Losas aligeradas con análisis multivariante: innovación, eficiencia y sostenibilidad en los Métodos Modernos de Construcción

Innovación y optimización en el diseño estructural: losas aligeradas con análisis multivariante

La construcción moderna está en constante evolución para superar los retos asociados al alto consumo de materiales, la sostenibilidad ambiental y los costes elevados. En este contexto, las losas aligeradas con esferas o discos plásticos presurizados se presentan como una solución estructural innovadora que combina eficiencia, sostenibilidad y funcionalidad. Este artículo detalla, basándose en el análisis exhaustivo del documento presentado, cómo la metodología de análisis multivariante permite dimensionar con precisión este tipo de losas, optimizando recursos y reduciendo el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Losas de hormigón armado sin vigas, aligeradas con esferas o discos plásticos. https://www.prenovaglobal.com/index.php/es/losas-sin-vigas-con-esferas-o-discos/

Introducción a las losas aligeradas

Las losas de hormigón armado son elementos clave en cualquier edificación, diseñadas para soportar cargas verticales y transferirlas a los soportes principales. Sin embargo, su peso propio plantea un desafío técnico y económico, especialmente cuando hay grandes luces entre apoyos, ya que se necesitan más materiales y refuerzos, lo que aumenta los costos y el impacto ambiental.

El concepto de losas aligeradas

Este sistema estructural combina los Métodos Modernos de Construcción (MMC) con la sostenibilidad ambiental e integra aligeradores huecos de materiales reciclados, como discos o esferas plásticas presurizadas, en el núcleo de las losas. Estas estructuras reducen el peso propio, optimizan las cargas transmitidas y permiten utilizar menos hormigón y acero sin comprometer la resistencia estructural.

Innovación técnica: metodología para el dimensionamiento

Base del estudio

La metodología presentada analiza 67 edificios construidos con losas aligeradas y registra 75 observaciones de forjados. Estos datos se procesaron mediante análisis estadístico y modelos de regresión multivariante, lo que permitió desarrollar ecuaciones predictivas altamente precisas para calcular el espesor de las losas en función de sus características estructurales.

Variables clave

  1. Luz principal (L): Distancia entre los apoyos principales.
  2. Espesor de la losa (E): Variable dependiente del modelo.
  3. Altura del disco o diámetro de la esfera (H): Elemento aligerante.
  4. Sobrecarga (Q): Definida por el uso del edificio.
  5. Superficie construida: Influye en la carga total transferida.
  6. Número de plantas: Relacionado con la distribución de cargas.

Resultados del análisis

El estudio identificó una fuerte correlación entre estas variables, especialmente entre el espesor de la losa y la luz entre apoyos. Esto permitió formular una ecuación que explica hasta el 98,34 % de la variabilidad del espesor de las losas aligeradas.

Ecuación ajustada del modelo final:

Aspectos destacados:

  • La relación cuadrática entre la luz y el espesor refleja la carga que predomina en la sección.
  • La altura del disco aligerante influye directamente en el diseño, que está condicionada por los espesores comerciales disponibles.

Validación estadística

Se realizaron pruebas de normalidad (Shapiro-Wilk y Kolmogorov-Smirnov) y análisis de residuos. Los residuos siguieron una distribución normal, confirmando la robustez y validez del modelo propuesto.

Criterios de diseño

  • Para luces mayores de 7,2 m o sobrecargas superiores a 2 kN/m², el modelo proporciona cálculos más precisos que las reglas tradicionales.
  • Se recomienda utilizar este modelo como guía inicial para seleccionar el tamaño adecuado de los aligeradores.

Beneficios económicos y ambientales

El uso de losas aligeradas supone una mejora sustancial en términos de costes y sostenibilidad:

Ahorro de materiales

  • Se ha reducido el consumo de hormigón hasta en un 30 %, lo que equivale a 1000 m³ menos por cada 10 000 m² de losas construidas.
  • Disminución del uso de acero en un 20 %, lo que optimiza los refuerzos y las cimentaciones.

Impacto ambiental

  • Reducción de emisiones de CO₂: por cada 10 000 m² de losas, se evita la emisión de 220 toneladas de CO₂.
  • Uso de materiales reciclados para los aligeradores, lo que promueve la economía circular.
  • Se consume menos agua y energía durante la construcción.

Optimización de costes

  • Las estructuras más ligeras reducen la demanda de cimentaciones y elementos de soporte.
  • Se necesita menos cimbrado y los tiempos de construcción son más cortos.
  • Aumento de la eficiencia global del proyecto.

Aplicaciones y comparativas estructurales

Las losas aligeradas son particularmente útiles en edificios residenciales, comerciales e industriales donde se requieren luces amplias (de 5 a 16 m). Su flexibilidad y adaptabilidad permiten su uso en una amplia variedad de aplicaciones.

Comparación con losas macizas

  1. Peso y carga:
    • Las losas aligeradas reducen el peso propio hasta en un 30 %.
    • Al transferir menos cargas a los pilares y cimentaciones, se reduce el riesgo de daños.
  2. Resistencia estructural:
    • Ofrece una resistencia a la flexión y al punzonamiento comparable a la de las losas macizas.
    • Incorporación de zonas macizas alrededor de los pilares para mejorar la capacidad cortante.
  3. Flexibilidad en el diseño:
    • Permite mayores luces y diseños arquitectónicos más libres.
    • Facilita la apertura de huecos para instalaciones o reformas en el futuro.

Desafíos y perspectivas futuras

Aunque este sistema presenta numerosos beneficios, aún enfrenta ciertos retos que deben abordarse:

  1. Estandarización del diseño:
    • Es necesario desarrollar normas que regulen el uso de aligeradores en distintos contextos.
    • Hay que incorporar criterios adicionales, como la resistencia al fuego y la durabilidad, en los modelos de diseño.
  2. Optimización del sistema:
    • Explorar nuevos materiales reciclados para mejorar la sostenibilidad del sistema.
    • Desarrollar herramientas digitales basadas en dicho modelo para facilitar su aplicación.
  3. Estudios comparativos ampliados:
    • Evaluar el rendimiento de las losas aligeradas frente a sistemas tradicionales, como los forjados reticulares.
    • Realizar un análisis del ciclo de vida completo que tenga en cuenta el impacto económico, ambiental y social.

Conclusiones

Este estudio ofrece una herramienta innovadora para el dimensionamiento eficiente de losas aligeradas, basada en el análisis multivariante y en criterios estadísticos rigurosos. Estas estructuras no solo optimizan el uso de materiales, sino que también reducen el impacto ambiental y fomentan la sostenibilidad en la construcción.

Con un enfoque que combina diseño avanzado, ahorro de recursos y flexibilidad arquitectónica, las losas aligeradas están transformando la forma de construir edificios modernos. A medida que se perfeccionen los modelos y se amplíen sus aplicaciones, este sistema se perfilará como una solución fundamental para construir un futuro más sostenible y eficiente.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 1.39MB)

Referencia:

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 445-459. DOI:10.61547/2402013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Losas aligeradas multiaxiales: innovación y sostenibilidad en los Métodos Modernos de Construcción

Vivienda unifamiliar con losas aligeradas multiaxiales «Unidome»

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Sánchez-Garrido, Yepes-Bellver, Saiz y Yepes es un análisis de losas aligeradas multiaxiales empleadas en edificación.

En la actualidad, el sector de la construcción se enfrenta a desafíos significativos relacionados con la necesidad de optimizar recursos, minimizar el impacto ambiental y satisfacer demandas estructurales complejas. Ante este panorama, los Métodos Modernos de Construcción (MMC) han surgido como una alternativa disruptiva a las técnicas tradicionales. Este artículo analiza la implementación de losas aligeradas multiaxiales, y destaca su diseño, beneficios, impacto en la sostenibilidad y su comparación con estructuras convencionales.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El auge de los Métodos Modernos de Construcción

Los MMC, también conocidos como «construcción inteligente», introducen un enfoque industrializado que revoluciona la forma de diseñar y construir edificios. Este concepto, inicialmente popularizado en el Reino Unido, abarca tecnologías modulares y procesos automatizados que hacen que la construcción sea más rápida, económica y sostenible.

A diferencia de los métodos tradicionales, los MMC integran disciplinas como la ingeniería estructural, la arquitectura y la gestión de proyectos. Estas técnicas permiten aprovechar al máximo los materiales, reducir los residuos y acortar los plazos de ejecución. Dentro de este enfoque, destacan las losas aligeradas multiaxiales, una solución que combina eficiencia estructural y sostenibilidad.

Características técnicas de las losas aligeradas

Las losas aligeradas multiaxiales suponen una evolución frente a las losas macizas tradicionales. Su diseño incorpora elementos huecos, como los formadores «Unidome», que sustituyen el hormigón en áreas de baja capacidad portante, lo que genera importantes beneficios estructurales y medioambientales.

  1. Materiales:
    • Hormigón armado.
    • Aligeradores de plástico reciclado (HDPE o PP).
    • Barras de acero para refuerzo y fijación.
  2. Diseño:
    • Reducción de hasta el 35 % del hormigón empleado.
    • Aligeramiento del peso propio de la losa, lo que facilita su transporte y montaje.
    • Incorporación de zonas macizas en áreas críticas, como las cercanas a pilares, para garantizar la resistencia a cortante y al punzonamiento.
  3. Flexibilidad estructural:
    • Reducción de entre un 5-10 % en el canto del forjado.
    • Aumento de luces hasta un 40 % más respecto a las losas macizas.
    • Mejora en la distribución de cargas y en el comportamiento frente a sismos.
  4. Durabilidad:
    • Diseño optimizado para prevenir fallos estructurales por flexión, cortante o cargas axiales.
    • Resistencia al fuego gracias a recubrimientos específicos y diseño uniaxial o biaxial.

Comparativa: estructura convencional frente a MMC

Para evaluar el impacto de las losas aligeradas, se realizó un estudio de caso en un edificio residencial público de Chiclana (Cádiz), donde se compararon dos alternativas estructurales: una convencional y otra basada en MMC.

Opción A: Estructura convencional

  • Características:
    • 10 pilares para luces de 6,6 m.
    • Losas macizas de hormigón armado con espesores de 26-28 cm.
    • Mayor peso propio, que requiere cimentaciones más robustas.
  • Materiales utilizados:
    • 509,87 m³ de hormigón.
    • 59.837 kg de acero.

Opción B: Estructura MMC con losas aligeradas

  • Características:
    • 6 pilares soportan luces de hasta 13,2 m, eliminando filas intermedias.
    • Losas aligeradas de 40-44 cm con un 35 % menos de peso propio en áreas no críticas.
  • Materiales utilizados:
    • 532,60 m³ de hormigón (4,5 % más que la opción A).
    • 69.892 kg de acero (16 % más que la opción A).

Aunque la opción B requiere más materiales, su diseño permite reducir significativamente los elementos estructurales, como los pilares, lo que da como resultado una estructura más esbelta y eficiente. Además, al eliminar soportes intermedios, se obtienen beneficios adicionales como espacios diáfanos, flexibilidad en el diseño interior y menores tiempos de ejecución.

Sostenibilidad: Un enfoque imprescindible

La sostenibilidad es uno de los pilares de los MMC y las losas aligeradas no son una excepción. La implementación de estas losas tiene un impacto positivo que se refleja en diversos aspectos:

  1. Reducción de CO₂:
    • Cada módulo aligerado sustituye hasta un 35% del hormigón, lo que equivale a una reducción promedio de 46 toneladas de CO₂ por módulo construido.
    • Uso de plástico reciclado para los aligeradores, disminuyendo la dependencia de materiales vírgenes.
  2. Eficiencia energética:
    • Menor consumo de energía en la producción y transporte de materiales.
    • Reducción del 20% en el gasto energético durante la construcción.
  3. Optimización de recursos:
    • Ahorro de agua en el proceso de fabricación del hormigón.
    • Disminución del peso propio, lo que optimiza cimentaciones y reduce la cantidad de acero requerido.

Resultados concretos

En el estudio comparativo, las losas MMC redujeron las emisiones de CO₂ en un 25 % por metro cuadrado, mientras que su transporte requirió un 30 % menos de camiones en comparación con las losas macizas tradicionales.

Aplicaciones prácticas y retos futuros

Las losas aligeradas tienen un amplio rango de aplicaciones, desde edificios residenciales hasta rascacielos y escuelas. Su adaptabilidad permite implementarlas en forjados y cimentaciones con espesores que van desde los 20 cm hasta los 80 cm. No obstante, todavía enfrentan ciertos desafíos:

  • Aceptación del mercado: La estandarización y la capacitación de los profesionales son esenciales para su adopción masiva.
  • Optimización del diseño: Futuras investigaciones buscan extender las aplicaciones a cargas y luces mayores, comparando su desempeño con otras soluciones como forjados reticulares o postensados.

Beneficios adicionales para los proyectos

Además de los aspectos técnicos y sostenibles, las losas aligeradas ofrecen ventajas tangibles para los equipos de diseño y construcción:

  1. Simplificación del proyecto:
    • Geometrías más sencillas y menos complejas.
    • Reducción de cargas estructurales, lo que facilita el cálculo estático.
  2. Velocidad de construcción:
    • Los formadores de huecos llegan preensamblados o listos para instalar, reduciendo los tiempos de montaje.
    • El menor peso de los elementos acelera el proceso de hormigonado.
  3. Versatilidad arquitectónica:
    • Mayor libertad en la distribución de espacios interiores.
    • Facilidad para abrir huecos adicionales o modificar diseños.

Conclusiones

Los Métodos Modernos de Construcción, y específicamente las losas aligeradas multiaxiales, representan un cambio de paradigma en la ingeniería civil. Al reducir el uso de materiales y optimizar recursos, así como al mejorar el desempeño estructural, estas soluciones no solo son más sostenibles, sino también más adaptables a las necesidades contemporáneas de diseño y construcción.

Al combinar eficiencia, flexibilidad y sostenibilidad, las losas aligeradas ofrecen una respuesta sólida a los retos actuales del sector. Su implementación masiva tiene el potencial de transformar el panorama de la construcción y alinearse con objetivos globales como la reducción de emisiones y la industrialización sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 3.56MB)

Referencia:

SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 392-406. DOI:10.61547/2402009

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Innovación en puentes de gran escala: optimización 3D y sostenibilidad mediante análisis acoplado de elementos finitos

Un artículo reciente publicado en la revista Structures, del primer cuartil del JCR, presenta un enfoque innovador de optimización estructural acoplada con el fin de mejorar la sostenibilidad y la eficiencia en la construcción de puentes hiperestáticos de gran escala. Este trabajo, titulado «Three-dimensional finite element-coupled optimisation assessment of extra-large bridges», se centra en el diseño de puentes con doble torre y cableado, y presenta un modelo de optimización estructural que integra métodos matemáticos avanzados, simulaciones de elementos finitos y un análisis detallado de variables aleatorias. Esta investigación constituye un importante avance en la búsqueda de métodos sostenibles que minimicen la huella medioambiental del sector de la construcción y contribuyan a los objetivos de desarrollo sostenible en ingeniería civil.

Esta trabajo, llevado a cabo por un equipo de expertos de la Universidad de Ciencia e Ingeniería de Hunan (China) y de la Universitat Politècnica de València (España), se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València.

Contexto de la investigación: la construcción sostenible y sus retos

La construcción es una de las industrias con mayor impacto ambiental a nivel mundial, ya que genera el 33 % de las emisiones de carbono y es un gran consumidor de agua y energía. En particular, el diseño y construcción de grandes infraestructuras, como puentes, requiere de grandes cantidades de recursos y genera altos niveles de emisiones de gases contaminantes debido al uso extensivo de materiales como el hormigón armado y el acero. Frente a este desafío, el estudio propone un enfoque para optimizar el diseño de puentes hiperestáticos y promover prácticas de construcción sostenibles mediante el uso de herramientas avanzadas de optimización.

Objetivos de la investigación

El objetivo principal del artículo es reducir el consumo de materiales y optimizar el diseño estructural de puentes con múltiples torres y sistemas de cableado, como los puentes atirantados de doble torre. Dicha optimización incluye la implementación de una metodología que integra diversas herramientas matemáticas y de simulación, como modelos de microestructura reticulada y métodos estadísticos para gestionar las variables aleatorias que influyen en el comportamiento estructural de los puentes.

Entre los objetivos específicos del estudio destacan:

  1. Desarrollar un modelo que permita la optimización topológica en 3D de puentes hiperestáticos.
  2. Reducir el impacto ambiental mediante el uso eficiente de materiales.
  3. Mejorar la estabilidad y el rendimiento estructural de estos puentes en condiciones de carga complejas.
  4. Proporcionar un marco teórico para futuras investigaciones sobre la optimización de grandes infraestructuras.

Metodología:

El enfoque metodológico del estudio integra varios modelos teóricos y herramientas de simulación estructural, entre las que se incluyen:

  1. Modelo de optimización: La investigación utiliza un modelo de optimización para el diseño estructural de puentes. Este modelo se basa en la disposición de microelementos en una red tridimensional para optimizar el uso de materiales y la capacidad estructural. Este enfoque permite controlar la densidad y distribución del material en áreas específicas de la estructura, como las torres y los cables del puente, donde las cargas y tensiones son mayores.
  2. Optimización estadística de variables discretas: Las estructuras de puentes están sujetas a fuerzas externas e imprevistos, como fluctuaciones en la velocidad del viento o cambios en la carga de vehículos. Para hacer frente a esta incertidumbre, el estudio implementa un modelo matemático basado en la estadística de variables discretas. Este modelo incorpora métodos de perturbación para evaluar el comportamiento de las variables aleatorias y su influencia en la estructura, garantizando así una mayor estabilidad y precisión en el diseño.
  3. Convergencia y estabilidad estructural: Uno de los mayores retos en la optimización de estructuras complejas es garantizar la estabilidad bajo condiciones no lineales. Zhou et al. utilizan técnicas avanzadas de resolución de ecuaciones no lineales y una combinación de diferencias finitas con métodos característicos. Este enfoque permite alcanzar soluciones precisas y asegurar que la estructura mantenga su integridad ante cargas variables.

Estudio de caso: Puente Nan Ao Da

Para validar su enfoque, los autores realizaron un análisis detallado del puente Nan Ao Da (NADB) en la provincia de Cantón, en el sur de China. Este puente atirantado, que tiene una longitud total de 9341 metros y una configuración de doble torre, es un caso de estudio ideal para aplicar la metodología de optimización propuesta. El estudio abarcó varios aspectos clave:

  1. Cargas estructurales y condiciones de diseño: El diseño del NADB tiene en cuenta múltiples tipos de carga, como el peso estructural, la presión del viento y las cargas vehiculares. Para optimizar la estructura, se realizaron cálculos de elementos finitos en secciones específicas del puente. La simulación modeló factores como la gravedad, la presión del viento a diferentes alturas y los efectos de las cargas en los cables de suspensión, lo que permitió comprender completamente la distribución de fuerzas en la estructura.
  2. Simulación y análisis de elementos finitos: La simulación de elementos finitos en el NADB implicó dividir la estructura en más de 79 000 elementos, lo que permitió realizar cálculos detallados de tensiones y desplazamientos en diversas partes del puente. La metodología incluyó la evaluación de 122 puntos de monitorización distribuidos en la estructura para analizar cómo las fuerzas y los desplazamientos afectaban a los elementos críticos de esta. Los resultados identificaron áreas de alta tensión, particularmente en las torres y los cables de soporte, que se optimizaron para reducir el uso de material sin comprometer la seguridad.
  3. Optimización de materiales y reducción de volumen: Mediante la optimización topológica, se logró reducir el volumen de materiales de las principales secciones del puente en un 2 %. Esta reducción no solo mejora la estabilidad estructural, sino que también reduce significativamente el peso total y el coste de construcción. Además, el ahorro de materiales implica una disminución de las emisiones de carbono y otros contaminantes.
Nan’ao Bridge

Resultados: impacto estructural y ambiental

La implementación de la optimización topológica en el NADB generó resultados significativos en términos estructurales y ambientales:

  1. Mejora en la estabilidad estructural: La reducción de material se logró al optimizar las áreas de mayor carga, como las torres y los cables, lo que resultó en una distribución de tensiones más eficiente. Los análisis de sensibilidad indicaron que, tras la optimización, las áreas de mayor energía interna se concentraban en los elementos de soporte, lo que facilitaba una transmisión de energía más efectiva y aseguraba la estabilidad estructural.
  2. Reducción de emisiones y eficiencia ambiental: Se realizó un análisis del ciclo de vida del puente optimizado utilizando el software OpenLCA y la base de datos Ecoinvent. Los resultados mostraron una reducción del 3,76 % en emisiones totales, así como disminuciones del 6,32 % en acidificación, eutrofización y generación de polvo atmosférico. Estos logros están alineados con los objetivos de sostenibilidad global y demuestran el potencial de la optimización estructural para reducir el impacto ambiental de la construcción..
  3. Ahorro económico: Desde una perspectiva económica, la reducción del uso de materiales se tradujo en un ahorro de 1,7 millones de yuanes chinos (CNY) en el coste de construcción del puente. Este ahorro económico refuerza la viabilidad de la optimización topológica como un método eficiente y rentable para proyectos de infraestructura de gran escala.

Discusión: implicaciones para el diseño y construcción de puentes

El análisis de optimización topológica aplicado al puente NADB subraya la importancia de integrar técnicas avanzadas de modelado en la ingeniería de grandes infraestructuras. Además de mejorar la eficiencia estructural, esta metodología ofrece una solución viable para alcanzar la sostenibilidad en la construcción, ya que reduce los costes y el impacto ambiental de los proyectos.

  1. Aplicaciones potenciales en otros proyectos: Los principios y métodos empleados en este estudio pueden aplicarse a otros tipos de estructuras hiperestáticas, como viaductos y puentes multipórtico. Esta flexibilidad demuestra la versatilidad del modelo y su capacidad para adaptarse a diversos contextos estructurales.
  2. Retos en la implementación práctica: Sin embargo, el artículo también reconoce importantes desafíos, especialmente en la modelación de estructuras bajo condiciones de carga combinada. Los autores sugieren que futuras investigaciones deberían explorar la integración de técnicas de inteligencia artificial y algoritmos de optimización avanzada para gestionar de forma más precisa las variables aleatorias y optimizar aún más la distribución de materiales.

Conclusiones

La investigación ofrece un enfoque completo para la optimización acoplada de puentes hiperestáticos en tres dimensiones. Los resultados de este estudio tienen importantes implicaciones para el desarrollo sostenible de la infraestructura y la construcción de grandes puentes, ya que demuestran que es posible reducir el uso de materiales y el impacto ambiental sin comprometer la estabilidad estructural. Las contribuciones clave del artículo son las siguientes:

  1. Un marco teórico sólido para la optimización acoplada en 3D, que permite mejorar la sostenibilidad de grandes infraestructuras.
  2. Un enfoque práctico  para reducir emisiones y ahorrar materiales mediante la optimización de elementos finitos y técnicas de modelado avanzadas..
  3. Un modelo aplicable a futuros proyectos de infraestructura que proporciona una base para el diseño de puentes de gran escala más eficientes y respetuosos con el medio ambiente.

El artículo sugiere que la investigación futura debería centrarse en desarrollar métodos de optimización inteligentes para el mantenimiento y la operación de estructuras complejas. La combinación de técnicas de inteligencia artificial y modelado predictivo podría revolucionar la construcción y el diseño de puentes, al tiempo que promovería prácticas de ingeniería sostenibles y rentables.

Referencia:

ZHOU, Z.; LIANG, Z.; ALCALÁ, J.; YEPES, V. (2024). Three-dimensional finite element coupled optimization assessment of extra-large bridgesStructures, 70:107743. DOI:10.1016/j.istruc.2024.107743

Este artículo se puede descargar gratuitamente hasta el próximo 2 de enero de 2025 accediendo directamente al siguiente enlace: https://authors.elsevier.com/c/1k5YY8MoIH2dmK

También dejo un vídeo sobre el puente al que se hace mención en el artículo.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos bicapa de hormigón

Los pavimentos bicapa de hormigón son una solución eficiente y duradera para las infraestructuras viales. Compuestos por una capa inferior estructural que soporta las cargas de tráfico y una capa superior de rodadura que proporciona funcionalidad y seguridad, estos pavimentos son una alternativa sostenible frente a los pavimentos monocapa. Su desarrollo se remonta a la crisis energética de los años setenta, cuando se buscaban opciones menos dependientes de materiales bituminosos, lo que impulsó la adopción de pavimentos rígidos.

El diseño de los pavimentos bicapa requiere una evaluación exhaustiva de las cargas y la selección adecuada de materiales. La capa estructural emplea hormigón de alta resistencia, mientras que la de rodadura se optimiza para garantizar su durabilidad y comodidad. Las juntas de contracción y expansión, junto con conectores de acero, garantizan la estabilidad y reducen el riesgo de grietas causadas por cambios térmicos y de carga.

El proceso de construcción implica una cuidadosa preparación de la explanada y un riguroso control de calidad en cada una de las etapas, desde el extendido y el acabado hasta el curado de la superficie. En la gestión, se presta especial atención a la regularidad superficial y a la calidad de los materiales empleados para garantizar la durabilidad y la resistencia. En cuanto a la conservación, los pavimentos bicapa requieren menos intervenciones y suponen un menor coste de mantenimiento a largo plazo.

Además, desde el punto de vista ambiental, presentan ventajas como la reducción de emisiones y un menor efecto de calor urbano debido a su reflectancia. Proyectos de demostración en España han confirmado su viabilidad y sus ventajas en términos de sostenibilidad, eficiencia y confort. La adopción de estos pavimentos, junto con una formación técnica adecuada, puede revolucionar la construcción de infraestructuras viales y proporcionar carreteras más seguras, duraderas y sostenibles.

1. Introducción a los pavimentos bicapa de hormigón

Los pavimentos de hormigón surgieron como una solución duradera para responder a la creciente demanda de carreteras resistentes y con menor necesidad de mantenimiento. Las primeras pruebas en España se realizaron a principios del siglo XX, cuando se desarrollaron técnicas innovadoras como el uso de encofrados deslizantes y hormigón armado. La crisis energética de 1973 incentivó la búsqueda de alternativas menos dependientes del petróleo, lo que impulsó el uso de pavimentos rígidos de hormigón y, con el tiempo, favoreció la aplicación de pavimentos bicapa en diversos tipos de vías.

Los pavimentos bicapa de hormigón están compuestos por dos capas diferenciadas: una capa inferior o estructural, destinada a soportar las cargas principales del tráfico, y una capa superior o de rodadura, que proporciona una superficie de contacto segura, duradera y cómoda para el tráfico de vehículos. Este diseño bicapa ofrece ventajas significativas, como una mayor durabilidad, un mejor desempeño acústico y propiedades superficiales específicas, como resistencia a la abrasión y mayor reflectancia, lo que contribuye al confort y la seguridad en las vías.

Los pavimentos bicapa de hormigón presentan varias ventajas frente a los monocapa, entre las que destaca su sostenibilidad, ya que reducen la necesidad de reposiciones frecuentes y, por tanto, disminuyen el uso de recursos materiales y energéticos a largo plazo. Además, ofrecen un mayor confort y seguridad gracias a sus mejores acabados superficiales, mayor regularidad y menor sonoridad. Aunque la inversión inicial es mayor, los costes de mantenimiento y funcionamiento se reducen significativamente, por lo que resultan más rentables a largo plazo.

En España no se han llevado a cabo experiencias significativas con pavimentos de hormigón bicapa construidos con dos tipos de hormigón diferentes adaptados a las características requeridas para cada capa. Sin embargo, la Instrucción Española 6.1-IC sobre secciones de firmes y el PG-3 permiten esta opción. Es importante destacar que el procedimiento constructivo es exigente y requiere la duplicación de los equipos de extendido y de las centrales de hormigón preparado.

2. Bases teóricas del diseño de pavimentos bicapa

El diseño estructural de pavimentos bicapa se basa en la evaluación de cargas y en el análisis de las exigencias del tráfico pesado para estimar el espesor y la resistencia necesarios en la capa inferior. También se tiene en cuenta la distribución de la presión a lo largo de la estructura para garantizar la integridad del pavimento con el paso del tiempo. La capa estructural asume la carga del tráfico, mientras que la capa de rodadura protege el hormigón de base y facilita una conducción suave. Para ello, se calculan los esfuerzos de tensión y compresión en ambas capas mediante modelos de elasticidad y resistencia estructural.

Para la selección de materiales en pavimentos bicapa, se recomienda utilizar hormigón de alta resistencia para la capa inferior, que debe tener bajo contenido de aire, buena cohesión y agregados gruesos y uniformes que maximicen la resistencia estructural. En cuanto a la capa superior o de rodadura, es importante emplear un hormigón con características específicas de textura superficial y reflectancia. También se puede añadir un aditivo polímero si es necesario mejorar la resistencia a la abrasión o hacer frente a condiciones climáticas extremas.

En el diseño de pavimentos bicapa, los aspectos clave incluyen la clasificación del tráfico, ya que identificar el tipo e intensidad del mismo permite determinar la resistencia necesaria para ambas capas. Se recomienda un diseño más robusto en vías de alto tráfico para evitar el desgaste prematuro. Además, es fundamental verificar la estabilidad de la explanada, ya que es necesario garantizar su capacidad de soporte mediante pruebas del módulo de compresibilidad y de deflexión patrón. Por último, el diseño de juntas es esencial para permitir la dilatación y prevenir agrietamientos, para lo cual hay que calcular la disposición de juntas de contracción y expansión, así como juntas longitudinales y transversales, en función de las tensiones térmicas y de carga en cada segmento de pavimento.

3. Proceso de construcción del pavimento bicapa

Los pavimentos de hormigón pueden ejecutarse en dos capas. Se coloca una capa de rodadura de hormigón de pequeño espesor (entre 4 y 5 cm) sobre otra capa de hormigón que se extiende junto con la anterior para que funcionen como una sola capa, creando así el pavimento descrito. Esto permite utilizar áridos de peor calidad en la capa inferior y reservar los de mayor calidad para la capa de rodadura, que debe cumplir estrictas exigencias de resistencia al desgaste y al pulimento. También es posible limitar la disminución del tamaño máximo del árido en la capa superior, lo que da como resultado un pavimento menos ruidoso (aunque requiere una mayor cantidad de cemento).

Las etapas de construcción de pavimentos bicapa comienzan con la preparación de la explanada, donde se debe nivelar y compactar el suelo de apoyo para recibir la capa estructural de hormigón, lo que puede incluir una capa de regularización para corregir cualquier irregularidad del terreno. A continuación, se extiende el hormigón de la capa estructural mediante un proceso de nivelación mecánica, para lo que se utilizan vibradores y rodillos compactadores con el fin de lograr una densificación adecuada que asegure una buena cohesión y resistencia. Finalmente, se aplica la capa de rodadura de manera continua sobre la capa inferior para evitar la formación de juntas frías y mejorar la durabilidad del pavimento.

La instalación de juntas y conectores es esencial para la durabilidad de los pavimentos bicapa, ya que las juntas de contracción y expansión previenen las grietas causadas por movimientos térmicos y de carga, mientras que los conectores de acero, como barras de atado y pasadores, facilitan la transferencia de carga entre las losas y garantizan la alineación estructural. Además, en las áreas de transición, como los carriles de desaceleración o la conexión con puentes, se utilizan sistemas de transición que minimizan las discontinuidades entre los diferentes tipos de pavimentos, mejorando la continuidad y el rendimiento general del sistema.

El proceso de curado y acabado en la construcción de pavimentos bicapa incluye la aplicación de inhibidores de fraguado y curado, que consisten en un curador químico destinado a evitar la evaporación del agua y asegurar un fraguado controlado, lo que reduce la formación de fisuras y aumenta la durabilidad del pavimento. Además, se realiza un acabado de la superficie mediante equipos especializados que ajustan la textura y la regularidad, eliminando cualquier irregularidad y garantizando así la seguridad y el confort del usuario.

4. Gestión de calidad en la construcción

El control de calidad de los materiales empleados en la construcción de pavimentos bicapa incluye la realización de pruebas de calidad del hormigón en fábrica, donde se verifica que cumpla con las especificaciones de resistencia y durabilidad mediante el análisis de la resistencia a la compresión y el contenido de aire. Además, se lleva a cabo un riguroso control de los componentes de las juntas para garantizar que los materiales de sellado y las barras de conexión cumplan con las normas específicas de elasticidad y resistencia, lo que es crucial para la integridad y funcionalidad del pavimento.

El control de la ejecución y el acabado en la construcción de pavimentos bicapa incluye la verificación de la alineación y el espesor de las capas, lo que es fundamental para garantizar que se coloquen según las especificaciones diseñadas y asegurar así la durabilidad y resistencia del pavimento. Además, se utilizan equipos de perfilometría para medir la rugosidad y la regularidad de la superficie, lo que permite ajustar la textura superficial con el fin de reducir el ruido y mejorar la tracción, lo que contribuye a un mejor rendimiento y seguridad en las vías.

5. Conservación y mantenimiento de pavimentos bicapa

La gestión de la conservación de pavimentos bicapa se basa en estrategias de conservación preventiva y correctiva que incluyen el control de las condiciones y el mantenimiento periódico. Un plan preventivo puede contemplar aplicaciones de sellado para evitar la entrada de agua en las juntas y reducir el desgaste. Además, se utilizan bases de datos y sistemas de gestión para registrar el estado del pavimento, lo que facilita el seguimiento y la planificación de intervenciones futuras, y asegura la prolongación de su vida útil.

Las intervenciones y renovaciones en pavimentos bicapa abarcan el mantenimiento superficial y la reparación de juntas, lo que incluye el sellado de juntas y la reparación de grietas superficiales. En casos de desgaste significativo, se puede aplicar una nueva capa de rodadura. Además, en situaciones en las que el pavimento estructural haya fallado, puede ser necesario realizar un refuerzo o incluso una rehabilitación completa del mismo. Estas intervenciones se planifican cuidadosamente para minimizar la afectación al tráfico, garantizando así la seguridad y la funcionalidad de la vía.

6. Sostenibilidad y análisis ambiental

La evaluación de impacto ambiental de los pavimentos bicapa destaca su eficiencia energética, ya que reducen la dependencia de materiales bituminosos y, por tanto, disminuyen las emisiones de gases durante su producción y transporte. Además, su capacidad de reflectancia contribuye a reducir la temperatura en entornos urbanos, lo que ayuda a mitigar el fenómeno de las islas de calor y a promover un ambiente más sostenible y saludable.

Los aspectos económicos y sociales de los pavimentos bicapa reflejan una relación coste-beneficio a largo plazo, ya que, aunque su coste inicial es más elevado, su durabilidad y sus bajos requerimientos de mantenimiento pueden generar ahorros significativos con el tiempo. Además, la calidad de la superficie de rodadura ofrece un mayor confort y seguridad para el usuario, ya que proporciona una experiencia de conducción más cómoda, con un menor riesgo de deslizamientos y una mayor resistencia al frenado. Esto contribuye a la seguridad vial en general.

7. Conclusiones

En conclusión, la adopción de pavimentos bicapa ofrece numerosas ventajas, como la construcción de carreteras más sostenibles y la reducción de costes operativos a largo plazo. Para futuros proyectos, se recomienda fomentar la formación de ingenieros y técnicos en esta tecnología, así como llevar a cabo estudios piloto en regiones donde el pavimento bicapa aún no se ha implementado ampliamente, lo que facilitaría su adopción y contribuiría a la mejora de la infraestructura vial.

A continuación, os dejo un vídeo de IECA sobre la construcción de un pavimento bicapa de hormigón con terminación de árido visto en un tramo de la autovía C-17, en Barcelona. Espero que os guste.

Referencias:

AGUADO, A.; CARRASCÓN, S.; CAVALARO, S.; PUIG, I.; SENÉS, C. (2010). Manual para el proyecto, construcción y gestión de pavimentos bicapa de hormigón. Universitat Politècnica de Catalunya, 204 pp.

Curso:

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los sistemas de pretensado en las estructuras de hormigón

Figura 1. Viga postesada. https://prodac.pe/edificaciones/soluciones-para-la-industria-de-prefabricados/alambre-pretensado/

El pretensado es una técnica que aumenta la capacidad del hormigón para soportar cargas al someterlo previamente a esfuerzos de compresión. Esta técnica crea una resistencia adicional a los esfuerzos de tracción, lo que permite construir estructuras más resistentes y duraderas. Se utiliza ampliamente en la construcción de puentes, vigas, losas y otros elementos sometidos a cargas significativas, tanto en estructuras prefabricadas como en construcciones in situ.

En esencia, el sistema de pretensado consiste en instalar y tensar armaduras activas, como cables, alambres o cordones de acero de alta resistencia, dentro del hormigón antes de que este se someta a las cargas de servicio. Al tensar estas armaduras, se generan fuerzas internas que comprimen el hormigón y contrarrestan las fuerzas externas a las que estará sometido. De esta manera, el hormigón precomprimido es más efectivo para soportar tensiones, lo que previene problemas como las fisuras y mejora la estabilidad de la estructura.

El proceso comienza con la elección de las armaduras activas y el almacenamiento adecuado del acero para protegerlo de la corrosión y la contaminación. A continuación, se colocan y tesan las armaduras, para lo que se utilizan equipos especializados, como enfiladoras, gatos hidráulicos y centrales de presión. Estos equipos permiten tensar las armaduras de forma controlada y precisa, y aseguran que se logren los niveles de tensión adecuados según el diseño estructural.

Los anclajes cumplen una función fundamental, ya que fijan los extremos de las armaduras tensadas al hormigón y aseguran la transmisión de las fuerzas de compresión. Existen dos tipos de anclajes: activos o móviles, que se colocan en el extremo de tensado, y pasivos o fijos, situados en el extremo opuesto. Los empalmes permiten extender los tendones cuando la estructura lo requiere y garantizan la continuidad y la alineación. Por su parte, los conectadores permiten aplicar tensión en puntos intermedios de tendones cerrados o de acceso limitado.

Las vainas son otros componentes esenciales del sistema, ya que alojan los tendones en el hormigón y permiten inyectar adecuadamente materiales adherentes o protectores. Los productos de inyección, como lechadas de cemento para sistemas adherentes, betunes y grasas para sistemas no adherentes, protegen los tendones contra la corrosión y aumentan la adherencia en el caso de los sistemas adherentes. Esto es esencial para garantizar la durabilidad y eficacia del pretensado.

El sistema de pretensado es muy eficiente, pero requiere precisión en su ejecución y un control estricto de la calidad, ya que cualquier fallo en el tensado o en los materiales puede afectar a la integridad estructural del proyecto. Si se implementa adecuadamente, el pretensado permite construir estructuras seguras y resistentes que maximizan las ventajas del hormigón y lo convierten en un material adecuado para una amplia gama de aplicaciones de ingeniería.

Introducción a los sistemas de pretensado

El pretensado es una técnica avanzada de construcción que consiste en aplicar esfuerzos de compresión al hormigón antes de que el elemento estructural soporte su carga de servicio, con el fin de mejorar su resistencia. En este método, se induce una compresión interna en el hormigón, lo que permite que la estructura soporte mejor los esfuerzos de tracción y aumente su capacidad para resistir cargas elevadas y deformaciones excesivas. Este sistema, ampliamente utilizado en proyectos de construcción como puentes, edificios de gran altura, cubiertas y elementos prefabricados, se basa en el uso de armaduras activas, normalmente de acero, que se tensan y anclan en el interior de la estructura para transferir la fuerza de compresión al hormigón.

En este artículo se describen en detalle los distintos elementos y equipos que intervienen en los sistemas de pretensado. Cada componente, desde los tendones y los anclajes hasta las vainas y los equipos de tesado, cumple una función específica en el éxito del sistema de pretensado y en la calidad final de la estructura de hormigón.

1. Armaduras activas: suministro y almacenamiento

Las armaduras activas son el componente principal del sistema de pretensado y están fabricadas principalmente con acero de alta resistencia. Estas armaduras se tensan previamente para introducir esfuerzos de compresión en el hormigón, lo que aumenta su capacidad para soportar tracciones sin agrietarse ni sufrir otras deformaciones no deseadas.

1.1 Tipos de armaduras activas

  • Alambres: suelen entregarse en rollos y su diámetro de bobinado no debe ser inferior a 250 veces el diámetro del alambre para evitar deformaciones.
  • Barras: se entregan en tramos rectos, lo que garantiza su resistencia y evita daños durante el transporte.
  • Cordones: existen cordones de 2, 3 o 7 alambres, que se utilizan según el diseño estructural y los requisitos de carga. Los cordones de 2 o 3 alambres se entregan en rollos con un diámetro mínimo de 600 mm, mientras que los de 7 alambres se suministran en bobinas o carretes de 750 mm de diámetro interior o mayor.
Figura 2. Unidades de anclaje de 3 y 5 cordones en forjado postesado. http://www.freyssinet.es/freyssinet/wfreyssinetsa_sp.nsf/sb/soluciones.construccion..pretensado-(cordones)

1.2 Requerimientos de suministro

Para que las armaduras activas mantengan sus propiedades mecánicas y estén protegidas contra factores externos, deben almacenarse y transportarse siguiendo unas medidas específicas. El acero debe protegerse de la humedad y de la contaminación por polvo, grasas y otros agentes que puedan alterar su comportamiento estructural.

1.3 Almacenamiento de armaduras activas

El almacenamiento de las armaduras es esencial para garantizar su durabilidad y su correcto funcionamiento en la obra. Las principales recomendaciones son las siguientes:

  • Ventilación adecuada: las armaduras deben almacenarse en locales ventilados, lejos de la humedad del suelo y las paredes.
  • Clasificación y limpieza: es importante que las armaduras estén libres de grasa, aceite, polvo u otras materias que puedan afectar a su adherencia. También deben clasificarse por tipo y lote.
  • Inspección de la superficie: antes de ser utilizadas, las armaduras deben inspeccionarse para detectar cualquier deterioro en la superficie, y garantizar que cumplen las condiciones de uso.

2. Sistemas de pretensado: componentes y función de los elementos

Un sistema de pretensado es un conjunto de elementos estructurales y dispositivos especializados diseñados para aplicar y mantener la tensión en las armaduras activas y transmitirla de forma segura y eficiente al hormigón.

2.1 Componentes principales del sistema de pretensado

Los principales elementos del sistema de pretensado son los anclajes, los empalmes, los conectadores y las vainas. Estos componentes cumplen funciones específicas, como asegurar los tendones, extender su longitud o permitir la transmisión uniforme de fuerzas.

  • Los anclajes son dispositivos esenciales en los sistemas de pretensado, ya que aseguran los tendones y transmiten las fuerzas de tensión al hormigón. Existen dos tipos principales de anclajes: el anclaje activo o móvil, que está situado en el extremo del tendón por donde se aplica la tensión, y el anclaje pasivo o fijo, que está situado en el extremo opuesto del tendón, donde no se aplica tensión. Este tipo de anclaje permite que los cables de acero se tensen según el diseño estructural y soporten las fuerzas aplicadas. El otro tipo de anclaje es el pasivo o fijo, que está situado en el extremo opuesto del tendón, donde no se aplica tensión. Este anclaje asegura la estabilidad del tendón y permite que el esfuerzo de compresión se transmita eficazmente al hormigón. Dentro de estos tipos, destacan varios modelos de anclaje adaptados a diferentes necesidades y geometrías, como los anclajes activos tipo L y los anclajes pasivos tipo S, que se emplean en vigas y elementos lineales. Cada anclaje está diseñado para resistir esfuerzos específicos y asegurar una adecuada transmisión de fuerzas al hormigón.
  • Los empalmes son elementos que dan continuidad a los tendones cuando estos requieren extensiones adicionales debido al tamaño del proyecto o al método de construcción. Los empalmes se clasifican en: empalme fijo, que mantiene los tendones en posición fija y asegura su continuidad sin movimientos adicionales, y empalme móvil, que permite cierta movilidad a los tendones, facilita el alineado de las armaduras y reduce los esfuerzos durante el tensado. Ambos tipos de empalme son esenciales para estructuras de grandes dimensiones y en casos en que el tendón debe dividirse en varias secciones.
  • Los conectadores permiten aplicar tensión en puntos intermedios o en elementos cerrados (como tuberías o silos) a los que es difícil acceder por sus extremos. Estos conectadores proporcionan puntos adicionales de anclaje en estructuras grandes o con geometrías complejas y aseguran la transferencia uniforme de las fuerzas.

    Figura 3. Selección del tipo de anclaje o conector a utilizar en el hormigón pretensado

2.2 Elementos de aseguramiento y distribución

También existen elementos auxiliares que colaboran en la distribución uniforme de las fuerzas y la fijación de las armaduras activas en el sistema de pretensado:

  • Cuñas: estas piezas metálicas fijan los extremos de las armaduras activas en las placas de anclaje.
  • Placas de anclaje: placas perforadas con forma cónica donde se alojan las cuñas, lo que permite sujetar el tendón de manera efectiva.
  • Placas de reparto: dispositivos situados entre la placa de anclaje y el hormigón que distribuyen las fuerzas en la zona de contacto y evitan sobrecargas.
  • Trompetas de empalme: estas piezas, troncocónicas o cónicas, enlazan las placas de anclaje con las vainas y facilitan la transferencia de tensión en las armaduras activas.

 

Figura 4. Placa de anclaje.De Störfix – Fotografía propia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=296999

3. Vainas y accesorios

Las vainas son conductos de pretensado que albergan los tendones en su interior. Estos conductos pueden estar fabricados de metal, plástico u otros materiales, y son esenciales para proteger y guiar las armaduras postesas en el interior del hormigón, evitando así el contacto directo con este y facilitando el proceso de inyección.

3.1 Vainas metálicas

Las vainas metálicas son las más comunes, especialmente por su resistencia al aplastamiento y su capacidad para soportar el peso del hormigón fresco. Además, la superficie corrugada de las vainas mejora la adherencia con el hormigón y su rigidez estructural. Las características principales de las vainas metálicas son las siguientes:

  • Resistencia mecánica: deben ser suficientemente robustas para soportar el peso y la presión del hormigón fresco sin deformarse.
  • Estanqueidad: las vainas deben ser herméticas para evitar la infiltración de agua o lechada de cemento en su interior y mantener las armaduras activas protegidas.
  • Diámetro adecuado: el diámetro interno de la vaina debe ser el apropiado para permitir una inyección eficaz del producto inyectado y asegurar una cobertura uniforme alrededor de los tendones.

3.2 Otros accesorios en vainas

  • Separadores: piezas que ayudan a distribuir las armaduras activas dentro de las vainas y aseguran una distancia y una alineación uniformes.
  • Tubo matriz: tubo flexible, generalmente de polietileno, que se coloca dentro de la vaina para suavizar el trazado y evitar tensiones no deseadas en las armaduras.

3.3 Tubos de purga

Los tubos de purga o respiraderos son pequeñas piezas que se colocan en los puntos altos y bajos del trazado de las vainas. Estos tubos permiten la evacuación del aire y del agua durante el proceso de inyección, lo que asegura que no queden huecos y que el producto inyectado cubra toda el área interna.

4. Equipos para enfilado, tesado e inyección

La tecnología de pretensado requiere equipos especializados que faciliten el enfilado de los tendones, la aplicación de tensión y la inyección de materiales protectores en los conductos. Los equipos esenciales son las enfiladoras, los gatos hidráulicos, las centrales de presión y los equipos auxiliares de manipulación.

  • Enfiladoras: son máquinas diseñadas para colocar los tendones dentro de las vainas de pretensado mediante un sistema de empuje o estirado, según el diseño de la estructura. Estas máquinas garantizan que los tendones estén correctamente alineados antes de aplicar la tensión.
  • Gatos hidráulicos: Los gatos son dispositivos hidráulicos que permiten el tesado de los tendones a una fuerza precisa y controlada. Se utilizan en combinación con cuñas para mantener la tensión en los extremos anclados y asegurar que la fuerza de pretensado se transmita de forma uniforme al hormigón.
  • Centrales de presión: las centrales de presión controlan los gatos hidráulicos mediante válvulas reguladoras y circuitos eléctricos que permiten ajustar la presión aplicada con precisión. Estos sistemas incluyen manómetros o dinamómetros para garantizar que la presión de tesado cumpla con los requisitos especificados en el proyecto.
  • Equipos auxiliares: Los equipos auxiliares incluyen grúas y otros medios de manipulación que facilitan el posicionamiento de los gatos, las vainas y las armaduras activas. Son especialmente útiles en obras de gran envergadura, donde el peso y el tamaño de los elementos dificultan su instalación manual.

5. Productos de inyección

La inyección de materiales dentro de las vainas es fundamental para proteger las armaduras activas y mejorar la adherencia entre el tendón y el hormigón. Existen dos tipos principales de productos de inyección:

  • Inyecciones adherentes: consisten en lechadas o morteros de cemento que llenan los conductos de las vainas y mejoran la unión entre el tendón y el hormigón. Algunas características esenciales de estos productos son:

— Uso de cemento Portland CEM-I, que asegura una buena adherencia y resistencia mecánica.
— Aditivos que permiten modificar las propiedades de la lechada para mejorar la protección de las armaduras.
— Relación agua/cemento baja (entre 0,38 y 0,43) para lograr una mayor resistencia a la compresión y una baja porosidad.

  • Inyecciones no adherentes: los productos de inyección no adherentes, como los betunes, mástiques bituminosos y grasas solubles, protegen las armaduras contra la corrosión sin generar adherencia con el hormigón. Son adecuados para estructuras donde se requiere flexibilidad en los tendones y una menor adherencia al hormigón.

Para aplicar los productos de inyección se utilizan equipos de mezcla e inyección que aseguran la preparación y la distribución uniforme del material dentro de las vainas. Estos equipos deben disponer de sistemas de control de calidad que permitan ajustar la mezcla y supervisar su aplicación durante el proceso de inyección.

Conclusión

Los sistemas de pretensado en hormigón son una solución técnica que aumenta la resistencia y durabilidad de las estructuras. Desde el suministro y almacenamiento de las armaduras activas hasta el tesado y la inyección, cada componente del sistema es crucial para el éxito de la estructura. Estos sistemas no solo aumentan la capacidad del hormigón para resistir esfuerzos de tracción, sino que también contribuyen a reducir el riesgo de deformaciones y a mejorar la calidad estructural general de las obras de ingeniería.

Os dejo algunos vídeos, que espero sean de vuestro interés.

Curso:

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Investigación reciente muestra cómo la inteligencia artificial optimiza la gestión del agua

En un estudio pionero, investigadores de la Universitat Politècnica de València y la Pontificia Universidad Católica de Valparaíso (Chile) han revelado el enorme potencial del aprendizaje automático (Machine Learning, ML) en la mejora de la integridad y calidad de las infraestructuras hídricas.

Publicado en la Applied Sciences, revista del primer cuartil del JCR, el estudio analiza en profundidad la literatura científica reciente sobre el tema, para lo cual revisa 1087 artículos con el fin de identificar las áreas más prometedoras en la aplicación de estas tecnologías a la gestión del agua. Esta revisión va más allá de lo convencional al aplicar modelos avanzados de procesamiento del lenguaje natural (NLP), específicamente BERTopic, que permiten comprender el contexto y los temas emergentes en esta área de investigación.

Contexto y relevancia del estudio

El mantenimiento de infraestructuras de agua seguras y eficientes es un desafío global, especialmente en un contexto de cambio climático, urbanización creciente y escasez de recursos hídricos. A medida que aumentan los eventos climáticos extremos, las infraestructuras se ven sometidas a un estrés adicional. Estas condiciones afectan al acceso y a la distribución de agua de calidad, clave para la salud pública, el medio ambiente y sectores estratégicos como la agricultura, la industria y la energía.

En este contexto, el aprendizaje automático se presenta como una herramienta potente para gestionar y optimizar la calidad y el suministro del agua. Los algoritmos de ML pueden procesar grandes volúmenes de datos de sensores y otras fuentes para mejorar las predicciones y la toma de decisiones en tiempo real. Además, permiten diseñar protocolos de tratamiento del agua más eficientes, reducir las pérdidas en las redes de distribución y anticiparse a los problemas antes de que se conviertan en fallos significativos.

Metodología y clasificación de temas

Para explorar el uso del ML en la gestión de infraestructuras hídricas, el equipo realizó una búsqueda sistemática en la base de datos Scopus, centrada en artículos en inglés publicados desde 2015. Los investigadores aplicaron el modelo BERTopic, una técnica de NLP que utiliza redes neuronales (transformers) entrenadas para identificar y organizar los principales temas en la literatura. Esto permitió clasificar con precisión los estudios en cuatro grandes áreas de aplicación:

  1. Detección de contaminantes y erosión del suelo: El uso de ML en esta área permite la detección avanzada de contaminantes como los nitratos y los metales pesados en las aguas subterráneas. Mediante imágenes satelitales y sensores en campo, estos modelos analizan factores ambientales y condiciones del suelo para predecir y mapear zonas de riesgo de contaminación y erosión.
  2. Predicción de niveles de agua: El estudio destaca cómo las técnicas de aprendizaje automático, incluidas las redes neuronales y los modelos de series temporales, pueden prever las fluctuaciones en los niveles de agua de ríos, lagos y acuíferos. Esto resulta crucial para la gestión de los recursos hídricos en situaciones climáticas extremas, como las inundaciones y las sequías, y también para optimizar el uso del agua en la agricultura y la industria.
  3. Detección de fugas en redes de agua: Las pérdidas de agua suponen un problema significativo en las redes de distribución, especialmente en las zonas urbanas. El estudio descubrió que el ML, junto con tecnologías de sensores IoT, permite la detección precisa de fugas mediante el análisis de patrones de flujo y presión en las tuberías. Los algoritmos pueden identificar y localizar fugas, lo que reduce el desperdicio y mejora la eficiencia de la distribución.
  4. Evaluación de la potabilidad y calidad del agua: Garantizar el acceso a agua potable es fundamental para la salud pública, y el estudio subraya la utilidad del aprendizaje profundo en el control de la calidad del agua. Los algoritmos analizan parámetros de calidad como la turbidez, el pH y la presencia de sustancias químicas nocivas, con el fin de asegurar la potabilidad. Estos modelos también permiten automatizar los sistemas de alerta temprana en zonas con infraestructuras hídricas vulnerables.

Implicaciones y futuros pasos

Este estudio concluye que el uso de aprendizaje automático en la gestión del agua permite una mayor eficiencia y sostenibilidad, y supone un paso adelante en la administración de los recursos hídricos frente a los desafíos ambientales en aumento. Los autores señalan que la combinación de ML con sistemas de monitoreo avanzado puede transformar la forma en que gestionamos las infraestructuras hídricas, permitiendo predicciones precisas y decisiones basadas en datos en tiempo real.

En el futuro, se centrarán en mejorar la precisión de los modelos para áreas específicas, así como en implementar estos sistemas a gran escala. Además, se abren nuevas oportunidades para optimizar las redes de distribución mediante sistemas automatizados, algo vital en un contexto donde el agua es un recurso cada vez más valioso y escaso.

Este estudio no solo aporta conocimiento a la comunidad científica, sino que también proporciona una base sólida para que gestores y responsables de políticas públicas integren el aprendizaje automático en sus prácticas de gestión del agua, avanzando así hacia una gestión hídrica más sostenible y resiliente.

Referencia:

GARCÍA, J.; LEIVA-ARAOS, A.; DÍAZ-SAAVEDRA, E.; MORAGA, P.; PINTO, H.; YEPES, V. (2023). Relevance of Machine Learning Techniques in Water Infrastructure Integrity and Quality: A Review Powered by Natural Language Processing. Applied Sciences, 13(22):12497. DOI:10.3390/app132212497

Descargar (PDF, 23.87MB)

La cadena crítica en la planificación de proyectos de construcción

En el ámbito de la ingeniería de la construcción, la planificación de proyectos es fundamental para asegurar el cumplimiento de los plazos y la optimización de los recursos. Tradicionalmente, este proceso ha estado marcado por el uso del método PERT/CPM, que se basa en la premisa de que los proyectos están condicionados principalmente por el tiempo. En este enfoque, los pasos clave incluyen la asignación de duraciones a las actividades y la definición de sus precedencias. Sin embargo, este método asume de manera implícita que los recursos, como la mano de obra, los equipos y los materiales, están siempre disponibles y en cantidades suficientes para cumplir con la secuencia constructiva planificada. En la práctica, muchas veces ni siquiera se consideran los recursos de las actividades al definir la red de trabajo; en su lugar, el enfoque se limita a gestionar los aspectos temporales de la programación.

La realidad del sector de la construcción presenta otros desafíos, como los «cuellos de botella», que afectan significativamente el cronograma de los proyectos. En este contexto de limitaciones de recursos ha surgido el método de la cadena crítica (Critical Chain Method, CCM; Critical Chain Scheduling, CCS; o Critical Chain Project Management, CCPM). Este enfoque innovador no solo tiene en cuenta la secuencia de las actividades, sino también la disponibilidad de los recursos, lo que permite una planificación más realista y eficaz.

Además, es importante mencionar que la metodología tradicional de elaboración de cronogramas tiende a utilizar duraciones «hinchadas», lo que puede provocar una dilatación de los plazos del proyecto. El método de la cadena crítica (CCPM) sugiere reducir significativamente estas estimaciones, eliminando las reservas de tiempo innecesarias. La solución propuesta consiste en programar el proyecto con duraciones más ajustadas y añadir «colchones» para gestionar el tiempo de manera más efectiva. Al aplicar el CCPM, se incorpora la teoría de las restricciones a la gestión de proyectos, lo que supone un cambio significativo en la forma de planificar y ejecutar los proyectos.

Origen de la cadena crítica

La cadena crítica tiene sus raíces en la novela «La meta», publicada en 1984 por el físico israelí Eliyahu M. Goldratt. En esta obra, Goldratt llamó la atención del público al presentar ideas innovadoras sobre la gestión de empresas, utilizando como telón de fondo una fábrica ineficiente y su atormentado director, que siempre se enfrentaba a los cuellos de botella de la producción. A través de esta narrativa, Goldratt introdujo los principios de la teoría de las restricciones, que establece que, en cada momento, hay un número limitado de factores que actúan como obstáculos para el pleno desarrollo de la producción.

En 1997, Goldratt amplió estos conceptos en su libro «La cadena crítica», donde se centró en la velocidad y la fiabilidad en la ejecución de proyectos. Su enfoque se basa en la reducción drástica de la duración de las actividades y en la incorporación de colchones de protección en los plazos. Goldratt, reconocido como un gurú en el ámbito empresarial, difundió el concepto de cadena crítica en el sector de las grandes corporaciones. Los expertos consideran sus ideas como una de las mayores contribuciones a la planificación de proyectos de los últimos treinta años. A medida que el método de la cadena crítica se ha ido implementando progresivamente en el sector de la construcción, se han logrado reducciones en los plazos de entrega de entre un 10 % y un 50 %.

Teoría de las restricciones

La teoría de las restricciones (Theory of Constraints, TOC) se define por la identificación de «restricciones», que son aquellos factores que impiden que un sistema alcance su máximo rendimiento. Según la TOC, cada sistema presenta al menos una restricción que afecta a su flujo de producción. Si no existieran restricciones, el flujo podría crecer indefinidamente o, en el extremo opuesto, ser nulo, ya que el flujo máximo de producción no puede exceder el de su recurso de menor capacidad, conocido como «cuello de botella».

La analogía de un proyecto con un flujo de corriente permite identificar que su restricción es el eslabón más débil, el cual determina la capacidad del sistema. Desde la perspectiva temporal, la restricción de un proyecto corresponde a la secuencia más larga de actividades, que a su vez establece el plazo total.

Es importante destacar que las restricciones pueden ser tanto físicas como no físicas e incluir factores políticos y emocionales. Un problema central, conocido como «conflicto sin resolver» (core conflict), debe ser abordado por el equipo de gestión, que tiene la responsabilidad de encontrar una solución o, al menos, minimizar su impacto.

El algoritmo de la teoría de las restricciones (TOC) para optimizar el rendimiento de una cadena de actividades se compone de cinco pasos que pueden considerarse una estrategia de mejora continua. Estos pasos incluyen:

  1. Identificar la restricción del sistema: El objetivo es completar el proyecto lo antes posible. La cadena crítica representa el camino más corto, considerando no solo las dependencias lógicas y las duraciones de las actividades, sino también la disponibilidad de recursos.
  2. Explorar la restricción: Esta fase consiste en proteger la duración total del proyecto contra retrasos en las tareas que forman parte de la cadena crítica. Comprimir la duración de estas actividades, eliminando obstáculos y márgenes de tiempo, contribuye a que el proyecto cumpla plazos más ajustados.

En conclusión, la adopción de la cadena crítica y la teoría de las restricciones en la planificación de proyectos de construcción no solo mejora la eficiencia, sino que también proporciona un enfoque más realista para gestionar los plazos y los recursos. Con una implementación adecuada de estas metodologías, las empresas constructoras pueden optimizar su rendimiento y alcanzar sus objetivos de manera más efectiva.

Os dejo algunos vídeos explicativos al respecto.

Referencias:

GOLDRATT, E. M.; COX, J. (2016). The goal: a process of ongoing improvement. Routledge.

GOLDRATT, E. M. (2017). Critical chain: A business novel. Routledge, 2017.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2013). Construction management. John Wiley & Sons.

MATTOS, A.D.; VALDERRAMA, F. (2020). Métodos de planificación y control de obras. Editorial Reverté.

YANG, J-B. How the critical chain scheduling method is working for construction. Cost engineering, 2007, vol. 49, no 4, p. 25.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión del conocimiento: clave para la innovación y competitividad de las pymes en el sector de la construcción

El estudio, liderado por Salvador López y Víctor Yepes y publicado en la revista Advances in Civil Engineering, se centra en cómo las pequeñas y medianas empresas (pymes) del sector de la construcción pueden optimizar la gestión y el intercambio de conocimiento (conocido como KS, Knowledge Sharing, y KT, Knowledge Transfer) para mejorar su competitividad y capacidad de innovación. Este tipo de empresas, que son fundamentales para el crecimiento económico y la generación de empleo en muchas economías, se enfrentan a retos significativos en la adaptación a los cambios del mercado y en la implementación de procesos innovadores, especialmente en un sector tan competitivo y dinámico como el de la construcción.

El valor del conocimiento en las pymes de construcción

El estudio parte de la premisa de que el conocimiento es uno de los activos más valiosos para las organizaciones, especialmente en industrias de rápido cambio. Una gestión adecuada del conocimiento en las pymes no solo permite que estas empresas sobrevivan, sino que prosperen, manteniendo una ventaja competitiva mediante la innovación continua. Sin embargo, a pesar de su importancia, las pymes han enfrentado históricamente dificultades en este ámbito, dado que, a diferencia de las grandes empresas, suelen carecer de estructuras de gestión del conocimiento consolidadas o de los recursos necesarios para implementar complejos sistemas de intercambio de información.

Metodología del estudio

Para comprender mejor el panorama actual y las tendencias futuras en la gestión del conocimiento en pymes de la construcción, López y Yepes emplearon un enfoque bibliométrico y analizaron 184 publicaciones académicas mediante técnicas avanzadas, como el análisis de co-citación y el análisis de palabras clave, facilitado por el software VOSviewer. Este programa permitió crear un mapa conceptual que muestra las conexiones entre estudios y temáticas clave, y ayudó a identificar patrones emergentes y áreas que requieren más investigación. La visualización de estos datos ayudó a resaltar cómo el intercambio y la transferencia de conocimientos han evolucionado en el sector, y ofreció una visión estructurada de los temas y métodos predominantes en el ámbito de la gestión del conocimiento.

Resultados principales y recomendaciones

El análisis revela varias tendencias importantes. En primer lugar, la colaboración interorganizacional y el aprendizaje continuo se destacan como factores esenciales para el éxito de las pymes en la gestión del conocimiento. Al fomentar redes de trabajo en colaboración, tanto dentro como fuera de la organización, las pymes pueden beneficiarse de una mayor fluidez en el intercambio de conocimientos, lo que facilita la innovación y la mejora de procesos. Otro aspecto clave es el desarrollo de capacidades tecnológicas y la implementación de sistemas digitales que permitan organizar y difundir el conocimiento de manera eficiente. Estos sistemas pueden incluir desde plataformas digitales de comunicación interna hasta bases de datos de conocimientos compartidos.

López y Yepes subrayan también la importancia del liderazgo transformacional en estas empresas. Un estilo de liderazgo que fomente la apertura y la flexibilidad de la organización puede ser determinante para crear una cultura de innovación en la que el conocimiento fluya de forma más efectiva. Esta cultura de apertura es crucial para que las pymes puedan adaptarse a los cambios en el sector y aprovechar las oportunidades de mejora y crecimiento.

Además, el estudio identifica varias áreas de mejora. Las pymes del sector de la construcción suelen enfrentar problemas en la transferencia de conocimientos debido a ineficiencias en sus redes colaborativas y a la falta de sistemas digitales que apoyen esta tarea. Como resultado, los autores recomiendan una mayor inversión en infraestructura tecnológica, como herramientas de gestión del conocimiento, que faciliten la recopilación, el almacenamiento y la difusión de la información relevante. También sugieren adaptar estas prácticas de intercambio a contextos culturales y geográficos específicos, especialmente para las empresas que operan en mercados globales o que colaboran con organizaciones de otras regiones.

Implicaciones para el futuro de la gestión del conocimiento en pymes

Las conclusiones de López y Yepes destacan la necesidad de que la gestión del conocimiento en las pymes del sector de la construcción evolucione para responder a los desafíos del mercado actual. Entre las recomendaciones de futuro, el estudio enfatiza la necesidad de adoptar un enfoque de aprendizaje continuo y de mejorar las capacidades tecnológicas para facilitar la innovación y el crecimiento sostenido. Además, sugiere que las pymes deberían desarrollar una cultura organizacional que valore y facilite el intercambio de conocimientos a todos los niveles, desde la alta dirección hasta el personal operativo.

Este marco de gestión del conocimiento supone un cambio fundamental para las pymes del sector de la construcción, ya que les proporciona una base sólida para crear redes colaborativas y sistemas de intercambio de información que les permitan ser competitivas en un sector globalizado y en rápida evolución. Así, este trabajo no solo proporciona un marco conceptual para entender la gestión del conocimiento en estas empresas, sino que también ofrece una guía práctica para que puedan adaptarse y prosperar en el entorno actual.

Referencia:

LOPEZ, S.; YEPES, V. (2024). Visualizing the future of Knowledge sharing in SMEs in the construction industry: A VOS-viewer Analysis of emerging trends and best practices. Advances in Civil Engineering, 2024:6657677. DOI:10.1155/2024/6657677

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Descargar (PDF, 2.08MB)

Predimensionamiento óptimo de tableros de puentes losa pretensados aligerados

Figura 1. Vista aérea de paso superior. Google Maps.

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Yepes-Bellver, Martínez-Pagán, Alcalá, y Yepes es un análisis integral del predimensionamiento de los tableros de puentes losa pretensados aligerados.

Este informe detalla su importancia y sugiere mejoras en el diseño estructural mediante la optimización con métodos avanzados como el modelo Kriging y algoritmos de optimización heurística.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

1. Contexto del empleo de los puentes losa pretensados aligerados

Los puentes de losa pretensada son fundamentales en las infraestructuras de carreteras y vías ferroviarias debido a su capacidad para cubrir luces de entre 10 y 45 metros, lo que los hace más resistentes, duraderos y adaptables a distintos diseños geométricos. El coste de estos puentes suele representar entre un 5 % y un 15 % de los gastos totales de una infraestructura de transporte. Además, los puentes losa ofrecen una mayor flexibilidad y una apariencia estética superior, ya que eliminan las juntas de calzada, lo que mejora la comodidad y reduce el desgaste del tablero al tráfico.

Principales ventajas de los puentes losa pretensados:

  • Resistencia y durabilidad: estos puentes ofrecen una alta resistencia a la torsión y la flexión, por lo que son ideales para soportar cargas variables y condiciones climáticas adversas.
  • Versatilidad en el diseño: gracias a su construcción in situ, es posible adaptarlos a terrenos irregulares o a condiciones complejas, como curvas pronunciadas y anchos variados, lo que permite construirlos con rasantes bajas.
  • Ahorro de materiales y costes: Al diseñarse sin juntas y con posibilidades de aligeramiento, su mantenimiento resulta menos costoso en comparación con otras tipologías.

2. Predimensionamiento y limitaciones en los métodos actuales

El predimensionamiento es esencial en la fase preliminar del diseño de puentes con losas pretensadas. Tradicionalmente, los ingenieros utilizan reglas empíricas basadas en la experiencia para definir parámetros geométricos iniciales, como el espesor de la losa, la relación entre el canto y la luz y la cantidad de armadura activa y pasiva. Sin embargo, estos métodos tradicionales tienen limitaciones en cuanto a eficiencia y sostenibilidad, ya que no optimizan el uso de materiales ni reducen el impacto ambiental.

Desventajas de los métodos convencionales de predimensionamiento:

  • Rigidez en el diseño: los métodos empíricos pueden ser inflexibles, lo que limita las opciones de diseño y hace que la estructura no se adapte eficientemente a los criterios de optimización moderna.
  • Ineficiencia económica y ambiental: al no tener en cuenta factores de sostenibilidad y costes, estos métodos pueden provocar un uso excesivo de materiales, lo que aumenta la huella de carbono y el consumo energético.

3. Propuesta de optimización con modelos Kriging y metaheurísticas

La propuesta de los investigadores consiste en aplicar una optimización bifase mediante modelos Kriging combinados con el recocido simulado, un algoritmo heurístico. Esta técnica permite reducir el tiempo de cómputo en comparación con los métodos de optimización tradicionales sin perder precisión. La optimización se centra en tres objetivos clave:

  • Minimización del coste
  • Reducción de emisiones de CO₂
  • Disminución del consumo energético

El Kriging, un tipo de metamodelo, facilita la interpolación de datos en una muestra determinada, lo que permite que los valores estimados sean predictivos y evite el alto coste computacional que conllevan las simulaciones estructurales completas. Para implementar esta técnica, se usa un muestreo de hipercubo latino (LHS), que permite generar variaciones en el diseño inicial de los puentes y proporciona una base sobre la que se aplica el modelo Kriging para ajustar las alternativas optimizadas de diseño.

4. Resultados y comparación con diseños convencionales

A continuación, se exponen los principales hallazgos del estudio, basados en la optimización de puentes reales y en la comparación con métodos empíricos:

  • Esbeltez y espesor de la losa: la investigación recomienda que aumentar la relación entre el canto y la luz mejora la sostenibilidad del diseño. Los puentes optimizados presentan relaciones de hasta 1/30, en comparación con el rango usual de 1/22 a 1/25.
  • Volumen de hormigón y armaduras: los resultados muestran una disminución del volumen de hormigón y del número de armaduras activas necesarias, mientras que aumenta el número de armaduras pasivas. Este ajuste permite reducir tanto el coste como las emisiones.
  • Uso de materiales de construcción: se recomienda el uso de hormigón de resistencia entre 35 y 40 MPa para obtener una combinación óptima entre coste y sostenibilidad. La cantidad de aligeramientos interiores y exteriores también contribuye significativamente a la reducción del peso total sin comprometer la resistencia.

Comparativa de materiales:

  • Cuantía de hormigón: entre 0,55 y 0,70 m³ por m² de losa. La optimización reduce el consumo a 0,60 m³ para puentes económicos y a 0,55 m³ para priorizar la reducción de emisiones.
  • Armadura activa: la cantidad recomendada es inferior a 17 kg/m² de tablero. Esto representa una reducción significativa en comparación con los diseños tradicionales, que promedian alrededor de 22,64 kg/m².
  • Armadura pasiva: se debe aumentar la cuantía hasta 125 kg/m³ para proyectos de alta sostenibilidad, en contraste con los valores convencionales.

5. Herramientas prácticas para los proyectistas: nomogramas para el predimensionamiento

Uno de los aportes más valiosos del estudio es la creación de nomogramas que permiten a los ingenieros realizar predimensionamientos precisos con un mínimo de datos. Los nomogramas se desarrollaron mediante modelos de regresión múltiple y ofrecen una forma rápida de estimar:

  • La cantidad de hormigón necesaria.
  • El espesor de la losa.
  • La armadura activa en función de la luz del puente y los aligeramientos aplicados.

Estos nomogramas son útiles en las primeras fases de diseño, ya que permiten obtener valores cercanos a los óptimos de manera rápida y eficiente. Los gráficos incluyen secuencias de cálculo específicas con ejemplos de puentes con luces de 34 m y aligeramientos medios (interior de 0,20 m³/m² y exterior de 0,40 m³/m²), lo que facilita un proceso de diseño preliminar que cumple con criterios de sostenibilidad.

Figura 2. Nomograma para estimar el canto del tablero (m). Fuente: Yepes-Bellver et al. (2024)

6. Recomendaciones para el diseño sostenible de puentes losa pretensados aligerados

Basándose en los resultados de optimización, el estudio recomienda ajustar ciertos parámetros de diseño para mejorar la sostenibilidad y reducir los costes:

  • Aumento de la relación canto/luz: se debe aumentar la relación a 1/26 o incluso 1/30 para conseguir diseños sostenibles.
  • Reducción del hormigón utilizado: limitar el uso de hormigón a 0,60 m³/m², o menos si la prioridad es reducir las emisiones.
    Cuantía de armaduras: para la armadura pasiva, se recomienda un mínimo de 125 kg/m³, mientras que la armadura activa debe reducirse a 15 kg/m² de losa.
    Aligeramientos amplios: utilizar aligeramientos significativos (interior de 0,20 m³/m² y exterior de 0,50 m³/m²) para reducir el peso estructural y minimizar el material empleado.

7. Conclusión: innovación en el diseño de infraestructuras sostenibles

El uso de modelos predictivos, como el Kriging, y de técnicas de optimización avanzada en el diseño de puentes supone un gran avance hacia la construcción de infraestructuras sostenibles y eficientes. Estos métodos permiten reducir costes y minimizar el impacto ambiental, dos factores críticos en la ingeniería moderna. Al promover estos enfoques, la investigación allana el camino hacia políticas de infraestructura más responsables y sostenibles, un objetivo alineado con los Objetivos de Desarrollo Sostenible (ODS).

8. Perspectivas futuras: expansión de la metodología de optimización

Los autores proponen continuar esta línea de investigación aplicando el modelo Kriging y otros metamodelos a diversas estructuras de ingeniería civil, como marcos de carretera, muros de contención y otros tipos de puentes. Esta expansión podría sentar las bases para nuevos estándares en el diseño de infraestructuras sostenibles.

Este estudio se presenta como una herramienta esencial para ingenieros y proyectistas interesados en mejorar el diseño estructural mediante métodos modernos de optimización, ya que ofrece un enfoque práctico y avanzado para lograr una ingeniería civil más sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 1.98MB)

Referencia:

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 407-419. DOI:10.61547/2402010

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vigas híbridas de acero: la apuesta sostenible que transforma costos y rendimiento en la construcción

Un artículo reciente publicado en el Journal of Constructional Steel Research, liderado por los investigadores Agustín Terreros-Bedoya, Iván Negrín, Ignacio Payá-Zaforteza y Víctor Yepes de la Universitat Politècnica de València, explora en profundidad el uso de vigas híbridas de acero como una alternativa innovadora y sostenible a las vigas tradicionales de acero homogéneo.

Estas vigas híbridas, que combinan diferentes tipos de acero de distintas resistencias en sus componentes (alas y alma), han demostrado tener un gran potencial para optimizar el uso de materiales en la construcción, mejorar la eficiencia estructural y reducir costes y el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Vigas híbridas: concepto y ventajas

El estudio parte de la necesidad de encontrar soluciones estructurales que no solo cumplan con altos estándares de rendimiento, sino que también sean sostenibles. En una viga híbrida, el acero de alta resistencia se utiliza en las alas, donde se requiere mayor capacidad de resistencia a esfuerzos, mientras que el alma se construye con un acero de resistencia media, lo que reduce el peso y el coste del material sin comprometer su resistencia general. Este diseño permite que la viga absorba cargas significativas y redistribuya los esfuerzos de forma más eficiente que una viga homogénea, con lo que se logra una estructura más liviana y económica.

Metodología y análisis

La investigación analiza 128 publicaciones previas sobre el tema, utilizando un análisis de correspondencia simple para identificar patrones y relaciones entre variables de diseño, como la resistencia de las alas y el alma, las condiciones de carga y los métodos de cálculo. Mediante esta metodología, los autores logran sistematizar el conocimiento existente sobre el tema y destacan los enfoques de diseño más eficaces. Este análisis también identificó los «ratios híbridos» ideales, es decir, la proporción óptima entre la resistencia del acero en el alma y en las alas para maximizar el rendimiento de la viga. Un hallazgo clave es que los ratios híbridos entre 1,3 y 1,6 suelen proporcionar un equilibrio óptimo entre resistencia y economía de material.

Sostenibilidad y beneficios económicos

Además del rendimiento estructural, el estudio subraya las ventajas ambientales de las vigas híbridas. Al reducir el peso de las estructuras, disminuyen los costes de transporte, instalación y consumo de materiales, lo cual se traduce en una reducción significativa de las emisiones de CO₂. Los investigadores destacan que esta estrategia de construcción está en consonancia con los objetivos de la Unión Europea de reducir la huella de carbono de la industria de la construcción y lograr la neutralidad climática para 2050. Desde el punto de vista económico, la reducción de peso y material también representa unos costes de fabricación y montaje menores, lo que incrementa la viabilidad de estas soluciones en proyectos a gran escala.

Desafíos y áreas futuras de investigación

El estudio identifica varios desafíos que deben abordarse para implementar las vigas híbridas de manera efectiva en proyectos reales. Uno de los retos más importantes es la limitada cantidad de estudios experimentales en condiciones de carga combinada (flexión y cortante) y de pandeo, que son comunes en estructuras complejas como puentes y edificios de gran altura. Los autores recomiendan llevar a cabo investigaciones adicionales para desarrollar métodos de diseño que integren estas variables y permitan un mejor rendimiento bajo cargas extremas.

Otra área prometedora es la implementación de algoritmos de optimización y técnicas de inteligencia artificial para mejorar el diseño y el análisis de estas vigas. Estos métodos pueden ayudar a identificar configuraciones de material y geometría que maximicen la eficiencia estructural y minimicen el impacto ambiental. También sugieren explorar la combinación de acero de alta resistencia con otros materiales, como el hormigón, para crear estructuras híbridas aún más optimizadas.

Implicaciones para la industria de la construcción

Este estudio contribuye significativamente al conocimiento de las vigas híbridas de acero, ya que propone un marco de referencia que puede transformar la forma en que se diseñan y construyen las infraestructuras. A medida que se intensifica la presión para construir de forma más eficiente y respetuosa con el medioambiente, las vigas híbridas se perfilan como una solución viable que permite aprovechar al máximo las propiedades de los materiales, a la vez que se reducen los costes y la huella de carbono de las construcciones. Por tanto, la investigación de Terreros-Bedoya y su equipo proporciona una base sólida para que ingenieros y constructores consideren esta tecnología en futuros proyectos, impulsando un desarrollo urbano más sostenible y económico.

Referencia:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Dejo a continuación el artículo completo, pues está publicado en abierto.

Descargar (PDF, 4.42MB)