Gestión de inventarios en obra

Figura 1. Necesidad de gestión de inventarios en una obra. https://www.interempresas.net/Robotica/Articulos/255497-Procesos-de-digitalizacion-en-las-obras-de-construccion.html

Los inventarios son provisiones de artículos en espera de su utilización posterior, cuya utilidad depende de la cantidad, momento y lugar de su necesidad. En el entorno de la maquinaria, los constituyen desde las propias máquinas a las piezas de recambio u otros elementos necesarios para su funcionamiento. En general, los inventarios, existencias o stocks, evitan la escasez cuando la demanda futura del artículo sea incierta, para aprovechar la economía de escala que supone la solicitud de grandes cantidades a costos menores y para mantener el flujo de trabajo en los procesos productivos. No obstante, los artículos ociosos de inventario inmovilizan fondos y precisan de recursos para su almacenaje y mantenimiento, siendo en algún caso perecederos. Ello obliga al compromiso entre las ventajas aportadas por los grandes inventarios y los costes que suponen mantenerlos. La gestión de inventarios será la técnica que ayuda a los gerentes a determinar cuándo deben reabastecerse las existencias actuales y en qué cantidad. La gestión de las máquinas y repuestos, dichas funciones se realizan en los parques de maquinaria.

Componentes del coste de un sistema de inventarios

Una política de inventarios busca el mínimo coste esperado para un período determinado, por tanto, se deben estimar los diversos componentes que lo integran:

  1. El coste del pedido o de organización, se asocia con el reabastecimiento de un inventario, siendo independiente del número de unidades pedidas. Incluye los tiempos de oficina y administrativos, cargos por fax, teléfonos, y otros como los gastos generales de la empresa.
  2. Cada unidad pedida incurre en un coste de compra, que es un coste directo por unidad. Esta cifra puede depender del número de unidades pedidas, debido a los descuentos por cantidad.
  3. El coste de conservación por período de tiempo para cada artículo del inventario incluye los gastos de almacenamiento (almacén, seguro, mermas de existencias, personal, etc.), y los costes de oportunidad del dinero comprometido en las existencias.
  4. El coste de déficit o desabastecimiento es el asociado con la insatisfacción de la demanda. Pueden ser explícitos si existen penalizaciones al proveedor cada vez que exista una ruptura o cuando la venta de un producto se pierde, e implícitos, asociados a la insatisfacción del cliente y pérdidas de futuras ventas y de credibilidad. Cuando los artículos no se surten, además de estos costes fijos, los costes de déficit pueden incluir costes explícitos e implícitos por cada unidad de tiempo que un artículo sigue sin ser suministrado.

Modelos de demanda y gestión de existencias

Se entiende por control de existencias, el abastecimiento de la cantidad y calidad necesarias de elementos dados, en el momento y en el lugar en que se necesita, con la menor inversión posible. La gestión de existencias trata de minimizar los costes, buscando el compromiso entre el ahorro producido por un stock determinado y los gastos producidos al almacenarlo.

La mera posesión de las máquinas supone gastos fijos elevados, así pues, no resulta económico tener los equipos parados. A ello se suman los costes del propio almacén. Todo ello indica que los inventarios deben ser los estrictamente necesarios. La empresa constructora se encuentra presionada por fuerzas de sentido opuesto a la hora de determinar el volumen de existencias conveniente. Se trata de un problema de equilibrio, para cuya resolución se han formulado distintos modelos.

Los modelos de gestión de inventarios permiten dimensionar el almacén minimizando los costes de posesión y renovación de existencias para evitar las rupturas del inventario. En los parques de maquinaria, el volumen de reserva deberá minimizar los costes que por depreciación, mantenimiento y almacenaje de las máquinas, se sumen a los que se incurren si se paralizan o retrasan las obras por falta de suministro. Se recomiendan unos stocks reducidos para disminuir los recursos financieros destinados a los inventarios y sus gastos correspondientes.

La gestión de un almacén con artículos diferentes debe considerar la relación entre la demanda de cualquiera de ellos. La demanda de un artículo es independiente si no afecta a la demanda de los demás, en caso contrario es dependiente. La demanda determinística de un artículo es la que se conoce con certeza, mientras la probabilística está sujeta a la incertidumbre y variabilidad.

Si en un sistema de coordenadas representamos la cantidad de existencias y el tiempo, se obtiene la clásica curva en forma de “dientes de sierra” que representa la evolución temporal de las existencias. En la Figura 2 se representa una evolución de una demanda determinista y constante, fenómeno poco frecuente en la realidad, con un volumen de pedido S durante el periodo de reaprovisionamiento T.

Figura 2. Evolución temporal del stock

Con este modelo determinista y constante, es necesario conocer el punto de pedido Sm, es decir, el número de unidades suficientes para hacer frente a la demanda durante el plazo de entrega l. Cuando el ritmo de salidas del parque y el de entradas son conocidos, no deben producirse rupturas. Sin embargo, como dichas variables son aleatorias, es necesario recurrir al stock de seguridad Se, también llamado stock de protección, de reserva o de acopio. Éste se define como el volumen de existencias que tenemos en almacén por encima de lo que se necesita habitualmente, para afrontar las fluctuaciones en exceso de la demanda, a los retrasos imprevistos en la recepción de los pedidos, o a ambos.

Cuando la demanda es variable existen diversos sistemas de gestión de inventarios o políticas de pedidos:

  • Sistema de la cantidad fija de pedido: El reaprovisionamiento se realiza cuando el inventario llega a un cierto nivel previamente especificado. El tiempo entre pedidos suele ser desigual. Esta política también se denomina revisión continua, pues requiere revisar el inventario frecuentemente para determinar cuándo se alcanza el punto de pedido. En la mayoría de los casos, se deja cierto margen o stock de seguridad.
  • Sistema de restablecimiento del nivel máximo de stock: Cada intervalo fijo de tiempo se reabastece el almacén al nivel máximo previsto de existencias. La cantidad pedida cada vez varía. Esta política también se denomina revisión periódica pues requiere inspeccionar el nivel de inventario cada cierto tiempo. Presenta el inconveniente de inducir mayores niveles de almacenamientos, que puede paliarse en buena parte incrementando la frecuencia de los pedidos y consecuentemente de los aprovisionamientos.
  • Sistema de los dos almacenes o restablecimiento condicional: La diferencia con el anterior consiste en que si al final del período establecido (final de mes, por ejemplo), no se ha bajado de determinado nivel de existencias, no se realiza el pedido. El proceso se repite en los períodos sucesivos, restableciendo o no el stock inicial en función del agotamiento hasta cierto nivel de las existencias iniciales o “primer almacén”.

Cuando la demanda es de un solo producto, podemos aplicar el modelo de Wilson o de la cantidad económica del pedido. Es un modelo matemático usado como base para la gestión de existencias en el que la demanda y el plazo de entrega son determinísticos, no permitiéndose los déficits y abasteciéndose el almacén por lotes. Así se obtiene una cantidad en inventario que hace mínima la suma de los gastos en pedidos (correo, teléfono, recepción de los materiales, inspección y trámites administrativos) y los gastos de mantenimiento de las existencias (almacenamiento, financiero y manejo de materiales). En este caso se demuestra que:

donde:

Q = Cantidad económica a pedir en el periodo considerado.

C = Consumo en el periodo considerado.

S = Coste de pedido por pedido.

I = Coste de mantenimiento por unidad de artículo y unidad de tiempo.

En el siguiente vídeo tenéis un ejercicio resuelto del modelo de Wilson:

Existen otras técnicas interesantes para realizar una gestión de existencias eficaz, y que consideran en mayor o menor medida la complejidad de una planta de producción: la planificación de necesidades de materiales (Materials requirement planning MRP), la planificación de recursos de fabricación y los sistemas de inventarios “justo a tiempo” (Just in time JIT).

  • Planificación de necesidades de materiales: Apropiada cuando las demandas de los artículos individuales dependen de la demanda del producto final en el que se usan como componentes. Proporciona no solo las cantidades de los lotes y los puntos de pedido, sino también un calendario de cuándo se necesita cada artículo y en qué cantidades, durante un proceso de producción, basándose en los costes de organización y de conservación involucrados.
  • Planificación de recursos de fabricación: Es un desarrollo del sistema anterior en el cual no solo se controlan los inventarios, sino que se coordinan todos los recursos y actividades de los distintos departamentos. Se coordina fabricación, ventas, compras, finanzas e ingeniería. En construcciones civiles, integrarían todos los departamentos de una obra concreta, en coordinación con sus proveedores.
  • Sistemas “justo a tiempo”: Ideados con el objeto de reducir a cero los stocks de una empresa, de forma que los suministradores aportan sus productos en el momento que se precisan. Ello supone minimizar los costes relativos a los stocks, para lo cual se precisa que los flujos de producción sean estables, que se simplifiquen los trabajos al máximo, que estén ubicados con corrección en los lugares de producción, y que exista una verdadera coordinación entre todos los integrantes de los procesos productivos.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 156 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación de las máquinas empleadas en construcción

Figura 1. Maquinaria de movimiento de tierras: dúmper articulado. Imagen: V. Yepes

La mecanización del trabajo en cualquier obra civil o de edificación es totalmente necesaria desde la perspectiva técnica, económica, humana e incluso jurídica. Las máquinas, que nacieron con el propósito de liberar al hombre de las tareas más penosas, se han convertido en herramientas para producir más, más barato y con mejor calidad. Han permitido abreviar la realización de labores que en otros tiempos parecían imposibles y, por consiguiente, han conseguido acelerar la acción del hombre sobre su entorno más inmediato. La adjudicación de un contrato de obras suele requerir de la empresa constructora la disposición de la maquinaria adecuada que garantice los plazos, las calidades y la seguridad. Además, determinadas unidades de obra no pueden ejecutarse sin el uso de la maquinaria, tales como las inyecciones, el pilotaje, los dragados, cimentaciones por aire comprimido, etc. En otros casos, la fabricación manual de hormigones, compactaciones de tierras, etc., no podría satisfacer las elevadas exigencias de los pliegos de condiciones técnicas vigentes.

La maquinaria ha cambiado rápidamente con las innovaciones tecnológicas. Se ha derivado hacia la especialización, evolucionando unas hacia el gigantismo para obtener grandes producciones, mientras otras se han convertido en diminutas y versátiles. En otros casos se ha buscado la polivalencia del trabajo en equipos pequeños y medianos. Los medios informáticos han auxiliado y mejorado los sistemas de los equipos. La maquinaria va siendo cada vez más fiable, segura y cómoda para el operador, facilitándole las labores de conservación. En general se observa una preocupación creciente por la seguridad, el medio ambiente y la calidad.

Con todo, las máquinas suponen fuertes inversiones para las empresas constructoras, que si bien son menores en las obras de edificación, mayores en las obras de carreteras e hidráulicas, son importantísimas en las obras portuarias. El índice de inversión en maquinaria, calculado como la relación entre el valor anual de adquisición de la misma y la obra total anual, oscila entre el 3 y el 13%. Se estima entre el 13% y el 19% el índice de mecanización -valor del parque de maquinaria respecto a la producción anual- de las firmas constructoras.

Aunque existen múltiples criterios para clasificar las máquinas, en las Figuras 2 y 3 se presenta una ordenación de los distintos equipos empleados tanto en edificación como en obra civil.

Figura 2. Clasificación de la maquinaria de edificación
Figura 3. Clasificación de la maquinaria de obra civil

Otra posible agrupación de la maquinaria es la que utiliza la Hacienda Pública para la clasificación de contratistas:

  • Grupo 1.- Material de bombeo, aire comprimido, sondeos y cimentaciones.
  • Grupo 2.- Material de producción y transformación de energía.
  • Grupo 3.- Maquinaria de movimiento de tierras.
  • Grupo 4.- Maquinaria de transporte.
  • Grupo 5.- Maquinaria de elevación.
  • Grupo 6.- Maquinaria de construcción de firmes.
  • Grupo 7.- Maquinaria de machaqueo y clasificación de áridos.
  • Grupo 8.- Maquinaria de hormigonado y edificación.
  • Grupo 9.- Maquinaria para construcción de ferrocarriles.
  • Grupo 10.- Material flotante.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 156 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión de la innovación en las empresas constructoras

Tras la crisis financiera de 2008, que supuso una caída brutal de la contratación de obra pública en España, las empresas constructoras y consultoras tuvieron que internacionalizarse. Sin casi haber salido completamente de este trance, sobrevino la actual crisis sanitaria de la pandemia del coronavirus que ha acarreado una nueva recesión social y económica que, de momento, no se atisba su solución. Las consecuencias de esta nueva crisis, graves sin duda, aún no se sabe hasta dónde pueden alcanzar. Por tanto, el sector de la construcción vuelve a sufrir una convulsión de difícil pronóstico. Las nuevas tecnologías están teniendo un papel determinante en la forma de afrontar esta coyuntura, especialmente en el trabajo no presencial. Los cambios que podrían tardar décadas en llegar, nos han alcanzado de repente. La pregunta es la de siempre: ¿cómo afrontar la competitividad de las empresas en escenarios tan cambiantes como los actuales?

Parece evidente que la metáfora darwinista de la evolución podría aplicarse, con todas las cautelas necesarias, al mundo empresarial. Solo sobrevivirán aquellas organizaciones capaces de adaptarse rápidamente al nuevo entorno. Y para ello no es suficiente la mejora continua de nuestros procesos y productos, sino que se requiere un cambio radical, rupturista, basado en la innovación, capaz de crear un “océano azul” donde la competencia sea irrelevante.

A continuación os paso una clase que tuve que impartir en línea sobre la gestión de la innovación en las empresas constructoras. Se trata de una clase impartida en la asignatura “Gestión de la innovación en el sector de la construcción” del Máster Universitario en Planificación y Gestión en Ingeniería Civil (MAPGIC) de la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de la Universitat Politècnica de València. La dejo en abierto para que la pueda ver quien esté interesado.

Impacto del I+D+I en el rendimiento de las empresas constructoras españolas

Nos acaban de publicar en la revista Advances in Civil Engineering, revista indexada en el JCR, un artículo donde analizamos el impacto de la investigación, el desarrollo tecnológico y la innovación (I+D+I) en el rendimiento de las empresas constructoras españolas. Este artículo forma parte de nuestra línea de investigación DIMALIFE.

Decidir si ciertos factores deben considerarse impulsores de la innovación en las empresas de construcción es crucial para mejorar su rendimiento y supervivencia en un entorno que está cambiando a pasos agigantados. A lo largo de los años, las empresas de construcción se han considerado tradicionales y sin tendencia a la innovación. Sin embargo, varios estudios han confirmado que esta percepción del sector está evolucionando y que los instrumentos exitosos de otras industrias se están adaptando gradualmente en beneficio de la construcción. En este artículo que presentamos, el objetivo ha sido investigar los posibles factores que afectan al rendimiento de estas organizaciones. Se identificaron 18 factores relacionados con los niveles individual, de grupo y de organización mediante una revisión del estado del arte y una metodología que fue validada por profesionales experimentados. Se envió un cuestionario a 103 personas que trabajan en el sector a nivel nacional para conocer sus opiniones. Los resultados del análisis de la clasificación indican que la “tecnología y el equipo” y la “adquisición de programas informáticos” se consideran los dos factores más significativos. Además, esos 18 factores pueden clasificarse en 7 grupos: i) impulsores internos de la innovación; ii) innovación dentro de la organización; iii) innovación tecnológica; iv) vínculos tecnológicos con el medio ambiente; v) impulsores externos de la innovación; vi) innovación en los procesos; vii) cultura de la innovación en la empresa. La innovación en los procesos es la que tiene el mayor nivel de impacto. Esta investigación profundiza en la comprensión actual de los factores en los diferentes niveles organizativos que deben destacarse en la aplicación de un sistema de investigación y desarrollo para que las empresas mejoren su rendimiento y supervivencia en los procesos futuros.

ABSTRACT

Deciding whether certain factors should be considered drivers of innovation in construction firms is crucial in terms of improving their performance and survival in an environment that is changing by leaps and bounds. Throughout the years, construction companies have been considered to be traditional and without the tendency to innovate. However, several studies have confirmed that this perception of the sector is evolving and that successful instruments from other industries are gradually being adapted for the benefit of the industry. The objective of this paper is therefore to investigate the potential factors affecting the performance of these organizations. Eighteen factors related to the individual, group, and organizational levels were identified through a review of the literature and an instrument developed that was validated by experienced professionals. A questionnaire was sent to 103 people working in the sector at the national level to obtain their views. The results of the classification analysis indicate that “technology and equipment” and “software acquisition” are considered the two most significant factors. In addition, these 18 factors can be classified into 7 groups: (i) internal drivers of innovation; (ii) innovation within the organization; (iii) technological innovation; (iv) technological links with the environment; (v) external drivers of innovation; (vi) innovation in processes; (vii) a culture of innovation in the company. Innovation in processes has the highest level of impact. This research deepens the current understanding of the factors at different organizational levels that must be highlighted in the implementation of an R&D system in order for companies to improve their performance and survival in future processes.

REFERENCE:

LÓPEZ, S.; YEPES, V. (2020). Impact of the R&D&I on the performance of Spanish construction companies. Advances in Civil Engineering, 2020:7835231. DOI:10.1155/2020/7835231

Descargar (PDF, 1.45MB)

 

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Vídeos de las Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción

Hace pocos días que tuvo lugar las “Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción (Formación, I+D+i y Transferencia)”. He de decir que las jornadas fueron todo un éxito y que, afortunadamente, se pudieron grabar en streaming las conferencias principales. Os dejo a continuación ambas conferencias por el interés que despertaron. La grabación es completa, por lo que podéis avanzar o retroceder a aquellos minutos que os resulten de mayor interés. Podéis pulsar sobre la imagen de cada vídeo o directamente sobre el enlace que os he puesto. Espero que os gusten.

https://engage.videoapuntes.upv.es/paella/ui/watch.html?id=0dc5b890-36df-11ea-b29c-ddfb8fbe85af

https://engage.videoapuntes.upv.es/paella/ui/watch.html?id=68eef880-36df-11ea-b29c-ddfb8fbe85af

Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción

Los que leéis frecuentemente mi blog habéis visto como mezclo constantemente aspectos técnicos, docentes y de investigación. En este último caso, la labor de nuestro grupo de investigación es muy intensa a través del proyecto DIMALIFE. Además, nuestro equipo pertenece, de una u otra forma al Departamento de Ingeniería de la Construcción, al ICITECH y al programa de doctorado del departamento. Asimismo, participamos activamente en el Máster Universitario en Ingeniería del Hormigón.

Si tenéis curiosidad de lo que hacemos, puedes acceder a los enlaces que os he dejado. Os puede interesar las líneas de investigación de nuestro grupo: https://victoryepes.blogs.upv.es/2014/09/11/mis-lineas-de-investigacion-en-el-programa-de-doctorado-en-ingenieria-de-la-construccion/

Pues bien, os anuncio una jornada gratuita que va a tratar de todo ello, en la que van a participar, entre otros, Antonio Martínez Cutillas y José Romo Martín. Os dejo los folletos anunciadores y os animo a venir a visitarnos y a participar.

Las jornadas se retransmitirán online a través del siguiente link:

https://videoapuntes.upv.es/streaming/4ffe3ef0-aa40-11e6-871f-9161f5b643ea

El Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil (DICPIC) y el Instituto Universitario de Ciencia y Tecnología del Hormigón (ICITECH) se complacen en anunciar las “Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción (Formación, I+D+i y Transferencia)” que se celebrarán el 18 de febrero de 2020 en el Salón de Actos del Edificio 4H de la ETSI Caminos, Canales y Puertos de la Universitat Politècnica de València.

Estas jornadas reunirán a profesionales, profesores e investigadores relacionados con la formación, investigación, desarrollo, innovación y transferencia en el ámbito de la Ingeniería de la Construcción. Durante este encuentro se fomentará el contacto entre estudiantes de doctorado, másteres y grado, profesores y profesionales, así como la difusión de trabajos de investigación realizados en el Programa de Doctorado en Ingeniería de la Construcción y en el Máster Universitario en Ingeniería del Hormigón (MUIH).

Jornadas gratuitas y abiertas a todos los públicos sin necesidad de reserva previa.

Descargar (PDF, 2.52MB)

Descargar (PDF, 2.51MB)

 

 

 

 

Control de calidad en recepción. Planes de muestreo

En una entrada anterior resolvimos un problema concreto de un plan de muestreo por atributos. Sin embargo, para los que no estén familiarizados con la jerga y las definiciones de la estadística empleada en el control de calidad, me he decidido por subir unas transparencias que a veces utilizamos en clase para cuando tenemos que explicar los planes de muestreo.

Pero antes, voy a comentar brevemente algunos conceptos relacionados con el control de calidad, el control estadístico, el control de aceptación y el control del proceso, entre otros. Vamos a ello.

El control de calidad es la parte de la gestión de la calidad orientada al cumplimiento de los requisitos de los productos o los servicios. Se trata de un método de trabajo que permite medir las características de calidad de una unidad, compararlas con los estándares establecidos e interpretar la diferencia entre lo obtenido y lo deseado para poder tomar decisiones conducentes a la corrección de estas diferencias.

En el proceso proyecto-construcción, la comprobación de los requisitos exigibles de calidad se basa fundamentalmente en el control de la calidad. Los pliegos de condiciones técnicas definen, para cada unidad de obra, qué tipo de controles deben realizarse para dar por buena la correcta ejecución de una obra, atendiendo no sólo a los materiales, sino a su puesta en obra y terminación. La misma filosofía es aplicable a la propia redacción de los proyectos de construcción por parte de las empresas de consultoría.

Una forma de controlar la calidad se basa en la inspección o la verificación de los productos terminados. Se trata establecer un filtro sobre los productos antes que éstos lleguen al cliente, de forma que los que no cumplen se desechan o se reparan. Este control en recepción normalmente se realiza por personas distintas a las que realizan el trabajo de producción, en cuyo caso los costes pueden ser elevados y pueden no considerarse las actividades de prevención ni los planes de mejora. Se trata de un control final, situado entre el productor y el cliente, que presenta la ventaja de ser imparcial, pero que adolece de muchos inconvenientes como son el desconocimiento de las circunstancias de la producción, la no-responsabilización de producción por la calidad, la lentitud en el flujo de la información, etc.

Sin embargo, una inspección al 100% de todas las unidades producidas puede ser materialmente imposible cuando los ensayos a realizar son destructivos. En estos casos, se hace necesario tomar decisiones de aceptación o rechazo de un lote completo de producto en función de la calidad de una muestra aleatoria. Este control estadístico (Statistical Control) proporciona una menor información, e incluso presenta riesgos propios del muestreo, pero sin embargo resulta más económico, requiere menos inspectores, las decisiones se toman con mayor rapidez y el rechazo a todo el lote estimula a los proveedores a mejorar la calidad.

El control estadístico se asentó plenamente a partir de la Segunda Guerra Mundial, caracterizándose por la consideración de las características de calidad como variables aleatorias, por lo que se centra básicamente en la calidad de fabricación o de producción. Este tipo de control también se identifica con el interés en conocer las causas de variación y establecer, como consecuencia, procedimientos de eliminación sistemática de dichas causas para la mejora continua de la calidad.

El control estadístico puede aplicarse en el producto final, lo que sería el control de aceptación, o bien a lo largo del proceso de producción, lo cual comprende el control del proceso. El control estadístico de recepción supone el establecimiento de planes de muestreo con criterios de aceptación o rechazo claros sobre lotes completos en función de los ensayos realizados sobre una muestra aleatoria. Este control por muestreo puede realizarse por atributos basándose en la norma ISO-2859, o bien por variables según ISO-3951. En cuanto al control estadístico de procesos, herramientas como los gráficos de control (Quality Control Chart) permiten tomar decisiones cuando el proceso se encuentra fuera de control. Igualmente, los estudios de capacidad de los procesos permiten decidir la capacidad de éstos de producir dentro de los límites de las especificaciones de calidad contratadas.

Una empresa constructora debería reducir al mínimo los costes de una mala calidad asegurándose que el resultado de sus procesos cumplieran los requisitos pactados con el cliente. Por ello, para garantizar que el control de aceptación de los productos presenta éxito –el denominado control externo-, la empresa constructora debería organizar como una actividad propia, un conjunto de controles en su cadena de producción que garantizase la calidad de las unidades de obra –actividad que recibe el nombre de control interno-.

Tanto el control interno como el externo puede ser realizado por la propia empresa constructora, por el cliente o por una organización independiente contratada al efecto. Así, por ejemplo, el control del hormigón recibido por el contratista puede ser realizado por una entidad independiente, la ejecución de la ferralla puede controlarse por parte de la dirección facultativa, o bien, la propia empresa constructora puede realizar un control interno de la ejecución de la obra.

Os paso, por tanto, la presentación que he utilizado alguna vez en clase.

Descargar (PDF, 3.97MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Constructividad, constructibilidad, constructabilidad, ¿todo lo mismo?

Figura 1. Capacidad de influir en el coste durante el proceso proyecto-construcción (Serpell, 2002)

Todo el mundo está de acuerdo en que la industria de la construcción es un motor del desarrollo económico de una sociedad, pues permite crear infraestructuras que soportan las actividades económicas y viviendas. Pero para ello se requieren recursos intensivos, tanto públicos como privados que, en muchas ocasiones, no se utilizan de forma efectiva. Se trata de un sector con amplio margen de mejora en cuanto a productividad se refiere y que, de momento, y con carácter general, no aprovecha todas las oportunidades que brinda el desarrollo tecnológico.

Todos los agentes que participan en la industria de la construcción, desde proyectistas, constructores, suministradores de materiales y equipos, etc., se ven abocados a utilizar de forma efectiva y eficiente todos los recursos a su alcance para mejorar de este modo la productividad y los resultados empresariales. Ello supone, no solo emplear bien los recursos disponibles, sino alcanzar con ellos los objetivos empresariales, que pasan por la satisfacción de las necesidades de los clientes en cuanto a calidad, costes y plazos.

En la Figura 1 se puede observar cómo, en el proceso proyecto-construcción, las primeras fases son las que presentan mayor capacidad de influencia en el coste final de un proyecto (Serpell, 2002). Sobre este asunto ya hablamos en un artículo anterior: La “Ley de los Cincos” de Sitter. Las estadísticas europeas señalan (ver Calavera, 1995) que el proyecto es el responsable del 35-45% de los problemas en construcción. A este respecto, Sitter (véase Rostman, 1992) ha introducido la llamada “Ley de los Cincos”, postulando que un dólar gastado en fase de diseño y construcción elimina costes de 5 dólares en mantenimiento preventivo, 25 dólares en labores de reparación y 125 en rehabilitación.

Por tanto, mejorar el diseño de un proyecto constructivo es clave, no solo para conseguir satisfacer los requerimientos del cliente, sino para mejorar los resultados de todos los agentes involucrados en el proceso proyecto-construcción. Sobre este aspecto, la bibliografía de origen anglosajón habla de Constructability o Buildability, que se ha traducido al español como “constructabilidad” o “constructibilidad”, incluso “constructividad”. Sin embargo, son palabras que no las recoge la Real Academia Española de la Lengua. Simplificando, podríamos hablar de que una obra puede construirse de forma más o menos fácil y efectiva. Ello va a depender de muchos factores, pero uno de los más importantes va a ser el propio proyecto constructivo. Por cierto, no vamos a utilizar aquí el concepto de “coeficiente de constructibilidad”, que en el ámbito del urbanismo, se refiere a un número que fija el máximo de superficie posible a construir en un ámbito determinado.

En la Figura 2 he elaborado un mapa conceptual para aclarar las ideas. Como puede verse, tanto la constructividad como la constructibilidad tienen como objetivo último satisfacer las necesidades del cliente en cuanto a calidad, costes, plazos, estética, etc., además de cumplir con otro tipo de objetivos relativos al contexto (requerimientos ambientales, sociales, legales, etc.), de forma que los agentes involucrados en la construcción sean capaces de mejorar sus resultados empresariales. Sin embargo, el enfoque de ambos conceptos es diferente. Veamos con algo de detalle las diferencias.

 

Figura 2. Mapa conceptual sobre constructividad y constructibilidad. Elaboración propia.

La constructividad define el grado con el cual un proyecto facilita el uso eficiente de los recursos para facilitar su construcción, satisfaciendo tanto los requerimientos del cliente como otros asociados al proyecto. Como se puede ver, se trata de un concepto directamente ligado a la fase del proyecto, y, por tanto, depende fuertemente del equipo encargado del diseño.

Por otra parte, la constructibilidad es un concepto relacionado con la gestión que involucra a todas las etapas del proyecto y que, en consecuencia, depende tanto de los proyectistas, de los gestores del proyecto y de los constructores. Aunque se trata de un concepto también relacionado con las etapas del diseño del proyecto, la diferencia estriba en la incorporación de personal en esta etapa preliminar de personal con experiencia y conocimiento en construcción con el fin de mejorar la aptitud constructiva de una obra.

Quizá un ejemplo sea clarificador. Supongamos un equipo de arquitectura que está proyectando un edificio complejo, como por ejemplo un hospital. Este equipo, con mayor o menor experiencia en obra, tratará de diseñar un edificio que se pueda construir. El proyecto se licitará y una empresa constructora se encargará de su ejecución. Resulta evidente que, en función de los problemas de obra, el proyecto podrá modificarse para adaptarse a problemas que no quedaron resueltos en el proyecto o a cambios no previstos durante la ejecución. Se trata de un ejemplo donde los proyectistas han incorporado, en la medida de lo posible, aspectos relacionados con la constructividad.

Por otra parte, podría darse el caso de un concurso de proyecto y construcción, donde el adjudicatario participara, a su riesgo, del proceso proyecto-construcción. En este caso, es muy posible que al equipo redactor del proyecto se incorporaran personas con amplia experiencia en la ejecución de este tipo de proyectos. Por ejemplo, jefes de obra o producción de la empresa que hubiesen realizado proyectos similares, podrían aportar conocimientos para mejorar el proyecto, de forma que este fuera fácilmente construible con los medios disponibles por la propia empresa. En este caso, estamos refiriéndonos a una gestión del proyecto donde se incorporan aspectos relacionados con la constructibilidad.

Para terminar, tenemos ejemplos claros de la diferencia entre estos dos conceptos en el caso de los proyectos que nuestros estudiantes elaboran durante sus estudios, por ejemplo, en el Grado de Ingeniería Civil o en el Máster en Ingeniería de Caminos, Canales y Puertos (donde imparto docencia). Un alumno brillante puede desarrollar un proyecto formalmente correcto, pero es muy habitual encontrar detalles mal resueltos porque son difíciles de construir. No se debe a que ha aplicado mal sus conocimientos, más bien se trata de falta de experiencia en obra que impide volcar en el proyecto soluciones que faciliten la construcción de la obra. Este problema, desgraciadamente, se repite en numerosas empresas de proyectos, donde la falta de experiencia de los proyectistas en la ejecución de la obra supone posteriormente problemas que ya se comentaron anteriormente cuando hablábamos de la regla de Sitter. La consecuencia de todo ello es clara: la importancia de que los proyectistas presenten experiencia dilatada en la ejecución de obra. La segunda derivada también es clara: los profesores en escuelas técnicas que forman a futuros ingenieros o arquitectos, deberían tener cierta experiencia en obra real. Igual es hora de balancear la importancia de la investigación y la experiencia en el mundo real a la hora de evaluar el perfil de los profesores que se dedican a formar a los futuros técnicos. Pero ese es otro tema.

Os dejo algún vídeo al respecto para ampliar conceptos.

Referencias:

CALAVERA, J. (1995). Proyectar y controlar proyectos. Revista de Obras Públicas num. 3.346. Madrid, septiembre.

PELLICER, E., CATALÁ, J., SANZ, A.(2002). La administración pública y el proceso proyecto-construcción. Actas del VI Congreso Internacional de Ingeniería de Proyectos, Departamento de Proyectos de Ingeniería de la Universidad Politécnica de Cataluña y AEIPRO, Barcelona, página 35.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, 292 pp.

ROSTMAN, S. (1992). Tecnología moderna de durabilidad. Cuadernos Intemac, 5.

YEPES, V. (1998). La calidad económica. Qualitas Hodie, 44: 90-92.

YEPES, V. (2003). Sistemas de gestión de la calidad y del medio ambiente en las instalaciones náuticas de recreo.Curso Práctico de Dirección de Instalaciones Náuticas de Recreo. Ed. Universidad de Alicante. Murcia, pp. 219-244.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp.

YEPES, V.; PELLICER, E. (2003). ISO 10006 “Guidelines to quality in project management” application to construction. VII International Congress on Project Engineering. 10 pp. ISBN: 84-9769-037-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Empleabilidad de los egresados universitarios en gestión de la construcción

A continuación os dejo la versión autor de un artículo publicado en la revista Journal of Professional Issues in Engineering Education and Practice, del American Society of Civil Engineers (ASCE), donde se realizó un estudio sobre la empleabilidad de los egresados universitarios en el ámbito de la gestión de la construcción. Creo que puede ser de vuestro interés.

 

 

ABSTRACT:

The economic crisis that currently affects some western countries has reduced the employability of graduates in the construction industry. Nevertheless, many young professionals consider this situation as an opportunity to further their training, thus the higher enrollment in graduate programs in the construction industry. In light of this scenario, the authors of this paper sought to identify students’ perceptions of training gaps that affect their employability. The research was based on a case study, conducted in a Spanish graduate program (M.Sc.) in construction management during two consecutive academic years; a questionnaire survey was given to all enrolled students at the beginning of the first semester. The statistical analyses consisted of a principal component analysis of the 21 variables listed as possible explanations for their graduates’ unemployment, and an analysis of variance based on the aforementioned principal components. Respondents recognized the intrinsic internal barriers, which jeopardized their job opportunities, such as their unwillingness to move to another country, their lack of knowledge of a foreign language and communication skills, or their preferences for only well-paid and comfortable jobs. Other perceived problems were related to economic policy, training gaps, labor market structure, graduate surplus, and setbacks related to business management.

KEYWORDS:

Construction management, employment, graduate degree, labor market.

REFERENCE:

TORRES-MACHÍ, C.; CARRIÓN, A.; YEPES, V.; PELLICER, E. (2013). Employability of graduate students in construction management. Journal of Professional Issues in Engineering Education and Practice ASCE, 139(2):163-170. DOI:10.1061/(ASCE)EI.1943-5541.0000139

Descargar (PDF, 331KB)