Mucho se está hablando sobre el concepto de “playa inteligente” o “smart beach”. Sobre este tema ya impartí una conferencia en el XVIII Foro Internacional de Turismo de Benidorm, celebrado en octubre del 2016. La respuesta es un no rotundo. Sin embargo, parece que algo se está avanzando en este sentido. Hay quien bautiza este concepto como playa 4.0, pero mucho me temo que es una vuelta de tuerca más en el ámbito del marketing para vender más de lo mismo.
Sobre este mismo tema me han invitado a impartir una conferencia magistral en el III Congreso Internacional de Calidad Ambiental en Playas Turísticas, organizado por la Universidad de la Guajira en Colombia, del que también formo parte del Comité Científico Internacional. Dicho congreso se celebra entre el 21 y el 23 de marzo de 2018. Debido a problemas de agenda, se me invitó a impartir la charla por teleconferencia. Para evitar problemas técnicos, he grabado dicha comunicación y os la paso para que tengáis acceso a dicha información. Espero que os sea de interés.
Los métodos tradicionales empleados para el proyecto de un puente se basan en procedimientos de prueba y error que sirven para mejorar los diseños (Figura 1). Si bien la experiencia del proyectista permite definir “a priori” la geometría de la estructura, el resto de variables se determinan atendiendo al cumplimiento de los diferentes estados límite exigidos por los reglamentos para las situaciones de proyecto consideradas. De esta forma, la solución propuesta, si bien es funcionalmente correcta, no tiene porque ser la óptima. Los métodos de optimización, como pueden ser los algoritmos metaheurísticos o estocásticos, proporcionan una alternativa eficaz a los diseños estructurales basados en la experiencia. Estos algoritmos se caracterizan porque combinan unas reglas de decisión y la aleatoriedad para buscar de forma eficaz soluciones de alta calidad en espacios de soluciones de gran tamaño, tal y como son los originados por los problemas estructurales reales. Además, al explorar una gran cantidad de posibles combinaciones, encuentra soluciones que pueden estar alejadas de las reglas de diseño habituales empleadas por los proyectistas.
Figura 1. Diseño por prueba y error de las estructuras (Yepes, 2017)
Así, por ejemplo, los puentes de sección en cajón constituyen uno de las tipologías más habituales en los puentes continuos, pues presentan ventajas tanto desde la perspectiva de su eficiencia resistente como por su bajo peso propio. Sin embargo, las normas de diseño actuales no siempre contemplan los objetivos y las prioridades de una sociedad cambiante. El informe Brundtland (WCED, 1987) propone una visión a largo plazo para mantener los recursos, que serán necesarios para las necesidades futuras. El desarrollo sostenible requiere una triple visión que equilibre el desarrollo económico y las necesidades ambientales y sociales. Por lo tanto, las preocupaciones por construir un futuro más sostenible obligan a considerar aspectos como el impacto ambiental, la durabilidad y el nivel de seguridad, entre otros. Esto ha llevado al desarrollo de materiales de baja emisión de carbono, la búsqueda de nuevos diseños que reduzcan el impacto ambiental, la planificación de mantenimiento para prolongar la vida útil de las estructuras y la evaluación de su ciclo de vida para contemplar su impacto en su conjunto.
Esta nueva visión implica renovar la metodología de diseño de estructuras de modo que se consideren los criterios de sostenibilidad, que permita el uso de nuevos materiales y que, además, garantice un análisis estructural preciso. En este sentido, la optimización multiobjetivo encuentra soluciones óptimas con respecto a distintos objetivos, algunos de ellos contradictorios entre sí. Los actuales procedimientos de optimización heurística han permitido el diseño automatizado de estructuras óptimas. Sin embargo, existe una tendencia a considerar el diseño inicial y las operaciones de mantenimiento de la estructura como objetivos separados. Es decir, por una parte se estudia el diseño óptimo de una estructura para cumplir con los estados límite últimos y de servicio, y por otra parte, se considera la optimización de las operaciones de mantenimiento del puente durante su vida útil como un objetivo diferente, partiendo de una estructura ya construida, con un determinado estado de seguridad conocido. Como el mantenimiento depende del estado, el diseño inicial debe considerar los aspectos del ciclo de vida que también minimizan el mantenimiento futuro. Por lo tanto, es importante considerar la durabilidad con el fin de diseñar estructuras longevas y reducir los impactos a largo plazo. Es decir, se debe proyectar una estructura considerando todos los aspectos relacionados con su ciclo de vida.
La optimización multiobjetivo (MOO) de las estructuras reales requiere tiempos de cálculo elevados, incluso con la potencia de los actuales ordenadores, debido a la existencia de muchas variables de decisión, al procedimiento de análisis con métodos como el de los elementos finitos y al número de funciones objetivo consideradas. El uso de modelos predictivos tales como las redes neuronales artificiales (Artificial Neural Networks, ANNs) permite reducir el número necesario de evaluaciones exactas de la estructura y sustituir dicho cálculo por predicciones aproximadas. ANN aprende de los datos disponibles y permite predicciones incluso cuando las relaciones son altamente no lineales. Esta característica reduce el elevado coste computacional de las interaciones necesarias en los algoritmos de optimización heurística, al sustituir en dicho proceso una parte de los cálculos exactos por otros aproximados.
MOO conduce a una gama de soluciones óptimas, que se consideran igualmente buenas en función de los mútiples objetivos –la denominada frontera de Pareto-. El proceso de toma de decisiones para elegir la mejor de las opciones tiene lugar a posteriori, donde los expertos eligen la mejor solución en función de sus preferencias utilizando técnicas de toma de decisiones. Sin embargo, la asignación de pesos a cada uno de los objetivos del problema puede estar sujeta a incertidumbres o falta de objetividad. Sobre esta base, este trabajo sugiere una metodología capaz de introducir la información de selección (preferencia) en un proceso de toma de decisiones multicriterio en el que existen incertidumbres asociadas a la comparación de criterios.
Referencias:
García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges.Engineering Structures, 92, 112–122.
García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety.Engineering Structures, 125, 325–336.
García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks.Structural and Multidisciplinary Optimization, 56(1):139-150.,
Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy.Journal of Cleaner Production, 120, 231–240.
Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing.Engineering Structures, 48, 342–352.
Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement.Journal of Structural Engineering, 141(2), 04014114.
Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems.Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
Yepes, V.; Martí, J.V.; García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm.Automation in Construction, 49, 123–134.
Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges.Archives of Civil and Mechanical Engineering, 17(4), 738-749.
Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.
La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. Continue reading “Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)”→
El objetivo del proyecto BRIDLIFE consiste en desarrollar una metodología que permita incorporar un análisis del ciclo de vida de vida de puentes de hormigón pretensado definiendo un proceso de toma de decisiones que integre los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio. Los resultados esperados pretenden detallar qué tipologías, actuaciones de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos, dentro de una política de fuerte limitación presupuestaria que compromete seriamente la construcción y conservación de las infraestructuras.
Referencia:
YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V.; ALCALÁ, J.; PELLICER, E. (2017). Puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos: Proyecto BRIDLIFE. VII Congreso de ACHE, A Coruña, junio.
La Revista del Colegio de Ingenieros de Chile, en su número 215 de 2016, ha publicado un resumen de una entrevista que me hicieron hace poco. La entrevista la han adaptado a formato de artículo y en él se analiza brevemente las perspectivas de la ingeniería y su desarrollo, especialmente enfocado desde el punto de vista de la formación y la innovación en la construcción. El gran desafío consiste en formar a profesionales que van a trabajar en un horizonte de cinco a diez años, por lo que es necesario plantear los conocimientos que necesitarán para abordar nuevos retos en un mundo en constante cambio. Os dejo a continuación el artículo y el enlace de la revista por si queréis tener acceso al número completo.
Una metodología adoptada con frecuencia para realizar un control efectivo de los costes es la del análisis del valor ganado. Permite un control económico-temporal del proyecto considerando las repercusiones económicas que produce un retraso en el plazo. Las variaciones, tanto de tiempo como de coste respecto de la planificación prevista deben ser corregidas, lo antes posible, de modo que el proyecto pueda cumplir los objetivos previstos. Para calcular estas variaciones se definen tres variables básicas (utilizando la nomenclatura propuesta por el Project Management Institute):
Coste presupuestado del trabajo planificado (PV).
Coste presupuestado del trabajo realizado (EV) o valor ganado.
Coste real del trabajo realizado (AC).
PV representa el coste previsto originalmente contra el cual se mide el rendimiento real. Desde el punto de vista del contrato, PV es el presupuesto contratado menos el beneficio previsto por la empresa. Para un período determinado, PV se determina sumando los costes de cada una de las tareas finalizadas y de la parte proporcional de las tareas en curso.
Usando las definiciones anteriores pueden obtenerse las siguientes variaciones (en las que los valores negativos indican un exceso sobre lo previsto):
CV (variación del coste) = EV – AC
SV (variación del tiempo) = EV – PV
Ambas pueden transformarse en porcentajes:
CVP (variación del coste) = (EV – AC) / EV
SVP (variación del tiempo) = (EV – PV) / PV
Y también en índices:
CPI (índice de coste consumido) = EV / AC
SPI (índice de tiempo consumido) = EV / PV
Si los índice son iguales a la unidad, el rendimiento es el previsto. Si son superiores a la unidad, el rendimiento es superior al planeado. Finalmente, si son inferiores a la unidad, su rendimiento es inferior al previsto. Estos índices se utilizan normalmente para predecir tendencias y llevar a cabo acciones correctivas, si fuese necesario.
Para entender mejor esta técnica y su formulación, os dejo unos vídeos explicativos sobre el tema. Espero que os gusten.
Referencias:
PELLICER, E.; YEPES, V. (2007). Gestión de recursos, en Martínez, G.; Pellicer, E. (ed.): Organización y gestión de proyectos y obras. Ed. McGraw-Hill. Madrid, pp. 13-44. ISBN: 978-84-481-5641-1. (link)
PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.
YEPES, V.; PELLICER, E. (2008). Resources Management, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 165-188. ISBN: 83-89780-48-8.
YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Técnicas de planificación y control de obras. Editorial de la Universitat Politècnica de València. Ref. 189. Valencia, 94 pp. Depósito Legal: V-423-2012.
La economía circular es una estrategia que tiene por objeto reducir tanto la entrada de los materiales como la producción de desechos vírgenes, cerrando los «bucles» o flujos económicos y ecológicos de los recursos. Actualmente es la principal estrategia de Europa para generar crecimiento y empleo, con el respaldo del Parlamento Europeo y el Consejo Europeo. De hecho, la Comisión Europea, como órgano colegiado, ha adoptado la eficiencia de los recursos como un pilar central de su estrategia económica estructural Europa 2020».
Os dejo un pequeño vídeo sobre la fabricación del cemento y economía circular de la Fundación Cema.
A continuación os dejo un artículo de Alejandro López Vidal sobre este concepto aplicado a los prefabricados de hormigón. El autor es actualmente el director técnico de la Asociación Nacional de la Industria del Prefabricado de Hormigón (ANDECE). En artículo se publicó recientemente en la Revista Técnica CEMENTO HORMIGÓN, nº 976 (2016) sobre la economía circular en los prefabricados de hormigón, en línea con el uso más eficiente de los recursos auspiciada por la Comisión Europea.
Preservar las infraestructuras en un estado mínimamente adecuado de conservación y mantenimiento es una necesidad de primer orden en cualquier sociedad. Sin embargo, por motivos que a veces son estructurales y otras coyunturales, los responsables de esta tarea no prestan la atención y los recursos necesarios para este cometido. Parece que la inversión en conservación de los activos siempre ha sido insuficiente incluso en países desarrollados.
En efecto, parece evidente que el desarrollo económico que tuvo lugar en países como el nuestro en la última parte del siglo XX se centró, en el caso por ejemplo de las carreteras, en ampliar la red para apoyar dicho desarrollo. Si bien es cierto que estas nuevas infraestructuras nacen con un periodo de vida relativamente largo, también es cierto que una parte nada desdeñable de dicha infraestructura está empezando a notar el paso del tiempo, y lo que es peor, parece que podemos vivir dentro de un horizonte no tan lejano, a un verdadero colapso en los niveles de servicio prestados por estos activos. Lo peor de todo ello es que estas infraestructuras se financiaron a largo plazo y la siguiente generación se va a encontrar con la sorpresa de tener que pagar Continue reading “La “crisis” de las infraestructuras”→
Las cinco S constituye una práctica de Calidad ideada en Japón referida al “Mantenimiento Integral” de la empresa, no sólo de maquinaria, equipo e infraestructura sino del mantenimiento del entrono de trabajo por parte de todos. Se inició en Toyota en los años 1960 con el objetivo de lograr lugares de trabajo mejor organizados, más ordenados y más limpios de forma permanente para generar una mayor productividad y un mejor entorno laboral.
El método de las 5S utiliza una lista de cinco palabras japonesas que empiezan por S. La lista describe la forma de organizar un espacio de trabajo de un modo eficiente y eficaz mediante la identificación y almacenamiento de los componentes utilizados, la conservación adecuada de la zona de trabajo y los elementos almacenados, y el mantenimiento del nuevo estado.
El proceso de toma de decisiones por lo general proviene de un diálogo sobre la estandarización que se basa en un claro entendimiento entre los empleados sobre cómo se debe trabajar. También se pretende involucrar en el proceso a cada uno de los empleados.
El beneficio más evidente del método es la mejora de la productividad dado que todos los componentes están perfectamente localizados. Los operarios ya no tienen que perder tiempo buscando herramientas, piezas, documentos, etc.; esta es la forma más frustrante de pérdida de tiempo en cualquier empresa. Los elementos más necesarios se almacenan en el lugar más accesible; la adopción correcta de la normalización implica que se devuelven a la ubicación correcta después de su uso.
La implementación de cada una de las 5S se lleva a cabo siguiendo cuatro pasos:
Preparación: formación respecto a la metodología y planificación de actividades.
Acción: búsqueda e identificación, según la etapa, de elementos innecesarios, desordenados, suciedad, etc.
Análisis de la mejora realizada.
Documentación de conclusiones en los estándares correspondientes.
El resultado se mide tanto en productividad como en satisfacción del personal respecto a los esfuerzos que han realizado para mejorar las condiciones de trabajo. La aplicación de esta técnica tiene un impacto a largo plazo.
Os dejo unos vídeos que explican estas técnicas relacionadas con la gestión de la calidad. Espero que os gusten.
Referencias:
PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.
YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1.Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.
YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.
Un buen número de pequeñas y medianas empresas piensan que la investigación y la innovación son actividades propias de los centros de investigación, las universidades o las grandes empresas. Suficientes problemas existen todos los días como para perder el tiempo en actividades extrañas que intenten cambiar la forma de hacer las cosas. Los inventos son para mentes brillantes o felices ideas. ¡Que inventen ellos!
De este paradigma no escapan las empresas constructoras. Muchas veces usamos el término “contratista”, lo cual es toda una declaración de intenciones: el contratista se ocupa del contrato, la construcción va en segundo lugar. Sin embargo, una empresa es una organización que debería ocuparse de su supervivencia a largo plazo, es decir, de su competitividad en un mercado cada vez más complicado. Es como si un leñador estuviese todos los días talando árboles y no tuviese tiempo de afilar su hacha.
Afortunadamente la innovación es un proceso, y como tal, se puede gestionar. La norma UNE 166002 es un ejemplo de cómo se puede organizar la gestión de la innovación en una organización. En el caso particular de las empresas constructoras, muchas innovaciones provienen de mejoras en los procedimientos constructivos o en las demandas de los clientes. Sin embargo, para que la innovación se incorpore en la gestión cotidiana es necesario un cambio cultural propiciado por la alta dirección de estas organizaciones.
A continuación os dejo un vídeo sobre este tema. Se trata de un reportaje de la Universitat Politècnica de València donde se informa de un proyecto de investigación realizado por nuestro grupo. El enlace a la noticia: http://www.upv.es/noticias-upv/noticia-8017-id-en-construc-es.html# Espero que os sea de interés.
Referencias:
YEPES, V.; PELLICER, E.; ALARCÓN, L.F.; CORREA, L.C. (2016). Creative innovation in Spanish construction firms.Journal of Professional Issues in Engineering Education and Practice ASCE, 142 (1): 04015006. DOI: 10.1061/(ASCE)EI.1943-5541.0000251.
PELLICER, E.; YEPES, V.; CORREA, C.L.; ALARCÓN, L.F. (2014). Model for Systematic Innovation in Construction Companies. Journal of Construction Engineering and Management ASCE, 140(4):B4014001. DOI: 10.1061/(ASCE)CO.1943-7862.0000468. ISNN: 0733-9364. (link)(descargar versión autor)
PELLICER, E.; CORREA, C.L.; YEPES, V.; ALARCÓN, L.F. (2012). Organizacional improvement through standardization of the innovation process in construction firms.EMJ-Engineering Management Journal, 24(2): 40-53.
PELLICER, E., YEPES, V.; ROJAS, R.J. (2010). Innovation and Competitiveness in Construction Companies. A Case Study. Journal of Management Research, 10(2): 103-115. Print ISSN: 0972-5814. (link)
PELLICER E., YEPES V., CORREA C.L.; MARTÍNEZ, G. (2008). Enhancing R&D&i through standardization and certification: the case of the Spanish construction industry, Revista Ingeniería de Construcción, 23(2): 112-121. (link)
CORREA, C.L.; YEPES, V.; PELLICER, E. (2007). Factores determinantes y propuestas para la gestión de la I+D+i en las empresas constructoras.Revista Ingeniería de Construcción, 22(1): 5-14. Pontificia Universidad Católica de Chile. ISSN: 0716-2952. (link)