DANA 2024. Causas, consecuencias y soluciones

En el marco del Observatorio de la Inversión en Obra Pública, el Colegio de Ingenieros de Caminos, Canales y Puertos celebró el 2 de diciembre de 2024, la jornada «DANA 2024: causas, consecuencias y soluciones».

Durante la sesión, se analizó el desastre natural que asoló la Comunidad Valenciana, Castilla-La Mancha y Andalucía desde un punto de vista técnico. Miguel Ángel Carrillo, presidente del Colegio, también realizó una declaración institucional sobre la DANA.

A continuación os dejo el vídeo del acto celebrado, un resumen y un mapa conceptual del mismo. Espero que os sea de interés.

Resumen detallado del vídeo: DANA 2024. Causas, consecuencias y soluciones

El vídeo analiza la jornada dedicada al desastre natural DANA 2024, un fenómeno extremo que afectó gravemente a Valencia, y explora las causas, consecuencias y posibles soluciones desde diversas perspectivas técnicas y sociales. Organizada por el Colegio de Ingenieros de Caminos, esta jornada tiene como objetivo generar conocimientos prácticos y estratégicos para prevenir y mitigar futuros desastres similares. A lo largo de la jornada, expertos en ingeniería, planificación urbana y gestión ambiental reflexionan sobre la importancia de la planificación hidrológica, la resiliencia urbana y la reconstrucción sostenible.


Introducción y contexto inicial

[00:21]
El evento comienza con una introducción realizada por el Presidente del Colegio, Miguel Ángel Carrillo, donde detallada el desastre de la DANA de 2024, consideradolo uno de los más devastadores de Valencia en el último siglo. La jornada se organizó para analizar en profundidad las causas y consecuencias de este fenómeno y proponer soluciones basadas en la experiencia y el conocimiento técnico. El Colegio de Ingenieros de Caminos resaltó la necesidad de desarrollar respuestas integrales a las tragedias y pérdidas humanas, materiales y económicas derivadas de la catástrofe. Además, se hizo hincapié en que este tipo de análisis es crucial para fortalecer la capacidad de prevención y respuesta ante fenómenos climáticos extremos, especialmente en una región como Valencia, que es particularmente vulnerable al cambio climático.


Importancia de la evaluación in situ

[41:22]
El vídeo destaca la importancia de evaluar directamente las zonas afectadas por desastres naturales. Según los expertos, estar presente en el lugar del desastre permite observar de primera mano los daños, lo que es crucial para comprender la magnitud del problema y priorizar soluciones efectivas. Javier Machí, decano de la Demarcación de Valencia, comparte su experiencia personal al inspeccionar los daños sufridos en su comunidad y describe cómo estas visitas le permitieron identificar puntos críticos que requerían intervenciones inmediatas. Asimismo, se expresa una preocupación generalizada por el riesgo de que, con el tiempo, las huellas del desastre desaparezcan sin que se hayan documentado y aprendido las lecciones esenciales. Según los expertos, este olvido limitaría la capacidad de prevenir futuros eventos similares.


Impacto de las intensas lluvias y los desbordamientos

[01:22:46]
El análisis técnico de las lluvias torrenciales que caracterizaron el evento la DANA 2024 revela cifras impactantes. Para ilustrar la magnitud de las precipitaciones, que superaron ampliamente los promedios anuales en un corto periodo de tiempo, se utilizaron mapas de isoyetas. Uno de los ejemplos más notables fue la crecida del río Ojos de Moya, que provocó graves inundaciones en localidades como Utiel y afectó al río Magro. Estos desbordamientos pusieron de manifiesto las limitaciones de las infraestructuras existentes para manejar lluvias de esta intensidad. Además, se resaltó la relación directa entre este tipo de fenómenos meteorológicos extremos y el cambio climático, lo que obliga a reconsiderar la planificación y gestión de los recursos hídricos en la región.


Renaturalización y soluciones medioambientales

[02:04:11]
Una de las soluciones propuestas durante la jornada fue la renaturalización de los cauces fluviales para mitigar el impacto de las inundaciones. Este enfoque busca restaurar el equilibrio natural de los ecosistemas fluviales, lo que no solo reduce el impacto ambiental, sino que también mejora la capacidad de desagüe en zonas críticas. Sin embargo, en áreas urbanas densamente pobladas, las limitaciones espaciales obligan a adoptar medidas más drásticas, como la reforestación estratégica y la construcción de micropresas. También se mencionó un plan implementado en 2006 que incluyó el desvío de ciertos cauces para proteger ecosistemas vulnerables. Algunos expertos señalaron que estas medidas podrían requerir sacrificar áreas agrícolas para crear corredores verdes que reduzcan el riesgo de inundaciones, lo que ha abierto un debate sobre las prioridades entre la sostenibilidad ambiental y la producción agrícola.


Organización de la jornada y reconstrucción

[02:46:17]
La jornada contó con una notable participación presencial y virtual, lo que refleja el interés público y técnico en abordar las consecuencias de la DANA de 2024. En la tercera sesión, los ponentes debatieron sobre las inversiones necesarias para la reconstrucción de las zonas afectadas, haciendo hincapié en la solidaridad con las víctimas. En esta sesión se reunieron representantes de sectores clave, como la ingeniería, la construcción y la banca, que ofrecieron perspectivas complementarias sobre cómo financiar y ejecutar proyectos de reconstrucción. También se hizo hincapié en la importancia de coordinar esfuerzos entre diferentes actores para garantizar una recuperación eficiente y sostenible que no solo repare los daños, sino que también fortalezca la resiliencia de las comunidades.


Infraestructura hidráulica y cambio climático

[03:26:58]
Se hizo hincapié en la necesidad de realizar inversiones significativas en infraestructura hidráulica para hacer frente a los desafíos que plantea el cambio climático. Según los datos presentados, solo se ejecuta actualmente el 30 % de los planes hidrológicos en España, lo que deja un amplio margen para la mejora. Los expertos hicieron hincapié en la necesidad de desarrollar un proyecto nacional que destine suficientes recursos a la protección contra inundaciones. La colaboración público-privada también se identificó como un componente clave para financiar y ejecutar proyectos complejos, como encauzamientos y presas de laminación, que son esenciales para proteger a las comunidades en riesgo.


Planificación hidrológica y ordenación territorial

[04:08:21]
En este segmento, se destacó que una de las lecciones más importantes de la DANA 2024 es la necesidad de una planificación hidrológica y una ordenación territorial más efectivas. En una mesa redonda, expertos analizaron las causas y consecuencias del desastre, así como las acciones necesarias para la reconstrucción. Los ponentes hicieron hincapié en que, además de reparar las infraestructuras dañadas, es fundamental planificar a largo plazo para prevenir desastres futuros. Se debatió sobre cómo la ingeniería, en combinación con una ordenación territorial adecuada, puede reducir significativamente los riesgos asociados a fenómenos extremos.


Resiliencia urbana y gestión estratégica

[04:49:46]
La jornada concluyó con un análisis sobre la importancia de la resiliencia urbana en la gestión del territorio. Este concepto, que implica la capacidad de las ciudades para adaptarse y recuperarse de los desastres, se ha convertido en una prioridad global. Se mencionó el caso de Barcelona, que forma parte de una red internacional de ciudades resilientes y constituye un ejemplo de buenas prácticas. También se reflexionó sobre el Plan Sur, una ley que inicialmente buscaba coordinar estrategias urbanas en España, pero que ha perdido impulso en los últimos años. Los expertos hicieron un llamamiento para adoptar una visión integral y a largo plazo que permita a las ciudades hacer frente a los desafíos del cambio climático, al tiempo que se fomenta la responsabilidad ciudadana en la gestión del territorio.


Conclusión general

El vídeo destaca que la DANA 2024 no solo es una tragedia climática, sino también una oportunidad para reflexionar y actuar. Las propuestas abarcan desde soluciones técnicas, como la renaturalización y mejora de infraestructuras, hasta enfoques estratégicos, como la planificación hidrológica y el fortalecimiento de la resiliencia urbana. Los expertos coinciden en que hacer frente al cambio climático requerirá un esfuerzo conjunto, inversiones significativas y un compromiso político y social continuado.

A continuación os dejo un mapa conceptual del contenido del vídeo.

 

El programa completo del acto fue el siguiente:

Pincha aquí para descargar

Evaluación de la vulnerabilidad urbana desde la perspectiva de la planificación estratégica

Destrucción causada por la DANA del 29 de octubre de 2024 en Valencia. https://www.iagua.es/blogs/jose-maria-bodoque/como-mejorar-gestion-riesgo-zonas-afectadas-dana-evitar-catastrofe

La evaluación de la vulnerabilidad urbana (EVA) se ha convertido en una herramienta esencial para la gestión de riesgos y la planificación estratégica de ciudades sostenibles. Un artículo publicado en el Journal of Cleaner Production describe los avances en este campo, abordando las metodologías más avanzadas, las líneas de investigación prioritarias y sus implicaciones para la práctica y la formulación de políticas. Este informe desglosa los hallazgos principales y resalta su impacto práctico y las aportaciones metodológicas. Destacamos la importancia de este trabajo, relacionado directamente con el desastre provocado por la DANA en Valencia, el 29 de octubre de 2024.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

¿Qué es la vulnerabilidad urbana y por qué evaluarla?

La vulnerabilidad urbana mide la susceptibilidad de las ciudades a impactos negativos como desastres naturales, cambios climáticos, fallos en la infraestructura y crisis sociales. Según el artículo, la vulnerabilidad de un sistema urbano depende de:

  • Exposición: Grado en que el sistema está sujeto a una amenaza.
  • Sensibilidad: Capacidad del sistema para ser afectado negativamente.
  • Capacidad adaptativa: Habilidad para responder y recuperarse de las amenazas.

La Evaluación de Vulnerabilidad Urbana (EVA) tiene como objetivo identificar estos factores para informar sobre la toma de decisiones en el ámbito de la planificación estratégica, orientando las acciones hacia la resiliencia y la sostenibilidad urbana.

Relación con la Planificación Estratégica Urbana (USP)

La planificación estratégica urbana, basada en enfoques que evolucionan desde la predicción y el control hacia la adaptabilidad y la inclusión, proporciona un marco idóneo para integrar la EVA. Ambas disciplinas comparten desafíos como la incertidumbre, la necesidad de enfoques multidimensionales y la participación de actores clave.

Evolución y marco conceptual

Tres etapas en la evolución de la EVA

El artículo traza la evolución de la EVA a través de tres etapas fundamentales:

  1. Etapa predictiva: Los métodos iniciales se enfocaban en evaluar impactos utilizando modelos simples y lineales. Estos se limitaban a prever riesgos y sugerir respuestas reactivas.
  2. Etapa de vulnerabilidad: Incorporó conceptos de capacidad adaptativa y sensibilidad. Comenzó a incluir enfoques más integrales que consideraban aspectos socioeconómicos y biológicos.
  3. Etapa adaptativa: Introduce una visión dinámica, aceptando la incertidumbre y adoptando estrategias que respondan a cambios continuos. Esta etapa se centra en la planificación adaptativa y el manejo de riesgos en múltiples escenarios.

Marco conceptual para la EVA

El análisis del artículo se estructura en torno a atributos genéricos y de investigación, que permiten categorizar y evaluar los métodos de EVA:

  • Atributos genéricos:
    1. Abordaje: Clasificado en biológico, social e integral. Este último combina ambos factores, proporcionando una evaluación más holística.
    2. Estímulos: Incluyen amenazas como terremotos, inundaciones y fallas de infraestructura, clasificadas como de primer o segundo orden según su origen.
    3. Etapa de desarrollo: Impacto (diagnóstico inicial), vulnerabilidad (caracterización de capacidades) o adaptación (formulación de estrategias adaptativas).
  • Atributos de investigación:
    1. Robustez: Habilidad del modelo para manejar incertidumbre.
    2. Procesos participativos: Incorporación de opiniones y experiencias de múltiples actores.
    3. Multiescala: Integración de diferentes niveles de análisis.
    4. Naturaleza dinámica: Consideración del cambio en el tiempo y el contexto.
    5. Capacidad multiobjetivo: Evaluación de múltiples intereses y conflictos.
    6. Enfoques cognitivos: Identificación de relaciones causa-efecto y apoyo al aprendizaje en la toma de decisiones.

Metodología aplicada en el análisis

El artículo utiliza una metodología sistemática en cuatro pasos para identificar y analizar métodos EVA:

  1. Búsqueda exhaustiva: En bases de datos como Scopus y Web of Science, enfocándose en estudios recientes (a partir de 2010).
  2. Revisión por contenido: Identificación de trabajos relevantes que incluyan métodos novedosos de EVA.
  3. Categorización: Clasificación según atributos genéricos y de investigación.
  4. Análisis cuantitativo: Uso de herramientas estadísticas para evaluar tendencias, correlaciones y vacíos en la investigación.

De los 65 estudios seleccionados, la mayoría se encuentra en la etapa de vulnerabilidad, lo que refleja una transición hacia enfoques más integrales y adaptativos.

Hallazgos principales

Los estudios actuales muestran un predominio de métodos integrales que combinan factores biológicos y sociales (35 %), superando a los enfoques exclusivamente biológicos (34 %) y sociales (31 %), lo que permite evaluaciones más precisas para la toma de decisiones. El atributo más investigado es la robustez (33 %), lo que refleja la prioridad de gestionar la incertidumbre y mejorar la fiabilidad de los resultados. Sin embargo, la participación ciudadana, que es fundamental para integrar las perspectivas sociales, está poco desarrollada (22 %), mientras que las dimensiones multiescalares y dinámicas, que son esenciales para entender la complejidad urbana, reciben poca atención (6 %).

Relación entre atributos y estímulos

Los métodos EVA se centran principalmente en amenazas naturales como terremotos (34 %) e inundaciones (24 %). Estas categorías tienen mayor presencia en enfoques biológicos e integrales, mientras que los estímulos sociales y relacionados con infraestructuras están menos representados.

Impacto de los enfoques integrales

Los enfoques integrales son eficaces para avanzar hacia etapas adaptativas. En el caso de los fallos de infraestructura, combinar simulaciones con análisis socioeconómicos permite identificar vulnerabilidades críticas y proponer soluciones integradas. En casos de inundaciones, los modelos de robustez y el análisis de participación comunitaria refuerzan la legitimidad de las estrategias adaptativas.

Implicaciones prácticas

Política y planificación

  1. Desarrollo de infraestructuras resilientes: Incorporar resultados de EVA en la planificación de sistemas urbanos adaptativos y flexibles.
  2. Participación comunitaria: Diseñar procesos inclusivos que canalicen las perspectivas ciudadanas hacia decisiones legítimas y eficaces.
  3. Integración de escalas: Conectar análisis locales con dinámicas regionales y globales, fomentando la coherencia entre niveles de planificación.

Investigación y tecnología

  1. Mejora de modelos de robustez: Implementar técnicas avanzadas como redes complejas y análisis de Monte Carlo.
  2. Promoción de métodos multiobjetivo: Usar enfoques heurísticos y de optimización para equilibrar múltiples intereses.
  3. Fomento de enfoques dinámicos: Incluir simulaciones basadas en el tiempo para anticipar cambios en la vulnerabilidad.

Conclusión

La evaluación de la vulnerabilidad urbana ha progresado significativamente hacia enfoques integrales y adaptativos, pero persisten desafíos, especialmente en lo que respecta a la participación ciudadana, la multiescala y la naturaleza dinámica. Los métodos EVA son fundamentales para abordar la complejidad de la planificación urbana en un mundo cada vez más incierto. El artículo destaca que la inversión en investigación interdisciplinaria y tecnología puede acelerar la transición hacia ciudades más resilientes y sostenibles.

Referencia:

SALAS, J.; YEPES, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544-558. DOI:10.1016/j.jclepro.2018.01.088

Os paso la versión autor del artículo completo, por si os interesa leerlo.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Qué es una campaña geotécnica y su relevancia en proyectos de ingeniería

Una campaña geotécnica consiste en un conjunto de actividades y estudios técnicos destinados a caracterizar el subsuelo, identificar las propiedades geológicas y geotécnicas relevantes, detectar posibles problemas y garantizar la viabilidad técnica y la seguridad de las obras. Incluye prospecciones (sondeos, calicatas, ensayos), análisis de materiales y condiciones del terreno, que sirven de apoyo a la toma de decisiones en el diseño y construcción. Estas campañas son fundamentales para garantizar la viabilidad técnica, la seguridad y la sostenibilidad de los proyectos, y también para minimizar riesgos y optimizar costes.

En este artículo, profundizaremos en qué consiste una campaña geotécnica, cómo se lleva a cabo y por qué es relevante ejecutarla correctamente en cualquier proyecto de construcción.

El terreno como protagonista en la ingeniería

El terreno es un elemento crucial en cualquier obra. Un conocimiento inadecuado de sus características puede derivar en problemas como asentamientos diferenciales, deslizamientos, licuefacción o incluso colapsos estructurales. Por ello, las campañas geotécnicas son cruciales para diseñar cimentaciones y estructuras adaptadas a las condiciones específicas de cada emplazamiento.

Estas investigaciones se sustentan en tres pilares esenciales:

  1. Experiencia técnica: es indispensable contar con especialistas capaces de identificar las propiedades del terreno, evaluar riesgos y diseñar soluciones personalizadas.
  2. Calidad de ejecución: desde el alcance del estudio hasta la supervisión de campo, cada etapa debe garantizar la precisión de los resultados.
  3. Normativa y seguridad: el cumplimiento de marcos regulatorios, como el Código Técnico de la Edificación (CTE) y la Guía de Cimentaciones en Obras de Carretera, garantiza que las soluciones sean técnicamente adecuadas y cumplan con los estándares establecidos.

Objetivos y beneficios de las campañas geotécnicas

El objetivo principal de una campaña geotécnica es caracterizar el terreno para poder diseñar soluciones constructivas seguras y eficientes. Entre sus ventajas más destacadas se encuentran:

  • Garantía de seguridad: la identificación de riesgos geotécnicos evita desastres que puedan afectar a personas y estructuras.
  • Optimización de costes: aunque a menudo se perciben como un coste adicional, estas campañas permiten prevenir gastos futuros en reparaciones o rediseños.
  • Diseño adaptado: permite elegir los métodos constructivos más adecuados en función de las características del suelo y de las cargas de la estructura.
  • Mitigación de impactos ambientales y legales: al considerar el entorno y posibles restricciones, se minimizan conflictos y se garantiza la sostenibilidad del proyecto.

Etapas de una campaña geotécnica

1. Recopilación de información previa

Antes de llevar a cabo estudios de campo, es crucial recopilar datos relevantes sobre la zona. Esto incluye:

  • Planos topográficos: proporcionan una visión detallada del terreno.
  • Mapas geológicos: permiten identificar características estratigráficas y litológicas.
  • Historial de uso del terreno: puede revelar posibles riesgos, como rellenos no compactados o estructuras enterradas.
  • Normativa aplicable: por ejemplo, el Eurocódigo 7 sobre diseño geotécnico.

2. Reconocimientos de campo

Los reconocimientos de campo son el núcleo de una campaña geotécnica. Algunas de las técnicas más comunes son:

  • Sondeos mecánicos: Perforaciones para extraer muestras y analizar la estratigrafía del terreno.
  • Ensayos de penetración (SPT, CPT): Evalúan la resistencia del terreno mediante penetraciones controladas.
  • Calicatas y rozas: Excavaciones superficiales para observar directamente las capas del suelo.
  • Ensayos geofísicos: Métodos no invasivos, como sísmica de refracción, para obtener una visión global del subsuelo.
  • Estudios hidrogeológicos: Determinan la posición y características del agua subterránea, que influye en la estabilidad y resistencia del suelo.

Profundidades recomendadas:

  • Para cimentaciones superficiales, al menos 1,5 veces el ancho proyectado de la cimentación.
  • Para cimentaciones profundas (pilotes): a una profundidad mínima de 6 metros por debajo de la punta del pilote.

3. Análisis en laboratorio

Las muestras recolectadas se someten a análisis detallados para determinar:

  • Granulometría y plasticidad: identificación del tipo de suelo y su comportamiento bajo carga.
  • Resistencia y deformabilidad: ensayos triaxiales y edométricos.
  • Permeabilidad: evaluación de la capacidad del terreno para drenar agua.

4. Interpretación y diseño geotécnico

Con los datos recopilados, los ingenieros crean modelos y realizan cálculos para encontrar soluciones óptimas para las cimentaciones y las estructuras. Este proceso incluye:

— Selección del modelo de cálculo adecuado.
— Definición de parámetros de seguridad según la normativa.
— Ajustes según observaciones durante la ejecución.

Importancia de una correcta planificación

  • Construcción de un puente: En un cauce fluvial, por ejemplo, se pueden detectar suelos aluviales inestables, por lo que será necesario diseñar pilotes profundos para evitar asentamientos diferenciales. Por este motivo, se diseñaron pilotes profundos para evitar asentamientos diferenciales.
  • Proyecto de viviendas: Un caso en el que una zona había sido un vertedero, los estudios geotécnicos identifican rellenos inadecuados. La solución puede ser retirar los rellenos inadecuados y compactar el terreno con materiales adecuados.

Desafíos comunes:

  • Limitaciones presupuestarias: reducir la intensidad de los estudios puede ocasionar problemas graves durante la construcción.
  • Condiciones complejas: la heterogeneidad del terreno o la ubicación en zonas sísmicas requieren investigaciones más exhaustivas.
  • Falta de datos previos: la ausencia de estudios anteriores puede complicar la fase inicial de planificación.

Herramientas y normativas clave

  • Software especializado: Programas como Plaxis o GeoStudio permiten modelar comportamientos del terreno y simular condiciones críticas.
  • Normativa aplicable:
    • Código Técnico de la Edificación (CTE): Proporciona directrices para reconocer y mitigar riesgos.
    • Guía de Cimentaciones en Obras de Carretera: Define protocolos para infraestructuras viales.

Conclusión

Las campañas geotécnicas son mucho más que un paso previo en la construcción: son la base sobre la que se asienta la seguridad, la viabilidad y la sostenibilidad de cualquier proyecto. Al identificar riesgos, garantizar diseños óptimos y cumplir con normativas, estas investigaciones se convierten en una inversión estratégica que previene problemas futuros.

En un entorno cada vez más desafiante para la ingeniería, realizar campañas geotécnicas no solo es una práctica recomendada, sino esencial para asegurar el éxito de cualquier obra.

A continuación dejamos un documento que proporciona recomendaciones técnicas detalladas sobre la campaña geotécnica en proyectos de infraestructura vial para la Dirección General de Carreteras, con el objetivo de establecer criterios uniformes y seguros para la investigación del subsuelo durante las diferentes etapas de desarrollo de un proyecto.

Pincha aquí para descargar

Os dejo también un vídeo al respecto. Espero que os sea de interés.

 

Qué es una presa. «La via verda», À Punt

En el programa «La via verda», de la televisión autonómica valenciana À Punt, intervine para explicar qué es una presa, sus características y su efecto laminador en caso de una avenida. Aquí dejo un pequeño resumen del vídeo, que también dejo al final para su visualización completa.

El vídeo de este programa aborda la importancia de las presas de Forata y Buseo durante el episodio de lluvias torrenciales ocurrido en la provincia de Valencia el 29 de octubre de 2024. Se explica cómo estas presas alcanzaron su capacidad máxima y tuvieron que liberar agua de manera controlada. Se proporcionan datos específicos sobre los caudales de entrada y salida, así como sobre la capacidad de almacenamiento de las presas. También se destaca el papel crucial de las presas en la reducción de las crecidas y la mitigación de las inundaciones, y se explica cómo han ayudado a evitar daños potenciales aguas abajo.

Papel fundamental de las presas durante episodios de lluvias torrenciales

Las presas son fundamentales para regular el agua, especialmente en situaciones críticas como lluvias torrenciales. Su capacidad para manejar grandes volúmenes de agua permite reducir significativamente el riesgo de desbordamientos e inundaciones y proteger las zonas cercanas. Estas infraestructuras pueden manejar caudales extremos y minimizar el impacto negativo en las zonas inundables.

Funcionamiento y contribución durante inundaciones

Las presas de una cuenca hidrográfica cumplen funciones clave, como el almacenamiento de agua y la regulación del flujo durante las lluvias intensas. Cuando se producen precipitaciones torrenciales, estas estructuras aumentan su capacidad operativa para evitar desbordamientos y proteger las zonas situadas aguas abajo. Además de suministrar agua para consumo humano y actividades agrícolas, las presas actúan como barreras contra las inundaciones, lo que demuestra su valor multifuncional en la gestión hídrica.

Reducción de zonas inundables y el efecto laminador

Una de las funciones más destacadas de las presas es su capacidad para regular el flujo de agua en función de las precipitaciones, lo que reduce el impacto de las inundaciones. Este efecto laminador reduce el caudal de agua que fluye hacia las zonas urbanas y rurales, lo que disminuye significativamente las zonas inundables. Además, la capacidad de almacenamiento de estas infraestructuras permite gestionar mejor las aguas torrenciales y evitar así daños mayores en las comunidades.

Desafíos y necesidad de adaptación ante el cambio climático

Aunque las presas han demostrado su eficacia para prevenir desastres, también entrañan riesgos si no se gestionan adecuadamente. Un fallo en una presa podría tener consecuencias catastróficas, donde se ha comparado el impacto potencial con el de un tsunami. Esto pone de manifiesto la importancia de contar con un sistema de planificación y evacuación adecuado para proteger a la población en caso de emergencias.

En un contexto de cambios climáticos extremos, con sequías severas y lluvias torrenciales alternándose, es crucial reevaluar y adaptar el uso de las presas. La planificación y el mantenimiento de estas infraestructuras deben centrarse en garantizar su resiliencia frente a condiciones climáticas variables para asegurar que sigan cumpliendo su función de manera efectiva y segura.

El vídeo del programa lo tenéis aquí. Aunque está en valenciano, mis intervenciones son en castellano. Espero que os sea de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Losas aligeradas con análisis multivariante: innovación, eficiencia y sostenibilidad en los Métodos Modernos de Construcción

Innovación y optimización en el diseño estructural: losas aligeradas con análisis multivariante

La construcción moderna está en constante evolución para superar los retos asociados al alto consumo de materiales, la sostenibilidad ambiental y los costes elevados. En este contexto, las losas aligeradas con esferas o discos plásticos presurizados se presentan como una solución estructural innovadora que combina eficiencia, sostenibilidad y funcionalidad. Este artículo detalla, basándose en el análisis exhaustivo del documento presentado, cómo la metodología de análisis multivariante permite dimensionar con precisión este tipo de losas, optimizando recursos y reduciendo el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Losas de hormigón armado sin vigas, aligeradas con esferas o discos plásticos. https://www.prenovaglobal.com/index.php/es/losas-sin-vigas-con-esferas-o-discos/

Introducción a las losas aligeradas

Las losas de hormigón armado son elementos clave en cualquier edificación, diseñadas para soportar cargas verticales y transferirlas a los soportes principales. Sin embargo, su peso propio plantea un desafío técnico y económico, especialmente cuando hay grandes luces entre apoyos, ya que se necesitan más materiales y refuerzos, lo que aumenta los costos y el impacto ambiental.

El concepto de losas aligeradas

Este sistema estructural combina los Métodos Modernos de Construcción (MMC) con la sostenibilidad ambiental e integra aligeradores huecos de materiales reciclados, como discos o esferas plásticas presurizadas, en el núcleo de las losas. Estas estructuras reducen el peso propio, optimizan las cargas transmitidas y permiten utilizar menos hormigón y acero sin comprometer la resistencia estructural.

Innovación técnica: metodología para el dimensionamiento

Base del estudio

La metodología presentada analiza 67 edificios construidos con losas aligeradas y registra 75 observaciones de forjados. Estos datos se procesaron mediante análisis estadístico y modelos de regresión multivariante, lo que permitió desarrollar ecuaciones predictivas altamente precisas para calcular el espesor de las losas en función de sus características estructurales.

Variables clave

  1. Luz principal (L): Distancia entre los apoyos principales.
  2. Espesor de la losa (E): Variable dependiente del modelo.
  3. Altura del disco o diámetro de la esfera (H): Elemento aligerante.
  4. Sobrecarga (Q): Definida por el uso del edificio.
  5. Superficie construida: Influye en la carga total transferida.
  6. Número de plantas: Relacionado con la distribución de cargas.

Resultados del análisis

El estudio identificó una fuerte correlación entre estas variables, especialmente entre el espesor de la losa y la luz entre apoyos. Esto permitió formular una ecuación que explica hasta el 98,34 % de la variabilidad del espesor de las losas aligeradas.

Ecuación ajustada del modelo final:

Aspectos destacados:

  • La relación cuadrática entre la luz y el espesor refleja la carga que predomina en la sección.
  • La altura del disco aligerante influye directamente en el diseño, que está condicionada por los espesores comerciales disponibles.

Validación estadística

Se realizaron pruebas de normalidad (Shapiro-Wilk y Kolmogorov-Smirnov) y análisis de residuos. Los residuos siguieron una distribución normal, confirmando la robustez y validez del modelo propuesto.

Criterios de diseño

  • Para luces mayores de 7,2 m o sobrecargas superiores a 2 kN/m², el modelo proporciona cálculos más precisos que las reglas tradicionales.
  • Se recomienda utilizar este modelo como guía inicial para seleccionar el tamaño adecuado de los aligeradores.

Beneficios económicos y ambientales

El uso de losas aligeradas supone una mejora sustancial en términos de costes y sostenibilidad:

Ahorro de materiales

  • Se ha reducido el consumo de hormigón hasta en un 30 %, lo que equivale a 1000 m³ menos por cada 10 000 m² de losas construidas.
  • Disminución del uso de acero en un 20 %, lo que optimiza los refuerzos y las cimentaciones.

Impacto ambiental

  • Reducción de emisiones de CO₂: por cada 10 000 m² de losas, se evita la emisión de 220 toneladas de CO₂.
  • Uso de materiales reciclados para los aligeradores, lo que promueve la economía circular.
  • Se consume menos agua y energía durante la construcción.

Optimización de costes

  • Las estructuras más ligeras reducen la demanda de cimentaciones y elementos de soporte.
  • Se necesita menos cimbrado y los tiempos de construcción son más cortos.
  • Aumento de la eficiencia global del proyecto.

Aplicaciones y comparativas estructurales

Las losas aligeradas son particularmente útiles en edificios residenciales, comerciales e industriales donde se requieren luces amplias (de 5 a 16 m). Su flexibilidad y adaptabilidad permiten su uso en una amplia variedad de aplicaciones.

Comparación con losas macizas

  1. Peso y carga:
    • Las losas aligeradas reducen el peso propio hasta en un 30 %.
    • Al transferir menos cargas a los pilares y cimentaciones, se reduce el riesgo de daños.
  2. Resistencia estructural:
    • Ofrece una resistencia a la flexión y al punzonamiento comparable a la de las losas macizas.
    • Incorporación de zonas macizas alrededor de los pilares para mejorar la capacidad cortante.
  3. Flexibilidad en el diseño:
    • Permite mayores luces y diseños arquitectónicos más libres.
    • Facilita la apertura de huecos para instalaciones o reformas en el futuro.

Desafíos y perspectivas futuras

Aunque este sistema presenta numerosos beneficios, aún enfrenta ciertos retos que deben abordarse:

  1. Estandarización del diseño:
    • Es necesario desarrollar normas que regulen el uso de aligeradores en distintos contextos.
    • Hay que incorporar criterios adicionales, como la resistencia al fuego y la durabilidad, en los modelos de diseño.
  2. Optimización del sistema:
    • Explorar nuevos materiales reciclados para mejorar la sostenibilidad del sistema.
    • Desarrollar herramientas digitales basadas en dicho modelo para facilitar su aplicación.
  3. Estudios comparativos ampliados:
    • Evaluar el rendimiento de las losas aligeradas frente a sistemas tradicionales, como los forjados reticulares.
    • Realizar un análisis del ciclo de vida completo que tenga en cuenta el impacto económico, ambiental y social.

Conclusiones

Este estudio ofrece una herramienta innovadora para el dimensionamiento eficiente de losas aligeradas, basada en el análisis multivariante y en criterios estadísticos rigurosos. Estas estructuras no solo optimizan el uso de materiales, sino que también reducen el impacto ambiental y fomentan la sostenibilidad en la construcción.

Con un enfoque que combina diseño avanzado, ahorro de recursos y flexibilidad arquitectónica, las losas aligeradas están transformando la forma de construir edificios modernos. A medida que se perfeccionen los modelos y se amplíen sus aplicaciones, este sistema se perfilará como una solución fundamental para construir un futuro más sostenible y eficiente.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Pincha aquí para descargar

Referencia:

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 445-459. DOI:10.61547/2402013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Investigación reciente muestra cómo la inteligencia artificial optimiza la gestión del agua

En un estudio pionero, investigadores de la Universitat Politècnica de València y la Pontificia Universidad Católica de Valparaíso (Chile) han revelado el enorme potencial del aprendizaje automático (Machine Learning, ML) en la mejora de la integridad y calidad de las infraestructuras hídricas.

Publicado en la Applied Sciences, revista del primer cuartil del JCR, el estudio analiza en profundidad la literatura científica reciente sobre el tema, para lo cual revisa 1087 artículos con el fin de identificar las áreas más prometedoras en la aplicación de estas tecnologías a la gestión del agua. Esta revisión va más allá de lo convencional al aplicar modelos avanzados de procesamiento del lenguaje natural (NLP), específicamente BERTopic, que permiten comprender el contexto y los temas emergentes en esta área de investigación.

Contexto y relevancia del estudio

El mantenimiento de infraestructuras de agua seguras y eficientes es un desafío global, especialmente en un contexto de cambio climático, urbanización creciente y escasez de recursos hídricos. A medida que aumentan los eventos climáticos extremos, las infraestructuras se ven sometidas a un estrés adicional. Estas condiciones afectan al acceso y a la distribución de agua de calidad, clave para la salud pública, el medio ambiente y sectores estratégicos como la agricultura, la industria y la energía.

En este contexto, el aprendizaje automático se presenta como una herramienta potente para gestionar y optimizar la calidad y el suministro del agua. Los algoritmos de ML pueden procesar grandes volúmenes de datos de sensores y otras fuentes para mejorar las predicciones y la toma de decisiones en tiempo real. Además, permiten diseñar protocolos de tratamiento del agua más eficientes, reducir las pérdidas en las redes de distribución y anticiparse a los problemas antes de que se conviertan en fallos significativos.

Metodología y clasificación de temas

Para explorar el uso del ML en la gestión de infraestructuras hídricas, el equipo realizó una búsqueda sistemática en la base de datos Scopus, centrada en artículos en inglés publicados desde 2015. Los investigadores aplicaron el modelo BERTopic, una técnica de NLP que utiliza redes neuronales (transformers) entrenadas para identificar y organizar los principales temas en la literatura. Esto permitió clasificar con precisión los estudios en cuatro grandes áreas de aplicación:

  1. Detección de contaminantes y erosión del suelo: El uso de ML en esta área permite la detección avanzada de contaminantes como los nitratos y los metales pesados en las aguas subterráneas. Mediante imágenes satelitales y sensores en campo, estos modelos analizan factores ambientales y condiciones del suelo para predecir y mapear zonas de riesgo de contaminación y erosión.
  2. Predicción de niveles de agua: El estudio destaca cómo las técnicas de aprendizaje automático, incluidas las redes neuronales y los modelos de series temporales, pueden prever las fluctuaciones en los niveles de agua de ríos, lagos y acuíferos. Esto resulta crucial para la gestión de los recursos hídricos en situaciones climáticas extremas, como las inundaciones y las sequías, y también para optimizar el uso del agua en la agricultura y la industria.
  3. Detección de fugas en redes de agua: Las pérdidas de agua suponen un problema significativo en las redes de distribución, especialmente en las zonas urbanas. El estudio descubrió que el ML, junto con tecnologías de sensores IoT, permite la detección precisa de fugas mediante el análisis de patrones de flujo y presión en las tuberías. Los algoritmos pueden identificar y localizar fugas, lo que reduce el desperdicio y mejora la eficiencia de la distribución.
  4. Evaluación de la potabilidad y calidad del agua: Garantizar el acceso a agua potable es fundamental para la salud pública, y el estudio subraya la utilidad del aprendizaje profundo en el control de la calidad del agua. Los algoritmos analizan parámetros de calidad como la turbidez, el pH y la presencia de sustancias químicas nocivas, con el fin de asegurar la potabilidad. Estos modelos también permiten automatizar los sistemas de alerta temprana en zonas con infraestructuras hídricas vulnerables.

Implicaciones y futuros pasos

Este estudio concluye que el uso de aprendizaje automático en la gestión del agua permite una mayor eficiencia y sostenibilidad, y supone un paso adelante en la administración de los recursos hídricos frente a los desafíos ambientales en aumento. Los autores señalan que la combinación de ML con sistemas de monitoreo avanzado puede transformar la forma en que gestionamos las infraestructuras hídricas, permitiendo predicciones precisas y decisiones basadas en datos en tiempo real.

En el futuro, se centrarán en mejorar la precisión de los modelos para áreas específicas, así como en implementar estos sistemas a gran escala. Además, se abren nuevas oportunidades para optimizar las redes de distribución mediante sistemas automatizados, algo vital en un contexto donde el agua es un recurso cada vez más valioso y escaso.

Este estudio no solo aporta conocimiento a la comunidad científica, sino que también proporciona una base sólida para que gestores y responsables de políticas públicas integren el aprendizaje automático en sus prácticas de gestión del agua, avanzando así hacia una gestión hídrica más sostenible y resiliente.

Referencia:

GARCÍA, J.; LEIVA-ARAOS, A.; DÍAZ-SAAVEDRA, E.; MORAGA, P.; PINTO, H.; YEPES, V. (2023). Relevance of Machine Learning Techniques in Water Infrastructure Integrity and Quality: A Review Powered by Natural Language Processing. Applied Sciences, 13(22):12497. DOI:10.3390/app132212497

Pincha aquí para descargar

La cadena crítica en la planificación de proyectos de construcción

En el ámbito de la ingeniería de la construcción, la planificación de proyectos es fundamental para asegurar el cumplimiento de los plazos y la optimización de los recursos. Tradicionalmente, este proceso ha estado marcado por el uso del método PERT/CPM, que se basa en la premisa de que los proyectos están condicionados principalmente por el tiempo. En este enfoque, los pasos clave incluyen la asignación de duraciones a las actividades y la definición de sus precedencias. Sin embargo, este método asume de manera implícita que los recursos, como la mano de obra, los equipos y los materiales, están siempre disponibles y en cantidades suficientes para cumplir con la secuencia constructiva planificada. En la práctica, muchas veces ni siquiera se consideran los recursos de las actividades al definir la red de trabajo; en su lugar, el enfoque se limita a gestionar los aspectos temporales de la programación.

La realidad del sector de la construcción presenta otros desafíos, como los «cuellos de botella», que afectan significativamente el cronograma de los proyectos. En este contexto de limitaciones de recursos ha surgido el método de la cadena crítica (Critical Chain Method, CCM; Critical Chain Scheduling, CCS; o Critical Chain Project Management, CCPM). Este enfoque innovador no solo tiene en cuenta la secuencia de las actividades, sino también la disponibilidad de los recursos, lo que permite una planificación más realista y eficaz.

Además, es importante mencionar que la metodología tradicional de elaboración de cronogramas tiende a utilizar duraciones «hinchadas», lo que puede provocar una dilatación de los plazos del proyecto. El método de la cadena crítica (CCPM) sugiere reducir significativamente estas estimaciones, eliminando las reservas de tiempo innecesarias. La solución propuesta consiste en programar el proyecto con duraciones más ajustadas y añadir «colchones» para gestionar el tiempo de manera más efectiva. Al aplicar el CCPM, se incorpora la teoría de las restricciones a la gestión de proyectos, lo que supone un cambio significativo en la forma de planificar y ejecutar los proyectos.

Origen de la cadena crítica

La cadena crítica tiene sus raíces en la novela «La meta», publicada en 1984 por el físico israelí Eliyahu M. Goldratt. En esta obra, Goldratt llamó la atención del público al presentar ideas innovadoras sobre la gestión de empresas, utilizando como telón de fondo una fábrica ineficiente y su atormentado director, que siempre se enfrentaba a los cuellos de botella de la producción. A través de esta narrativa, Goldratt introdujo los principios de la teoría de las restricciones, que establece que, en cada momento, hay un número limitado de factores que actúan como obstáculos para el pleno desarrollo de la producción.

En 1997, Goldratt amplió estos conceptos en su libro «La cadena crítica», donde se centró en la velocidad y la fiabilidad en la ejecución de proyectos. Su enfoque se basa en la reducción drástica de la duración de las actividades y en la incorporación de colchones de protección en los plazos. Goldratt, reconocido como un gurú en el ámbito empresarial, difundió el concepto de cadena crítica en el sector de las grandes corporaciones. Los expertos consideran sus ideas como una de las mayores contribuciones a la planificación de proyectos de los últimos treinta años. A medida que el método de la cadena crítica se ha ido implementando progresivamente en el sector de la construcción, se han logrado reducciones en los plazos de entrega de entre un 10 % y un 50 %.

Teoría de las restricciones

La teoría de las restricciones (Theory of Constraints, TOC) se define por la identificación de «restricciones», que son aquellos factores que impiden que un sistema alcance su máximo rendimiento. Según la TOC, cada sistema presenta al menos una restricción que afecta a su flujo de producción. Si no existieran restricciones, el flujo podría crecer indefinidamente o, en el extremo opuesto, ser nulo, ya que el flujo máximo de producción no puede exceder el de su recurso de menor capacidad, conocido como «cuello de botella».

La analogía de un proyecto con un flujo de corriente permite identificar que su restricción es el eslabón más débil, el cual determina la capacidad del sistema. Desde la perspectiva temporal, la restricción de un proyecto corresponde a la secuencia más larga de actividades, que a su vez establece el plazo total.

Es importante destacar que las restricciones pueden ser tanto físicas como no físicas e incluir factores políticos y emocionales. Un problema central, conocido como «conflicto sin resolver» (core conflict), debe ser abordado por el equipo de gestión, que tiene la responsabilidad de encontrar una solución o, al menos, minimizar su impacto.

El algoritmo de la teoría de las restricciones (TOC) para optimizar el rendimiento de una cadena de actividades se compone de cinco pasos que pueden considerarse una estrategia de mejora continua. Estos pasos incluyen:

  1. Identificar la restricción del sistema: El objetivo es completar el proyecto lo antes posible. La cadena crítica representa el camino más corto, considerando no solo las dependencias lógicas y las duraciones de las actividades, sino también la disponibilidad de recursos.
  2. Explorar la restricción: Esta fase consiste en proteger la duración total del proyecto contra retrasos en las tareas que forman parte de la cadena crítica. Comprimir la duración de estas actividades, eliminando obstáculos y márgenes de tiempo, contribuye a que el proyecto cumpla plazos más ajustados.

En conclusión, la adopción de la cadena crítica y la teoría de las restricciones en la planificación de proyectos de construcción no solo mejora la eficiencia, sino que también proporciona un enfoque más realista para gestionar los plazos y los recursos. Con una implementación adecuada de estas metodologías, las empresas constructoras pueden optimizar su rendimiento y alcanzar sus objetivos de manera más efectiva.

Os dejo algunos vídeos explicativos al respecto.

Referencias:

GOLDRATT, E. M.; COX, J. (2016). The goal: a process of ongoing improvement. Routledge.

GOLDRATT, E. M. (2017). Critical chain: A business novel. Routledge, 2017.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2013). Construction management. John Wiley & Sons.

MATTOS, A.D.; VALDERRAMA, F. (2020). Métodos de planificación y control de obras. Editorial Reverté.

YANG, J-B. How the critical chain scheduling method is working for construction. Cost engineering, 2007, vol. 49, no 4, p. 25.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión del conocimiento: clave para la innovación y competitividad de las pymes en el sector de la construcción

El estudio, liderado por Salvador López y Víctor Yepes y publicado en la revista Advances in Civil Engineering, se centra en cómo las pequeñas y medianas empresas (pymes) del sector de la construcción pueden optimizar la gestión y el intercambio de conocimiento (conocido como KS, Knowledge Sharing, y KT, Knowledge Transfer) para mejorar su competitividad y capacidad de innovación. Este tipo de empresas, que son fundamentales para el crecimiento económico y la generación de empleo en muchas economías, se enfrentan a retos significativos en la adaptación a los cambios del mercado y en la implementación de procesos innovadores, especialmente en un sector tan competitivo y dinámico como el de la construcción.

El valor del conocimiento en las pymes de construcción

El estudio parte de la premisa de que el conocimiento es uno de los activos más valiosos para las organizaciones, especialmente en industrias de rápido cambio. Una gestión adecuada del conocimiento en las pymes no solo permite que estas empresas sobrevivan, sino que prosperen, manteniendo una ventaja competitiva mediante la innovación continua. Sin embargo, a pesar de su importancia, las pymes han enfrentado históricamente dificultades en este ámbito, dado que, a diferencia de las grandes empresas, suelen carecer de estructuras de gestión del conocimiento consolidadas o de los recursos necesarios para implementar complejos sistemas de intercambio de información.

Metodología del estudio

Para comprender mejor el panorama actual y las tendencias futuras en la gestión del conocimiento en pymes de la construcción, López y Yepes emplearon un enfoque bibliométrico y analizaron 184 publicaciones académicas mediante técnicas avanzadas, como el análisis de co-citación y el análisis de palabras clave, facilitado por el software VOSviewer. Este programa permitió crear un mapa conceptual que muestra las conexiones entre estudios y temáticas clave, y ayudó a identificar patrones emergentes y áreas que requieren más investigación. La visualización de estos datos ayudó a resaltar cómo el intercambio y la transferencia de conocimientos han evolucionado en el sector, y ofreció una visión estructurada de los temas y métodos predominantes en el ámbito de la gestión del conocimiento.

Resultados principales y recomendaciones

El análisis revela varias tendencias importantes. En primer lugar, la colaboración interorganizacional y el aprendizaje continuo se destacan como factores esenciales para el éxito de las pymes en la gestión del conocimiento. Al fomentar redes de trabajo en colaboración, tanto dentro como fuera de la organización, las pymes pueden beneficiarse de una mayor fluidez en el intercambio de conocimientos, lo que facilita la innovación y la mejora de procesos. Otro aspecto clave es el desarrollo de capacidades tecnológicas y la implementación de sistemas digitales que permitan organizar y difundir el conocimiento de manera eficiente. Estos sistemas pueden incluir desde plataformas digitales de comunicación interna hasta bases de datos de conocimientos compartidos.

López y Yepes subrayan también la importancia del liderazgo transformacional en estas empresas. Un estilo de liderazgo que fomente la apertura y la flexibilidad de la organización puede ser determinante para crear una cultura de innovación en la que el conocimiento fluya de forma más efectiva. Esta cultura de apertura es crucial para que las pymes puedan adaptarse a los cambios en el sector y aprovechar las oportunidades de mejora y crecimiento.

Además, el estudio identifica varias áreas de mejora. Las pymes del sector de la construcción suelen enfrentar problemas en la transferencia de conocimientos debido a ineficiencias en sus redes colaborativas y a la falta de sistemas digitales que apoyen esta tarea. Como resultado, los autores recomiendan una mayor inversión en infraestructura tecnológica, como herramientas de gestión del conocimiento, que faciliten la recopilación, el almacenamiento y la difusión de la información relevante. También sugieren adaptar estas prácticas de intercambio a contextos culturales y geográficos específicos, especialmente para las empresas que operan en mercados globales o que colaboran con organizaciones de otras regiones.

Implicaciones para el futuro de la gestión del conocimiento en pymes

Las conclusiones de López y Yepes destacan la necesidad de que la gestión del conocimiento en las pymes del sector de la construcción evolucione para responder a los desafíos del mercado actual. Entre las recomendaciones de futuro, el estudio enfatiza la necesidad de adoptar un enfoque de aprendizaje continuo y de mejorar las capacidades tecnológicas para facilitar la innovación y el crecimiento sostenido. Además, sugiere que las pymes deberían desarrollar una cultura organizacional que valore y facilite el intercambio de conocimientos a todos los niveles, desde la alta dirección hasta el personal operativo.

Este marco de gestión del conocimiento supone un cambio fundamental para las pymes del sector de la construcción, ya que les proporciona una base sólida para crear redes colaborativas y sistemas de intercambio de información que les permitan ser competitivas en un sector globalizado y en rápida evolución. Así, este trabajo no solo proporciona un marco conceptual para entender la gestión del conocimiento en estas empresas, sino que también ofrece una guía práctica para que puedan adaptarse y prosperar en el entorno actual.

Referencia:

LOPEZ, S.; YEPES, V. (2024). Visualizing the future of Knowledge sharing in SMEs in the construction industry: A VOS-viewer Analysis of emerging trends and best practices. Advances in Civil Engineering, 2024:6657677. DOI:10.1155/2024/6657677

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Predimensionamiento óptimo de tableros de puentes losa pretensados aligerados

Figura 1. Vista aérea de paso superior. Google Maps.

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Yepes-Bellver, Martínez-Pagán, Alcalá, y Yepes es un análisis integral del predimensionamiento de los tableros de puentes losa pretensados aligerados.

Este informe detalla su importancia y sugiere mejoras en el diseño estructural mediante la optimización con métodos avanzados como el modelo Kriging y algoritmos de optimización heurística.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

1. Contexto del empleo de los puentes losa pretensados aligerados

Los puentes de losa pretensada son fundamentales en las infraestructuras de carreteras y vías ferroviarias debido a su capacidad para cubrir luces de entre 10 y 45 metros, lo que los hace más resistentes, duraderos y adaptables a distintos diseños geométricos. El coste de estos puentes suele representar entre un 5 % y un 15 % de los gastos totales de una infraestructura de transporte. Además, los puentes losa ofrecen una mayor flexibilidad y una apariencia estética superior, ya que eliminan las juntas de calzada, lo que mejora la comodidad y reduce el desgaste del tablero al tráfico.

Principales ventajas de los puentes losa pretensados:

  • Resistencia y durabilidad: estos puentes ofrecen una alta resistencia a la torsión y la flexión, por lo que son ideales para soportar cargas variables y condiciones climáticas adversas.
  • Versatilidad en el diseño: gracias a su construcción in situ, es posible adaptarlos a terrenos irregulares o a condiciones complejas, como curvas pronunciadas y anchos variados, lo que permite construirlos con rasantes bajas.
  • Ahorro de materiales y costes: Al diseñarse sin juntas y con posibilidades de aligeramiento, su mantenimiento resulta menos costoso en comparación con otras tipologías.

2. Predimensionamiento y limitaciones en los métodos actuales

El predimensionamiento es esencial en la fase preliminar del diseño de puentes con losas pretensadas. Tradicionalmente, los ingenieros utilizan reglas empíricas basadas en la experiencia para definir parámetros geométricos iniciales, como el espesor de la losa, la relación entre el canto y la luz y la cantidad de armadura activa y pasiva. Sin embargo, estos métodos tradicionales tienen limitaciones en cuanto a eficiencia y sostenibilidad, ya que no optimizan el uso de materiales ni reducen el impacto ambiental.

Desventajas de los métodos convencionales de predimensionamiento:

  • Rigidez en el diseño: los métodos empíricos pueden ser inflexibles, lo que limita las opciones de diseño y hace que la estructura no se adapte eficientemente a los criterios de optimización moderna.
  • Ineficiencia económica y ambiental: al no tener en cuenta factores de sostenibilidad y costes, estos métodos pueden provocar un uso excesivo de materiales, lo que aumenta la huella de carbono y el consumo energético.

3. Propuesta de optimización con modelos Kriging y metaheurísticas

La propuesta de los investigadores consiste en aplicar una optimización bifase mediante modelos Kriging combinados con el recocido simulado, un algoritmo heurístico. Esta técnica permite reducir el tiempo de cómputo en comparación con los métodos de optimización tradicionales sin perder precisión. La optimización se centra en tres objetivos clave:

  • Minimización del coste
  • Reducción de emisiones de CO₂
  • Disminución del consumo energético

El Kriging, un tipo de metamodelo, facilita la interpolación de datos en una muestra determinada, lo que permite que los valores estimados sean predictivos y evite el alto coste computacional que conllevan las simulaciones estructurales completas. Para implementar esta técnica, se usa un muestreo de hipercubo latino (LHS), que permite generar variaciones en el diseño inicial de los puentes y proporciona una base sobre la que se aplica el modelo Kriging para ajustar las alternativas optimizadas de diseño.

4. Resultados y comparación con diseños convencionales

A continuación, se exponen los principales hallazgos del estudio, basados en la optimización de puentes reales y en la comparación con métodos empíricos:

  • Esbeltez y espesor de la losa: la investigación recomienda que aumentar la relación entre el canto y la luz mejora la sostenibilidad del diseño. Los puentes optimizados presentan relaciones de hasta 1/30, en comparación con el rango usual de 1/22 a 1/25.
  • Volumen de hormigón y armaduras: los resultados muestran una disminución del volumen de hormigón y del número de armaduras activas necesarias, mientras que aumenta el número de armaduras pasivas. Este ajuste permite reducir tanto el coste como las emisiones.
  • Uso de materiales de construcción: se recomienda el uso de hormigón de resistencia entre 35 y 40 MPa para obtener una combinación óptima entre coste y sostenibilidad. La cantidad de aligeramientos interiores y exteriores también contribuye significativamente a la reducción del peso total sin comprometer la resistencia.

Comparativa de materiales:

  • Cuantía de hormigón: entre 0,55 y 0,70 m³ por m² de losa. La optimización reduce el consumo a 0,60 m³ para puentes económicos y a 0,55 m³ para priorizar la reducción de emisiones.
  • Armadura activa: la cantidad recomendada es inferior a 17 kg/m² de tablero. Esto representa una reducción significativa en comparación con los diseños tradicionales, que promedian alrededor de 22,64 kg/m².
  • Armadura pasiva: se debe aumentar la cuantía hasta 125 kg/m³ para proyectos de alta sostenibilidad, en contraste con los valores convencionales.

5. Herramientas prácticas para los proyectistas: nomogramas para el predimensionamiento

Uno de los aportes más valiosos del estudio es la creación de nomogramas que permiten a los ingenieros realizar predimensionamientos precisos con un mínimo de datos. Los nomogramas se desarrollaron mediante modelos de regresión múltiple y ofrecen una forma rápida de estimar:

  • La cantidad de hormigón necesaria.
  • El espesor de la losa.
  • La armadura activa en función de la luz del puente y los aligeramientos aplicados.

Estos nomogramas son útiles en las primeras fases de diseño, ya que permiten obtener valores cercanos a los óptimos de manera rápida y eficiente. Los gráficos incluyen secuencias de cálculo específicas con ejemplos de puentes con luces de 34 m y aligeramientos medios (interior de 0,20 m³/m² y exterior de 0,40 m³/m²), lo que facilita un proceso de diseño preliminar que cumple con criterios de sostenibilidad.

Figura 2. Nomograma para estimar el canto del tablero (m). Fuente: Yepes-Bellver et al. (2024)

6. Recomendaciones para el diseño sostenible de puentes losa pretensados aligerados

Basándose en los resultados de optimización, el estudio recomienda ajustar ciertos parámetros de diseño para mejorar la sostenibilidad y reducir los costes:

  • Aumento de la relación canto/luz: se debe aumentar la relación a 1/26 o incluso 1/30 para conseguir diseños sostenibles.
  • Reducción del hormigón utilizado: limitar el uso de hormigón a 0,60 m³/m², o menos si la prioridad es reducir las emisiones.
    Cuantía de armaduras: para la armadura pasiva, se recomienda un mínimo de 125 kg/m³, mientras que la armadura activa debe reducirse a 15 kg/m² de losa.
    Aligeramientos amplios: utilizar aligeramientos significativos (interior de 0,20 m³/m² y exterior de 0,50 m³/m²) para reducir el peso estructural y minimizar el material empleado.

7. Conclusión: innovación en el diseño de infraestructuras sostenibles

El uso de modelos predictivos, como el Kriging, y de técnicas de optimización avanzada en el diseño de puentes supone un gran avance hacia la construcción de infraestructuras sostenibles y eficientes. Estos métodos permiten reducir costes y minimizar el impacto ambiental, dos factores críticos en la ingeniería moderna. Al promover estos enfoques, la investigación allana el camino hacia políticas de infraestructura más responsables y sostenibles, un objetivo alineado con los Objetivos de Desarrollo Sostenible (ODS).

8. Perspectivas futuras: expansión de la metodología de optimización

Los autores proponen continuar esta línea de investigación aplicando el modelo Kriging y otros metamodelos a diversas estructuras de ingeniería civil, como marcos de carretera, muros de contención y otros tipos de puentes. Esta expansión podría sentar las bases para nuevos estándares en el diseño de infraestructuras sostenibles.

Este estudio se presenta como una herramienta esencial para ingenieros y proyectistas interesados en mejorar el diseño estructural mediante métodos modernos de optimización, ya que ofrece un enfoque práctico y avanzado para lograr una ingeniería civil más sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Pincha aquí para descargar

Referencia:

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 407-419. DOI:10.61547/2402010

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vigas híbridas de acero: la apuesta sostenible que transforma costos y rendimiento en la construcción

Un artículo reciente publicado en el Journal of Constructional Steel Research, liderado por los investigadores Agustín Terreros-Bedoya, Iván Negrín, Ignacio Payá-Zaforteza y Víctor Yepes de la Universitat Politècnica de València, explora en profundidad el uso de vigas híbridas de acero como una alternativa innovadora y sostenible a las vigas tradicionales de acero homogéneo.

Estas vigas híbridas, que combinan diferentes tipos de acero de distintas resistencias en sus componentes (alas y alma), han demostrado tener un gran potencial para optimizar el uso de materiales en la construcción, mejorar la eficiencia estructural y reducir costes y el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Vigas híbridas: concepto y ventajas

El estudio parte de la necesidad de encontrar soluciones estructurales que no solo cumplan con altos estándares de rendimiento, sino que también sean sostenibles. En una viga híbrida, el acero de alta resistencia se utiliza en las alas, donde se requiere mayor capacidad de resistencia a esfuerzos, mientras que el alma se construye con un acero de resistencia media, lo que reduce el peso y el coste del material sin comprometer su resistencia general. Este diseño permite que la viga absorba cargas significativas y redistribuya los esfuerzos de forma más eficiente que una viga homogénea, con lo que se logra una estructura más liviana y económica.

Metodología y análisis

La investigación analiza 128 publicaciones previas sobre el tema, utilizando un análisis de correspondencia simple para identificar patrones y relaciones entre variables de diseño, como la resistencia de las alas y el alma, las condiciones de carga y los métodos de cálculo. Mediante esta metodología, los autores logran sistematizar el conocimiento existente sobre el tema y destacan los enfoques de diseño más eficaces. Este análisis también identificó los «ratios híbridos» ideales, es decir, la proporción óptima entre la resistencia del acero en el alma y en las alas para maximizar el rendimiento de la viga. Un hallazgo clave es que los ratios híbridos entre 1,3 y 1,6 suelen proporcionar un equilibrio óptimo entre resistencia y economía de material.

Sostenibilidad y beneficios económicos

Además del rendimiento estructural, el estudio subraya las ventajas ambientales de las vigas híbridas. Al reducir el peso de las estructuras, disminuyen los costes de transporte, instalación y consumo de materiales, lo cual se traduce en una reducción significativa de las emisiones de CO₂. Los investigadores destacan que esta estrategia de construcción está en consonancia con los objetivos de la Unión Europea de reducir la huella de carbono de la industria de la construcción y lograr la neutralidad climática para 2050. Desde el punto de vista económico, la reducción de peso y material también representa unos costes de fabricación y montaje menores, lo que incrementa la viabilidad de estas soluciones en proyectos a gran escala.

Desafíos y áreas futuras de investigación

El estudio identifica varios desafíos que deben abordarse para implementar las vigas híbridas de manera efectiva en proyectos reales. Uno de los retos más importantes es la limitada cantidad de estudios experimentales en condiciones de carga combinada (flexión y cortante) y de pandeo, que son comunes en estructuras complejas como puentes y edificios de gran altura. Los autores recomiendan llevar a cabo investigaciones adicionales para desarrollar métodos de diseño que integren estas variables y permitan un mejor rendimiento bajo cargas extremas.

Otra área prometedora es la implementación de algoritmos de optimización y técnicas de inteligencia artificial para mejorar el diseño y el análisis de estas vigas. Estos métodos pueden ayudar a identificar configuraciones de material y geometría que maximicen la eficiencia estructural y minimicen el impacto ambiental. También sugieren explorar la combinación de acero de alta resistencia con otros materiales, como el hormigón, para crear estructuras híbridas aún más optimizadas.

Implicaciones para la industria de la construcción

Este estudio contribuye significativamente al conocimiento de las vigas híbridas de acero, ya que propone un marco de referencia que puede transformar la forma en que se diseñan y construyen las infraestructuras. A medida que se intensifica la presión para construir de forma más eficiente y respetuosa con el medioambiente, las vigas híbridas se perfilan como una solución viable que permite aprovechar al máximo las propiedades de los materiales, a la vez que se reducen los costes y la huella de carbono de las construcciones. Por tanto, la investigación de Terreros-Bedoya y su equipo proporciona una base sólida para que ingenieros y constructores consideren esta tecnología en futuros proyectos, impulsando un desarrollo urbano más sostenible y económico.

Referencia:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Dejo a continuación el artículo completo, pues está publicado en abierto.

Pincha aquí para descargar