma Narrows junto a Theodore von Kármán y Glenn B. Woodruff. Su informe de 1941 resultó decisivo para la evolución del diseño de puentes colgantes.

En 1946, fundó junto a Charles S. Whitney la empresa Ammann & Whitney. Con esta empresa diseñó los dos últimos puentes de su carrera: el puente Throgs Neck (1961) y el puente Verrazzano-Narrows (1964). Durante los años cuarenta y cincuenta, continuó viajando regularmente a Suiza, especialmente a Pontresina y Zermatt. Cuando estalló la Segunda Guerra Mundial, se alistó como teniente en el ejército suizo en Andermatt. Al no ser atacada Suiza, regresó a Estados Unidos.

By H.L.I.T. – originally posted to Flickr as Verrazano, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=12715051

En 1959, con 80 años, comenzó la construcción del puente Verrazano-Narrows, que se inauguró el 21 de noviembre de 1964. Con una luz de 1298 metros, fue el puente colgante más largo y pesado del mundo, y aún hoy es el más extenso del hemisferio occidental. Ammann lo consideraba su obra maestra. «Sabía que esta sería su obra maestra en belleza y en la excelencia de su modelo de desarrollo de la forma a partir de la construcción. Supuso el punto álgido de su desarrollo profesional como ingeniero pionero. Murió un año después de su apertura», indica David Witz. El historiador también afirma que su puente favorito es este: «Es una estructura muy hermosa y enorme, profundamente elegante».

En 1963, las autoridades suizas rechazaron su propuesta para construir un puente atirantado sobre el lago de Ginebra. Ese mismo año, recibió la Medalla Nacional de la Ciencia de manos del presidente Lyndon B. Johnson, convirtiéndose así en el primer ingeniero civil en recibir esta distinción.

Othmar Ammann falleció el 22 de septiembre de 1965 en Rye, Nueva York. A lo largo de su vida recibió numerosos reconocimientos, como el Thomas Fitch Rowland Prize (1919), el Ernest E. Howard Award (1960) y el título de Ingeniero Civil del Año (1958) por la Sección Metropolitana. En 1962 se erigió un busto suyo en la estación de autobuses del puente George Washington. En 1968, la Universidad de Stony Brook nombró en su honor la residencia Ammann College, y en 1979, con motivo del centenario de su nacimiento, se colocó una placa conmemorativa junto al puente Verrazzano-Narrows.

Considerado por muchos como el ingeniero civil más grande del siglo XX, Ammann sigue siendo una figura poco conocida en su país natal. Su legado, sin embargo, permanece vivo en los puentes que conectan ciudades y culturas, símbolo de una visión que supo unir técnica, estética y sentido de la oportunidad.

Os dejo un vídeo de la inauguración del puente Verrazano.

Rotopalas: maquinaria de excavación continua para grandes producciones

Figura 1. Rotopala. Cortesía SKW.

Las rotopalas, conocidas en inglés como Bucket Wheel Excavators (BWE), son máquinas de producción continua que integran las funciones de arranque, carga y transporte del material sin interrupciones. Están especialmente diseñadas para excavar materiales de fácil manipulación, como arenas, gravas, margas, arcillas o lignito. Su funcionamiento continuo las hace ideales para explotaciones mineras a cielo abierto, donde se requiere una alta eficiencia operativa en procesos prolongados y repetitivos.

El origen de estas imponentes máquinas se remonta a 1881, en Estados Unidos, cuando se construyó el primer equipo accionado por vapor. Sin embargo, no fue hasta 1916 en Alemania cuando se produjo su verdadero desarrollo industrial, al aplicarse en la explotación de lignito pardo. A partir de la década de 1950, las rotopalas experimentaron una notable evolución técnica, con modelos de mayor capacidad que respondían a las crecientes necesidades de producción. En la actualidad, estas máquinas pueden mover volúmenes superiores a los 254 000 m³ de material, lo que da una idea de su gran capacidad. En comparación, los Bucket Chain Excavators (BCE), aunque útiles en ciertas aplicaciones, apenas superan los 14 000 m³ y se emplean principalmente para retirar recubrimientos.

El diseño de las rotopalas se clasifica según la relación entre la longitud del brazo del rodete (L) y el diámetro del rodete (D). De este modo, se distinguen los modelos compactos (L/D = 2), semicompactos (L/D = 3) y convencionales (L/D = 4). Las compactas presentan varias ventajas significativas: una inversión inicial un 20 % inferior a la de las convencionales, menor peso, mayor estabilidad y tiempos de entrega más reducidos. Sin embargo, su diseño, limitado a dos orugas, restringe su tamaño máximo a 1600 toneladas, lo que implica una capacidad máxima de producción de 7500 m³/h y un brazo más corto que reduce su alcance operativo. Esta clasificación está normalizada por la norma DIN 22266, que define un sistema de denominación mediante letras que representan distintas características del equipo, como, por ejemplo, el tipo de tren de rodaje o la capacidad de los cangilones.

Figura 2. Rotopala semicompacta. Cortesía SKW

Una rotopala está formada por múltiples sistemas clave que permiten su funcionamiento. El tren de rodaje puede montarse sobre vías o, lo que es más habitual en minería a cielo abierto, sobre orugas. La configuración de estas últimas (dos, tres, cuatro, tres dobles o seis dobles) depende del peso de la máquina y de la capacidad portante del terreno. Cada oruga incorpora un bastidor, una rueda motriz o guía elevada, rodillos de sustentación y zapatas. La corona de giro permite orientar el brazo del rodete, cuya longitud influye directamente en la altura máxima de excavación, la anchura del bloque que se va a extraer y la selectividad del corte. El rodete es el elemento encargado de arrancar el material y su diseño depende de las propiedades geomecánicas del macizo rocoso, la resistencia del material y la producción horaria deseada. Su diámetro oscila entre 2,5 y 22 metros, y su capacidad productiva está entre 200 y 19 000 m³/h. Además, cada tonelada adicional en el peso del rodete implica una carga extra de 400 toneladas sobre la estructura de la máquina.

Existen varios tipos de rodete. El tipo celular, muy habitual en los parques de homogeneización, emplea una placa de caída con forma de arco que crea una célula para conducir el material hacia la cinta lateral. El tipo no celular se caracteriza por tener cangilones insertados en un espacio anular, con un cierre radial que permite aumentar la capacidad del cangilón en un 50 %. Por último, el tipo semicircular tiene un cierre inferior con planos inclinados llamados semicelulares y una vertedera fija. Los cangilones pueden tener un respaldo cerrado, que es ideal para materiales adhesivos como las arcillas duras (tipo «caparazón de tortuga»), o un respaldo de cadenas, que es más adecuado para materiales blandos, húmedos o pegajosos. Los elementos de corte, como dientes, cuchillas u orejetas angulares, son determinantes para la eficiencia de la excavación y deben ser fácilmente sustituibles, resistentes a la abrasión y al impacto. En materiales duros, pueden incorporarse precortadores que fragmentan previamente el material, aunque esto puede generar sobrecargas y vibraciones no deseadas.

Figura 3. Bucket Wheel Excavator. Cortesía FAM-BEUMER GROUP.

El sistema de izado permite posicionar el rodete a la altura de operación deseada y realizar descensos o ascensos rápidos mediante cilindros hidráulicos o cables de acero. Por otro lado, la descarga del material excavado se realiza mediante sistemas como puentes de conexión, brazos de descarga o cintas transportadoras, lo que otorga gran flexibilidad al sistema.

El dimensionamiento de una rotopala debe tener en cuenta múltiples factores técnicos. El diámetro del rodete se selecciona en función de la capacidad nominal requerida y de las propiedades del material, procurando elegir el diámetro más pequeño posible que cumpla los objetivos de producción, ya que un rodete de mayor tamaño incrementa el peso y complica la estática de la máquina. La capacidad nominal (Q) distingue entre la producción teórica o de diseño (Qt) y la producción real, que se ve afectada por factores como el grado de llenado de los cangilones y las paradas por mantenimiento o averías. La producción teórica se calcula mediante la fórmula Qt = Qa / (F · horas/día · días/año), donde F es un factor de campo que incluye la eficiencia y las constantes operativas. La producción de material suelto se determina aplicando el esponjamiento del material, que normalmente se sitúa entre 1,3 y 1,6, o mediante la fórmula Qts = I * s * 60, donde I es la capacidad del cazo y s el número de descargas por minuto.

El tipo de material que se va a excavar influye en la velocidad de corte, el número de cangilones, el diámetro del rodete y la inclinación del brazo. La velocidad de corte (Vc) se calcula como Vc = ω · D / 2 y suele estar entre 2 y 3,5 m/s, debiendo mantenerse por encima de la velocidad crítica (Vcri = 2,22 · D). El número de cangilones (Z) depende del material: las rocas blandas requieren pocos cangilones grandes, mientras que las rocas duras exigen muchos cangilones pequeños. Como estimación, se puede considerar Z = 4D. La frecuencia de descarga (s) se obtiene mediante la fórmula s = (Vc · Z) / (π · D) · 60, y la capacidad de los cangilones (V) mediante V = (Qts · 60) / (s · 1,25). Las potencias necesarias para la excavación, la aceleración, la elevación y el sistema completo deben calcularse en función de la producción deseada, el tipo de material y el diseño mecánico del equipo.

Durante la operación, el rodete gira mientras el brazo se mueve y el corte más eficiente se produce cuando el brazo está perpendicular al frente de trabajo (ángulo α = 0°). El avance puede realizarse en terrazas, donde el rodete desciende escalonadamente tras cada pasada, o en cortes descendentes, bajando con cada inversión del giro del brazo. Existen diversas variantes operativas, como la excavación en bloque lleno, la más común en la actualidad gracias a la movilidad sobre orugas, la excavación en frente largo, en la que la máquina avanza en paralelo al frente, y la excavación en bloque lateral, que es una adaptación del sistema anterior. También es posible excavar por debajo del nivel de las orugas, lo que permite trabajar con bancos de mayor altura con respecto a la posición del tren de rodaje.

Figura 4. Variantes de excavación de la rotopala. Fuente: Manual de arranque, carga y transporte en minería a cielo abierto (1995)

Entre las múltiples ventajas de las rotopalas, destacan su capacidad de excavación continua, su bajo consumo energético (hasta un 70 % menos que los sistemas de cables), la ausencia de impactos durante la carga, su gran radio de vertido y la posibilidad de operar tanto por encima como por debajo del nivel del terreno. Además, pueden trabajar en bancos de distintas alturas, generar taludes estables, entregar material fácilmente transportable por cinta y permitir una gran selectividad en la excavación. También pueden diseñarse para ejercer una baja presión sobre el terreno, lo que resulta clave en zonas con baja capacidad portante.

Sin embargo, no todo son ventajas. Las rotopalas requieren un mantenimiento complejo y frecuente, no son flexibles ante cambios en la geometría o tectónica del yacimiento y no sirven para excavar materiales compactos o muy abrasivos. Además, su rendimiento global depende de la disponibilidad de todos los elementos en serie que componen el sistema, lo que introduce una fuerte interdependencia operativa. Por último, su adquisición e instalación suponen una inversión inicial muy elevada, lo que limita su adopción a proyectos a gran escala y a largo plazo.

En resumen, las rotopalas son una solución de ingeniería impresionante para grandes operaciones mineras, ya que combinan eficiencia, potencia y continuidad operativa. No obstante, no son la herramienta adecuada para todos los contextos y, en las condiciones apropiadas, su rendimiento y productividad son difíciles de igualar.

Os dejo algunos vídeos que espero os interesen:

Referencias:

GÓMEZ DE LAS HERAS, J.; MANGLANO, S.; TOLEDO, J.; LÓPEZ-JIMENO, C.; LÓPEZ-JIMENO, E. (1995). Manual de arranque, carga y transporte en minería a cielo abierto. Instituto Geológico y Minero de España, Madrid, 604 pp.

MARTÍNEZ-PAGÁN, P. (2025). Rotopalas. Apuntes 4º curso GIRME. Universidad Politécnica de Cartagena.

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas sobre la productividad y el estudio del trabajo

¿Qué es la productividad y por qué es crucial para una empresa?

La productividad se define como la relación entre los bienes y servicios producidos y los recursos empleados para ello. Es un indicador vital para cualquier actividad empresarial, ya que las empresas que no mejoran su productividad con respecto a la de sus competidores están abocadas a desaparecer. Un aumento de la producción no siempre implica un aumento de la productividad; para conseguirlo, es necesario buscar la eficiencia en todos los procesos de la empresa. La mejora de la productividad conlleva una reducción de costes y plazos, lo que incrementa la competitividad a largo plazo.

¿Cuál es la diferencia entre productividad y rendimiento?

La productividad se refiere a la relación entre la producción y los recursos consumidos. El rendimiento, por otro lado, es el cociente entre lo realizado y lo previsto, ya sea en relación con la producción o con el tiempo dedicado a una actividad. El rendimiento contribuye a aumentar o disminuir la productividad modificando la eficiencia de los medios de producción, pero no los medios en sí mismos. La pérdida de productividad a menudo se debe a ineficiencias en el tiempo total invertido en una operación.

¿Cómo se puede aumentar la productividad de una empresa, según la OIT?

De acuerdo con la Organización Internacional del Trabajo (OIT), existen dos categorías principales de medios directos para aumentar la productividad.

  • Inversión de capital: Esto incluye idear nuevos procedimientos básicos o mejorar fundamentalmente los existentes, así como instalar maquinaria o equipo más moderno y de mayor capacidad, o modernizar los ya existentes.
  • Mejor dirección: Implica reducir el contenido de trabajo del producto, reducir el contenido de trabajo del proceso y reducir el tiempo improductivo, ya sea imputable a la dirección o a los trabajadores.

¿Qué es el estudio del trabajo y cuáles son sus componentes principales?

El estudio del trabajo es un término que engloba técnicas para examinar tareas humanas en todos sus contextos con el fin de investigar sistemáticamente los factores que influyen en la eficiencia y la economía, y así poder introducir mejoras. Se trata de una herramienta fundamental para alcanzar objetivos y tomar decisiones. Consta de dos técnicas interrelacionadas:

  • Estudio de métodos: Se enfoca en cómo se realiza un trabajo, buscando formas más sencillas y eficientes para reducir costes.
  • Medición del trabajo: Su objetivo es determinar cuánto tiempo se requiere para ejecutar una tarea definida por un trabajador calificado, según normas y rendimientos preestablecidos.

¿Cuáles son los objetivos principales del estudio de métodos?

El estudio de métodos busca registrar y examinar críticamente de forma sistemática los factores y recursos involucrados en los sistemas de ejecución existentes y propuestos. Sus objetivos son:

  • Mejorar los procesos y los procedimientos.
  • Optimizar la disposición del lugar de trabajo, el diseño del equipo y las instalaciones.
  • Economizar el esfuerzo humano y reducir la fatiga innecesaria.
  • Mejorar la utilización de materiales, máquinas y mano de obra.
  • Crear mejores condiciones de trabajo.

¿Cuáles son las fases clave para implementar un estudio de mejora de métodos?

Para abordar y llevar a la práctica un estudio de mejora de métodos, se siguen cinco fases generales:

  1. Elección y definición del problema: Identificar el trabajo a analizar que ofrecerá la mayor rentabilidad.
  2. Observación y registro del método actual: Recopilar datos sobre cómo se realiza el trabajo actualmente.
  3. Análisis del método actual: Cuestionar sistemáticamente cada aspecto del método actual (qué, dónde, cuánto, quién, cómo, cuándo) para identificar ineficiencias.
  4. Desarrollo del método mejorado: Basándose en el análisis, buscar posibilidades como eliminar trabajo innecesario, combinar operaciones, cambiar el orden de ejecución o simplificar las operaciones.
  5. Aplicación y mantenimiento del nuevo método: Una vez aprobado por la dirección, implementar el nuevo método y vigilar periódicamente su cumplimiento.

¿Qué son los diagramas de proceso y qué tipos se mencionan?

Los diagramas de procesos (o cursogramas) son representaciones gráficas de los eventos que ocurren durante una serie de acciones u operaciones, junto con información relevante. Durante un proceso, se identifican cinco tipos de acciones: operación, transporte, inspección, demora y almacenamiento. Entre los tipos de diagramas de proceso se incluyen:

  • Diagrama de las operaciones del proceso (operation process-chart): Muestra los puntos donde se introducen los materiales, la secuencia de inspecciones y todas las operaciones (excepto el manejo de materiales), incluyendo tiempo y localización. Útil para procesos complicados o nuevos.
  • Diagrama del análisis del proceso del recorrido (flow process-chart): Representa todas las operaciones, transportes, inspecciones, demoras y almacenajes, con información sobre tiempo requerido y distancia recorrida. Se construye determinando el producto y unidad, anotando fases, uniendo símbolos, y midiendo distancias y duraciones.
  • Diagramas planimétricos de flujo o diagrama de recorrido: Representación gráfica sobre un plano del área de actividad, mostrando la ubicación de los puestos de trabajo y el trazado de movimientos de hombres y/o materiales. Ayuda a identificar áreas congestionadas, avances y retrocesos, y a mejorar la distribución de la planta. Se utiliza la misma simbología que el diagrama de proceso.

¿Qué son los gráficos de actividades simultáneas y cuál es su propósito?

Los gráficos de actividades simultáneas o múltiples son herramientas que se utilizan para registrar y estudiar las actividades interdependientes de personas y máquinas. Su objetivo principal es reducir el número y la duración de los tiempos improductivos (paradas y esperas). La técnica consiste en representar el trabajo de cada recurso en una escala de tiempos común para visualizar las interrelaciones entre ellos y examinar y analizar el método con el fin de eliminar los periodos de inactividad.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376.

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

Preguntas frecuentes sobre el agua en medio poroso y sus problemas en excavaciones.

1. ¿Qué es un acuífero y cómo se clasifica?

Un acuífero es una formación geológica subterránea que contiene y transmite agua. Se clasifican principalmente en:

  • Acuífero libre: El agua está en contacto con la atmósfera a través de los poros o las fisuras de la zona no saturada. El límite superior es el nivel freático, donde la presión del agua es atmosférica.
  • Acuífero confinado: El acuífero está cubierto por una capa impermeable (acuicludo o acuitardo) y el agua se encuentra a una presión superior a la atmosférica. Si se perfora un pozo en un acuífero confinado y el agua sube por encima de la superficie del terreno, se dice que existen existen «condiciones artesianas».
Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Además, existen otras formaciones relevantes:

  • Acuicludo: Una formación geológica que, aunque contiene agua, no la transmite de manera efectiva, por lo que no es apta para su explotación (por ejemplo, terrenos arcillosos).
  • Acuitardo: Transmite el agua muy lentamente, por lo que no es apto para su captación, pero puede permitir la recarga vertical de otros acuíferos en condiciones especiales (por ejemplo, arcillas limosas o arenosas).

2. ¿Qué es la carga hidráulica total y por qué es importante la Ley de Darcy en el estudio del flujo de agua en medios porosos?

La carga hidráulica total (H), también conocida como potencial, representa la energía por unidad de peso de un fluido en movimiento, expresada como una altura. Incluye la altura geométrica (z), la altura de presión (u/γw) y la altura de velocidad (v²/2g). En el contexto del flujo en medios porosos, la velocidad suele ser despreciable, por lo que la carga total se simplifica a la altura piezométrica.

La Ley de Darcy es fundamental porque describe la velocidad del flujo de agua en un medio poroso. Establece que la velocidad (v) es directamente proporcional al gradiente hidráulico (i) y al coeficiente de permeabilidad (k), es decir, v = k · i. El coeficiente de permeabilidad mide la facilidad con la que el agua circula a través del suelo y depende tanto de las características del acuífero (porosidad, tamaño de los poros interconectados) como del fluido (viscosidad, peso específico). Esta ley es crucial para comprender cómo se mueve el agua a través del suelo y para calcular caudales en diversas aplicaciones geotécnicas.

Figura 2. Esquema de la ley de Darcy

3. ¿Qué son las tensiones efectivas y por qué son tan importantes en geotecnia según el postulado de Terzaghi?

Las tensiones efectivas (σ‘) son un concepto fundamental en geotecnia, postulado por Karl von Terzaghi en 1923. Se definen como el exceso de tensión sobre la presión intersticial (o presión neutra) del agua (u) presente en el suelo. Es decir, son las tensiones que actúan exclusivamente sobre la fase sólida del suelo, transmitiéndose grano a grano.

Su importancia radica en el postulado de Terzaghi, que establece lo siguiente: «Cualquier efecto medible debido a un cambio de tensiones, como la compresión, la distorsión o la modificación de la resistencia al corte de un suelo, se debe exclusivamente a cambios en las tensiones efectivas». Esto significa que la deformación y la resistencia del suelo dependen directamente de las tensiones efectivas y no de las tensiones totales. Por ejemplo, si el volumen o la distorsión de un suelo saturado no cambian, es porque sus tensiones efectivas no han cambiado. Si se permite el drenaje del agua (es decir, si se disipa la presión intersticial), las tensiones efectivas aumentan, lo que provoca la deformación del suelo y la modificación de su resistencia al corte, un fenómeno conocido como consolidación.

4. ¿Cuáles son los principales problemas geotécnicos relacionados con el agua en las excavaciones?

El agua subterránea y superficial puede causar diversos problemas geotécnicos significativos en las excavaciones:

  • Subsidencia: Un descenso del nivel freático (por bombeo o excavación) aumenta las tensiones efectivas, provocando asentamientos en el terreno circundante. Un aumento del freático también puede causar asentamientos en suelos arcillosos o reducir la capacidad portante en arenas.
  • Deslizamiento de taludes: El flujo de agua en los taludes de una excavación incrementa su peso y reduce su resistencia al corte, llevando a la inestabilidad. Esto se agrava si la excavación corta dos estratos, donde el flujo entre capas puede causar erosión.
  • Erosión superficial: El afloramiento de agua en los taludes provoca cárcavas y arrastre de terreno, lo que compromete la estabilidad y debilita las bermas.
  • Erosión interna o tubificación (piping): El agua arrastra partículas finas a través de los huecos del suelo, formando túneles internos. Esto es propenso en suelos dispersables y puede ocurrir en presas o por flujos anómalos en pozos de drenaje o anclajes defectuosos.
  • Inestabilidad del fondo o sifonamiento: Ocurre cuando un flujo ascendente de agua en un terreno granular no consolidado anula la presión efectiva, por lo que el suelo se comporta como un fluido (arenas movedizas). Esto sucede cuando las fuerzas de filtración superan el peso sumergido del suelo.
  • Levantamiento del fondo o taponazo (uplift): El fondo de la excavación se vuelve inestable cuando el empuje del agua subterránea —típico en un acuífero confinado bajo un estrato de baja permeabilidad— supera el peso del terreno que lo soporta.

5. ¿Qué es el sifonamiento o «efecto Renard» y cuándo ocurre?

El sifonamiento, también conocido como licuefacción o «efecto Renard», se produce cuando existe un flujo ascendente de agua en el terreno y la presión del agua es tan alta que anula las tensiones efectivas del suelo. En suelos granulares sin cohesión, como la arena, el terreno pierde completamente su resistencia al corte y comienza a comportarse como un fluido en ebullición, similar a las arenas movedizas.

Este fenómeno sucede cuando se alcanza un «gradiente crítico», que es la relación entre el peso específico sumergido del suelo y el peso específico del agua. Si se sitúa un objeto con un peso específico superior al de la mezcla fluida de terreno y agua sobre un terreno con licuefacción, se hundirá. Supone un grave riesgo en las excavaciones, especialmente por debajo del nivel freático, ya que puede provocar el desprendimiento de cimentaciones y maquinaria.

6. ¿Cómo se relaciona el coeficiente de permeabilidad con la permeabilidad equivalente en estratos de suelo?

El coeficiente de permeabilidad (k) mide la facilidad con la que el agua fluye a través de un suelo concreto. Sin embargo, en la práctica, el suelo suele estar compuesto por múltiples estratos con diferentes permeabilidades y espesores. En estos casos, se calcula una permeabilidad equivalente, que puede ser horizontal o vertical:

  • Permeabilidad equivalente horizontal: Se aplica cuando el flujo de agua atraviesa horizontalmente un conjunto de estratos. El caudal total es la suma de los caudales en cada estrato.
  • Permeabilidad equivalente vertical: Se usa cuando el flujo de agua atraviesa verticalmente los estratos. En este caso, el caudal es constante a lo largo de los estratos, pero cada estrato tiene un gradiente hidráulico diferente.

Estos cálculos son esenciales para modelar con precisión el flujo de agua en suelos estratificados.

7. ¿Qué es una red de flujo y para qué se utiliza en geotecnia?

Una red de flujo es una representación gráfica del flujo de agua subterránea en un medio poroso. Está formada por dos familias de curvas ortogonales entre sí.

  • Líneas equipotenciales (Ψ): Son líneas que conectan puntos donde la altura piezométrica (carga hidráulica) es constante.
  • Líneas de corriente (Φ): Son las trayectorias que siguen las partículas de fluido a medida que se mueven a través del suelo.

La red de flujo se construye de manera que las fronteras impermeables actúan como líneas de corriente y las fronteras permeables (como una lámina de agua) son líneas equipotenciales. Al intersectarse, ambas familias de líneas deben formar «cuadrados curvilíneos».

Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)

Las principales aplicaciones de las redes de flujo en geotecnia son:

  • Calcular las presiones del agua subterránea: Permiten determinar las presiones en diferentes puntos o superficies.
  • Estimar los caudales del agua subterránea: Todos los canales de flujo (espacio entre dos líneas de corriente adyacentes) transportan el mismo caudal.
  • Calcular los gradientes hidráulicos: La pérdida de carga total se distribuye uniformemente entre las equipotenciales. Esto es crucial para evaluar la estabilidad de taludes y el riesgo de sifonamiento.

8. ¿Cómo se puede prevenir el sifonamiento en una excavación y qué factores influyen en las medidas de prevención?

Para prevenir el sifonamiento en una excavación, especialmente por debajo del nivel freático, una de las medidas principales es utilizar tablestacas o ataguías con una longitud de empotramiento suficiente. Esta longitud adicional por debajo del nivel de excavación aumenta el recorrido más corto que puede seguir el agua, lo que reduce el gradiente hidráulico y, en consecuencia, las fuerzas de filtración.

La profundidad de empotramiento necesaria depende de varios factores:

  • Profundidad de la excavación bajo el nivel freático: A mayor profundidad de excavación, mayor empotramiento se requiere.
  • Porosidad del suelo: Cuanto mayor es la porosidad del terreno (es decir, más vacíos hay en el suelo), mayor empotramiento es necesario para evitar el sifonamiento.
  • Peso específico de las partículas sólidas y del agua: Estos valores influyen en el peso específico sumergido del suelo y, por ende, en el gradiente crítico.
  • Coeficiente de seguridad (η): Se aplica un coeficiente de seguridad para garantizar que el empotramiento sea suficiente para resistir el sifonamiento. Por ejemplo, el Código Técnico de la Edificación (CTE) en España recomienda un coeficiente de seguridad de η = 2 para pantallas.
Figura 4. Sifonamiento en la base de una tablestaca o pantalla.

Es fundamental realizar cálculos geotécnicos y estructurales detallados para determinar el empotramiento necesario, que debe corresponder al mayor valor entre el requerido para evitar el sifonamiento y el necesario para soportar los esfuerzos de empuje. Además, la experiencia y el sentido común son fundamentales a la hora de implementar estas medidas.

REFERENCIAS:

  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Eduardo Saavedra, ingeniero humanista del siglo XIX

Eduardo Saavedra y Moragas (1829-1912). https://es.wikipedia.org/wiki/Eduardo_Saavedra

Eduardo Saavedra y Moragas nació en Tarragona el 27 de febrero de 1829. Era hijo de Ignacio Saavedra Dumont, militar retirado natural de La Coruña y veterano de la guerra de la Independencia, y de Francisca Moragas Jenkins, oriunda de Riudoms. Tras cursar el bachillerato en Tarragona, Sevilla y Lérida, su familia se estableció en Madrid, donde inició estudios de Derecho en la universidad. Sin embargo, su vocación científica le llevó a cambiar de rumbo en 1846 e ingresar en la Escuela de Ingenieros de Caminos de Madrid, donde se licenció en 1851 como número uno de su promoción, destacando en Mecánica Aplicada, Mecánica Racional y Construcción.

Su primer destino profesional (1851-1853) fue Soria, donde proyectó la desecación de la laguna de Añavieja —con el fin de optimizar el riego, recuperar tierras y erradicar las fiebres endémicas—, y dirigió la construcción de la carretera de Soria a El Burgo de Osma. Durante el trazado de esta última, descubrió restos de la calzada romana que unía Uxama con Augustóbriga. El estudio de esta vía le llevó en 1860 al descubrimiento de las ruinas de Numancia, lo que le valió su ingreso en la Real Academia de la Historia en 1862. Como comisionado de dicha academia, dirigió las excavaciones de Numancia hasta 1867 y mantuvo una constante relación epistolar con corresponsales de toda España y el extranjero. Además, apoyó a Buenaventura Hernández Sanahuja en la fundación del Museo Arqueológico de Tarragona.

En 1854, reclamado como profesor en la Escuela de Caminos de Madrid, impartió Mecánica Aplicada (materia básica), Mecánica Racional y Construcción hasta 1862, y regresó brevemente entre 1867 y 1870. Durante este periodo compaginó docencia y labor editorial: en 1856 publicó Teoría de los puentes colgados; en 1859, Lecciones sobre la resistencia de los materiales y Nota sobre el coeficiente de estabilidad; y en 1860, Nota sobre el problema del equilibrio de las bóvedas, iniciando el análisis elástico de arcos. Traducjo al castellano obras de William Fairbairn (1857 y 1859) y de Michon (1860), añadiendo un comentario exhaustivo a esta última, y se encargó de difundir las últimas novedades técnicas europeas en la Revista de Obras Públicas y en los Anales de la Construcción y de la Industria.

Durante los veranos de 1857 y 1858, dirigió los proyectos de los faros de Chipiona —el más alto de España—, Salmedina y Trafalgar. Ese mismo verano, trazó la carretera de Cudillero a Cornellana (Asturias) y acometió los tramos III y IV de la carretera de Garray a Villar (Soria). Su prestigio creció en el círculo humanista que compartía con amigos y colegas como José Echegaray, Gabriel Rodríguez y Pedro Pérez de la Sala. Entre sus discípulos se encontraban Bruno Moreno, Miguel Martínez-Campos y Antonio Borregón Peñalver.

Tras concluir su etapa soriana y ocho años de enseñanza, se incorporó como ingeniero jefe a la Compañía del Ferrocarril de Palencia a Ponferrada. Dirigió la construcción del tramo Palencia-León, inaugurado en noviembre de 1863, y proyectó el tramo León-Astorga, con todas sus estaciones. También diseñó el puente sobre el río Bernesga que unía la estación con la ciudad. En 1863 también redactó el anteproyecto de la línea Torralba-Soria, cuya ejecución se pospuso hasta 1892 y en el que destaca el viaducto del Golmayo.

La revolución de 1868 le situó al frente del Negociado de Ferrocarriles del Ministerio de Fomento y, posteriormente, como director de Obras Públicas, cargo del que dimitió en enero de 1871 junto al resto del Gobierno ante la llegada del rey Amadeo de Saboya. En 1869, representó a España en el Congreso Comercial e Internacional de El Cairo y presidió la delegación en la inauguración del canal de Suez; años después, formó parte de la Comisión Internacional para su ampliación.

Al mismo tiempo que trabajaba en Caminos, en torno a 1868 inició estudios de Arquitectura, motivado por su afición al dibujo y al estudio de construcciones antiguas, afición que se pone de manifiesto en las láminas que realizó para sus artículos sobre las iglesias de San Juan de Duero y San Nicolás de Soria. Completó la carrera en solo tres cursos y obtuvo el título de arquitecto en 1870. Su primer encargo fue habilitar el caserón del Nuevo Rezado, obra de Villanueva, como sede de la Real Academia de la Historia. Este laborioso trabajo se inauguró en 1874 y es el único edificio suyo que se conserva. Otros proyectos para la Facultad de Ciencias y el Instituto Geográfico y Estadístico quedaron sin ejecutar.

En el ámbito académico e institucional ingresó en 1861 en la Real Academia de la Historia —de la que fue director entre 1908 y 1912 y cuyo sillón ocupó como senador desde 1895—; en 1868 en la Real Academia de Ciencias Exactas, Físicas y Naturales, donde llegó a ser vicepresidente y presidente de la Sección de Ciencias Exactas y, en 1910, recibió la Medalla Echegaray; y en 1874 en la Real Academia Española, tomando posesión el 29 de diciembre de 1878 con el discurso La literatura aljamiada, al que Antonio Cánovas del Castillo dio la bienvenida destacando “el dulce sabor arcáico… de los escritores moros”. En la RAE fue tesorero desde 1901 hasta 1912 y, en la contestación al discurso de Daniel de Cortázar, defendió la adopción de criterios clásicos para la formación de nuevas nomenclaturas técnicas. Asimismo, cofundó y presidió la Real Sociedad Geográfica de Madrid y fue socio de la Academia de Ciencias de Lisboa.

En el ámbito personal, en 1855 se casó con María Dolores Forner y Ramírez de Verger, nieta del escritor Juan Pablo Forner, con quien tuvo dos hijos, de los cuales solo sobrevivió una hija, María, que se casó con el doctor José Grinda Forner, médico de la Casa Real. Entre sus amistades más destacadas se encontraban el padre Fidel Fita Colomé, Antonio Cánovas del Castillo, José Echegaray y Aureliano Fernández-Guerra. A lo largo de sus últimos años padeció una ceguera progresiva que culminó con la pérdida total de la vista.

Saavedra escribió y publicó trabajos muy diversos: estudios sobre las iglesias sorianas de San Juan de Duero y San Nicolás; La vía romana de Uxama a Augustóbriga (1869); Astrolabias árabes… (1875); La geografía de España de Edrisí (1881); Estudio sobre la invasión de los árabes en España (1892); El Nilo. Estudios técnicos e históricos (1912), entre otros. En 1983, el Colegio de Ingenieros de Caminos, Canales y Puertos dedicó a su memoria el monográfico Eduardo Saavedra, ingeniero y humanista.

Eduardo Saavedra y Moragas falleció en Madrid, en su domicilio de la calle Fuencarral, el 12 de marzo de 1912, rodeado de familia y amigos. Con su muerte desapareció el ingeniero humanista más polifacético del siglo XIX español, cuya labor técnica, académica, arqueológica y cultural dejó una huella imborrable en la historia de la ingeniería y las humanidades.

Os dejo algunos vídeos sobre este personaje. Espero que os interesen.