En un artículo previo, explicamos cómo calcular el radio hidráulico para diferentes secciones. Sin embargo, en el caso de una sección circular, el uso de un nomograma es más conveniente, pues evita el cálculo intermedio del ángulo del sector circular que abarca el agua.
Además, el empleo de esta resolución gráfica permite visualizar aspectos que son difíciles de deducir directamente de las fórmulas aplicadas. En este caso, el nomograma permite observar que los radios hidráulicos pueden ser iguales para diferentes calados. También permite ver claramente el rango de variación y el valor máximo. Aunque las fórmulas también pueden proporcionar información sobre el valor extremo, es necesario calcular la derivada, igualarla a cero y resolver la ecuación.
A continuación, se presenta un problema resuelto que incluye las ecuaciones utilizadas, el nomograma y un par de gráficas que relacionan el calado normalizado con el diámetro en relación con el ángulo del sector circular y al radio hidráulico normalizado. Además, presentamos un nomograma original elaborado en colaboración con los profesores Daniel Boulet y Pedro Martínez-Pagán. Espero que esta información sea de vuestro interés.
En un artículo previo, explicamos cómo se utiliza la Ley de Bond para calcular la energía necesaria para fragmentar un material, incluso proporcionando un ejemplo resuelto en el que se aplicó a un equipo de trituración para obtener un tamaño de áridos. En este artículo, presentaremos un nuevo nomograma que ha sido creado en colaboración con los profesores Pedro Martínez-Pagán, Daniel Boulet y Jaime E. Sepúlveda, específicamente diseñado para tamaños de partícula más pequeños. Este nomograma se emplea para una molienda con un molino de bolas para un tipo de mineral en particular. Esperamos que tanto el nomograma como el ejercicio resuelto sean de su interés.
FUEYO, L. (1999). Equipos de trituración, molienda y clasificación: tecnología, diseño y aplicación. Editorial Rocas y Minerales. 1ª edición. Fueyo Editores. Madrid, 371 pp. ISBN: 84-923128-2-3.
LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. E.T.S. de Ingenieros de Minas de Madrid, 607 pp.
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos.Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia.
MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.
Existen varios tipos de pavimentos de hormigón, que se clasifican en función de la existencia o no de armaduras y de la disposición de las juntas (Figura 1). Los pavimentos de hormigón en masa o de hormigón armado con juntas, y los pavimentos continuos de hormigón armado, son los más comunes en carreteras, mientras que los pavimentos de hormigón pretensado, los de hormigón armado con fibras, los de hormigón compactado con rodillo, los de hormigón poroso, y los de elementos prefabricados (losas o adoquines) son menos frecuentes.
A continuación, se detallan los pavimentos de hormigón en masa con juntas, que se consideran los más económicos y sencillos de construir (Figura 2). Estos pavimentos son habituales en diversas categorías de tráfico y soportan un promedio de hasta 2000 vehículos pesados por carril y día. El control de la fisuración se logra mediante la inclusión de juntas, ya sean estas longitudinales o transversales, que pueden cumplir diferentes funciones, como juntas de construcción, de contracción o de dilatación, dependiendo de su diseño.
La fisuración se controla dividiendo al pavimento en losas con una separación entre juntas transversales de 3,5 a 6,0 m, que depende, entre otros factores, del tipo de base, el espesor y el coeficiente de expansión térmica (Figura 3). La separación entre juntas en una losa está estrechamente relacionada con su espesor. Si no hay grandes gradientes de temperatura, la distancia entre las juntas no debería exceder 25-30 veces el espesor de la losa. Si hay gradientes importantes de temperatura, la separación entre juntas debe reducirse a 15-20 veces el espesor de la losa. Se recomienda colocar las juntas a distancias inferiores a 5 m, y si no hay pasadores, no deben superar los 4 m. Como regla general, las losas deben ser rectangulares, y la relación entre sus lados no debe ser superior a 1,5. En calzadas con un ancho mayor de 5 m, se deben disponer juntas longitudinales.
La transferencia de carga a través de las juntas es un factor relevante que condiciona el rendimiento de los pavimentos. Una mala transferencia de carga puede provocar problemas como el escalonamiento de las juntas, la erosión de las bases debido a la eyección de agua con suelo fino (también conocido como «bombeo») y roturas de las esquinas. En este tipo de juntas, existen dos mecanismos de transferencia de carga: la trabazón entre los áridos y el uso de pasadores.
Con frecuencia, se colocan barras de unión de acero corrugado en las juntas longitudinales para mantener unidas las losas adyacentes. Estas barras permiten la deformación debida al gradiente térmico, pero evitan la separación de las juntas entre carriles de circulación y el escalonamiento causado por el tráfico. A pesar de ello, estos fenómenos suelen ocurrir con poca frecuencia en las juntas longitudinales.
Con tráficos medios (IMD entre 200 y 2000 vehículos pesados), suele ser común el empleo de pasadores en las juntas transversales para mejorar la transmisión de cargas entre las losas. Se trata de barras de acero lisas y no adheridas al hormigón, situadas en la mitad del espesor, paralelas entre sí y al eje de la vía. De esta manera, se garantiza que las losas a ambos lados de la junta tengan una deflexión similar al paso de los vehículos. A pesar de que el empleo de pasadores reduce el espesor de las losas y aumenta la separación entre las juntas, también se han logrado excelentes resultados en pavimentos sin pasadores cuando las juntas se han dispuesto a distancias inferiores a 4 m.
El diseño “californiano” prescinde de los pasadores (Figura 4), aunque solo se utiliza en España para el tráfico medio y ligero. Sin embargo, cuando se espera más de 200 vehículos pesados por carril y sentido, se adoptan medidas para prolongar la vida útil del pavimento. Estas incluyen bases resistentes al desgaste como el hormigón magro o el gravacemento con mayor contenido de conglomerante, sistemas de drenaje para evitar la acumulación de agua en las juntas y los bordes del pavimento (drenes laterales o bases porosas) y la construcción de losas cortas (de aproximadamente 4 m) con juntas inclinadas 1:6 para minimizar las tensiones.
Hay que evitar los finos de los arcenes cercanos para prevenir el escalonamiento del pavimento. Se pueden aplicar soluciones como zanjas porosas o bases drenantes sin finos, o estabilizadas con gravacemento o suelocemento. Sin embargo, la opción más efectiva suele ser un arcén de hormigón en masa con barras de unión al carril adyacente y una junta longitudinal sellada. Se ha comprobado que, con estas medidas, los pavimentos de hormigón en masa con juntas sin pasadores soportan el tráfico pesado, siempre y cuando no llueva mucho. Además, es importante considerar el efecto positivo que tiene un arcén de hormigón en la estructura y en la prevención de la erosión. No obstante, en España, los pasadores son obligatorios para el tráfico pesado y medio-alto.
La técnica californiana se adapta bien a las pavimentadoras de encofrados deslizantes, pues no requiere pasadores. Antes de la década de 1980, los pasadores se introducían mediante vibración con una máquina que rodaba sobre encofrados fijos o bien la pavimentadora debía detenerse en cada junta para colocar los pasadores con horquillas, lo que empeoraba la regularidad superficial. Actualmente, las pavimentadoras cuentan con dispositivos que introducen los pasadores sin interrupciones y sin afectar al hormigón de la junta, lo que simplifica el proceso y aumenta su eficiencia. Además, el sobrecoste de utilizar pasadores es mínimo, lo que hace que esta solución sea competitiva para tráficos pesados y medios-altos.
Os dejo un webminar, desarrollado en 2020, del Instituto del Cemento Portland Argentino, sobre la ejecución de pavimentos de hormigón con tecnología convencional. Espero que os sea útil.
También recomiendo la videoconferencia sobre diseño y ejecución de juntas en pavimentos de hormigón, cuyo ponente es César Bartolomé, director del Área de Innovación de IECA. Espero que os guste.
Referencias:
IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.
KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.
En los últimos años, ha aumentado la preocupación por las texturas superficiales de los pavimentos de hormigón debido al incremento progresivo del tráfico y de la velocidad de circulación. Anteriormente, la texturización se vinculaba a la reducción de accidentes por deslizamiento en superficies húmedas, pero en la actualidad también se considera la generación de ruido entre el pavimento y el neumático. La textura superficial garantiza la rugosidad necesaria para conseguir una buena adherencia, un buen drenaje, baja sonoridad y reduce la reflectancia del pavimento. Una textura superficial adecuada se realiza mediante el arrastre o paso de algún elemento sobre el hormigón fresco, y se procede inmediatamente al curado. En resumen, el objetivo del texturizado es conseguir una resistencia mínima al deslizamiento en condiciones húmedas, mantener un buen drenaje y escurrimiento superficial del agua, reducir los niveles de ruido y brindar resistencia al desgaste y la durabilidad.
Existen diversas técnicas para aplicar una textura sobre la superficie del hormigón, que pueden ejecutarse con equipamiento mecánico o manualmente. Asimismo, se pueden aplicar otras técnicas en estado endurecido en pavimentos en servicio o nuevos para mejorar el rendimiento de la superficie en parámetros como la fricción, el drenaje superficial y el ruido.
Es importante aplicar la textura de forma homogénea para producir condiciones uniformes de fricción y circulación, independientemente de la técnica utilizada. Los factores que más influyen en la textura cuando se aplica en estado fresco son la consistencia y las características del hormigón, el momento o tiempo en el que se realiza, la presión con la que se aplican las herramientas de texturizado, su limpieza y la presencia de agua de exudación en la superficie del hormigón, entre otros.
Entre las texturas que se pueden utilizar en la superficie del pavimento, se encuentran las siguientes:
Estriado transversal: se crea mediante el uso de peines de púas metálicas o de plástico. Esta textura proporciona una alta adherencia y resistencia al frenado, así como un buen drenaje. Sin embargo, también es ruidosa, por lo que se recomienda su uso en arcenes y en zonas muy lluviosas.
Estriado longitudinal oscilante: se consigue mediante el empleo de cepillos o peines, que generalmente están integrados en el carro del equipo de curado. Es fundamental que el dispositivo que crea la textura tenga un movimiento lateral, combinado con el avance, que provoque una ondulación sinusoidal para evitar el guiado de las ruedas. Generan un bajo nivel de ruido.
Terminación con arpillera: se logra aplicando una arpillera húmeda lastrada para obtener una microtextura adherente de baja rugosidad. Esta técnica suele combinarse con alguna de las otras texturas mencionadas anteriormente. Es una técnica sencilla, que puede aplicarse tanto de forma manual como automática, y además, genera poco ruido. Entre sus debilidades, destaca una baja profundidad de textura y una mayor pérdida de fricción inicial.
Árido visto: se consigue eliminando el mortero superficial del pavimento mediante la aplicación de un retardador de superficie sobre el hormigón fresco, lo que impide que el mortero se endurezca en los milímetros superiores. Después, se aplica un producto filmógeno de curado o una lámina de plástico sobre el retardador. Una vez que el resto del hormigón ha adquirido suficiente resistencia, lo cual ocurre generalmente al cabo de un día, se elimina el mortero mediante barrido, dejando el árido parcialmente visible. Este método, si se desarrolla correctamente, permite obtener pavimentos con alta rugosidad, buenas características de evacuación del agua de lluvia, antideslizantes y de muy baja sonoridad, cualidades que se mantienen durante toda su vida útil. Entre sus ventajas se encuentran los elevados índices de fricción, la baja generación de ruido y la elevada durabilidad. Sin embargo, también tiene algunas desventajas, como la necesidad de utilizar métodos y equipos especiales, su elevado coste y la importancia de contar con un constructor calificado.
Os dejo algunos vídeos que, espero, os sean de interés.
Referencias:
KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.
IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.
El pavimento se coloca de forma manual en vías rurales y calles urbanas, pero para carreteras se necesitan pavimentadoras de encofrado deslizante de alto rendimiento debido a la exigencia de regularidad superficial. Se recomienda descargar directamente los camiones, pero si no es posible, se puede recurrir a la alimentación lateral mediante retroexcavadoras, cintas transportadoras u otros dispositivos similares.
Las pavimentadoras de encofrado deslizante realizan la distribución, vibrado y terminación del hormigón en una sola pasada, y para dotarle de textura y curado posterior se utiliza un carro con dispositivos especiales. La cota y la rasante del pavimento se determinan mediante palpadores que se apoyan en hilos tensos o sistemas de guiado tridimensional.
Para la ejecución con pavimentadoras de encofrados deslizantes se requiere al menos una máquina por cada capa de construcción. Estos equipos se encargan de extender, compactar y enrasar uniformemente el hormigón, y en el caso de la capa superior, ejecutar un fratasado mecánico para obtener un pavimento denso y homogéneo. Deben contar con un sistema de guiado por hilo, que actúe en cuanto las desviaciones excedan 3 mm en alzado o 10 mm en planta. También deben estar equipadas con encofrados móviles que sostengan el hormigón lateralmente durante el tiempo necesario y compactar el hormigón adecuadamente por vibración interna. La frecuencia de vibración de cada unidad vibrante no será inferior a 5.000 ciclos por minuto y la amplitud de la vibración será perceptible en la superficie del hormigón a lo largo de toda la longitud vibrante y a una distancia de 30 cm. La pavimentadora deberá ir provista de los mecanismos necesarios si se ejecuta una junta longitudinal en fresco. Además, la longitud de la placa conformadora será suficiente para evitar la apariencia de vibraciones en la superficie del hormigón tras el borde posterior de la placa.
Las pavimentadoras pueden construir superficies de entre 2 y 15 metros en una sola pasada. Algunas máquinas están equipadas con dispositivos de vibro-inserción que introducen automáticamente pasadores o barras de unión. Otras tienen una batería de tubos de inserción en la parte delantera para colocar las armaduras de un pavimento continuo de hormigón armado en su posición final. En algunas extendedoras, se encuentra en la parte posterior una maestra oscilante transversal (llamada habitualmente auto-float o bailarina) y una regla longitudinal oscilante para eliminar las irregularidades longitudinales.
De acuerdo con el artículo 550 del PG-3, para la ejecución de losas de hormigón es necesario contar con una pavimentadora que cuente con un sistema de guía por cable o guiado tridimensional y encofrados móviles que sostengan el hormigón lateralmente sin asentamientos en el borde de la losa. Además, el equipo debe ser capaz de compactar adecuadamente el hormigón fresco en toda la anchura de la pavimentación mediante vibradores internos uniformemente distribuidos, con una separación entre 350 y 500 mm.
Os dejo algunos vídeos al respecto:
Os dejo también una guía técnica sobre firmes de hormigón en carreteras de IECA. Espero que os sea útil.
Tengo el placer de presentar un nuevo libro que acaba de salir de imprenta. Se trata de una colaboración con los profesores Pedro Martínez Pagán y Marcos A. Martínez Segura, de la Universidad Politécnica de Cartagena.
Es un libro que está editado en abierto, por lo que es posible su descarga gratuita. Se trata de un libro sobre ejercicios resueltos de sistemas de transporte continuo, centrado en bombas y cintas transportadoras.
Los problemas tipo que aquí se abordan son similares a los tratados durante las clases de resolución de problemas y casos prácticos que se imparten en la asignatura de Ingeniería Minera del Grado en Recursos Minerales y Energía (GIRME) de la Universidad Politécnica de Cartagena (España). De esta forma, el libro es apropiado para todos aquellos estudiantes de grado o cursos de máster relacionados con la industria mineral, de los áridos o de la obra civil; donde se presenta la necesidad de resolver problemas sobre bombeo de pulpas, elevación de agua, transporte de materias primas, etc.
Al final del texto se facilitan algunos libros y enlaces que los autores sugieren para completar o adquirir conocimientos que serían recomendables para la resolución de algunos de los problemas que aquí se presentan, así como las plantillas y ábacos utilizados en la resolución de los problemas. Los autores quieren agradecer las útiles sugerencias y aportaciones recibidas durante la elaboración de este trabajo por todos aquellos especialistas en esta materia, especialmente a D. Juan Luis Bouso Aragonés, presidente de Eral Chile, S.A.
También aquí, como en otros libros anteriores, esperamos y deseamos que su consulta sea útil y que el lector sepa disculpar posibles erratas que hayan podido producirse.
Resumen:
Este libro lo componen unos 40 problemas tipo totalmente resueltos, abordando la resolución de sistemas hidráulicos de bombeo para el transporte de aguas y pulpas y transporte de material sólido a granel por medio de cintas transportadoras, unidades imprescindibles encargadas de favorecer y mantener el flujo continuo entre unidades de procesos en la industria minera y civil. Por ello, estos equipos se encuentran instalados de una manera muy extendida en la industria: plantas de tratamiento de recursos minerales, petroquímicas, canteras para la fabricación de áridos, cementeras, obras civiles, etc. En definitiva, estos ejercicios resueltos pretenden ayudar a dimensionar y seleccionar adecuadamente estas unidades, siguiendo criterios internacionalmente establecidos, por lo que lo convierten en un libro de consulta idóneo para aquellos profesionales o especialistas relacionados con los procesos de minerales, las plantas de áridos, la construcción, la obra civil, etc.
Palabras clave:
Cintas transportadoras; bombas; transporte de graneles sólidos; transporte hidráulico de pulpas; sustancias minerales; mineralurgia; procesos minerales; materias primas
La perforación a percusión con cable es un método de perforación vertical que se basa en el golpeteo de un trépano pesado que se eleva con un cable y cae por gravedad, fragmentando el suelo. Este método se utiliza en terrenos de dureza media a baja o en terrenos duros que sean frágiles, pero se desaconseja en terrenos detríticos no cohesionados, muy duros, abrasivos y plásticos. La frecuencia de golpeo se encuentra en el rango de 40 a 50 impactos por minuto, y se logran rendimientos medios de 2 a 4 m/día en materiales duros y de 10 a 20 m/día en materiales blandos. La altura de caída del trépano depende de la dureza del terreno y de la profundidad del fondo de perforación.
Aquí os traigo un nomograma original, elaborado en colaboración con los profesores Pedro Martínez-Pagán y Daniel Boulet, en el que se puede calcular las características propias de este método de perforación, tales como el peso de la sarta de perforación, la velocidad media de la herramienta o la potencia necesaria de la máquina. También os paso un problema resuelto, que espero sea de vuestro interés.
Para planificar un proyecto de dragado es fundamental disponer de información geotécnica detallada del material a extraer. Esto permitirá seleccionar el equipo adecuado, estimar los rendimientos y prever la necesidad de sobre-excavación. Es importante tener en cuenta el tipo de terreno a dragar para identificar los más apropiados.
Las Tablas que se presentan resumen las características de las dragas en función del terreno, lo que facilita la elección del equipo adecuado y contribuye a una ejecución más eficiente del dragado.
Tabla 1. Comportamiento de las dragas en función del terreno (Vigueras, 1997)
Tabla 2. Equipos más adecuados para cada terreno (Vigueras, 1997)
Tabla 3. Uso de los equipos de dragado en función del emplazamiento y las características de los materiales a dragar (Vigueras, 1997)
Referencias:
BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.
CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.
SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.
VIGUERAS, M. (1997). Organización y ejecución de las obras. Conferencia 7. Curso General de Dragados Ente Público Puertos del Estado.
La construcción y gestión de las infraestructuras constituye un sector económico clave, tanto por sí mismo como por su papel fundamental en el soporte de la actividad social. Sin embargo, la creciente conciencia sobre la necesidad de construir de manera sostenible ha impulsado la puesta en marcha de nuevas tecnologías y materiales. Entre las tecnologías clave para hacer más sostenibles las infraestructuras se encuentran el uso de materiales de construcción ecológicos y sostenibles, la adopción de energías renovables como paneles solares y aerogeneradores, la iluminación LED, sistemas urbanos de drenaje sostenible, materiales de aislamiento térmico y sistemas de sensorización y automatización. El empleo de estos materiales y tecnologías puede ayudar a reducir la huella de carbono de las infraestructuras, disminuir el consumo de energía y recursos no renovables, generar ahorros económicos y mejorar la calidad del agua. Además, estas opciones pueden favorecer la eficiencia de la infraestructura y la calidad de vida de los usuarios. Pero es claramente insuficiente.
El paradigma de la sostenibilidad está en crisis. Ya no se considera suficiente la reducción de los impactos ambientales asociados a la actividad humana, sino que se deben contemplar también los aspectos económicos y sociales. Alcanzar este equilibrio resulta complejo, pues a veces la sostenibilidad ambiental no es compatible con la social o la económica. No obstante, el reto es claro: preservar los recursos naturales, el patrimonio, la cultura, el equilibrio social, los ecosistemas y muchos otros aspectos más, para las generaciones futuras.
Por tanto, el paradigma actual se ve cuestionado cuando el antiguo canon de “reciclar, reducir y reutilizar” ya no es suficiente y debe ser reemplazado por otro que consiste en “restaurar, renovar y reponer”. Este enfoque representa un nuevo paradigma para mejorar el entorno construido: el Diseño Regenerativo (conocido como “regenerative design” en inglés). En la actualidad, reducir los impactos ambientales resulta insuficiente ante la aceleración del cambio, por lo que se hace necesario adoptar un enfoque de diseño regenerativo que genere impactos positivos a lo largo de todo el ciclo de vida de una infraestructura.
El diseño regenerativo implica la restauración de los ecosistemas y fomenta el desarrollo de los ecosistemas naturales y humanos. Para lograrlo, se requiere un cambio de pensamiento y de diseño, con un enfoque holístico e integrado. Además, este nuevo paradigma exige la incorporación de un alto nivel de conocimientos científicos que no se encuentran en el diseño convencional. No podemos ignorar la herencia de etapas anteriores, pero los proyectistas y los encargados de tomar decisiones necesitan expandir sus horizontes. El nuevo desafío requiere un profundo conocimiento de diversas áreas y, en algunos casos, la colaboración de varios especialistas y herramientas apropiadas, junto con nuevos métodos de investigación, pautas y estrategias de diseño.
Los Métodos Modernos de Construcción (Modern Methods of Construction, en inglés) se refieren a un enfoque que utiliza tecnologías y procesos innovadores para mejorar la eficiencia y la calidad de la construcción. Incluyen la prefabricación de componentes en una fábrica, la utilización de materiales más ligeros y resistentes, y la adopción de técnicas constructivas más rápidas y precisas. Estos nuevos procedimientos se relacionan con el diseño regenerativo, pues ambos buscan promover prácticas más sostenibles y responsables con el medio ambiente. Este enfoque se basa en la comprensión de que los edificios y la infraestructura pueden tener un impacto positivo al proporcionar servicios ecosistémicos como la purificación del aire y del agua, la protección contra inundaciones y la mitigación del cambio climático.
Por tanto, estamos frente a un cambio de paradigma, ya que los métodos modernos de construcción pueden ser herramientas valiosas para el diseño regenerativo. Al emplear materiales más sostenibles, reducir los residuos de construcción y disminuir la huella de carbono, estos nuevos métodos pueden ayudar a crear edificios y comunidades más sostenibles y eficientes. Además, pueden contribuir a la creación de infraestructuras que promuevan la regeneración del medio ambiente y la salud de la comunidad.
La investigación y la innovación en este ámbito está siendo puntera en España, tanto en las universidades como en los institutos tecnológicos o las empresas. En el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València, el grupo de investigación que dirijo se enfoca en promover la sostenibilidad de las infraestructuras en todas las etapas de su ciclo de vida, desde el diseño hasta la demolición, a través de técnicas de optimización heurística multiobjetivo, toma de decisiones y análisis del ciclo de vida social y ambiental.
El nivel de dificultad del examen real será muy similar. Además, este tipo de ejercicios permite a los estudiantes enfrentarse a los problemas, consultar al profesor su resolución y aprender del proceso de evaluación.
De momento solo he tenido la oportunidad de dar tres unidades correspondientes a sondeos y perforaciones, técnicas de mejora del terreno y control del nivel freático. El tipo de examen es del estilo al que dejo a continuación.